1
|
Sarmadi S, Ghalyanchilangeroudi A, Najafi H. Vaccine approaches and treatment aspects against Crimean Congo hemorrhagic fever. Virusdisease 2024; 35:377-383. [PMID: 39071873 PMCID: PMC11269551 DOI: 10.1007/s13337-024-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/28/2024] [Indexed: 07/30/2024] Open
Abstract
Crimean-Congo hemorrhagic fever [CCHF] is a severe infectious viral disease caused by a tick borne virus which can lead to fatal hemorrhagic disease in humans. It has been reported from some continents including Africa, Asia and Europe. Virus is transmitted to human mainly through tick bite, whose acquire infection from reservoirs wild and domesticated mammalians and ostriches. Currently no approved vaccine or drug is available for CCHF and prevention is mainly based on biosecurity measures. Ribavirin is the only approved drug that has been used in some countries to treat human disease, however some new studies did not prove the Ribavirin efficacy. Different strategies to design effective vaccines, have been conducted through years, from inactivated virus to nucleotide-based ones including DNA and mRNA vaccines. In this study we review of pioneering vaccine candidate platforms.
Collapse
Affiliation(s)
- Soroush Sarmadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hamideh Najafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Development of humanised antibodies for Crimean-Congo Haemorrhagic fever virus: Comparison of hybridoma-based versus phage library techniques. J Immunol Methods 2023; 512:113405. [PMID: 36496007 DOI: 10.1016/j.jim.2022.113405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Humanised antibodies targeting Crimean-Congo Haemorrhagic virus (CCHFV) are needed for the development and standardisation of serological assays. These assays are needed to address a shortfall in available tests that meet regulatory diagnostic standards and to aid surveillance activities to extend knowledge on the distribution of CCHFV. To generate a humanised monoclonal antibody against CCHFV, we have compared two methods: the traditional mouse hybridoma approach with subsequent sequencing and humanisation of antibodies versus a non-animal alternative using a human combinatorial antibody library (HuCAL). Our results demonstrated that the mouse hybridoma followed by humanisation protocol gave higher affinity antibodies. Whilst not yet able to demonstrate the generation of equivalent humanised antibodies without the use of animals, sequencing data enables the subsequent production of recombinant antibodies, thus providing a reduction in future animal usage for this application. Ultimately, our report provides information on development of a humanised standardised control, which can form an important positive control component of serological assays against CCHFV.
Collapse
|
3
|
Belij-Rammerstorfer S, Limon G, Maze EA, Hannant K, Hughes E, Tchakarova SR, Alexandrov T, Mmbaga BT, Willett B, Booth G, Lyons NA, Baker N, Thomas KM, Wright D, Saunders J, Browning C, Wilsden G, Carroll M, Hewson R, Charleston B, Lambe T, Ludi AB. Development of anti-Crimean-Congo hemorrhagic fever virus Gc and NP-specific ELISA for detection of antibodies in domestic animal sera. Front Vet Sci 2022; 9:913046. [PMID: 36090164 PMCID: PMC9454098 DOI: 10.3389/fvets.2022.913046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a priority emerging disease. CCHF, caused by the CCHF virus (CCHFV), can lead to hemorrhagic fever in humans with severe cases often having fatal outcomes. CCHFV is maintained within a tick-vertebrate-tick cycle, which includes domestic animals. Domestic animals infected with CCHFV do not show clinical signs of the disease and the presence of antibodies in the serum can provide evidence of their exposure to the virus. Current serological tests are specific to either one CCHFV antigen or the whole virus antigen. Here, we present the development of two in-house ELISAs for the detection of serum IgG that is specific for two different CCHFV antigens: glycoprotein Gc (CCHFV Gc) and nucleoprotein (CCHFV NP). We demonstrate that these two assays were able to detect anti-CCHFV Gc-specific and anti-CCHFV NP-specific IgG in sheep from endemic CCHFV areas with high specificity, providing new insight into the heterogeneity of the immune response induced by natural infection with CCHFV in domestic animals.
Collapse
Affiliation(s)
| | | | | | | | - Ellen Hughes
- Medical Research Council (MRC)-University of Glasgow Centre for Virus Research (CRV), Glasgow, United Kingdom
| | | | | | - Blandina T. Mmbaga
- Kilimanjaro Clinical Research Institute (KCRI), Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Brian Willett
- Medical Research Council (MRC)-University of Glasgow Centre for Virus Research (CRV), Glasgow, United Kingdom
| | | | | | - Natalie Baker
- Research and Evaluation, UK Health Security Agency, Porton Down, United Kingdom
| | - Kelly M. Thomas
- Research and Evaluation, UK Health Security Agency, Porton Down, United Kingdom
| | - Daniel Wright
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jack Saunders
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Miles Carroll
- Pandemic Science Institute, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Roger Hewson
- Research and Evaluation, UK Health Security Agency, Porton Down, United Kingdom
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Teresa Lambe
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
4
|
Kumar JS, Parida M, Shete AM, Majumdar T, Patil S, Yadav PD, Dash PK. Development of a Reverse Transcription Loop - Mediated Isothermal Amplification [RT-LAMP] as a early rapid detection assay for Crimean Congo Hemorrhagic Fever virus. Acta Trop 2022; 231:106435. [PMID: 35378061 DOI: 10.1016/j.actatropica.2022.106435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
Presently diagnosis of Crimean Congo Hemorrhagic Fever virus (CCHFV) infection relies on real-time and end-point RT-PCR, and serodiagnostic assay. These assays are time consuming and cannot be used as a routine screening test. The objective of this study was to develop a rapid diagnostic test that could be completed in < 60 minutes. Rapid detection of CCHFV infection is important for faster delivery of appropriate therapeutics, clinical management of patient and also important to contain the outbreak. In the present study, we have developed a rapid and sensitive single tube reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for detection of CCHFV. The limit of detection of RT-LAMP vis-a-vis Real-time RT-PCR assay is 10 RNA copies. Further, CCHFV specific RT-LAMP assay was successfully evaluated with human and tick samples. The assay correctly picked up diverse CCHFV isolates indicating its applicability for different strains. A comparative evaluation of the RT-LAMP assay vis-à-vis with the real-time RT-PCR revealed 100% concordance with 100 % sensitivity and specificity respectively. No cross reactivity with related Flaviviruses and hemorrhagic fever viruses was observed. The assay is a rapid, isothermal, simple to perform molecular diagnostic, which can be performed in a portable heating block device. CCHF RT-LAMP assay can be used in low resource laboratories for monitoring of CCHFV outbreaks in remote rural regions in affected countries.
Collapse
Affiliation(s)
- Jyoti S Kumar
- Division of Virology, Defence Research and Development Establishment, Gwalior, 474002, India
| | - Manmohan Parida
- Division of Virology, Defence Research and Development Establishment, Gwalior, 474002, India
| | - Anita M Shete
- Indian Council of Medical Research, National Institute of Virology, Pune, 411021, India
| | - Triparna Majumdar
- Indian Council of Medical Research, National Institute of Virology, Pune, 411021, India
| | - Savita Patil
- Indian Council of Medical Research, National Institute of Virology, Pune, 411021, India
| | - Pragya D Yadav
- Indian Council of Medical Research, National Institute of Virology, Pune, 411021, India
| | - Paban Kumar Dash
- Division of Virology, Defence Research and Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
5
|
Satrovic L, Softic A, Zuko A, Kustura A, Koro A, Goletic S, Satrovic E, Llorente F, Pérez‐Ramírez E, Omeragic J, Salkic J, Alic A, Jiménez‐Clavero MA, Goletic T. First evidence of Crimean-Congo haemorrhagic fever virus circulation in Bosnia and Herzegovina. Vet Med Sci 2022; 8:1271-1275. [PMID: 35263508 PMCID: PMC9122385 DOI: 10.1002/vms3.781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Crimean-Congo haemorrhagic fever (CCHF) is a widespread tick-borne zoonosis with reported detection of virus and/or virus-specific antibodies from over 57 countries across Africa, Asia, Europe and the Middle East and is endemic in the Balkans. Detection of Crimean-Congo Haemorrhagic Fever Virus (CCHFV) antibodies in domestic ruminants has been important in providing initial evidence of virus circulation and in localising CCHFV high-risk spots for human infection. OBJECTIVES The present study investigated the possible exposure of sheep to CCHFV in Bosnia and Herzegovina (B&H). METHODS To investigate the presence of anti-CCHFV antibodies in sheep, all sera (n = 176) were tested using multi-species double antigen enzyme-linked immunosorbent assay (ELISA). Reactive sera were further complementary tested by adapted commercial indirect immunofluorescence assay (IFA) using FITC-conjugated protein G instead of anti-human immunoglobulins. RESULTS CCHFV specific antibodies were detected in 17 (9.66%) animals using ELISA test. All negative sera were determined as negative by both tests, while 13 out of 17 ELISA-positive reactors were also determined as unambiguously positive by IFA test. The age group with the highest proportion of seropositive rectors were the oldest animals. CONCLUSIONS This is the first report of anti-CCHFV antibodies in sheep from B&H providing the evidence of CCHFV circulation in the country's sheep population. So far, these findings indicate the circulation of the virus in the westernmost region of the Balkans and point to the potential CCHFV spread further out of this endemic area.
