1
|
Huang X, Zhang J, Liu Z, Wang M, Fan X, Wang L, Zhou H, Jiang Y, Cui W, Qiao X, Xu Y, Li Y, Tang L. Genome-wide analysis of differentially expressed mRNAs, lncRNAs, and circRNAs in chicken bursae of Fabricius during infection with very virulent infectious bursal disease virus. BMC Genomics 2020; 21:724. [PMID: 33076825 PMCID: PMC7574500 DOI: 10.1186/s12864-020-07129-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background Infectious bursal disease virus (IBDV) causes acute, highly contagious, immunosuppressive, and lethal infectious disease in young chickens and mainly infects the bursa of Fabricius (BF). To investigate interactions between IBDV and its host, RNA sequencing was applied to analyze the responses of the differentially expressed transcriptional profiles of BF infected by very virulent IBDV (vvIBDV). Results In total, 317 upregulated and 94 downregulated mRNAs were found to be significantly differentially expressed in infected chickens, compared to controls. Long non-coding RNA (lncRNA) and circular RNA (circRNA) alterations were identified in IBDV-infected chickens, and significantly different expression was observed in 272 lncRNAs and 143 circRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to assess the functions of significantly dysregulated genes, which showed that the JAK-STAT signaling pathway, the NOD-like receptor signaling pathway, and apoptosis may be activated by IBDV infection. We predicted interactions between differentially expressed genes and produced lncRNA-mRNA and circRNA-miRNA-mRNA regulator network. Conclusions The present study identified the expression profiles of mRNAs, lncRNAs, and circRNAs during vvIBDV infection and provides new insights into the pathogenesis of IBDV and antiviral immunity of the host.
Collapse
Affiliation(s)
- Xuewei Huang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China
| | - Junyan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China
| | - Zengsu Liu
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China
| | - Meng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China
| | - Xiaolong Fan
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China. .,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China.
| |
Collapse
|
2
|
Li J, Zheng SJ. Role of MicroRNAs in Host Defense against Infectious Bursal Disease Virus (IBDV) Infection: A Hidden Front Line. Viruses 2020; 12:E543. [PMID: 32423052 PMCID: PMC7291112 DOI: 10.3390/v12050543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, remarkable progress has been made in the understanding of the pathogenesis of IBDV infection and the host response, including apoptosis, autophagy and the inhibition of innate immunity. Not only a number of host proteins interacting with or targeted by viral proteins participate in these processes, but microRNAs (miRNAs) are also involved in the host response to IBDV infection. If an IBDV-host interaction at the protein level is taken imaginatively as the front line of the battle between invaders (pathogens) and defenders (host cells), their fight at the RNA level resembles the hidden front line. miRNAs are a class of non-coding single-stranded endogenous RNA molecules with a length of approximately 22 nucleotides (nt) that play important roles in regulating gene expression at the post-transcriptional level. Insights into the roles of viral proteins and miRNAs in host response will add to the understanding of the pathogenesis of IBDV infection. The interaction of viral proteins with cellular targets during IBDV infection were previously well-reviewed. This review focuses mainly on the current knowledge of the host response to IBDV infection at the RNA level, in particular, of the nine well-characterized miRNAs that affect cell apoptosis, the innate immune response and viral replication.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
The Roles of MicroRNAs (miRNAs) in Avian Response to Viral Infection and Pathogenesis of Avian Immunosuppressive Diseases. Int J Mol Sci 2019; 20:ijms20215454. [PMID: 31683847 PMCID: PMC6862082 DOI: 10.3390/ijms20215454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding small RNAs that play important roles in the regulation of various biological processes including cell development and differentiation, apoptosis, tumorigenesis, immunoregulation and viral infections. Avian immunosuppressive diseases refer to those avian diseases caused by pathogens that target and damage the immune organs or cells of the host, increasing susceptibility to other microbial infections and the risk of failure in subsequent vaccination against other diseases. As such, once a disease with an immunosuppressive feature occurs in flocks, it would be difficult for the stakeholders to have an optimal economic income. Infectious bursal disease (IBD), avian leukemia (AL), Marek’s disease (MD), chicken infectious anemia (CIA), reticuloendotheliosis (RE) and avian reovirus infection are on the top list of commonly-seen avian diseases with a feature of immunosuppression, posing an unmeasurable threat to the poultry industry across the globe. Understanding the pathogenesis of avian immunosuppressive disease is the basis for disease prevention and control. miRNAs have been shown to be involved in host response to pathogenic infections in chickens, including regulation of immunity, tumorigenesis, cell proliferation and viral replication. Here we summarize current knowledge on the roles of miRNAs in avian response to viral infection and pathogenesis of avian immunosuppressive diseases, in particular, MD, AL, IBD and RE.
