1
|
Gao YY, Wang Q, Zhang S, Zhao J, Bao D, Zhao H, Wang K, Hu GX, Gao FS. Establishment and preliminary application of duplex fluorescence quantitative PCR for porcine circoviruses type 2 and type 3. Heliyon 2024; 10:e31779. [PMID: 38868040 PMCID: PMC11167290 DOI: 10.1016/j.heliyon.2024.e31779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Porcine circovirus types 2 (PCV2) and 3 (PCV3) are the two most prevalent porcine circoviruses in China, all of which can infect swine herds and cause serious diseases. To detect coinfection with PCV2 and PCV3, primers and probes for duplex PCV2 and PCV3 real-time PCR were designed to target their cap genes based on the constructed plasmids pUC57-PCV2 and pUC57-PCV3. The established duplex PCV2 and PCV3 real-time PCRs were specific to PCV2 and PCV3 and showed no cross-reactions with other porcine viral pathogens. The limit of detection was 5 and 50 copies for the PCV2 and PCV3 plasmids, respectively. The intra- and interassay repeatability had coefficients of variation below 3 %. The established methods were used to analyze clinical samples from Liaoning and Jilin provinces of China. The coinfection rates of PCV2 and PCV3 in pigs extensively fed in Liaoning and Jilin, large-scale farmed pigs in Liaoning and large-scale farmed pigs in Jilin were 15.0 % (6/40), 36.7 % (11/30) and 35.4 % (62/175), respectively. This study established a useful duplex PCV2 and PCV3 real-time PCR method that can be used for the detection of PCV2 and PCV3 in local clinical samples.
Collapse
Affiliation(s)
- Yong-Yu Gao
- College of Animal Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Qian Wang
- The Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, 130117, China
| | - Shuang Zhang
- College of Animal Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Jian Zhao
- ChangChun Sino Biotechnology CO., LTD., Changchun, Jilin, 130012, China
| | - Di Bao
- College of Animal Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Han Zhao
- College of Animal Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Kai Wang
- College of Animal Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Xue Hu
- College of Animal Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Feng-Shan Gao
- College of Life and Health, Dalian University, Dalian, 116622, China
- The Dalian Animal Virus Antigen Epitope Screening and Protein Engineering Drug Developing Key Laboratory, Dalian, 116622, China
| |
Collapse
|
2
|
Hu X, Feng S, Shi K, Shi Y, Yin Y, Long F, Wei X, Li Z. Development of a quadruplex real-time quantitative RT-PCR for detection and differentiation of PHEV, PRV, CSFV, and JEV. Front Vet Sci 2023; 10:1276505. [PMID: 38026635 PMCID: PMC10643766 DOI: 10.3389/fvets.2023.1276505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV), porcine pseudorabies virus (PRV), classical swine fever virus (CSFV), and Japanese encephalitis virus (JEV) cause similar neurological symptoms in the infected pigs, and their differential diagnosis depends on laboratory testing. Four pairs of specific primers and probes were designed targeting the PHEV N gene, PRV gB gene, CSFV 5' untranslated region (5'UTR), and JEV NS1 gene, respectively, and a quadruplex real-time quantitative RT-PCR (qRT-PCR) was developed to detect and differentiate PHEV, PRV, CSFV, and JEV. The assay showed high sensitivity, with the limit of detection (LOD) of 1.5 × 101 copies/μL for each pathogen. The assay specifically detected only PHEV, PRV, CSFV, and JEV, without cross-reaction with other swine viruses. The coefficients of variation (CVs) of the intra-assay and the inter-assay were less than 1.84%, with great repeatability. A total of 1,977 clinical samples, including tissue samples, and whole blood samples collected from Guangxi province in China, were tested by the developed quadruplex qRT-PCR, and the positivity rates of PHEV, PRV, CSFV, and JEV were 1.57% (31/1,977), 0.35% (7/1,977), 1.06% (21/1,977), and 0.10% (2/1,977), respectively. These 1,977 samples were also tested by the previously reported qRT-PCR assays, and the coincidence rates of these methods were more than 99.90%. The developed assay is demonstrated to be rapid, sensitive, and accurate for detection and differentiation of PHEV, PRV, CSFV, and JEV.