Collapse
Affiliation(s)
- Lejla Satrovic
- Veterinary FacultyUniversity of SarajevoSarajevoBosnia and Herzegovina
| | - Adis Softic
- Veterinary FacultyUniversity of SarajevoSarajevoBosnia and Herzegovina
| | - Almedina Zuko
- Veterinary FacultyUniversity of SarajevoSarajevoBosnia and Herzegovina
| | - Aida Kustura
- Veterinary FacultyUniversity of SarajevoSarajevoBosnia and Herzegovina
| | - Amira Koro
- Veterinary FacultyUniversity of SarajevoSarajevoBosnia and Herzegovina
| | - Sejla Goletic
- Veterinary FacultyUniversity of SarajevoSarajevoBosnia and Herzegovina
| | - Edin Satrovic
- Veterinary FacultyUniversity of SarajevoSarajevoBosnia and Herzegovina
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA), INIA‐CSICValdeolmosSpain
| | | | - Jasmin Omeragic
- Veterinary FacultyUniversity of SarajevoSarajevoBosnia and Herzegovina
| | - Jasna Salkic
- Department of PathologyUniversity Clinical Center TuzlaTuzlaBosnia and Herzegovina
- Faculty of MedicineUniversity of TuzlaTuzlaBosnia and Herzegovina
| | - Amer Alic
- Veterinary FacultyUniversity of SarajevoSarajevoBosnia and Herzegovina
| | - Miguel Angel Jiménez‐Clavero
- Centro de Investigación en Sanidad Animal (CISA), INIA‐CSICValdeolmosSpain
- Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP)MadridSpain
| | - Teufik Goletic
- Veterinary FacultyUniversity of SarajevoSarajevoBosnia and Herzegovina
| |
Collapse
|
6
|
Gülce-İz S, Elaldı N, Can H, Şahar EA, Karakavuk M, Gül A, Kumoğlu GÖ, Döşkaya AD, Gürüz AY, Özdarendeli A, Felgner PL, Davies H, Döşkaya M. Development of a novel recombinant ELISA for the detection of Crimean-Congo hemorrhagic fever virus IgG antibodies. Sci Rep 2021; 11:5936. [PMID: 33723328 PMCID: PMC7961021 DOI: 10.1038/s41598-021-85323-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne viral infection caused by Crimean-Congo hemorrhagic fever virus (CCHFV). Serological screening of CCHF is important and current ELISA use antigens prepared from virus which is expensive due to requirement of high bio-containment facilities. In this study, we aimed to develop a new recombinant ELISA. For this purpose, CCHFV genome were expressed as 13 proteins in E. coli and among them abundantly purified recombinant Nucleocapsid protein (rNP) and Mucin-like variable domain (rMLD) were used as antigen in ELISA (Rec-ELISA). Rec-ELISA using rNP, rMLD and a combination of both (rNP/rMLD) were probed with acute (n = 64; collected between days 1 and 7 after onset of symptoms), convalescent (n = 35; collected 8 days after onset of symptoms), consecutive sera (n = 25) of confirmed CCHF cases and control sera (n = 43). The sensitivity and specificity of Rec-ELISA using rNP/rMLD were 73% and 98% in acute cases and 97% and 98% in convalescent cases. The median interquartile absorbance value to discriminate the acute and convalescent phases of CCHF was significantly higher with ELISA using rNP/rMLD (P < 0.0001) compared to rNP (P > 0.05) and rMLD (P = 0.001). These results indicate that the Rec-ELISA using rNP/rMLD may be very useful to diagnose convalescent CCHF cases especially in field studies.
Collapse
Affiliation(s)
- Sultan Gülce-İz
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.,Department of Physiology and Biophysics, Vaccine Research and Development Center, University of California, Irvine, CA, USA
| | - Nazif Elaldı
- Department of Infectious Diseases and Clinical Microbiology, Sivas Cumhuriyet University, Faculty of Medicine, Sivas, Turkey.
| | - Hüseyin Can
- Department of Biology, Section of Molecular Biology, Ege University, Faculty of Science, Izmir, Turkey
| | - Esra Atalay Şahar
- Department of Biotechnology, Ege University, Faculty of Engineering, Izmir, Turkey
| | - Muhammet Karakavuk
- Department of Parasitology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Aytül Gül
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Gizem Örs Kumoğlu
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Aysu Değirmenci Döşkaya
- Department of Parasitology, Ege University, Faculty of Medicine, Izmir, Turkey.,Blood Bank of Ege University, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Adnan Yüksel Gürüz
- Department of Parasitology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Aykut Özdarendeli
- Department of Medical Microbiology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Philip Louis Felgner
- Department of Physiology and Biophysics, Vaccine Research and Development Center, University of California, Irvine, CA, USA
| | - Huw Davies
- Department of Physiology and Biophysics, Vaccine Research and Development Center, University of California, Irvine, CA, USA
| | - Mert Döşkaya
- Department of Parasitology, Ege University, Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
7
|
Monsalve Arteaga L, Muñoz Bellido JL, Negredo AI, García Criado J, Vieira Lista MC, Sánchez Serrano JÁ, Vicente Santiago MB, López Bernús A, de Ory Manchón F, Sánchez Seco MP, Leralta N, Alonso Sardón M, Muro A, Belhassen-García M. New circulation of genotype V of Crimean-Congo haemorrhagic fever virus in humans from Spain. PLoS Negl Trop Dis 2021; 15:e0009197. [PMID: 33617538 PMCID: PMC7943016 DOI: 10.1371/journal.pntd.0009197] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/09/2021] [Accepted: 02/02/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Crimean-Congo haemorrhagic fever (CCHF) is a widespread tick-borne viral disease caused by the Crimean-Congo haemorrhagic fever virus (CCHFV). CCHFV has been implicated in severe viral haemorrhagic fever outbreaks. During the summer of 2016, the first two cases with genotype III (Africa 3) were reported in Spain. The first objective of our study was to determine the presence of CCHFV among patients with febrile illness during the spring and summer periods in 2017 and 2018. Finally, we perform a phylogenetic analysis to determine the genotype of the virus. METHODOLOGY We prospectively evaluated patients aged 18 years and older who came to the emergency department at the Salamanca's University Hospital (HUS) with fever. Specific IgM and IgG antibodies against CCHFV by ELISA and one immunofluorescence assay against two different proteins (nucleoprotein and glycoprotein C) was done. Moreover, molecular detection by Real Time PCR was performed in all collected samples. A phylogenetic analysis was carried out to genetically characterize CCHFV detected in this study. PRINCIPAL FINDINGS A total of 133 patients were selected. The mean age was 67.63 years and 60.9% were male. One-third of the patients presented an acute undifferentiated febrile illness. Three patients had anti-CCHFV IgG antibodies, suggesting a previous infection. One patient had anti-CCHFV IgM antibodies and a confirmatory RT-PCR. Phylogenetic analysis indicated that the virus corresponds to the European genotype V. This patient came to the emergency department at HUS in August 2018 presenting an acute febrile syndrome with thrombopenia and liver impairment. CONCLUSIONS We describe a new circulation of European genotype V CCHFV in Spain. Moreover, this study suggests that CCHFV is an identifiable cause of febrile illness of unknown origin in Spain. Thus, CCHF could be suspected in patients with fever, liver damage, and/or haemorrhagic disorders, particularly in people with risk activities who present in the spring or summer.
Collapse
Affiliation(s)
- Lia Monsalve Arteaga
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Center for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Juan Luis Muñoz Bellido
- Servicio de Microbiología y Parasitología, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Ana Isabel Negredo
- Arbovirus and Imported Viral Diseases Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Red de Investigación Colaborativa en Enfermedades Tropicales, Madrid, Spain
| | - Jorge García Criado
- Emergency Department, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Maria Carmen Vieira Lista
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Center for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | | | - María Belén Vicente Santiago
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Center for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Amparo López Bernús
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Center for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
- Internal Medicine and Infectious Disease Department, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Fernando de Ory Manchón
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, España; Ciber en Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain
| | - María Paz Sánchez Seco
- Arbovirus and Imported Viral Diseases Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Red de Investigación Colaborativa en Enfermedades Tropicales, Madrid, Spain
| | - Nuria Leralta
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, España; Ciber en Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain
| | - Montserrat Alonso Sardón
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Center for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Center for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Moncef Belhassen-García
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Center for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
- Internal Medicine and Infectious Disease Department, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
8
|
Monsalve Arteaga L, Muñoz Bellido JL, Vieira Lista MC, Vicente Santiago MB, Fernández Soto P, Bas I, Leralta N, de Ory Manchón F, Negredo AI, Sánchez Seco MP, Alonso Sardón M, Pérez González S, Jiménez Del Bianco A, Blanco Peris L, Alamo-Sanz R, Hewson R, Belhassen-García M, Muro A. Crimean-Congo haemorrhagic fever (CCHF) virus-specific antibody detection in blood donors, Castile-León, Spain, summer 2017 and 2018. ACTA ACUST UNITED AC 2020; 25. [PMID: 32183933 PMCID: PMC7078822 DOI: 10.2807/1560-7917.es.2020.25.10.1900507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BackgroundCrimean-Congo haemorrhagic fever virus (CCHFV) is considered an emerging or even a probable re-emerging pathogen in southern Europe. Presence of this virus had been reported previously in Spain in 2010.AimWe aimed to evaluate the potential circulation of CCHFV in western Spain with a serosurvey in asymptomatic adults (blood donors).MethodsDuring 2017 and 2018, we conducted a CCHFV serosurvey in randomly selected asymptomatic blood donors from western Spain. Three assays using specific IgG antibodies against CCHFV were performed: the VectoCrimea ELISA test, an in-house ELISA and indirect immunofluorescence (EuroImmun) test with glycoprotein and nucleoprotein.ResultsA total of 516 blood donors participated in this cross-sectional study. The majority of the study participants were male (68.4%), and the mean age was 46.3 years. Most of the participants came from rural areas (86.8%) and 68.6% had contact with animals and 20.9% had animal husbandry practices. One in five participants (109/516, 21.1%) were engaged in at-risk professional activities such as agriculture and shepherding, slaughtering, hunting, veterinary and healthcare work (mainly nursing staff and laboratory technicians). A total of 15.3% of the participants were bitten by ticks in the days or months before the date of sampling. We detected anti-CCHFV IgG antibodies with two diagnostic assays in three of the 516 individuals and with one diagnostic assay in six of the 516 individuals.ConclusionSeroprevalence of CCHFV was between 0.58% and 1.16% in Castile-León, Spain. This is the first study in western Spain that showed circulation of CCHFV in healthy people.
