1
|
Sun F, Xia W, Ouyang Y. Research progress on detection methods for hepatitis B virus covalently closed circular DNA. J Viral Hepat 2023; 30:366-373. [PMID: 36751941 DOI: 10.1111/jvh.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Hepatitis B virus (HBV) infection remains a serious global public health problem, and HBV covalently closed circular DNA (cccDNA) in the nucleus of infected cells cannot be eliminated by current treatments and is a major factor in the persistence and recurrence of hepatitis B. Efficient and scientific detection methods are important for clinical monitoring of cccDNA and targeted drug development. Western blotting is the gold standard for the quantitative detection of cccDNA, but it is time-consuming and complex. In recent years, new detection technologies have been continuously updated. There are new developments and breakthroughs in both next-generation polymerase chain reaction (PCR) and non-PCR methods such as in situ hybridization. Some HBV-related markers (such as hepatitis B core-related antigen) have also been shown to be closely related to cccDNA, and they can be used as surrogate markers to indirectly reflect cccDNA content. In this paper, the main detection methods of cccDNA and their improvements are reviewed, the advantages and limitations of these methods are analysed and summarized, and future development directions are proposed.
Collapse
Affiliation(s)
- Fenglan Sun
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Wei Xia
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Yaoling Ouyang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| |
Collapse
|
2
|
Kalčic F, Zgarbová M, Hodek J, Chalupský K, Dračínský M, Dvořáková A, Strmeň T, Šebestík J, Baszczyňski O, Weber J, Mertlíková-Kaiserová H, Janeba Z. Discovery of Modified Amidate (ProTide) Prodrugs of Tenofovir with Enhanced Antiviral Properties. J Med Chem 2021; 64:16425-16449. [PMID: 34713696 DOI: 10.1021/acs.jmedchem.1c01444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study describes the discovery of novel prodrugs bearing tyrosine derivatives instead of the phenol moiety present in FDA-approved tenofovir alafenamide fumarate (TAF). The synthesis was optimized to afford diastereomeric mixtures of novel prodrugs in one pot (yields up to 86%), and the epimers were resolved using a chiral HPLC column into fast-eluting and slow-eluting epimers. In human lymphocytes, the most efficient tyrosine-based prodrug reached a single-digit picomolar EC50 value against HIV-1 and nearly 300-fold higher selectivity index (SI) compared to TAF. In human hepatocytes, the most efficient prodrugs exhibited subnanomolar EC50 values for HBV and up to 26-fold higher SI compared to TAF. Metabolic studies demonstrated markedly higher cellular uptake of the prodrugs and substantially higher levels of released tenofovir inside the cells compared to TAF. These promising results provide a strong foundation for further evaluation of the reported prodrugs and their potential utility in the development of highly potent antivirals.
Collapse
Affiliation(s)
- Filip Kalčic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Michala Zgarbová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Karel Chalupský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Alexandra Dvořáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Timotej Strmeň
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Ondřej Baszczyňski
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| |
Collapse
|
3
|
Zhang H, Tu T. Approaches to quantifying Hepatitis B Virus covalently closed circular (ccc)DNA. Clin Mol Hepatol 2021; 28:135-149. [PMID: 34674513 PMCID: PMC9013611 DOI: 10.3350/cmh.2021.0283] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Chronic hepatitis B is a major cause of liver disease worldwide and is currently incurable. Hepatitis B virus (HBV) covalently closed circular (ccc) DNA is a key form of the virus responsible for its persistence and is the transcriptional template for all viral transcripts. The field is focussed on methods to clear HBV cccDNA but this been limited by technical difficulties in its quantification due to: identical sequence to other forms of HBV DNA; low copy number per cell; and high resistance to denaturation by heat, leading to difficulty using polymerase chain reaction or hybridization methods for detection. A number of assays have been developed in order to overcome these hurdles either directly or detecting cccDNA levels indirectly via its transcriptional products. In this review, we summarize the approaches to cccDNA quantification that are currently used, and outline key open questions in the cccDNA biology field which remain to be answered due to the limitations of current methods.
Collapse
Affiliation(s)
- Henrik Zhang
- Storr Liver Centre, Westmead Clinical School and Westmead Institute for Medical Research, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Thomas Tu
- Storr Liver Centre, Westmead Clinical School and Westmead Institute for Medical Research, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia.,Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead NSW 2145, Australia
| |
Collapse
|
4
|
Caviglia GP, Armandi A, Rosso C, Ribaldone DG, Pellicano R, Fagoonee S. Hepatitis B Core-Related Antigen as Surrogate Biomarker of Intrahepatic Hepatitis B Virus Covalently-Closed-Circular DNA in Patients with Chronic Hepatitis B: A Meta-Analysis. Diagnostics (Basel) 2021; 11:187. [PMID: 33525443 PMCID: PMC7910971 DOI: 10.3390/diagnostics11020187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) covalently-closed-circular (ccc)DNA is the key molecule responsible for viral persistence within infected hepatocytes. The evaluation of HBV cccDNA is crucial for the management of patients with chronic HBV infection and for the personalization of treatment. However, the need for liver biopsy is the principal obstacle for the assessment of intrahepatic HBV cccDNA. In the last decade, several studies have investigated the performance of hepatitis B core-related antigen (HBcrAg) as a surrogate of HBV cccDNA amount in the liver. In this meta-analysis, we collected 14 studies (1271 patients) investigating the correlation between serum HBcrAg and intrahepatic HBV cccDNA. Serum HBcrAg showed a high correlation with intrahepatic HBV cccDNA (r = 0.641, 95% confidence interval (CI) 0.510-0.743, p < 0.001). In a head-to-head comparison, we observed that the performance of HBcrAg was significantly superior to that of hepatitis B surface antigen (r = 0.665 vs. r = 0.475, respectively, p < 0.001). Subgroup analysis showed that the correlation between HBcrAg and intrahepatic HBV cccDNA was high, both in hepatitis B e antigen-positive and -negative patients (r = 0.678, 95% CI 0.403-0.840, p < 0.001, and r = 0.578, 95% CI 0.344-0.744, p < 0.001, respectively). In conclusion, the measurement of serum HBcrAg qualifies as a reliable non-invasive surrogate for the assessment of an intrahepatic HBV cccDNA reservoir.