Collapse
|
4
|
Bradford BJ, Cooper CA, Tizard ML, Doran TJ, Hinton TM. RNA interference-based technology: what role in animal agriculture? ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal agriculture faces a broad array of challenges, ranging from disease threats to adverse environmental conditions, while attempting to increase productivity using fewer resources. RNA interference (RNAi) is a biological phenomenon with the potential to provide novel solutions to some of these challenges. Discovered just 20 years ago, the mechanisms underlying RNAi are now well described in plants and animals. Intracellular double-stranded RNA triggers a conserved response that leads to cleavage and degradation of complementary mRNA strands, thereby preventing production of the corresponding protein product. RNAi can be naturally induced by expression of endogenous microRNA, which are critical in the regulation of protein synthesis, providing a mechanism for rapid adaptation of physiological function. This endogenous pathway can be co-opted for targeted RNAi either through delivery of exogenous small interfering RNA (siRNA) into target cells or by transgenic expression of short hairpin RNA (shRNA). Potentially valuable RNAi targets for livestock include endogenous genes such as developmental regulators, transcripts involved in adaptations to new physiological states, immune response mediators, and also exogenous genes such as those encoded by viruses. RNAi approaches have shown promise in cell culture and rodent models as well as some livestock studies, but technical and market barriers still need to be addressed before commercial applications of RNAi in animal agriculture can be realised. Key challenges for exogenous delivery of siRNA include appropriate formulation for physical delivery, internal transport and eventual cellular uptake of the siRNA; additionally, rigorous safety and residue studies in target species will be necessary for siRNA delivery nanoparticles currently under evaluation. However, genomic incorporation of shRNA can overcome these issues, but optimal promoters to drive shRNA expression are needed, and genetic engineering may attract more resistance from consumers than the use of exogenous siRNA. Despite these hurdles, the convergence of greater understanding of RNAi mechanisms, detailed descriptions of regulatory processes in animal development and disease, and breakthroughs in synthetic chemistry and genome engineering has created exciting possibilities for using RNAi to enhance the sustainability of animal agriculture.
Collapse
|
5
|
Alkie TN, Rautenschlein S. Infectious bursal disease virus in poultry: current status and future prospects. VETERINARY MEDICINE-RESEARCH AND REPORTS 2016; 7:9-18. [PMID: 30050833 PMCID: PMC6055793 DOI: 10.2147/vmrr.s68905] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Infectious bursal disease virus (IBDV) affects immature B lymphocytes of the bursa of Fabricius and may cause significant immunosuppression. It continues to be a leading cause of economic losses in the poultry industry. IBDV, having a segmented double-stranded RNA genome, is prone to genetic variation. Therefore, IBDV isolates with different genotypic and phenotypic diversity exist. Understanding these features of the virus and the mechanisms of protective immunity elicited thereof is necessary for developing vaccines with improved efficacy. In this review, we highlighted the pattern of virus evolution and new developments in prophylactic strategies, mainly the development of new generation vaccines, which will continue to be of interest for research as well as field application in the future.