Collapse
Affiliation(s)
- Xin Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Xiankai Wei
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Designing and Development of Simultaneous Detection of Neisseria meningitidis and Streptococcus pneumoniae based on EvaGreen Real-Time PCR. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2022. [DOI: 10.5812/archcid-129075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Neisseria meningitidis and Streptococcus pneumoniae are serious causes of invasive infections associated with high mortality and morbidity worldwide, particularly meningitis. Efficient diagnostic strategies play a crucial role in the management of disease and the prevention of overtreatment. The low sensitivity and time-consuming nature of culture and gram stain methods have led to the demand for alternative methods in clinical laboratories. Objectives: This study aims to design and develop a rapid, sensitive, and cost-effective EvaGreen-based real-time PCR to simultaneously detect N. meningitidis and S. pneumoniae. Methods: We designed and evaluated an accurate, reliable, and inexpensive approach based on EvaGreen dye real-time PCR to simultaneously detect N. meningitidis and S. pneumoniae in a single tube from cerebrospinal fluid. Melting curve analysis was used to differentiate the amplicons of each pathogen. Analytical sensitivity and specificity of the assay were conducted by reference bacterial strains genomes. Besides, in order to clinical validation we used 53 positive CSF samples and 7 negative CSF samples. Results: Our assay demonstrated no amplification curve with non-target microorganisms indicating 100% analytical specificity. In the EvaGreen multiplex assay, the lower limit of detection (LLD) was nine copies/reaction for N. meningitidis and 13 copies/reaction for S. pneumoniae. The clinical validation of positive CSF samples revealed 100% sensitivity and no false positives. The reproducibility and repeatability of tested replicates indicated low intra-assay and inter-assay CVs of less than 1.5%. Conclusions: EvaGreen-based multiplex real-time PCR offers a rapid, affordable, and appropriate diagnostic tool to identify the main cause of bacterial meningitis.
Collapse
|
4
|
Nan P, Wen D, Opriessnig T, Zhang Q, Yu X, Jiang Y. Novel universal primer-pentaplex PCR assay based on chimeric primers for simultaneous detection of five common pig viruses associated with diarrhea. Mol Cell Probes 2021; 58:101747. [PMID: 34116142 DOI: 10.1016/j.mcp.2021.101747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/18/2022]
Abstract
Viral pathogens associated with diarrhea in pigs include porcine circovirus 2 (PCV2), porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine rotavirus A (RVA) and C (RVC) among others. In this study, a novel universal primer-based pentaplex PCR (UP-M-PCR) assay was developed for simultaneous detection and differentiation of these five viruses. The assay uses a short-cycle multiplex amplification by chimeric primers (CP), which are virus specific, with a tail added at the 5' end of the universal primer (UP), followed by universal amplification using UPs and a regular cycle amplification. Five universal primers with CPs (UP1-5) were designed and evaluated in an UP-based single PCR (UP-S-PCR). All five UPs were found to work efficiently and UP2 exhibited the best performance. After system optimizations, the analytical sensitivity of the UP-M-PCR, using plasmids containing the specific viral target fragments, was 5 copies/reaction for each of the five viruses irrespective of presence of a single or multiple viruses in the reaction. No cross-reaction was observed with other non-target viruses. When 273 fecal samples from clinically healthy pigs were tested, the assay sensitivity was 90.9-100%, the specificity was 98.0-100%, and the agreement rate with the UP-S-PCR was 98.5-99.6% with a Kappa value being 0.95-0.98. In summary, the UP-M-PCR developed here is a rapid and highly sensitive and specific detection method that can be used to demonstrate mixed infections in pigs with diarrhea.