Collapse
Affiliation(s)
- Gian Paolo Caviglia
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy; (A.A.); (C.R.); (D.G.R.)
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy; (A.A.); (C.R.); (D.G.R.)
| | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy; (A.A.); (C.R.); (D.G.R.)
| | | | - Rinaldo Pellicano
- Unit of Gastroenterology, Città della Salute e della Scienza di Torino-Molinette Hospital, 10126 Turin, Italy;
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, 10126 Turin, Italy
| |
Collapse
|
5
|
Gan CJ, Li WF, Li CN, Li LL, Zhou WY, Peng XM. EGF receptor inhibitors comprehensively suppress hepatitis B virus by downregulation of STAT3 phosphorylation. Biochem Biophys Rep 2020; 22:100763. [PMID: 32322693 PMCID: PMC7170955 DOI: 10.1016/j.bbrep.2020.100763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Current antiviral therapy can not cure chronic hepatitis B virus (HBV) infection or eliminate the risk of hepatocellular carcinoma. The licensed epidermal growth factor receptor (EGFR) inhibitors have found to inhibit hepatitis C virus replication via downregulation of signal transducers and activators of transcription 3 (STAT3) phosphorylation. Since STAT3 is also involved in HBV replication, we further studied the anti-HBV efficacy of the EGFR inhibitors in this study. HBV-transfected HepG2.2.15 cells and HBV-infected HepG2-NTCP cells were used as cell models, and HBV replication, the syntheses of viral antigens and the magnitude of the covalently closed circular DNA (cccDNA) reservoir were used as indictors to test the anti-HBV effects of EGFR inhibitors erlotinib and gefitinib. Erlotinib inhibited HBV replication with a half-maximal inhibitory concentration of 1.05 μM. It also reduced the syntheses of viral antigens at concentrations of 2.5 μM or higher. The underlying mechanism was possibly correlated with its inhibition on STAT3 phosphorylation via up-regulation of suppressor of cytokine signaling 3. Gefitinib also inhibited HBV replication and antigen syntheses. Compared with the commonest antiviral drug entecavir, these EGFR inhibitors additionally reduced hepatitis B e antigen and erlotinib also marginally affected the cccDNA reservoir in HBV-infected HepG2-NTCP cells. Interestingly, these promising anti-HBV effects were significantly enhanced by extension of treatment duration. In conclusion, EGFR inhibitors demonstrated a comprehensive anti-HBV potential, highlighting a new strategy to cure HBV infection and suggesting animal model-related studies or clinical try in the future.
Collapse
Key Words
- Antiviral therapy
- Covalently closed circular DNA
- EGF, epidermal growth factor
- EGFR, epidermal growth factor inhibitor
- Epidermal growth factor receptor inhibitor
- GEq, genome equivalent
- HBV, hepatitis B virus
- HBeAg, hepatitis B e antigen
- HBsAg, hepatitis B surface antigen
- HCC, hepatocellular carcinoma
- HNF3, hepatocyte nuclear factor 3
- Hepatitis B virus
- IFN, interferon
- MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide
- NAs, nucleotide/nucleoside analogues
- NTCP, sodium taurocholate cotransporting polypeptide
- PCR, polymerase chain reaction
- SOCS3, suppressor of cytokine signaling 3
- STAT3
- STAT3, signal transduction and activators of transcription 3
- cccDNA, covalently closed circular DNA
Collapse
Affiliation(s)
- Chong J. Gan
- Center of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Wen F. Li
- Center of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Chun N. Li
- Center of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Ling L. Li
- Central Laboratory, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Wen Y. Zhou
- Central Laboratory, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Xiao M. Peng
- Center of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| |
Collapse
|
6
|
Brezgin S, Kostyusheva A, Bayurova E, Gordeychuk I, Isaguliants M, Goptar I, Nikiforova A, Smirnov V, Volchkova E, Glebe D, Kostyushev D, Chulanov V. Replenishment of Hepatitis B Virus cccDNA Pool Is Restricted by Baseline Expression of Host Restriction Factors In Vitro. Microorganisms 2019; 7:E533. [PMID: 31698767 PMCID: PMC6920784 DOI: 10.3390/microorganisms7110533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is the major cause of viral persistence in patients with chronic HBV infection. Understanding the mechanisms underlying stability and persistence of HBV cccDNA in hepatocytes is critical for developing novel therapeutics and managing chronic hepatitis B. In this study, we observed an unexpected increase in HBV cccDNA levels upon suppression of transcription by de novo DNA methyltransferase DNMT3A and uncovered additional mechanisms potentially involved in HBV cccDNA maintenance. METHODS HBV-expressing cell lines were transfected with a DNMT3A-expressing plasmid. Real-time PCR and HBsAg assays were used to assess the HBV replication rate. Cell cycling was analyzed by fluorescent cell sorting. CRISPR/Cas9 was utilized to abrogate expression of APOBEC3A and APOBEC3B. Alterations in the expression of target genes were measured by real-time PCR. RESULTS Similar to previous studies, HBV replication induced DNMT3A expression, which in turn, led to reduced HBV transcription but elevated HBV cccDNA levels (4- to 6-fold increase). Increased levels of HBV cccDNA were not related to cell cycling, as DNMT3A accelerated proliferation of infected cells and could not contribute to HBV cccDNA expansion by arresting cells in a quiescent state. At the same time, DNMT3A suppressed transcription of innate immunity factors including cytidine deaminases APOBEC3A and APOBEC3B. CRISPR/Cas9-mediated silencing of APOBEC3A and APOBEC3B transcription had minor effects on HBV transcription, but significantly increased HBV cccDNA levels, similar to DNMT3A. In an attempt to further analyze the detrimental effects of HBV and DNMT3A on infected cells, we visualized γ-H2AX foci and demonstrated that HBV inflicts and DNMT3A aggravates DNA damage, possibly by downregulating DNA damage response factors. Additionally, suppression of HBV replication by DNMT3A may be related to reduced ATM/ATR expression. CONCLUSION Formation and maintenance of HBV cccDNA pools may be partially suppressed by the baseline expression of host inhibitory factors including APOBEC3A and APOBEC3B. HBV inflicts DNA damage both directly and by inducing DNMT3A expression.