Collapse
Affiliation(s)
- Lía Monsalve Arteaga
- Infectious and Tropical Diseases Group (e-INTRO). IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Center for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Juan Luis Muñoz Bellido
- Departamento de Ciencias Biomédicas y del Diagnóstico, Universidad de Salamanca, Salamanca, Spain.,Servicio de Microbiología y Parasitología, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, CSIC, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - María Carmen Vieira Lista
- Infectious and Tropical Diseases Group (e-INTRO). IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Center for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - María Belén Vicente Santiago
- Infectious and Tropical Diseases Group (e-INTRO). IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Center for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Pedro Fernández Soto
- Infectious and Tropical Diseases Group (e-INTRO). IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Center for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Isabel Bas
- Arbovirus and Imported Viral Diseases Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Red de Investigación Colaborativa en Enfermedades Tropicales, Madrid, Spain
| | - Nuria Leralta
- Arbovirus and Imported Viral Diseases Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Red de Investigación Colaborativa en Enfermedades Tropicales, Madrid, Spain
| | - Fernando de Ory Manchón
- Centro Nacional de Microbiología, Ciber en Salud Pública (CIBERESP), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ana Isabel Negredo
- Arbovirus and Imported Viral Diseases Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Red de Investigación Colaborativa en Enfermedades Tropicales, Madrid, Spain
| | - María Paz Sánchez Seco
- Arbovirus and Imported Viral Diseases Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Red de Investigación Colaborativa en Enfermedades Tropicales, Madrid, Spain
| | - Montserrat Alonso Sardón
- Infectious and Tropical Diseases Group (e-INTRO). IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Center for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Sonia Pérez González
- Center for Hemodonation and Hemotherapy of Castilla y León (CHEMCYL), Valladolid, Spain
| | | | - Lydia Blanco Peris
- Center for Hemodonation and Hemotherapy of Castilla y León (CHEMCYL), Valladolid, Spain
| | | | - Roger Hewson
- Public Health England, Porton Down, Wiltshire, Salisbury, United Kingdom
| | - Moncef Belhassen-García
- Infectious and Tropical Diseases Group (e-INTRO). IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Center for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Group (e-INTRO). IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Center for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| |
Collapse
|
9
|
Bartolini B, Gruber CE, Koopmans M, Avšič T, Bino S, Christova I, Grunow R, Hewson R, Korukluoglu G, Lemos CM, Mirazimi A, Papa A, Sanchez-Seco MP, Sauer AV, Zeller H, Nisii C, Capobianchi MR, Ippolito G, Reusken CB, Di Caro A. Laboratory management of Crimean-Congo haemorrhagic fever virus infections: perspectives from two European networks. ACTA ACUST UNITED AC 2020; 24. [PMID: 30722811 PMCID: PMC6386216 DOI: 10.2807/1560-7917.es.2019.24.5.1800093] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Crimean-Congo haemorrhagic fever virus (CCHFV) is considered an emerging infectious disease threat in the European Union. Since 2000, the incidence and geographic range of confirmed CCHF cases have markedly increased, following changes in the distribution of its main vector, Hyalomma ticks. Aims To review scientific literature and collect experts’ opinion to analyse relevant aspects of the laboratory management of human CCHF cases and any exposed contacts, as well as identify areas for advancement of international collaborative preparedness and laboratory response plans. Methods We conducted a literature review on CCHF molecular diagnostics through an online search. Further, we obtained expert opinions on the key laboratory aspects of CCHF diagnosis. Consulted experts were members of two European projects, EMERGE (Efficient response to highly dangerous and emerging pathogens at EU level) and EVD-LabNet (Emerging Viral Diseases-Expert Laboratory Network). Results Consensus was reached on relevant and controversial aspects of CCHF disease with implications for laboratory management of human CCHF cases, including biosafety, diagnostic algorithm and advice to improve lab capabilities. Knowledge on the diffusion of CCHF can be obtained by promoting syndromic approach to infectious diseases diagnosis and by including CCHFV infection in the diagnostic algorithm of severe fevers of unknown origin. Conclusion No effective vaccine and/or therapeutics are available at present so outbreak response relies on rapid identification and appropriate infection control measures. Frontline hospitals and reference laboratories have a crucial role in the response to a CCHF outbreak, which should integrate laboratory, clinical and public health responses.
Collapse
Affiliation(s)
- Barbara Bartolini
- 'L. Spallanzani' National Institute for Infectious Diseases IRCCS (INMI), WHO Collaborating Center for Clinical Care, Diagnosis, Response and Training on Highly Infectious Diseases, Rome, Italy
| | - Cesare Em Gruber
- 'L. Spallanzani' National Institute for Infectious Diseases IRCCS (INMI), WHO Collaborating Center for Clinical Care, Diagnosis, Response and Training on Highly Infectious Diseases, Rome, Italy
| | - Marion Koopmans
- Erasmus MC, Department of Viroscience, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, The Netherlands
| | - Tatjana Avšič
- Institute of Microbiology and Immunology, Faculty of Medicine, Ljubljana, Slovenia
| | - Sylvia Bino
- Control of Infectious Diseases Department Institute of Public Health, Tirana, Albania
| | - Iva Christova
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Roger Hewson
- Public Health England, National Infection Service WHO Collaborating Centre for Virus Reference and Research (Special Pathogens), Porton Down, Salisbury, United Kingdom
| | | | - Cinthia Menel Lemos
- Consumers, Health, Agriculture and Food Executive Agency (CHAFEA), Luxembourg, Luxembourg
| | - Ali Mirazimi
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institute and Karolinska University Hospital, Solna, Sweden.,National Veterinary Institute, Uppsala, Sweden.,Public Health agency of Sweden, Solna, Sweden
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Aisha V Sauer
- European Commission, Directorate General for Health and Food Safety, Unit for Crisis Management and Preparedness in Health, Luxembourg, Luxembourg
| | - Hervè Zeller
- European Center for Disease Prevention and Control, Office of the Chief Scientist, Stockholm, Sweden
| | - Carla Nisii
- 'L. Spallanzani' National Institute for Infectious Diseases IRCCS (INMI), WHO Collaborating Center for Clinical Care, Diagnosis, Response and Training on Highly Infectious Diseases, Rome, Italy
| | - Maria Rosaria Capobianchi
- 'L. Spallanzani' National Institute for Infectious Diseases IRCCS (INMI), WHO Collaborating Center for Clinical Care, Diagnosis, Response and Training on Highly Infectious Diseases, Rome, Italy
| | - Giuseppe Ippolito
- 'L. Spallanzani' National Institute for Infectious Diseases IRCCS (INMI), WHO Collaborating Center for Clinical Care, Diagnosis, Response and Training on Highly Infectious Diseases, Rome, Italy
| | - Chantal B Reusken
- Authors contributed equally to the work and share last authorship.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Erasmus MC, Department of Viroscience, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, The Netherlands
| | - Antonino Di Caro
- Authors contributed equally to the work and share last authorship.,'L. Spallanzani' National Institute for Infectious Diseases IRCCS (INMI), WHO Collaborating Center for Clinical Care, Diagnosis, Response and Training on Highly Infectious Diseases, Rome, Italy
| |
Collapse
|
10
|
Abstract
Crimean-Congo hemorrhagic fever is the most geographically widespread tick-borne virus, with infection resulting in mortality in up to 30% of cases. Clinical diagnosis alone is difficult due to the nonspecific nature of symptoms; therefore, laboratory diagnostics should be utilized for patients with residence in or travel to regions of endemicity in whom the disease is suspected. This minireview provides an overview of laboratory tests available for Crimean-Congo hemorrhagic fever (CCHF) and their utility in diagnosis with a focus on diagnosing CCHF in humans.
Collapse
|
11
|
Shrivastava N, Shrivastava A, Ninawe SM, Sharma S, Kumar JS, Alam SI, Kanani A, Sharma SK, Dash PK. Development of Multispecies Recombinant Nucleoprotein-Based Indirect ELISA for High-Throughput Screening of Crimean-Congo Hemorrhagic Fever Virus-Specific Antibodies. Front Microbiol 2019; 10:1822. [PMID: 31507540 PMCID: PMC6716110 DOI: 10.3389/fmicb.2019.01822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a re-emerging zoonotic viral disease prevalent in many parts of Asia, Europe, and Africa. The causative agent, Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV), is transmitted through hard ticks. Tick vectors especially belonging to the Hyalomma species serve as the reservoir and amplifying host. The vertebrate animals including sheep, goat, and bovine act as a short-lasting bridge linking the virus and ticks. CCHFV causes fatal hemorrhagic fever in humans. Humans are usually infected with CCHFV either through the bite of infected ticks or by close contact with infected animals. Immunological assays, primarily enzyme-linked immunosorbent assay (ELISA) using whole viral antigen, are widely used for serosurveillance in animals. However, the whole virus antigen poses a high biohazard risk and can only be produced in biosafety level 4 laboratories. The present study focuses on the development and evaluation of safe, sensitive, and specific IgG indirect enzyme-linked immunosorbent assay (iELISA) using recombinant nucleoprotein (NP) of CCHF virus as an antigen. The codon-optimized NP gene sequence was synthesized, cloned, and expressed in pET28a+ vector. The recombinant NP was purified to homogeneity by affinity chromatography and characterized through Western blot and MALDI-TOF/MS analysis. The characterized protein was used to develop an indirect IgG microplate ELISA using a panel of animal sera. The in-house ELISA was comparatively evaluated vis-à-vis a commercially available ELISA kit (Vector-Best, Russia) with 76 suspected samples that revealed a concordance of 90% with a sensitivity and specificity of 79.4 and 100%, respectively. The precision analysis revealed that the assay is robust and reproducible in different sets of conditions. Further, the assay was used for serosurveillance in ruminants from different regions of India that revealed 18% seropositivity in ruminants, indicating continued circulation of virus in the region. The findings suggest that the developed IgG iELISA employing recombinant NP is a safe and valuable tool for scalable high-throughput screening of CCHFV-specific antibodies in multiple species.