Collapse
Affiliation(s)
- Tamiru Negash Alkie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany,
| |
Collapse
|
6
|
Sahare AA, Bedekar MK, Jain SK, Singh A, Singh S, Sarkhel BC. Inhibition of infectious bursal disease virus by vector delivered SiRNA in cell culture. Anim Biotechnol 2015; 26:58-64. [PMID: 25153457 DOI: 10.1080/10495398.2014.886584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Infectious Bursal Disease (IBD) is major threat to poultry industry. It causes severe immunosuppression and mortality in chicken generally at 3 to 6 weeks of age. RNA intereference (RNAi) emerges as a potent gene regulatory tool in last few years. The present study was conducted to evaluate the efficiency of RNAi to inhibit the IBD virus (IDBV) replication in-vitro. VP2 gene of virus encodes protein involved in capsid formation, cell entry and induction of protective immune responses against it. Thus, VP2 gene of IBDV is the candidate target for the molecular techniques applied for IBDV detection and inhibition assay. In this study, IBDV was isolated from field cases and confirmed by RT-PCR. The virus was then adapted on chicken embryo fibroblast cells (CEF) in which it showed severe cytopathic effects (CPE). The short hairpin RNA (shRNAs) constructs homologous to the VP2 gene were designed and one, having maximum score and fulfilling maximum Reynolds criteria, was selected for evaluation of effective inhibition. Selected shRNA construct (i.e., VP2-shRNA) was observed to be the most effective for inhibiting VP2 gene expression. Real time PCR analysis was performed to measure the relative expression of VP2 gene in different experimental groups. The VP2 gene was less expressed in virus infected cells co-transfected with VP2-shRNA as compared to mock transfected cells and IBDV+ cells (control) at dose 1.6 µ g. The result showed ∼95% efficient down regulation of VP2 gene mRNA in VP2-shRNA treated cells. These findings suggested that designed shRNA construct achieved high level of inhibition of VP2 gene expression in-vitro.
Collapse
Affiliation(s)
- Amol Ashok Sahare
- a Animal Biotechnology Center, JNKVV Campus, Adhartal , Jabalpur , Madhya Pradesh , India
| | | | | | | | | | | |
Collapse
|
7
|
Yuan W, Zhang X, Xia X, Sun H. Inhibition of infectious bursal disease virus infection by artificial microRNAs targeting chicken heat-shock protein 90. J Gen Virol 2012; 93:876-879. [PMID: 22238234 DOI: 10.1099/vir.0.039172-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Infectious bursal disease virus (IBDV) causes an important disease in young chickens. Chicken heat-shock protein 90 (cHsp90) has been shown to be a functional component of the cellular receptor complex for IBDV infection. This study demonstrates the inhibitory effect of vector-expressed anti-cHsp90α microRNA (miRNA) on IBDV infection. The reporter vectors pcHsp90α-EGFP and pcHsp90β-EGFP were constructed to facilitate effective miRNA selection. Two anti-cHsp90α and one anti-cHsp90β miRNA-expression vectors were constructed for a stable transfection study. Poly(A)-tailed RT-PCR detected sequence-specific miRNA transcription in transfected cells. Semiquantitative RT-PCR showed inhibition of cHsp90 transcription in transfected cells. A virus-titration assay showed that the anti-cHsp90α miRNA, but not the anti-cHsp90β miRNA, had inhibitory effects on IBDV infection. These results suggest that cHsp90α is a functional component of the cellular receptor complex for IBDV infection, and that anti-cHsp90α miRNA could be used as an anti-IBDV reagent.
Collapse
Affiliation(s)
- Weifeng Yuan
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui Road, Yangzhou 225009, PR China
| | - Xinyu Zhang
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui Road, Yangzhou 225009, PR China
| | - Xiaoli Xia
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui Road, Yangzhou 225009, PR China
| | - Huaichang Sun
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui Road, Yangzhou 225009, PR China
| |
Collapse
|