Collapse
Affiliation(s)
- Sergey Brezgin
- National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (A.K.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
| | - Anastasiia Kostyusheva
- National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (A.K.); (V.C.)
| | - Ekaterina Bayurova
- NF Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (I.G.); (M.I.)
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Ilya Gordeychuk
- NF Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (I.G.); (M.I.)
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
| | - Maria Isaguliants
- NF Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (I.G.); (M.I.)
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
- Riga Stradins University, LV-1007 Riga, Latvia
- Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Irina Goptar
- Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia; (I.G.); (A.N.)
| | - Anastasiia Nikiforova
- Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia; (I.G.); (A.N.)
| | - Valery Smirnov
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
| | - Elena Volchkova
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
| | - Dieter Glebe
- Institute of Medical Virology, University of Giessen, 35392 Giessen, Germany;
| | - Dmitry Kostyushev
- National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (A.K.); (V.C.)
| | - Vladimir Chulanov
- National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (A.K.); (V.C.)
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| |
Collapse
|
7
|
Meng C, Liu T, Liu YW, Zhang LZ, Wang YL. Hepatitis B Virus cccDNA in Hepatocellular Carcinoma Tissue Increases the Risk of Recurrence After Liver Transplantation. Transplant Proc 2019; 51:3364-3368. [PMID: 31358449 DOI: 10.1016/j.transproceed.2019.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND High hepatitis B virus (HBV) DNA level is strongly associated with hepatocellular carcinoma (HCC) development in chronic HBV infection. The aim of this study was to investigate the association between intrahepatic HBV DNA titer and post-liver transplantation (LT) prognosis for HBV-related HCC (HBV-HCC) patients. METHODS A total of 60 patients with HBV-HCC who underwent LT were retrospectively studied. Using quantitative TaqMan fluorescent real-time polymerase chain reaction assay, HBV total DNA (tDNA) and covalently closed circular DNA (cccDNA) were both quantified in tumor tissue (TT) and adjacent non-tumor tissue (ANTT) from the explanted liver. RESULTS The loads of tDNA and cccDNA in ANTT were associated with serum HBV DNA levels. Multivariate analysis showed that the presence of vascular invasion and cccDNA in TT were independent risk factors for tumor recurrence. The group of patients with cccDNA titers ≥31ogl0 copies/μg in TT had significantly higher cumulative recurrence rates than those with <31ogl0 copies/μg group. The cccDNA titers predicted the tumor recurrence with an area under the receiver operating characteristic curve of 0.664. CONCLUSIONS Our findings would assist the clinical implementation of a more personalized therapy for tumor recurrence control and improve the prognosis of HBV-HCC patients.
Collapse
Affiliation(s)
- C Meng
- Department of Clinical Laboratory, Tianjin Second People's Hospital, Tianjin Institute of Hepatology, Tianjin, China
| | - T Liu
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | - Y W Liu
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - L Z Zhang
- Department of Hepatobiliary Surgery, People's Hospital of Zhucheng City, Shandong, China
| | - Y L Wang
- Department of Clinical Laboratory, 2nd Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
8
|
Caviglia GP, Olivero A, Smedile A. Reply to: "Over-gap PCR amplification to identify presence of replication-competent HBV DNA from integrated HBV DNA: An updated occult HBV infection definition". J Hepatol 2019; 70:559-560. [PMID: 30470481 DOI: 10.1016/j.jhep.2018.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/04/2022]
Affiliation(s)
- Gian Paolo Caviglia
- Department of Medical Sciences, University of Turin, and Gastroenterology Division of Città della Salute e della Scienza of Turin, University Hospital, Turin, Italy.
| | - Antonella Olivero
- Department of Medical Sciences, University of Turin, and Gastroenterology Division of Città della Salute e della Scienza of Turin, University Hospital, Turin, Italy
| | - Antonina Smedile
- Department of Medical Sciences, University of Turin, and Gastroenterology Division of Città della Salute e della Scienza of Turin, University Hospital, Turin, Italy
| |
Collapse
|
9
|
Kostyusheva A, Kostyushev D, Brezgin S, Volchkova E, Chulanov V. Clinical Implications of Hepatitis B Virus RNA and Covalently Closed Circular DNA in Monitoring Patients with Chronic Hepatitis B Today with a Gaze into the Future: The Field Is Unprepared for a Sterilizing Cure. Genes (Basel) 2018; 9:E483. [PMID: 30301171 PMCID: PMC6210151 DOI: 10.3390/genes9100483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
. Chronic hepatitis B virus (HBV) infection has long remained a critical global health issue. Covalently closed circular DNA (cccDNA) is a persistent form of the HBV genome that maintains HBV chronicity. Decades of extensive research resulted in the two therapeutic options currently available: nucleot(s)ide analogs and interferon (IFN) therapy. A plethora of reliable markers to monitor HBV patients has been established, including the recently discovered encapsidated pregenomic RNA in serum, which can be used to determine treatment end-points and to predict the susceptibility of patients to IFN. Additionally, HBV RNA splice variants and cccDNA and its epigenetic modifications are associated with the clinical course and risks of hepatocellular carcinoma (HCC) and liver fibrosis. However, new antivirals, including CRISPR/Cas9, APOBEC-mediated degradation of cccDNA, and T-cell therapies aim at completely eliminating HBV, and it is clear that the diagnostic arsenal for defining the long-awaited sterilizing cure is missing. In this review, we discuss the currently available tools for detecting and measuring HBV RNAs and cccDNA, as well as the state-of-the-art in clinical implications of these markers, and debate needs and goals within the context of the sterilizing cure that is soon to come.