Collapse
Affiliation(s)
- Neha Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Sandeep M. Ninawe
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Shashi Sharma
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Jyoti S. Kumar
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Syed Imteyaz Alam
- Division of Biotechnology, Defence Research and Development Establishment, Gwalior, India
| | - Amit Kanani
- Office of Deputy Director of Animal Husbandry, FMD Typing Scheme, Ahmedabad, India
| | - Sushil Kumar Sharma
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Paban Kumar Dash
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
12
|
Mazzola LT, Kelly-Cirino C. Diagnostic tests for Crimean-Congo haemorrhagic fever: a widespread tickborne disease. BMJ Glob Health 2019; 4:e001114. [PMID: 30899574 PMCID: PMC6407549 DOI: 10.1136/bmjgh-2018-001114] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 01/12/2023] Open
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is a widespread tickborne disease that circulates in wild and domestic animal hosts, and causes severe and often fatal haemorrhagic fever in infected humans. Due to the lack of treatment options or vaccines, and a high fatality rate, CCHF virus (CCHFV) is considered a high-priority pathogen according to the WHO R&D Blueprint. Several commercial reverse transcriptase PCR (RT-PCR) and serological diagnostic assays for CCHFV are already available, including febrile agent panels to distinguish CCHFV from other viral haemorrhagic fever agents; however, the majority of international laboratories use inhouse assays. As CCHFV has numerous amplifying animal hosts, a cross-sectoral 'One Health' approach to outbreak prevention is recommended to enhance notifications and enable early warning for genetic and epidemiological shifts in the human, animal and tick populations. However, a lack of guidance for surveillance in animals, harmonisation of case identification and validated serodiagnostic kits for animal testing hinders efforts to strengthen surveillance systems. Additionally, as RT-PCR tests tend to be lineage-specific for regional circulating strains, there is a need for pan-lineage sensitive diagnostics. Adaptation of existing tests to point-of-care molecular diagnostic platforms that can be implemented in clinic or field-based settings would be of value given the potential for CCHFV outbreaks in remote or low-resource areas. Finally, improved access to clinical specimens for validation of diagnostics would help to accelerate development of new tests. These gaps should be addressed by updated target product profiles for CCHFV diagnostics.
Collapse
Affiliation(s)
- Laura T Mazzola
- Emerging Threats Programme, Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Cassandra Kelly-Cirino
- Emerging Threats Programme, Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| |
Collapse
|
13
|
Čepa A, Ráliš J, Marešová L, Kleinová M, Seifert D, Sieglová I, Král V, Polášek M, Paurová M, Lázníček M, Lebeda O. Radiolabeling of the antibody IgG M75 for epitope of human carbonic anhydrase IX by 61Cu and 64Cu and its biological testing. Appl Radiat Isot 2019; 143:87-97. [DOI: 10.1016/j.apradiso.2018.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 10/28/2022]
|
14
|
Mapping of B-cell epitopes on the N- terminal and C-terminal segment of nucleocapsid protein from Crimean-Congo hemorrhagic fever virus. PLoS One 2018; 13:e0204264. [PMID: 30235312 PMCID: PMC6147494 DOI: 10.1371/journal.pone.0204264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne pathogen that causes severe disease in humans. CCHFV is widely distributed in more than 30 countries and distinct regions, which means that it poses a serious threat to human health. The nucleocapsid protein (NP) encoded by the CCHFV S gene is the primary detectable antigen in infected cells, which makes it an important viral antigen and a clinical diagnostic target. In this study, the modified biosynthetic peptide (BSP) method was used to identify the fine epitopes on the N- and C- terminals of NP from the CCHFV YL04057 strain using rabbit antiserum against CCHFV-NP. Nine epitopes were identified: E1a (178NLILNRGG185), E1b (184GGDENP189), E2 (352PLKWGKK358), E3 (363FADDS367), E4 (399NPDDAA404), E5a (447DIVASEHL454), E5b (452EHLLHQSL459), E6 (464SPFQNAY470) and E7 (475NATSANII482). Western blotting analysis showed that each epitope interacted with the positive serum of sheep that had been naturally infected with CCHFV. Amino acid sequence alignment between each epitope and their homologous proteins showed that they were almost 100% conserved among 12 CCHFV sequences from different lineages, except for epitopes E1a, E1b and E2. Three-dimensional structural modeling analysis showed that all identified epitopes were located on the surface of the NP "head" domain. This study identified fine epitopes on the N- and C- terminals of NP, which will increase the understanding of the structure and function of NP, and it could lay the foundation for the design and development of a CCHFV multi-epitope peptide vaccine and detection antigen.
Collapse
|
15
|
Suda Y, Chamberlain J, Dowall SD, Saijo M, Horimoto T, Hewson R, Shimojima M. The Development of a Novel Diagnostic Assay That Utilizes a Pseudotyped Vesicular Stomatitis Virus for the Detection of Neutralizing Activity against Crimean-Congo Hemorrhagic Fever Virus. Jpn J Infect Dis 2018; 71:205-208. [PMID: 29709967 DOI: 10.7883/yoken.jjid.2017.354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Crimean-Congo hemorrhagic fever virus is a risk group 4 pathogen, which mandates the use of maximum containment facilities, often termed biosafety level 4 or containment level 4 when working with infectious materials. Diagnostic and research work involving live viruses in such laboratories is time-consuming and inconvenient, resulting in delays. Herein, we show that serum neutralizing activity against the virus can be measured in low-containment laboratories using a pseudotyped virus.
Collapse
Affiliation(s)
- Yuto Suda
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo.,Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases
| | | | | | - Masayuki Saijo
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases
| | - Taisuke Horimoto
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Roger Hewson
- National Infection Service, Public Health England
| | - Masayuki Shimojima
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases
| |
Collapse
|
16
|
Emmerich P, Mika A, von Possel R, Rackow A, Liu Y, Schmitz H, Günther S, Sherifi K, Halili B, Jakupi X, Berisha L, Ahmeti S, Deschermeier C. Sensitive and specific detection of Crimean-Congo Hemorrhagic Fever Virus (CCHFV)-Specific IgM and IgG antibodies in human sera using recombinant CCHFV nucleoprotein as antigen in μ-capture and IgG immune complex (IC) ELISA tests. PLoS Negl Trop Dis 2018; 12:e0006366. [PMID: 29579040 PMCID: PMC5892944 DOI: 10.1371/journal.pntd.0006366] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/10/2018] [Accepted: 03/05/2018] [Indexed: 11/22/2022] Open
Abstract
As the most widespread tick-borne arbovirus causing infections in numerous countries in Asia, Africa and Europe, Crimean-Congo Hemorrhagic Fever Virus (CCHFV, family Nairoviridae) was included in the WHO priority list of emerging pathogens needing urgent Research & Development attention. To ensure preparedness for potential future outbreak scenarios, reliable diagnostic tools for identification of acute cases as well as for performance of seroprevalence studies are necessary. Here, the CCHFV ortholog of the major bunyavirus antigen, the nucleoprotein (NP), was recombinantly expressed in E.coli, purified and directly labeled with horseradish peroxidase (HRP). Employing this antigen, two serological tests, a μ-capture ELISA for the detection of CCHFV-specific IgM antibodies (BLACKBOX CCHFV IgM) and an IgG immune complex (IC) ELISA for the detection of CCHFV-specific IgG antibodies (BLACKBOX CCHFV IgG), were developed. Test performance was evaluated and compared with both in-house gold standard testing by IgM/IgG indirect immunofluorescence (IIF) and commercially available ELISA tests (VectoCrimean-CHF-IgM/IgG, Vector-Best, Russia) using a serum panel comprising paired samples collected in Kosovo during the years 2013–2016 from 15 patients with an acute, RT-PCR-confirmed CCHFV infection, and 12 follow-up sera of the same patients collected approximately one year after having overcome the infection. Reliably detecting IgM antibodies in all acute phase sera collected later than day 4 after onset of symptoms, both IgM ELISAs displayed excellent diagnostic and analytical sensitivity (100%, 95% confidence interval (CI): 85.2%–100.0%). While both IgG ELISAs readily detected the high IgG titers present in convalescent patients approximately one year after having overcome the infection (sensitivity 100%, 95% CI: 73.5%–100.0%), the newly developed BLACKBOX CCHFV IgG ELISA was superior to the commercial IgG ELISA in detecting the rising IgG titers during the acute phase of the disease. While all samples collected between day 11 and 19 after onset of symptoms tested positive in both the in-house gold standard IIFT and the BLACKBOX CCHFV IgG ELISA (sensitivity 100%, 95% CI: 71.5%–100.0%), only 27% (95% CI: 6.0%–61.0%) of those samples were tested positive in the commercial IgG ELISA. No false positive signals were observed in either IgM/IgG ELISA when analyzing a priori CCHFV IgM/IgG negative serum samples from healthy blood donors, malaria patients and flavivirus infected patients as well as CCHFV IgM/IgG IIFT negative serum samples from healthy Kosovar blood donors (for BLACKBOX CCHFV IgM/IgG: n = 218, 100% specificity, 95% CI: 98.3%–100.0%, for VectoCrimean-CHF-IgM/IgG: n = 113, 100% specificity, 95% CI: 96.8%–100.0%). Being endemic in several countries in Asia, Africa, the Middle East and Southeastern Europe, the Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is the geographically most widespread tick-borne arbovirus. As evidenced by the recent occurrence of an autochthonous CCHFV infection in Spain, it possesses also a significant potential to spread to as yet non-endemic regions. Due to the severity of the disease caused by this bunyavirus, the lack of specific prophylactic and therapeutic measures and the infection’s epidemic potential, CCHFV was included in the WHO priority list of diseases needing urgent R&D attention, in particular the development and improvement of diagnostic tools. Here we present the development and validation of two novel ELISAs (BLACKBOX CCHFV IgM, BLACKBOX CCHFV IgG) for the detection of CCHFV-specific IgM and IgG antibodies employing recombinant CCHFV nucleoprotein (NP) as antigen. Test performance in comparison to both in-house gold standard testing (CCHFV IgM/IgG immunofluorescence test (IIFT)) and commercial ELISA kits (VectoCrimean-CHF-IgM/IgG; Vector-Best) was evaluated using a thoroughly characterized serum panel that was obtained from 15 Kosovar patients with an RT-PCR-confirmed CCHFV-infection collected during the years 2013–2016 and that comprised samples from both the acute and convalescent phase of the disease. While both IgM ELISAs, like the CCHFV IgM IIFT, detected CCHFV-specific IgM antibodies in all sera collected during the acute phase of the disease on day 5 after onset of symptoms or later, the BLACKBOX CCHFV IgG ELISA and the CCHFV IgG IIFT were found to be significantly more sensitive than the VectoCrimean-CHF-IgG ELISA in detecting the rising IgG antibody titers in samples collected between days 11 and 19 after onset of symptoms.