Collapse
Affiliation(s)
- Pei Nan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dan Wen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Qiuya Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaoya Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yonghou Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
5
|
Development of a SYBR green I-based duplex real-time PCR assay for detection of pseudorabies virus and porcine circovirus 3. Mol Cell Probes 2020; 53:101593. [PMID: 32387303 DOI: 10.1016/j.mcp.2020.101593] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
In the present study, a specific and reliable duplex SYBR green I-based quantitative real-time polymerase chain reaction assay was established to detect pseudorabies virus (PRV) and porcine circovirus 3 (PCV3) simultaneously. Viral genomes of PRV and PCV3 in one specimen were identified by their different melting temperatures with melting peaks at 87 °C and 81 °C for PRV and PCV3 respectively, whilst other non-targeted swine pathogens exhibited no fluorescent signals. The assay displayed a high degree of linearity (R2 > 0.997), and the limits of detection were 37.8 copies/μL, 30.6 copies/μL and 60 copies/μL for PRV, PCV3 and the mixture of two recombinant plasmids, respectively. It had good repeatability and reproducibility, and the coefficients of variation in intra-batch and inter-batch assays were all less than 2.0%. In this research, the duplex assay was further evaluated using 117 clinical tissue specimens from diseased pigs in the field. The results revealed the infection rates of PRV and PCV3 were 23.08% (27/117) and 55.56% (65/117) respectively, and PRV and PCV3 co-infection rate was 14.53% (17/117). The assay could be utilized as a diagnostic tool with specificity, sensitivity, and reliability for molecular epidemiological surveillance of PRV and PCV3.
Collapse
|
6
|
Simultaneous detection of five pig viruses associated with enteric disease in pigs using EvaGreen real-time PCR combined with melting curve analysis. J Virol Methods 2019; 268:1-8. [PMID: 30844408 DOI: 10.1016/j.jviromet.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/02/2019] [Accepted: 03/02/2019] [Indexed: 12/14/2022]
Abstract
In recent years, a series of porcine diarrhea viruses such as porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), rotaviruses of group A (RVA), rotaviruses of group C (RVC), and porcine circovirus 2 (PCV2) caused enormous economic losses all over the world. While any of these viruses is capable to cause disease alone, there is often concurrent infection with more than one virus on pig farms. In this study, a multiplex real-time PCR method based on EvaGreen fluorescent dye and melting curve analysis was established to simultaneously detect these five viruses in a single closed tube. Five distinct melt peaks were obtained with different melting temperature (Tm) value corresponding to each of the five viruses. This method was highly sensitive to detect and distinguish TGEV, RVA, RVC, PEDV and PCV2 with the limits of detection ranging from 5 to 50 copies/μL. The intra-assay and inter-assay reproducibility were good with coefficient of variation of Tm and cycle threshold values less than 0.32% and 2.86%, respectively. Testing of 90 field samples by the single and multiplex real-time PCR assays demonstrated a concordance of 91.1%. Thus, the EvaGreen multiplex real-time PCR is a rapid, sensitive and low-cost diagnostic tool for differential detection and routine surveillance of TGEV, RVA, RVC, PEDV and PCV2 in pigs.
Collapse
|
7
|
Huang Q, Ye C, Chen T, Jiang J, Peng Y, Chen J, Fang R. EvaGreen-based real-time PCR assay for sensitive detection of enzootic nasal tumor virus 2. Mol Cell Probes 2019; 44:51-56. [PMID: 30771482 DOI: 10.1016/j.mcp.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 01/26/2023]
Abstract
Enzootic nasal tumor virus 2 (ENTV-2), the aetiological agent of enzootic nasal adenocarcinoma in goats, is prevalent in China; resulting in substantial economic losses to the goat-breeding industry. Therefore, it is necessary to establish an efficient detection method for the diagnosis and prevention of ENTV-2 infection. More recently, EvaGreen is emerging as a novel alternative fluorescent dye for quantitative real-time PCR because of its low cost, specific amplification and high resolution. In this study, we developed a specific, sensitive, and cost-effective detection method-an EvaGreen-based real-time PCR assay for the detection of ENTV-2. This assay exhibited high specificity and sensitivity and was able to detect ENTV-2 at concentrations as low as 3.0 × 101 copies, which was more sensitive than the conventional PCR method (detection limit, 3.0 × 102 copies). In addition, the reproducibility test indicated that EvaGreen dye in our assay had a good reproducibility. In conclusion, we report that a highly sensitive, specific, and cost-effective EvaGreen-based real-time PCR assay is successful for the rapid detection of ENTV-2.