Collapse
Affiliation(s)
| | | | - Sergey Brezgin
- Central Research Institute of Epidemiology, Moscow, 111123, Russia.
- National Research Centre, Institute of Immunology, Federal Medical Biological Agency, Moscow, 115478, Russia.
| | - Elena Volchkova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, 119146, Russia.
| | - Vladimir Chulanov
- Central Research Institute of Epidemiology, Moscow, 111123, Russia.
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, 119146, Russia.
| |
Collapse
|
10
|
Ortega-Prieto AM, Skelton JK, Wai SN, Large E, Lussignol M, Vizcay-Barrena G, Hughes D, Fleck RA, Thursz M, Catanese MT, Dorner M. 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat Commun 2018; 9:682. [PMID: 29445209 PMCID: PMC5813240 DOI: 10.1038/s41467-018-02969-8] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
With more than 240 million people infected, hepatitis B virus (HBV) is a major health concern. The inability to mimic the complexity of the liver using cell lines and regular primary human hepatocyte (PHH) cultures pose significant limitations for studying host/pathogen interactions. Here, we describe a 3D microfluidic PHH system permissive to HBV infection, which can be maintained for at least 40 days. This system enables the recapitulation of all steps of the HBV life cycle, including the replication of patient-derived HBV and the maintenance of HBV cccDNA. We show that innate immune and cytokine responses following infection with HBV mimic those observed in HBV-infected patients, thus allowing the dissection of pathways important for immune evasion and validation of biomarkers. Additionally, we demonstrate that the co-culture of PHH with other non-parenchymal cells enables the identification of the cellular origin of immune effectors, thus providing a valuable preclinical platform for HBV research.
Collapse
Affiliation(s)
- A M Ortega-Prieto
- Section of Virology, Department of Medicine, Imperial College London, London, W2 1PG, UK
| | - J K Skelton
- Section of Virology, Department of Medicine, Imperial College London, London, W2 1PG, UK
| | - S N Wai
- Section of Virology, Department of Medicine, Imperial College London, London, W2 1PG, UK
- Section of Hepatology, Department of Medicine, Imperial College London, London, W2 1NY, UK
| | - E Large
- CN Bio Innovations Ltd, Welwyn Garden City, AL7 3AX, UK
| | - M Lussignol
- Department of Infectious Diseases, King's College London, London, WC2R 2LS, UK
| | - G Vizcay-Barrena
- Centre For Ultrastructural Imaging, King's College London, London, WC2R 2LS, UK
| | - D Hughes
- CN Bio Innovations Ltd, Welwyn Garden City, AL7 3AX, UK
| | - R A Fleck
- Centre For Ultrastructural Imaging, King's College London, London, WC2R 2LS, UK
| | - M Thursz
- Section of Hepatology, Department of Medicine, Imperial College London, London, W2 1NY, UK
| | - M T Catanese
- Department of Infectious Diseases, King's College London, London, WC2R 2LS, UK
| | - M Dorner
- Section of Virology, Department of Medicine, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|
11
|
Hu Y, Zhang Q, Xu L, Wang J, Rao J, Guo Z, Wang S. Signal-on electrochemical assay for label-free detection of TdT and BamHI activity based on grown DNA nanowire-templated copper nanoclusters. Anal Bioanal Chem 2017; 409:6677-6688. [DOI: 10.1007/s00216-017-0623-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
|
12
|
Li X, Zhao J, Yuan Q, Xia N. Detection of HBV Covalently Closed Circular DNA. Viruses 2017; 9:E139. [PMID: 28587292 PMCID: PMC5490816 DOI: 10.3390/v9060139] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection affects approximately 240 million people worldwide and remains a serious public health concern because its complete cure is impossible with current treatments. Covalently closed circular DNA (cccDNA) in the nucleus of infected cells cannot be eliminated by present therapeutics and may result in persistence and relapse. Drug development targeting cccDNA formation and maintenance is hindered by the lack of efficient cccDNA models and reliable cccDNA detection methods. Southern blotting is regarded as the gold standard for quantitative cccDNA detection, but it is complicated and not suitable for high-throughput drug screening, so more sensitive and simple methods, including polymerase chain reaction (PCR)-based methods, Invader assays, in situ hybridization and surrogates, have been developed for cccDNA detection. However, most methods are not reliable enough, and there are no unified standards for these approaches. This review will summarize available methods for cccDNA detection. It is hoped that more robust methods for cccDNA monitoring will be developed and that standard operation procedures for routine cccDNA detection in scientific research and clinical monitoring will be established.