Collapse
Affiliation(s)
- Petra Emmerich
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, Rostock, Germany
| | - Angela Mika
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ronald von Possel
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Anne Rackow
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Yang Liu
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Herbert Schmitz
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Günther
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Kurtesh Sherifi
- Faculty of Agricultural and Veterinary Medicine, University of Pristhina “Hasan Prishtina”, Pristhina, Kosovo
| | - Barie Halili
- University Clinical Center of Kosovo, Infectious Diseases Clinic, Pristhina, Kosovo
| | - Xhevat Jakupi
- Department of Microbiology, National Institute for Public Health of Kosova, Prishtina, Kosovo
| | - Lindita Berisha
- University Clinical Center of Kosovo, Infectious Diseases Clinic, Pristhina, Kosovo
| | - Salih Ahmeti
- University of Prishtina “Hasan Prishtina”, Medical Faculty & University Clinical Center of Kosovo, Infectious Diseases Clinic, Prishtina, Kosovo
| | - Christina Deschermeier
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- * E-mail:
| |
Collapse
|
17
|
Monitoring for the possible introduction of Crimean-Congo haemorrhagic fever virus in Italy based on tick sampling on migratory birds and serological survey of sheep flocks. Prev Vet Med 2018; 149:47-52. [DOI: 10.1016/j.prevetmed.2017.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022]
|
18
|
Goedhals D, Paweska JT, Burt FJ. Long-lived CD8+ T cell responses following Crimean-Congo haemorrhagic fever virus infection. PLoS Negl Trop Dis 2017; 11:e0006149. [PMID: 29261651 PMCID: PMC5752039 DOI: 10.1371/journal.pntd.0006149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/03/2018] [Accepted: 12/02/2017] [Indexed: 12/11/2022] Open
Abstract
Crimean-Congo haemorrhagic fever virus (CCHFV) is a member of the Orthonairovirus genus of the Nairoviridae family and is associated with haemorrhagic fever in humans. Although T lymphocyte responses are known to play a role in protection from and clearance of viral infections, specific T cell epitopes have yet to be identified for CCHFV following infection. A panel of overlapping peptides covering the CCHFV nucleoprotein and the structural glycoproteins, GN and GC, were screened by ELISpot assay to detect interferon gamma (IFN-γ) production in vitro by peripheral blood mononuclear cells from eleven survivors with previous laboratory confirmed CCHFV infection. Reactive peptides were located predominantly on the nucleoprotein, with only one survivor reacting to two peptides from the glycoprotein GC. No single epitope was immunodominant, however all but one survivor showed reactivity to at least one T cell epitope. The responses were present at high frequency and detectable several years after the acute infection despite the absence of continued antigenic stimulation. T cell depletion studies confirmed that IFN-γ production as detected using the ELISpot assay was mediated chiefly by CD8+ T cells. This is the first description of CD8+ T cell epitopic regions for CCHFV and provides confirmation of long-lived T cell responses in survivors of CCHFV infection.
Collapse
Affiliation(s)
- Dominique Goedhals
- Division of Virology, National Health Laboratory Service/University of the Free State, Bloemfontein, South Africa
| | - Janusz T. Paweska
- Center for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Felicity J. Burt
- Division of Virology, National Health Laboratory Service/University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
19
|
Molinas A, Turkina MV, Magnusson KE, Mirazimi A, Vikström E. Perturbation of Wound Healing, Cytoskeletal Organization and Cellular Protein Networks during Hazara Virus Infection. Front Cell Dev Biol 2017; 5:98. [PMID: 29209610 PMCID: PMC5702460 DOI: 10.3389/fcell.2017.00098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022] Open
Abstract
Normal epithelial and endothelial renewal and healing after bacterial and viral challenges are essential for homeostasis along the intestine and the blood and lymphatic vessels. We thus investigated whether and how virus affects migration of human epithelial cells and specifically how the nucleocapsid protein (N) modulates the cellular proteome and interactome using human Caco-2 cells in a wound-healing assay with Hazara virus as a model. Here, Hazara virus blocked cell migration in a dose- and time-dependent manner, disrupted the actin cytoskeleton and specifically reduced the expression of the IQ-motif-containing GTPase-activating protein 1 (IQGAP1) and water channel aquaporin 6 (AQP6) that regulate cytoskeletal organization, water homeostasis and vesicle communication. Moreover, in the Caco-2 cell proteome, we identified several distinct groups of molecules associating with N upon Hazara virus infection, being involved in the ensemble of important cellular processes, e.g., chaperone activity, metabolism, cellular defense against infections, cell morphology, and migration. These events do not only facilitate the virus life cycle, but they are also crucial for membrane and cytoskeleton dynamics, cellular self-renewal and wound healing, being so essential for body integrity and homeostasis.
Collapse
Affiliation(s)
- Andrea Molinas
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Maria V Turkina
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Karl-Eric Magnusson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Ali Mirazimi
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
Rotolo ML, Giménez-Lirola L, Ji J, Magtoto R, Henao-Díaz YA, Wang C, Baum DH, Harmon KM, Main RG, Zimmerman JJ. Detection of porcine reproductive and respiratory syndrome virus (PRRSV)-specific IgM-IgA in oral fluid samples reveals PRRSV infection in the presence of maternal antibody. Vet Microbiol 2017; 214:13-20. [PMID: 29408024 DOI: 10.1016/j.vetmic.2017.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 01/21/2023]
Abstract
The ontogeny of PRRSV antibody in oral fluids has been described using isotype-specific ELISAs. Mirroring the serum response, IgM appears in oral fluid by 7days post inoculation (DPI), IgA after 7 DPI, and IgG by 9 to 10 DPI. Commercial PRRSV ELISAs target the detection of IgG because the higher concentration of IgG relative to other isotypes provides the best diagnostic discrimination. Oral fluids are increasingly used for PRRSV surveillance in commercial herds, but in younger pigs, a positive ELISA result may be due either to maternal antibody or to antibody produced by the pigs in response to infection. To address this issue, a combined IgM-IgA PRRSV oral fluid ELISA was developed and evaluated for its capacity to detect pig-derived PRRSV antibody in the presence of maternal antibody. Two longitudinal studies were conducted. In Study 1 (modified-live PRRS vaccinated pigs), testing of individual pig oral fluid samples by isotype-specific ELISAs demonstrated that the combined IgM-IgA PRRSV ELISA provided better discrimination than individual IgM or IgA ELISAs. In Study 2 (field data), testing of pen-based oral fluid samples confirmed the findings in Study 1 and established that the IgM-IgA ELISA was able to detect antibody produced by pigs in response to wild-type PRRSV infection, despite the presence of maternal IgG. Overall, the combined PRRSV IgM-IgA oral fluid ELISA described in this study is a potential tool for PRRSV surveillance, particularly in populations of growing pigs originating from PRRSV-positive or vaccinated breeding herds.
Collapse
Affiliation(s)
- Marisa L Rotolo
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Luis Giménez-Lirola
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Ju Ji
- Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA, USA
| | - Ronaldo Magtoto
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Yuly A Henao-Díaz
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Chong Wang
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA; Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA, USA
| | - David H Baum
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Karen M Harmon
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Rodger G Main
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jeffrey J Zimmerman
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
21
|
Dowall SD, Carroll MW, Hewson R. Development of vaccines against Crimean-Congo haemorrhagic fever virus. Vaccine 2017; 35:6015-6023. [PMID: 28687403 PMCID: PMC5637709 DOI: 10.1016/j.vaccine.2017.05.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/24/2017] [Accepted: 05/10/2017] [Indexed: 11/19/2022]
Abstract
Crimean-Congo haemorrhagic fever virus (CCHFV) is a deadly human pathogen of the utmost seriousness being highly lethal causing devastating disease symptoms that result in intense and prolonged suffering to those infected. During the past 40years, this virus has repeatedly caused sporadic outbreaks responsible for relatively low numbers of human casualties, but with an alarming fatality rate of up to 80% in clinically infected patients. CCHFV is transmitted to humans by Hyalomma ticks and contact with the blood of viremic livestock, additionally cases of human-to-human transmission are not uncommon in nosocomial settings. The incidence of CCHF closely matches the geographical range of permissive ticks, which are widespread throughout Africa, Asia, the Middle East and Europe. As such, CCHFV is the most widespread tick-borne virus on earth. It is a concern that recent data shows the geographic distribution of Hyalomma ticks is expanding. Migratory birds are also disseminating Hyalomma ticks into more northerly parts of Europe thus potentially exposing naïve human populations to CCHFV. The virus has been imported into the UK on two occasions in the last five years with the first fatal case being confirmed in 2012. A licensed vaccine to CCHF is not available. In this review, we discuss the background and complications surrounding this limitation and examine the current status and recent advances in the development of vaccines against CCHFV.