Collapse
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jinghua Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
13
|
Zheng WP, Zhang BY, Shen ZY, Yin ML, Cao Y, Song HL. Biological effects of bone marrow mesenchymal stem cells on hepatitis B virus in vitro. Mol Med Rep 2017; 15:2551-2559. [PMID: 28447750 PMCID: PMC5428401 DOI: 10.3892/mmr.2017.6330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/09/2016] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to explore the effects of co‑culturing bone marrow‑derived mesenchymal stem cells (BM-MSCs) cultured with hepatitis B virus (HBV)‑infected lymphocytes in vitro. BM‑MSCs and lymphocytes from Brown Norway rats were obtained from the bone marrow and spleen, respectively. Rats were divided into the following five experimental groups: Group 1, splenic lymphocytes (SLCs); group 2, HepG2.2.15 cells; group 3, BM‑MSCs + HepG2.2.15 cells; group 4, SLCs + HepG2.2.15 cells; and group 5, SLCs + BM‑MSCs + HepG2.2.15 cells. The viability of lymphocytes and HepG2.2.15 cells was assessed using the MTT assay at 24, 48 and 72 h, respectively. Levels of supernatant HBV DNA and intracellular HBV covalently closed circular DNA (cccDNA) were measured using quantitative polymerase chain reaction. Supernatant cytokine levels were measured by enzyme‑linked immunosorbent assay (ELISA). T cell subsets were quantified by flow cytometry using fluorescence‑labeled antibodies. In addition, the HBV genome sequence was analyzed by direct gene sequencing. Levels of HBV DNA and cccDNA in group 5 were lower when compared with those in group 3 or group 4, with a significant difference observed at 48 h. The secretion of interferon‑γ was negatively correlated with the level of HBV DNA, whereas secretion of interleukin (IL)‑10 and IL‑22 were positively correlated with the level of HBV DNA. Flow cytometry demonstrated that the percentage of CD3+CD8+ T cells was positively correlated with the levels of HBV DNA, and the CD3+CD4+/CD3+CD8+ ratio was negatively correlated with the level of HBV DNA. Almost no mutations in the HBV DNA sequence were detected in HepG2.2.15 cells co‑cultured with BM‑MSCs, SLCs, or in the two types of cells combined. BM‑MSCs inhibited the expression of HBV DNA and enhanced the clearance of HBV, which may have been mediated by the regulation of the Tc1/Tc2 cell balance and the mode of cytokine secretion to modulate cytokine expression.
Collapse
Affiliation(s)
- Wei-Ping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Bo-Ya Zhang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zhong-Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Ming-Li Yin
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yi Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Hong-Li Song
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, P.R. China
- Tianjin Key Laboratory of Organ Transplantation, Tianjin 300192, P.R. China
| |
Collapse
|
14
|
Deng JJ, Kong KYE, Gao WW, Tang HMV, Chaudhary V, Cheng Y, Zhou J, Chan CP, Wong DKH, Yuen MF, Jin DY. Interplay between SIRT1 and hepatitis B virus X protein in the activation of viral transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:491-501. [PMID: 28242208 DOI: 10.1016/j.bbagrm.2017.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 12/14/2022]
Abstract
Hepatitis B virus (HBV) genome is organized into a minichromosome known as covalently closed circular DNA (cccDNA), which serves as the template for all viral transcripts. SIRT1 is an NAD+-dependent protein deacetylase which activates HBV transcription by promoting the activity of cellular transcription factors and coactivators. How SIRT1 and viral transactivator X protein (HBx) might affect each other remains to be clarified. In this study we show synergy and mutual dependence between SIRT1 and HBx in the activation of HBV transcription. All human sirtuins SIRT1 through SIRT7 activated HBV gene expression. The steady-state levels of SIRT1 protein were elevated in HBV-infected liver tissues and HBV-replicating hepatoma cells. SIRT1 interacted with HBx and potentiated HBx transcriptional activity on precore promoter and covalently closed circular DNA (cccDNA) likely through a deacetylase-independent mechanism, leading to more robust production of cccDNA, pregenomic RNA and surface antigen. SIRT1 and HBx proteins were more abundant when both were expressed. SIRT1 promoted the recruitment of HBx as well as cellular transcriptional factors and coactivators such as PGC-1α and FXRα to cccDNA. Depletion of SIRT1 suppressed HBx recruitment. On the other hand, SIRT1 recruitment to cccDNA was compromised when HBx was deficient. Whereas pharmaceutical agonists of SIRT1 such as resveratrol activated HBV transcription, small-molecule inhibitors of SIRT1 including sirtinol and Ex527 exhibited anti-HBV activity. Taken together, our findings revealed not only the interplay between SIRT1 and HBx in the activation of HBV transcription but also new strategies and compounds for developing antivirals against HBV.
Collapse
Affiliation(s)
- Jian-Jun Deng
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; Shaanxi Key Laboratory of Biodegradable Materials, College of Chemical Engineering, Northwest University, 229 Taibai Road North, Xi'an 710069, China; State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong
| | - Ka-Yiu Edwin Kong
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong
| | - Wei-Wei Gao
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong
| | - Hei-Man Vincent Tang
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong
| | - Vidyanath Chaudhary
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong
| | - Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong
| | - Jie Zhou
- Department of Microbiology, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong
| | - Danny Ka-Ho Wong
- State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong; Department of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong
| | - Man-Fung Yuen
- State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong; Department of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
15
|
PCR mediated recombination impacts the analysis of hepatitis B Virus covalently closed circular DNA. Retrovirology 2016; 13:84. [PMID: 27998270 PMCID: PMC5168874 DOI: 10.1186/s12977-016-0318-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The replication of HBV involves the production of covalently closed circular DNA (cccDNA) from the HBV genome through the repair of virion relaxed circular DNA (rcDNA) in the virion. As cccDNA is the transcription template for HBV genomes, it needs to be eliminated from hepatocytes if the eradication of chronic HBV infection is to be achieved. PCR quantitation of cccDNA copy number is the technique of choice for evaluating the efficiency of treatment regimens. The PCR target commonly used to identify cccDNA spans the gapped region of rcDNA and is considered to accurately distinguish between cccDNA and rcDNA. There is however, a potentially confounding issue in that PCR can generate larger targets from collections of small DNA fragments, a phenomenon known as PCR recombination. RESULTS The impact of PCR recombination towards the amplification of this cccDNA specific target was explored by mixing three marked, yet overlapping HBV DNA fragments. Thirteen of sixteen possible recombinants were identified by sequencing with frequencies ranging from 0.6 to 23%. To confirm this finding in vivo, HBV positive sera were treated with DNase I and submitted to quantitative real-time PCR. Under these conditions, it was possible to amplify the cccDNA specific segment without difficulty. As the virion contains uniquely rcDNA, amplification of the cccDNA target resulted from PCR recombination. CONCLUSIONS PCR quantitation of cccDNA may be more difficult than hitherto thought. Current detection protocols need to be investigated so as to help in the management of chronic HBV infection.
Collapse
|
16
|
Luo X, Huang Y, Chen Y, Tu Z, Hu J, Tavis JE, Huang A, Hu Y. Association of Hepatitis B Virus Covalently Closed Circular DNA and Human APOBEC3B in Hepatitis B Virus-Related Hepatocellular Carcinoma. PLoS One 2016; 11:e0157708. [PMID: 27310677 PMCID: PMC4911053 DOI: 10.1371/journal.pone.0157708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic Hepatitis B Virus (HBV) infections can progresses to liver cirrhosis and hepatocellular carcinoma (HCC). The HBV covalently-closed circular DNA cccDNA is a key to HBV persistence, and its degradation can be induced by the cellular deaminase APOBEC3. This study aimed to measure the distribution of intrahepatic cccDNA levels and evaluate the association between levels of cccDNA and APOBEC3 in HCC patients. Among 49 HCC patients, 35 matched cancerous and contiguous noncancerous liver tissues had detectable cccDNA, and the median intrahepatic cccDNA in the cancerous tissues (CT) was significantly lower than in the contiguous noncancerous tissues (CNCT) (p = 0.0033). RCA (rolling circle amplification), followed by 3D-PCR identified positive amplification in 27 matched HCC patients. Sequence analysis indicated G to A mutations accumulated to higher levels in CT samples compared to CNCT samples, and the dinucleotide context showed preferred editing in the GpA context. Among 7 APOBEC3 genes, APOBEC3B was the only one up-regulated in cancerous tissues both at the transcriptional and protein levels (p < 0.05). This implies APOBEC3B may contribute to cccDNA editing and subsequent degradation in cancerous tissues.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/virology
- Case-Control Studies
- Cytidine Deaminase/genetics
- Cytidine Deaminase/metabolism
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Gene Expression
- Hepatitis B virus/genetics
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/complications
- Host-Pathogen Interactions
- Humans
- Hydrolysis
- Liver/enzymology
- Liver/pathology
- Liver/virology
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/virology
- Male
- Middle Aged
- Minor Histocompatibility Antigens/genetics
- Minor Histocompatibility Antigens/metabolism
Collapse
Affiliation(s)
- Xuan Luo
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yao Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yanmeng Chen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zeng Tu
- Department of Microbiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jieli Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - John E. Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University Liver Center, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ailong Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, People’s Republic of China
- * E-mail: (AH); (YH)
| | - Yuan Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
- * E-mail: (AH); (YH)
| |
Collapse
|
17
|
A sensitive and accurate quantification method for the detection of hepatitis B virus covalently closed circular DNA by the application of a droplet digital polymerase chain reaction amplification system. Biotechnol Lett 2015; 37:2063-73. [DOI: 10.1007/s10529-015-1890-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/10/2015] [Indexed: 02/07/2023]
|
18
|
Guo Y, Sheng S, Nie B, Tu Z. Development of magnetic capture hybridization and quantitative polymerase chain reaction for hepatitis B virus covalently closed circular DNA. HEPATITIS MONTHLY 2015; 15:e23729. [PMID: 25741372 PMCID: PMC4344652 DOI: 10.5812/hepatmon.23729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/03/2014] [Accepted: 12/14/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) served as a vital role in the life cycle of the virus and persistent infection. However, specific and quantitative methods for cccDNA detection have not been available. OBJECTIVES Our aim was to develop and primarily evaluate a quantitative method for HBV cccDNA based on magnetic capture hybridization and quantitative PCR technology. MATERIALS AND METHODS The functionalized-nanoparticles specifically to capture HBV cccDNA, located on both sides of relaxed circle DNA (rcDNA) gap, were designed. Then, magnetic capture hybridization and quantitative PCR (MCH-qPCR) assay were developed and its performance was primarily evaluated with cccDNA standards and serum samples of patients with chronic hepatitis B. RESULTS Specific nanoparticles of cccDNA capture were prepared and a magnetic capture hybridization and quantitative assay method for cccDNA was developed successfully. The limit of detection was 90 IU/mL, and a good linear relationship in the range of 10(2)-10(6) IU/mL was revealed (r(2) = 0.994) with the MCH-qPCR. Compared with directly real-time PCR, a high content of HBV DNA did not affect the detection of cccDNA for the MCH-qPCR method, and there was no cross-reactivity between cccDNA and rcDNA. CONCLUSIONS The novel MCH-qPCR method has good sensitivity and specificity. It could meet the requirement of clinical routine detection.