Collapse
Affiliation(s)
- Stuart D Dowall
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Miles W Carroll
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Roger Hewson
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK.
| |
Collapse
|
22
|
Bukbuk DN, Dowall SD, Lewandowski K, Bosworth A, Baba SS, Varghese A, Watson RJ, Bell A, Atkinson B, Hewson R. Serological and Virological Evidence of Crimean-Congo Haemorrhagic Fever Virus Circulation in the Human Population of Borno State, Northeastern Nigeria. PLoS Negl Trop Dis 2016; 10:e0005126. [PMID: 27926935 PMCID: PMC5142770 DOI: 10.1371/journal.pntd.0005126] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/24/2016] [Indexed: 11/19/2022] Open
Abstract
Background Despite several studies on the seroprevalence of antibodies against Crimean-Congo Haemorrhagic Fever virus (CCHFV) from humans and cattle in Nigeria, detailed investigation looking at IgG and IgM have not been reported. Additionally, there have been no confirmed cases of human CCHFV infection reported from Nigeria. Principal Findings Samples from sera (n = 1189) collected from four Local Government Areas in Borno State (Askira/Uba, Damboa, Jere and Maiduguri) were assessed for the presence of IgG and IgM antibodies. The positivity rates for IgG and IgM were 10.6% and 3.5%, respectively. Additionally, sera from undiagnosed febrile patients (n = 380) were assessed by RT-PCR assay for the presence of CCHFV RNA. One positive sample was characterised by further by next generation sequencing (NGS) resulting in complete S, M and L segment sequences. Conclusions This article provides evidence for the continued exposure of the human population of Nigeria to CCHFV. The genomic analysis provides the first published evidence of a human case of CCHFV in Nigeria and its phylogenetic context. Crimean-Congo haemorrhagic fever (CCHF) is an acute tick-borne zoonotic disease. The causative agent, CCHF virus (CCHFV), has the most extensive geographical distribution of the medically important tick-borne viral diseases with a distribution over much of Asia, the Middle East, Africa and expanding areas of south-eastern Europe. Whilst the main route of human infection with CCHFV is predominantly through tick bite, it can also be spread via bodily fluids and it has a reputation for causing nosocomial outbreaks in healthcare settings. Whilst CCHFV has been identified in ticks from Nigeria since 1970, there is scarce information on human infection. Within this report, the prevalence of CCHFV-reactive antibodies has been assessed in human sera providing evidence of continued circulation of the virus in the human population of Borno state, Nigeria. Additionally, in one sample the presence of viral RNA was detected which allowed a full sequence of the CCHFV to be obtained. This is the first report of CCHFV being associated in a human case from Nigeria and the full genetic characterisation of the virus being completed. The evidence within supports the hypothesis that CCHFV is endemic in Nigeria and should be considered as an aetiological agent in febrile patients.
Collapse
Affiliation(s)
- David N. Bukbuk
- Department of Microbiology, Faculty of Science, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Stuart D. Dowall
- National Infection Service, Public Health England, Salisbury, Wiltshire, United Kingdom
- * E-mail:
| | - Kuiama Lewandowski
- National Infection Service, Public Health England, Salisbury, Wiltshire, United Kingdom
| | - Andrew Bosworth
- National Infection Service, Public Health England, Salisbury, Wiltshire, United Kingdom
| | - Saka S. Baba
- Animal Virus Research Laboratory, Department of Veterinary Microbiology and Parasitology, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Anitha Varghese
- National Infection Service, Public Health England, Salisbury, Wiltshire, United Kingdom
| | - Robert J. Watson
- National Infection Service, Public Health England, Salisbury, Wiltshire, United Kingdom
| | - Andrew Bell
- National Infection Service, Public Health England, Salisbury, Wiltshire, United Kingdom
| | - Barry Atkinson
- National Infection Service, Public Health England, Salisbury, Wiltshire, United Kingdom
| | - Roger Hewson
- National Infection Service, Public Health England, Salisbury, Wiltshire, United Kingdom
| |
Collapse
|
23
|
Newman ENC, Johnstone P, Bridge H, Wright D, Jameson L, Bosworth A, Hatch R, Hayward-Karlsson J, Osborne J, Bailey MS, Green A, Ross D, Brooks T, Hewson R. Seroconversion for infectious pathogens among UK military personnel deployed to Afghanistan, 2008-2011. Emerg Infect Dis 2016; 20:2015-22. [PMID: 25418685 PMCID: PMC4257834 DOI: 10.3201/eid2012.131830] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Military personnel are at high risk of contracting vector-borne and zoonotic infections, particularly during overseas deployments, when they may be exposed to endemic or emerging infections not prevalent in their native countries. We conducted seroprevalence testing of 467 UK military personnel deployed to Helmand Province, Afghanistan, during 2008-2011 and found that up to 3.1% showed seroconversion for infection with Rickettsia spp., Coxiella burnetii, sandfly fever virus, or hantavirus; none showed seroconversion for infection with Crimean-Congo hemorrhagic fever virus. Most seroconversions occurred in personnel who did not report illness, except for those with hantavirus (70% symptomatic). These results indicate that many exposures to infectious pathogens, and potentially infections resulting from those exposures, may go unreported. Our findings reinforce the need for continued surveillance of military personnel and for education of health care providers to help recognize and prevent illnesses and transmission of pathogens during and after overseas deployments.
Collapse
|
24
|
Abstract
Crimean-Congo hemorrhagic fever (CCHF) virus is the most extensive tick-borne virus, it causes a severe infection, which occurs widely in Africa, Eastern Europe and Asia. In recent years, the dramatic increase in the global distribution of CCHF, with the high mortality rates, highlights the importance of improving diagnostic capacity. Clinical and epidemiological data play a crucial role for early recognition of CCHF. However, CCHF is clinically difficult to diagnose and to distinguish, a rapid and reliable laboratory confirmation is necessary. Confirmation of infection in the acute phase of the disease can be made by detection of viral nucleic acid using reverse transcription-PCR, by demonstration of viral antigen or by virus isolation. In the convalescent phase of the disease, the diagnosis is confirmed by demonstration of an antibody response. The consideration of viral replication kinetics and antiviral humoral immune responses facilitates the selection of appropriate laboratory tests and accurate interpretation of laboratory findings.
Collapse
Affiliation(s)
- Hasan Tezer
- Department of Pediatric Infectious Diseases, Gazi University School of Medicine, 06500 Beşevler, Ankara, Turkey
| | | |
Collapse
|
25
|
Fine epitope mapping of the central immunodominant region of nucleoprotein from Crimean-Congo hemorrhagic fever virus (CCHFV). PLoS One 2014; 9:e108419. [PMID: 25365026 PMCID: PMC4217714 DOI: 10.1371/journal.pone.0108419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 08/29/2014] [Indexed: 11/19/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF), a severe viral disease known to have occurred in over 30 countries and distinct regions, is caused by the tick-borne CCHF virus (CCHFV). Nucleocapsid protein (NP), which is encoded by the S gene, is the primary antigen detectable in infected cells. The goal of the present study was to map the minimal motifs of B-cell epitopes (BCEs) on NP. Five precise BCEs (E1, 247FDEAKK252; E2a, 254VEAL257; E2b, 258NGYLNKH264; E3, 267EVDKA271; and E4, 274DSMITN279) identified through the use of rabbit antiserum, and one BCE (E5, 258NGYL261) recognized using a mouse monoclonal antibody, were confirmed to be within the central region of NP and were partially represented among the predicted epitopes. Notably, the five BCEs identified using the rabbit sera were able to react with positive serum mixtures from five sheep which had been infected naturally with CCHFV. The multiple sequence alignment (MSA) revealed high conservation of the identified BCEs among ten CCHFV strains from different areas. Interestingly, the identified BCEs with only one residue variation can apparently be recognized by the positive sera of sheep naturally infected with CCHFV. Computer-generated three-dimensional structural models indicated that all the antigenic motifs are located on the surface of the NP stalk domain. This report represents the first identification and mapping of the minimal BCEs of CCHFV-NP along with an analysis of their primary and structural properties. Our identification of the minimal linear BCEs of CCHFV-NP may provide fundamental data for developing rapid diagnostic reagents and illuminating the pathogenic mechanism of CCHFV.
Collapse
|
26
|
Papa A, Mirazimi A, Köksal I, Estrada-Pena A, Feldmann H. Recent advances in research on Crimean-Congo hemorrhagic fever. J Clin Virol 2014; 64:137-43. [PMID: 25453328 DOI: 10.1016/j.jcv.2014.08.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 08/25/2014] [Indexed: 11/29/2022]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is an expanding tick-borne hemorrhagic disease with increasing human and animal health impact. Immense knowledge was gained over the past 10 years mainly due to advances in molecular biology, but also driven by an increased global interest in CCHFV as an emerging/re-emerging zoonotic pathogen. In the present article, we discuss the advances in research with focus on CCHF ecology, epidemiology, pathogenesis, diagnostics, prophylaxis and treatment. Despite tremendous achievements, future activities have to concentrate on the development of vaccines and antivirals/therapeutics to combat CCHF. Vector studies need to continue for better public and animal health preparedness and response. We conclude with a roadmap for future research priorities.
Collapse
Affiliation(s)
- Anna Papa
- Department of Microbiology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Ali Mirazimi
- Swedish Institute for Communicable Disease Control, SE 171 82 Sweden; National Veterinary Institute, SE-756 51 Sweden; Dept for Clinical and Experimental Medicine, Linkopings University, SE-581 83 Sweden
| | - Iftihar Köksal
- Karadeniz Technical University, Medical Faculty, Department of Infectious Diseases, Trabzon, Turkey
| | | | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, USA
| |
Collapse
|
27
|
Identification of human linear B-cell epitope sites on the envelope glycoproteins of Crimean-Congo haemorrhagic fever virus. Epidemiol Infect 2014; 143:1451-6. [PMID: 25185583 DOI: 10.1017/s0950268814002271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A peptide library was used to screen for regions containing potential linear B-cell epitope sites in the glycoproteins and nucleoprotein of Crimean-Congo haemorrhagic fever virus (CCHFV) in an enzyme-linked immunosorbent assay (ELISA). The library consisted of 156 peptides, spanning the nucleoprotein and mature GN and GC proteins in a 19-mer with 9-mer overlap format. Using pooled serum samples from convalescent patients to screen the library, six peptides were identified as potential epitope sites. Further testing of these six peptides with individual patient sera identified two of these peptides as probable epitope sites, with peptide G1451-1469 reacting to 13/15 and peptide G1613-1631 to 14/15 human sera. These peptides are situated on the GC protein at amino acid positions 1451-1469 (relative to CCHFV isolate SPU103/97) (TCTGCYACSSGISCKVRIH) and 1613-1631 (FMFGWRILFCFKCCRRTRG). Identified peptides may have application in ELISA for diagnostic or serosurveillance purposes.