Collapse
Affiliation(s)
- Yongcan Guo
- The Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shangchun Sheng
- The Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Bin Nie
- The Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhiguang Tu
- The Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
- Corresponding Author: Zhiguang Tu, The Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China. Tel: +86-2368485759, Fax: +86-2368485239, E-mail:
| |
Collapse
|
19
|
Shen ZY, Zheng WP, Liu T, Yang Y, Song HL. Effects of dendritic cells from hepatitis B virus transgenic mice-stimulated autologous lymphocytes on hepatitis B virus replication: a study on the impact of specific sensitized effector cells on in vitro virus replication. Viral Immunol 2014; 28:85-92. [PMID: 25343622 DOI: 10.1089/vim.2014.0053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The objective of this study was to explore the effects of dendritic cells (DCs) from hepatitis B virus (HBV) transgenic mice-stimulated autologous lymphocytes on in vitro HBV replication. DCs from HBV transgenic mice were induced to maturity by lipopolysaccharide, followed by incubation with hepatitis B surface antigen (HBsAg) and hepatitis B core antigen (HBcAg) in vitro. Mature DCs and autologous lymphocytes were co-stimulated to form specific sensitized immune effector cells (IEC), which were then co-cultured with the human hepatoma cell line HepG2.2.15. Changes in morphology and activity of hepatocytes were then observed, as well as analysis of changes in liver enzyme, and HBV DNA and inflammatory cytokine levels in the culture supernatant. Intracellular HBV DNA and covalently closed circular DNA (cccDNA) concentration were measured by real-time polymerase chain reaction. Co-stimulation by mature DCs and IEC showed no impact on the morphology and liver enzyme expression level of HepG2.2.15 cells, but the supernatant HBV DNA and intracellular HBV DNA and cccDNA levels decreased significantly compared with those cells co-cultured with immature DCs. Secretion of inflammatory cytokines in the supernatant showed that when HBV DNA was highly expressed, the concentration of IFN-γ and IL-2 decreased, while IL-10 increased. Contrastingly, when HBV DNA had low expression, the concentration of IFN-γ and IL-2 increased and IL-10 decreased. Co-stimulation of HBV-related antigen-induced mature DCs and autologous lymphocytes showed inhibitory effects on ex vivo HBV replication, and cytokines were suggested to mediate this effect.
Collapse
Affiliation(s)
- Zhong-Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital , Tianjin, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
Taranta A, Tien Sy B, Zacher BJ, Rogalska-Taranta M, Manns MP, Bock CT, Wursthorn K. Hepatitis B virus DNA quantification with the three-in-one (3io) method allows accurate single-step differentiation of total HBV DNA and cccDNA in biopsy-size liver samples. J Clin Virol 2014; 60:354-360. [PMID: 24890819 DOI: 10.1016/j.jcv.2014.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV) replicates via reverse transcription converting its partially double stranded genome into the covalently closed circular DNA (cccDNA). The long-lasting cccDNA serves as a replication intermediate in the nuclei of hepatocytes. It is an excellent, though evasive, parameter for monitoring the course of liver disease and treatment efficiency. OBJECTIVE To develop and test a new approach for HBV DNA quantification in serum and small-size liver samples. STUDY DESIGN The p3io plasmid contains an HBV fragment and human β-actin gene (hACTB) as a standard. Respective TaqMan probes were labeled with different fluorescent dyes. A triplex real-time PCR for simultaneous quantification of total HBV DNA, cccDNA and hACTB could be established. RESULTS Three-in-one method allows simultaneous analysis of 3 targets with a lower limit of quantification of 48 copies per 20 μl PCR reaction and a wide range of linearity (R(2)>0.99, p<0.0001) for all measured sequences. The method showed a pan-genotypic specificity among genotypes A-F with serum DNA samples from HBV infected patients. Total HBV DNA and cccDNA could be quantified in 32 and 22 of 33 FFPE preserved liver specimens, respectively. Total HBV DNA concentrations quantified by the 3io method remained comparable with Cobas TaqMan HBV Test v2.0. CONCLUSIONS The three-in-one protocol allows the single step quantification of viral DNA in samples from different sources. Therefore lower sample input, faster data acquisition, a lowered error and significantly lower costs are the advantages of the method.
Collapse
Affiliation(s)
- Andrzej Taranta
- Hannover Medical School (MHH), Department of Gastroenterology, Hepatology and Endocrinology, Carl-Neuberg-Straße 1, 30623 Hannover, Germany
| | - Bui Tien Sy
- Robert Koch Institute, Department of Infectious Diseases, Seestraße 10, 13353 Berlin, Germany; Institute of Tropical Medicine, University of Tuebingen, Wilhelmstraße 27D, 72074 Tübingen, Germany
| | - Behrend Johan Zacher
- Hannover Medical School (MHH), Department of Gastroenterology, Hepatology and Endocrinology, Carl-Neuberg-Straße 1, 30623 Hannover, Germany
| | - Magdalena Rogalska-Taranta
- Hannover Medical School (MHH), Department of Gastroenterology, Hepatology and Endocrinology, Carl-Neuberg-Straße 1, 30623 Hannover, Germany; Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Żurawia 14, 15540 Białystok, Poland
| | - Michael Peter Manns
- Hannover Medical School (MHH), Department of Gastroenterology, Hepatology and Endocrinology, Carl-Neuberg-Straße 1, 30623 Hannover, Germany
| | - Claus Thomas Bock
- Robert Koch Institute, Department of Infectious Diseases, Seestraße 10, 13353 Berlin, Germany
| | - Karsten Wursthorn
- Hannover Medical School (MHH), Department of Gastroenterology, Hepatology and Endocrinology, Carl-Neuberg-Straße 1, 30623 Hannover, Germany; ifi - Institut für Interdisziplinäre Medizin, Lohmühlenstraße. 5, 20099 Hamburg, Germany.
| |
Collapse
|
21
|
Assaying multiple restriction endonucleases functionalities and inhibitions on DNA microarray with multifunctional gold nanoparticle probes. Biosens Bioelectron 2013; 52:118-23. [PMID: 24035855 DOI: 10.1016/j.bios.2013.08.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/13/2013] [Accepted: 08/22/2013] [Indexed: 11/20/2022]
Abstract
Herein, a double-stranded (ds) DNA microarray-based resonance light scattering (RLS) assay with multifunctional gold nanoparticle (GNP) probes has been developed for studying restriction endonuclease functionality and inhibition. Because of decreasing significantly melting temperature, the enzyme-cleaved dsDNAs easily unwind to form single-stranded (ss) DNAs. The ssDNAs are hybridized with multiplex complementary ssDNAs functionalized GNP probes followed by silver enhancement and RLS detection. Three restriction endonucleases (EcoRI, BamHI and EcoRV) and three potential inhibitors (doxorubicin hydrochloride (DOX), ethidium bromide (EB) and an EcoRI-derived helical peptide (α4)) were selected to demonstrate capability of the assay. Enzyme activities of restriction endonucleases are detected simultaneously with high specificity down to the limits of 2.0 × 10(-2)U/mL for EcoRI, 1.1 × 10(-2)U/mL for BamHI and 1.6 × 10(-2)U/mL for EcoRV, respectively. More importantly, the inhibitory potencies of three inhibitors are showed quantitatively, indicating that our approach has great promise for high-throughput screening of restriction endonuclease inhibitors.
Collapse
|
22
|
Hakami A, Ali A, Hakami A. Effects of hepatitis B virus mutations on its replication and liver disease severity. Open Virol J 2013; 7:12-8. [PMID: 23400390 PMCID: PMC3565227 DOI: 10.2174/1874357901307010012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV), nowadays, is one of the major human pathogens worldwide. Approximately, 400 million people worldwide have chronic HBV infection. Only 5% of persons infected during adulthood develop chronic infection. The reverse is true for those infected at birth or in early childhood, i.e. more than 90% of these persons progress to chronic infection. Currently, eight different genotypes o f HBV have been identified, differing in nucleotide sequence by greater than 8%. In addition, numerous subgenotypes have a l s o been recognized based on the nucleotide sequence variability of 4- 8%. It has invariably been found that these genotypes and mutations play a pivotal role in the liver disease aggravation and virus replication. The precore mutations (G1896A) and the double mutation (T1762/A1764) in the basal core promoter are important mutations that alter expression of the hepatitis B e antigen (HBeAg). The HBeAg is important for establishing viral persistence. The precore G1896A mutation abrogates the expression of HBeAg. Numerous other mutations alter the disease severity and progression. It is predictive that the infected patient has high risk of hepatocellular carcinoma if the genotype C is incriminated or if HBV possesses basal core promoter double mutation. Association of the remaining genotypes have been noted but with less degree than genotype C. Phenotypic assays of the different HBV protein markers with different molecular techniques illustrate the replication efficiency of the virus in cell lines. This review will discuss various mutations into their association with liver disease severity and progression as well as virus replication.
Collapse
Affiliation(s)
- Abdulrahim Hakami
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| | - Abdelwahid Ali
- Department of Clinical Microbiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed Hakami
- Department of Clinical Microbiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
23
|
Ma L, Su M, Li T, Wang Z. Microarray-based fluorescence assay of endonuclease functionality and inhibition. Analyst 2013; 138:1048-52. [DOI: 10.1039/c2an36638j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Bai YL, Gao YT, Li Y, Wang YJ, Han T, Ren CY, Du Z. Significance of HBV cccDNA and clinical factors in evaluating prognosis of hepatocelluar carcinoma following surgical resection. Shijie Huaren Xiaohua Zazhi 2012; 20:729-736. [DOI: 10.11569/wcjd.v20.i9.729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the correlation of HBV cccDNA and clinical factors with the survival of patients with hepatocellular carcinoma (HCC) after hepatectomy.
METHODS: A retrospective analysis was carried out in 60 HCC patients who underwent radical operation from 2003 to 2006 at our hospital. Serum HBV DNA and covalently closed circular DNA (cccDNA) levels were detected by real-time PCR. In 55 patients with complete follow-up data, serum HBV DNA, cccDNA in liver tissue and clinical characteristics were retrospectively analyzed. The overall survival and recurrence-free survival (RFS) were calculated using the Kaplan-Meier method. All the data were analyzed using Log-rank test and Cox regression model.
RESULTS: HBV cccDNA was positive in only one serum sample (1/35) and in 20% (11/55) of tumor tissues. There was a significant correlation between intrahepatic cccDNA in tumor tissue and total HBV DNA in serum (r = 0.364, P = 0.006). The 1-, 3-, 5-year overall survival and RFS rates for 55 patients after HCC resection were 73%, 51% and 38%, and 63%, 29% and 19%, respectively. The independent prognostic factor influencing RFS was the level of intrahepatic cccDNA in tumor tissue. The independent prognostic factors influencing overall survival were tumor numbers and vessel invasion.
CONCLUSION: HCC patients with solitary tumor and without vessel invasion showed a higher overall survival. HCC patients with an intrahepatic HBV cccDNA level of less than 1 000 copies/μg had a higher RFS.
Collapse
|
25
|
Quantitation of HBV covalently closed circular DNA in micro formalin fixed paraffin-embedded liver tissue using rolling circle amplification in combination with real-time PCR. Clin Chim Acta 2011; 412:1905-11. [PMID: 21741960 DOI: 10.1016/j.cca.2011.06.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/15/2011] [Accepted: 06/23/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND The study aimed to develop an effective method to quantitate HBV covalently closed circular DNA (cccDNA) using small section of formalin fixed paraffin-embedded (FFPE) liver biopsy. METHODS Plasmid-safe ATP-dependent DNase (PSAD)-treated samples were subjected to rolling circle amplification (RCA) prior to real-time PCR mediated by cccDNA-selective primers. Human beta-actin gene was used as a reference control. RESULTS Compared to the classical method, i.e., PSAD digestion+real-time PCR, introduction of RCA increased the lower limit of detection for about 2 logs with good inter- and intra-assay reproducibility. HBV cccDNA was detected in 91.5% (119/130) of the FFPE samples. The cccDNA levels (copy/cell) between FFPE liver tissues and fresh frozen counterpart tissues were comparable. The median of cccDNA level in HBeAg-positive patients was higher than that in HBeAg-negative ones (52.60 vs. 31.25copies/cell, P<0.01). Intrahepatic cccDNA level was positively correlated with intrahepatic HBV total DNA level, but not obviously correlated with serum HBV DNA or alanine aminotransferase levels. CONCLUSIONS The method could sensitively and specifically quantitate intrahepatic HBV cccDNA in micro FFPE liver biopsy tissue for evaluation of HBV replication status in the liver.
Collapse
|