Collapse
|
28
|
Lumley S, Atkinson B, Dowall S, Pitman J, Staplehurst S, Busuttil J, Simpson A, Aarons E, Petridou C, Nijjar M, Glover S, Brooks T, Hewson R. Non-fatal case of Crimean-Congo haemorrhagic fever imported into the United Kingdom (ex Bulgaria), June 2014. ACTA ACUST UNITED AC 2014; 19. [PMID: 25108534 DOI: 10.2807/1560-7917.es2014.19.30.20864] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) was diagnosed in a United Kingdom traveller who returned from Bulgaria in June 2014. The patient developed a moderately severe disease including fever, headaches and petechial rash. CCHF was diagnosed following identification of CCHF virus (CCHFV) RNA in a serum sample taken five days after symptom onset. Sequence analysis of the CCHFV genome showed that the virus clusters within the Europe 1 clade, which includes viruses from eastern Europe.
Collapse
Affiliation(s)
- S Lumley
- Research Department, Microbiology Services Division, Public Health England, Porton Down, Salisbury, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Buttigieg KR, Dowall SD, Findlay-Wilson S, Miloszewska A, Rayner E, Hewson R, Carroll MW. A novel vaccine against Crimean-Congo Haemorrhagic Fever protects 100% of animals against lethal challenge in a mouse model. PLoS One 2014; 9:e91516. [PMID: 24621656 PMCID: PMC3951450 DOI: 10.1371/journal.pone.0091516] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/10/2014] [Indexed: 12/21/2022] Open
Abstract
Crimean-Congo Haemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. Between 15-70% of reported cases are fatal. There is no approved vaccine available, and preclinical protection in vivo by an experimental vaccine has not been demonstrated previously. In the present study, the attenuated poxvirus vector, Modified Vaccinia virus Ankara, was used to develop a recombinant candidate vaccine expressing the CCHF virus glycoproteins. Cellular and humoral immunogenicity was confirmed in two mouse strains, including type I interferon receptor knockout mice, which are susceptible to CCHF disease. This vaccine protected all recipient animals from lethal disease in a challenge model adapted to represent infection via a tick bite. Histopathology and viral load analysis of protected animals confirmed that they had been exposed to challenge virus, even though they did not exhibit clinical signs. This is the first demonstration of efficacy of a CCHF vaccine.
Collapse
MESH Headings
- Animals
- Cell Line
- Cricetinae
- DNA, Recombinant/genetics
- Disease Models, Animal
- Female
- Glycoproteins/genetics
- Glycoproteins/immunology
- Hemorrhagic Fever Virus, Crimean-Congo/immunology
- Hemorrhagic Fever Virus, Crimean-Congo/physiology
- Hemorrhagic Fever, Crimean/immunology
- Hemorrhagic Fever, Crimean/metabolism
- Hemorrhagic Fever, Crimean/pathology
- Hemorrhagic Fever, Crimean/prevention & control
- Immunity, Cellular
- Immunity, Humoral
- Mice
- Plasmids/genetics
- Receptor, Interferon alpha-beta/deficiency
- Receptors, Interferon/deficiency
- Viral Load
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Karen R. Buttigieg
- Microbiology Services Research, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Stuart D. Dowall
- Microbiology Services Research, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Stephen Findlay-Wilson
- Microbiology Services Research, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Aleksandra Miloszewska
- Microbiology Services Research, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Emma Rayner
- Microbiology Services Research, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Roger Hewson
- Microbiology Services Research, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Miles W. Carroll
- Microbiology Services Research, Public Health England, Porton Down, Wiltshire, United Kingdom
| |
Collapse
|
30
|
Ergunay K, Kocak Tufan Z, Bulut C, Kinikli S, Demiroz AP, Ozkul A. Antibody responses and viral load in patients with Crimean-Congo hemorrhagic fever: a comprehensive analysis during the early stages of the infection. Diagn Microbiol Infect Dis 2014; 79:31-6. [PMID: 24630756 DOI: 10.1016/j.diagmicrobio.2013.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 11/28/2022]
Abstract
This study was performed to assess viral load, viral nucleocapsid (N), and glycoprotein precursor (GPC) antibodies in consecutive samples obtained from Crimean-Congo hemorrhagic fever patients to reveal viral replication kinetics and antiviral immune responses during the early stages of the infection. Among 116 samples from 20 individuals, 43.9% and 76.7% were positive for viral RNA and IgM/IgG antibodies, respectively, whereas both markers could be detected in 22.4%. Mean duration of viremia was 3 days (range: 1-6 days). N-IgM antibodies were identified as the initial serological marker during the infection, becoming detectable in a median of 2-3 days after disease onset, followed by GPC-IgM (4-6 days) and IgG antibodies (5-6 days). Clearance of viremia followed or coincided N-IgM response. Partial S gene sequences amplified in viremic patients were identical or closely related to previously characterized strains and grouped within European lineage I group II viruses via neighbor-joining analysis without significant amino acid substitutions.
Collapse
Affiliation(s)
- Koray Ergunay
- Department of Medical Microbiology, Virology Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Zeliha Kocak Tufan
- Infectious Diseases and Clinical Microbiology Department, Yıldırım Beyazıt University, Ankara Ataturk Training and Research Hospital, Ankara, Turkey
| | - Cemal Bulut
- Infectious Diseases and Clinical Microbiology Department, MOH Ankara Training and Research Hospital, Ankara, Turkey
| | - Sami Kinikli
- Infectious Diseases and Clinical Microbiology Department, MOH Ankara Training and Research Hospital, Ankara, Turkey
| | - Ali Pekcan Demiroz
- Infectious Diseases and Clinical Microbiology Department, MOH Ankara Training and Research Hospital, Ankara, Turkey
| | - Aykut Ozkul
- Department of Virology, Ankara University; Faculty of Veterinary Medicine, Ankara, Turkey
| |
Collapse
|
31
|
Detection of IgG antibody against Crimean-Congo haemorrhagic fever virus using ELISA with recombinant nucleoprotein antigens from genetically diverse strains. Epidemiol Infect 2013; 142:2147-54. [PMID: 24330947 DOI: 10.1017/s0950268813002987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Crimean-Congo haemorrhagic fever virus (CCHFV) has the propensity to cause nosocomial infections with a high fatality rate. Handling the virus requires biosafety level-4 facilities, limiting accessibility for many laboratories. Advances in molecular techniques have allowed preparation of safe recombinant antigens that have application in diagnosis and serosurveillance of CCHFV. The aim of this study was to determine genetic diversity in CCHFV based on all available complete sequence data for the S gene encoding CCHFV nucleoprotein (NP) and antibody cross-reactivity between the NP of a South African isolate and the NP of a Greek isolate (AP92), the most genetically diverse CCHFV strain. The nucleotide sequence diversity and amino-acid diversity between genotypes, within genotypes and the pairwise distances were calculated for a dataset of 45 CCHFV isolates retrieved from GenBank. The most diverse virus, AP92, isolated from a tick in Greece, displayed the highest amino-acid difference (8·7%) with SPU415/85, isolated from a human infection in South Africa. Recombinant NP encoded for by codon-optimized S genes of SPU415/85 and AP92 were expressed in a bacterial host system and used to develop an in-house ELISA to detect IgG antibody against CCHFV in South African patients who survived infection. A total of 14/14 sera reacted with the South African recombinant NP and 13/14 reacted with the Greek recombinant NP. The serological cross-reactivity of the two NP antigens suggests that recombinant antigens prepared from geographically distinct CCHFV will have diagnostic and epidemiological applications worldwide.
Collapse
|
32
|
Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res 2013; 100:159-89. [PMID: 23906741 DOI: 10.1016/j.antiviral.2013.07.006] [Citation(s) in RCA: 525] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 11/26/2022]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is the most important tick-borne viral disease of humans, causing sporadic cases or outbreaks of severe illness across a huge geographic area, from western China to the Middle East and southeastern Europe and throughout most of Africa. CCHFV is maintained in vertical and horizontal transmission cycles involving ixodid ticks and a variety of wild and domestic vertebrates, which do not show signs of illness. The virus circulates in a number of tick genera, but Hyalomma ticks are the principal source of human infection, probably because both immature and adult forms actively seek hosts for the blood meals required at each stage of maturation. CCHF occurs most frequently among agricultural workers following the bite of an infected tick, and to a lesser extent among slaughterhouse workers exposed to the blood and tissues of infected livestock and medical personnel through contact with the body fluids of infected patients. CCHFV is the most genetically diverse of the arboviruses, with nucleotide sequence differences among isolates ranging from 20% for the viral S segment to 31% for the M segment. Viruses with diverse sequences can be found within the same geographic area, while closely related viruses have been isolated in far distant regions, suggesting that widespread dispersion of CCHFV has occurred at times in the past, possibly by ticks carried on migratory birds or through the international livestock trade. Reassortment among genome segments during co-infection of ticks or vertebrates appears to have played an important role in generating diversity, and represents a potential future source of novel viruses. In this article, we first review current knowledge of CCHFV, summarizing its molecular biology, maintenance and transmission, epidemiology and geographic range. We also include an extensive discussion of CCHFV genetic diversity, including maps of the range of the virus with superimposed phylogenetic trees. We then review the features of CCHF, including the clinical syndrome, diagnosis, treatment, pathogenesis, vaccine development and laboratory animal models of CCHF. The paper ends with a discussion of the possible future geographic range of the virus. For the benefit of researchers, we include a Supplementary Table listing all published reports of CCHF cases and outbreaks in the English-language literature, plus some principal articles in other languages, with total case numbers, case fatality rates and all CCHFV strains on GenBank.
Collapse
Affiliation(s)
- Dennis A Bente
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States.
| | | | | | | | | | | |
Collapse
|
33
|
Adam IA, Mahmoud MAM, Aradaib IE. A seroepidemiological survey of Crimean Congo hemorrhagic fever among cattle in North Kordufan State, Sudan. Virol J 2013; 10:178. [PMID: 23738961 PMCID: PMC3679941 DOI: 10.1186/1743-422x-10-178] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/29/2013] [Indexed: 11/10/2022] Open
Abstract
Background Crimean Congo hemorrhagic fever (CCHF), caused by CCHF virus (CCFV), may cause a fatal hemorrhagic illness in humans with mortality rate of approximately 30%. However, in animals the disease is typically asymptomatic and no clinical hemorrhagic infections appears to be associated with CCHFV. Recently, CCHF activity has been detected in western and southern Kordufan region, Sudan. Currently, no information is available in regard to previous exposure of livestock to CCHFV infection in the region. Aims In the present study, a seroepidemiological survey was conducted to determine the prevalence of CCHF and to identify the potential risk factors associated with the disease among cattle in North Kordufan State, Sudan. Methods In this survey, 299 blood samples were collected randomly from six localities in North Kordufan State and were tested by enzyme-linked immunosorbent assay (ELISA) for detection of CCHFV-specific immunoglobulin G (IgG) antibodies. Results The result of the study indicated that the prevalence rate of CCHF was relatively high among cattle, where serological evidence of the infection was observed in 21 (7.0%) of 299 animals. Older cattle were eight times more likely to be infected with the virus (OR=8.0824, CI=1.174-66.317, p-value=0.034). Cross breeds were at 37 time higher at risk compared to endogenous breed (OR=37.06, CI=1.455-944, p-value=0.029). Highly tick-infested cattle are 6 times higher at risk for CCHF when compared to tick-free animals (OR=6.532, CI=1.042-10.852, p-value=0.030). Conclusion It is recommended that surveillance of CCHF should be extended to include other ruminant animals and to study the distribution of ticks in the region to better predict and respond to CCHF outbreak in the State of North Kordufan, Sudan.
Collapse
Affiliation(s)
- Ibrahim A Adam
- Molecular Biology Laboratory-MBL, Department of Clinical Medicine, Faculty of Veterinary Medicine, University of Khartoum, P.O. Box 32, Khartoum North, Sudan
| | | | | |
Collapse
|
34
|
Genome Sequence of Ex-Afghanistan Crimean-Congo Hemorrhagic Fever Virus SCT Strain, from an Imported United Kingdom Case in October 2012. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00161-13. [PMID: 23682136 PMCID: PMC3656198 DOI: 10.1128/genomea.00161-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) virus is a serious human pathogen causing severe hemorrhagic disease with a fatality rate of up to approximately 30%. We have determined the viral genomic sequence from an isolate that caused a fatal case of imported CCHF in the United Kingdom in October 2012.
Collapse
|
35
|
Development and evaluation of loop-mediated isothermal amplification assay for detection of Crimean Congo hemorrhagic fever virus in Sudan. J Virol Methods 2013; 190:4-10. [PMID: 23542058 DOI: 10.1016/j.jviromet.2013.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 03/01/2013] [Accepted: 03/06/2013] [Indexed: 11/22/2022]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) virus (CCHFV) activity has been detected in Kordufan region of the Sudan in 2008 with high case-fatality rates in villages and rural hospitals in the region. Therefore, in the present study, a reverse transcription (RT) loop-mediated isothermal amplification (RT-LAMP) assay was developed and compared to nested RT-PCR for rapid detection of CCHFV targeting the small (S) RNA segment. A set of RT-LAMP primers, designed from a highly conserved region of the S segment of the viral genome, was employed to identify all the Sudanese CCHFV strains. The sensitivity studies indicated that the RT-LAMP detected 10fg of CCHFV RNA as determined by naked eye turbidity read out, which is more likely the way it would be read in a resource-poor setting. This level of sensitivity is good enough to detect most acute cases. Using agarose gel electrophoresis, the RT-LAMP assay detected as little as 0.1fg of viral RNA (equivalent to 50 viral particle). There was 100% agreement between results of the RT-LAMP and the nested PCR when testing 10-fold serial dilution of CCHFV RNA. The specificity studies indicated that there was no cross-reactivity with other related hemorrhagic fever viruses circulating in Sudan including, Rift Valley fever virus (RVFV), Dengue fever virus, and yellow fever virus. The RT-LAMP was performed under isothermal conditions at 63°C and no special apparatus was needed, which rendered the assay more economical and practical than real-time PCR in such developing countries, like Sudan. In addition, the RT-LAMP provides a valuable tool for rapid detection and differentiation of CCHFV during an outbreak of the disease in remote areas and in rural hospitals with resource-poor settings.
Collapse
|
36
|
Mertens M, Schmidt K, Ozkul A, Groschup MH. The impact of Crimean-Congo hemorrhagic fever virus on public health. Antiviral Res 2013; 98:248-60. [PMID: 23458713 DOI: 10.1016/j.antiviral.2013.02.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/22/2013] [Accepted: 02/05/2013] [Indexed: 12/30/2022]
Abstract
Climatic, environmental and economic changes, as well as the steadily increasing global trade and personal mobility provide ample opportunities for emerging pathogens with zoonotic potential to spread to previously unaffected countries. Crimean-Congo hemorrhagic fever virus (CCHFV) is considered to be one of the major emerging disease threats spreading to and within the European Union following an expanding distribution of its main vector, ticks of the genus Hyalomma. Every year more than 1000 human CCHF cases are reported from countries of southeastern Europe and Turkey. CCHFV can cause high case fatality rates and can be transmitted from human to human. There are no vaccine prophylaxis and therapeutic interventions available at present. Several EU-funded research projects focus currently on CCHFV which highlights the awareness for this problem at the European level. As public health deals with questions of prevention on a population level rather than healing and health on an individual level, the analysis of existing data plays a fundamental role to minimize its epidemic potential, by reducing infection risks, and to manage disease outbreaks. This review gives a summary of the current knowledge and data with focus at the interface between public health and CCHFV. Based on this knowledge, guidelines for the risk classification of a region and for outbreak prevention are given. This review will assist decision makers and public health authorities in understanding risk scenarios and in deciding on effective countermeasures, as well as human and veterinary scientists by highlighting existing gaps in knowledge.
Collapse
Affiliation(s)
- Marc Mertens
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Isle of Riems, Germany
| | | | | | | |
Collapse
|
37
|
Canakoglu N, Berber E, Ertek M, Yoruk MD, Tonbak S, Bolat Y, Aktas M, Kalkan A, Ozdarendeli A. Pseudo-plaque reduction neutralization test (PPRNT) for the measurement of neutralizing antibodies to Crimean-Congo hemorrhagic fever virus. Virol J 2013; 10:6. [PMID: 23282186 PMCID: PMC3547730 DOI: 10.1186/1743-422x-10-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 12/24/2012] [Indexed: 11/18/2022] Open
Abstract
Background Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus of the genus Nairovirus family Bunyaviridae, which are enveloped viruses containing tripartite, negative polarity, single-stranded RNA. CCHF is characterized by high case mortality, occurring in Asia, Africa, the Middle East and Europe. Currently, there are no specific treatments or licensed vaccines available for CCHFV. Recently, two research groups have found adult mice with defective interferon responses allowed to lethal CCHFV infection. These mouse models could provide invaluable information for further studies. Efforts to develop a vaccine against CCHFV are being made. To determine the efficacy of vaccine candidates it is important to conduct serological studies that can accurately measure levels of protective antibodies. In the present study, a pseudo-plaque reduction neutralization test (PPRNT) based on enzyme-catalyzed color development of infected cells probed with anti-CCHFV antibodies was used to measure neutralization antibody of CCHFV. Methods Sixty-nine human serum samples (20 acute and 49 convalescent) were tested. The presence of CCHFV antibodies was determined and confirmed by a commercial ELISA kit. CCHFV RNA was determined by RT-PCR. All the samples were analyzed by PPRNT and fluorescent focus reduction neutralization test (FFRNT) to measure of CCHFV-neutralizing antibodies. Results Pseudo-plaque reduction neutralization test showed a high sensitivity (98%), specificity (100%) and agreement (96,6%) in qualitative comparison with those of the FFRNT. There was a high correlation between the titers obtained in PPRNT and FFRNT (R2 = 0.92). The inter- and intra-assay variation of PPRNT revealed good reproducibility and positive cut-off of PPRNT was defined as 1:4 by the geometric mean titers for the individual samples distributed. Conclusion The pseudo-plaque reduction neutralization test described in this study is a fast, reproducible and sensitive method for the measurement of CCHF neutralizing antibodies. This novel assay could serve as useful tools for CCHF research in epidemiology, vaccine development and other studies of immunity. It also provides an alternative to PRNT when viruses with no or poor CPE in cell culture.
Collapse
Affiliation(s)
- Nurettin Canakoglu
- Department of Virology, College of Veterinary Medicine, Firat University, Elazig, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Thomas S, Thomson G, Dowall S, Bruce C, Cook N, Easterbrook L, O'Donoghue L, Summers S, Ajazaj L, Hewson R, Brooks T, Ahmeti S. Review of Crimean Congo hemorrhagic fever infection in Kosova in 2008 and 2009: prolonged viremias and virus detected in urine by PCR. Vector Borne Zoonotic Dis 2012; 12:800-4. [PMID: 22925025 DOI: 10.1089/vbz.2011.0776] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a virus transmitted predominantly by ticks. However, contact with infected body fluids or tissues can result in animal-to-human or human-to-human transmission. Numbers of CCHF cases appear to be increasing, especially in Europe. We reviewed cases admitted to a tertiary referral unit in Kosova with suspected CCHF in 2008 and 2009, and looked at a smaller number of specimens which were sent to the Health Protection Agency, Porton Down, U.K., in further detail. The clinical features of cases admitted with suspected CCHF infection were assessed in more detail, and these are the focus of this article. Between 2008 and 2009, the numbers of patients admitted for suspected CCHF infection increased. Of the samples received in Porton Down, CCHF virus was detected in urine samples, and these patients were found to have prolonged viremia. The detection of CCHF in urine, as well as the prolonged viremias seen, are important for clinicians to know, as they may have public health implications with regard to the risk of infection, as well as provide insights into the biology and pathophysiology of infection. Further studies are required regarding the pathogenesis of this virus.
Collapse
Affiliation(s)
- Sherine Thomas
- Tropical and Infectious Disease Unit, Royal Liverpool University Hospital, Liverpool, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|