Collapse
Affiliation(s)
- Qingyuan Huang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Chao Ye
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Tingting Chen
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Jiali Jiang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Yuanyi Peng
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Jing Chen
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
| | - Rendong Fang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Aloisio M, Morelli M, Elicio V, Saldarelli P, Ura B, Bortot B, Severini G, Minafra A. Detection of four regulated grapevine viruses in a qualitative, single tube real-time PCR with melting curve analysis. J Virol Methods 2018; 257:42-47. [DOI: 10.1016/j.jviromet.2018.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 10/17/2022]
|
9
|
Wang T, Zhang KH, Hu PP, Huang ZY, Zhang P, Wan QS, Huang DQ, Lv NH. Simple and robust diagnosis of early, small and AFP-negative primary hepatic carcinomas: an integrative approach of serum fluorescence and conventional blood tests. Oncotarget 2018; 7:64053-64070. [PMID: 27590520 PMCID: PMC5325425 DOI: 10.18632/oncotarget.11771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
The diagnosis of early, small and alpha-fetoprotein (AFP)-negative primary hepatic carcinomas (PHCs) remains a significant challenge. We developed a simple and robust approach to noninvasively detect these PHCs. A rapid, high-throughput and single-tube method was firstly developed to measure serum autofluorescence and cell-free DNA (cfDNA)-related fluorescence using a real-time PCR system, and both types of serum fluorescence were measured and routine laboratory data were collected in 1229 subjects, including 353 PHC patients, 331 liver cirrhosis (LC) patients, 213 chronic hepatitis (CH) patients and 332 normal controls (NC). The results showed that fluorescence indicators of PHC differed from those of NC, CH and LC to various extents, and all of them were not associated with age, gender, or AFP level. The logistic regression models established with the fluorescence indicators alone and combined with AFP, hepatic function tests and blood cell analyses were valuable for distinguishing early, small, AFP-negative and all PHC from LC, CH, NC and all non-PHC, with areas under the receiver operating characteristic curves 0.857–0.993 and diagnostic accuracies 80.2–97.7%. Conclusively, serum autofluorescence and cfDNA-related fluorescence are able to be rapidly and simultaneously measured by our simple method and valuable for diagnosing early, small and AFP-negative PHCs, especially integrating with AFP and conventional blood tests.
Collapse
Affiliation(s)
- Ting Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, China
| | - Kun-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, China
| | - Piao-Ping Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, China
| | - Zeng-Yong Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, China
| | - Pan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, China
| | - Qin-Si Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, China
| | - De-Qiang Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, China
| | - Nong-Hua Lv
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, China
| |
Collapse
|
10
|
Mészáros I, Olasz F, Cságola A, Tijssen P, Zádori Z. Biology of Porcine Parvovirus (Ungulate parvovirus 1). Viruses 2017; 9:v9120393. [PMID: 29261104 PMCID: PMC5744167 DOI: 10.3390/v9120393] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/14/2023] Open
Abstract
Porcine parvovirus (PPV) is among the most important infectious agents causing infertility in pigs. Until recently, it was thought that the virus had low genetic variance, and that prevention of its harmful effect on pig fertility could be well-controlled by vaccination. However, at the beginning of the third millennium, field observations raised concerns about the effectiveness of the available vaccines against newly emerging strains. Subsequent investigations radically changed our view on the evolution and immunology of PPV, revealing that the virus is much more diverse than it was earlier anticipated, and that some of the “new” highly virulent isolates cannot be neutralized effectively by antisera raised against “old” PPV vaccine strains. These findings revitalized PPV research that led to significant advancements in the understanding of early and late viral processes during PPV infection. Our review summarizes the recent results of PPV research and aims to give a comprehensive update on the present understanding of PPV biology.
Collapse
Affiliation(s)
- István Mészáros
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| | - Ferenc Olasz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| | | | - Peter Tijssen
- INRS-Institut Armand-Frappier, Université du Québec, Québec, QC H7V 1B7, Canada.
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| |
Collapse
|
11
|
Hasanpour M, Najafi A. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli. J Microbiol Methods 2017; 137:25-29. [PMID: 28359738 DOI: 10.1016/j.mimet.2017.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/15/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (Tm) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains.
Collapse
Affiliation(s)
- Mojtaba Hasanpour
- The Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Akram Najafi
- The Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
12
|
Mansfield KL, Hernández-Triana LM, Banyard AC, Fooks AR, Johnson N. Japanese encephalitis virus infection, diagnosis and control in domestic animals. Vet Microbiol 2017; 201:85-92. [PMID: 28284628 DOI: 10.1016/j.vetmic.2017.01.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/16/2022]
Abstract
Japanese encephalitis virus (JEV) is a significant cause of neurological disease in humans throughout Asia causing an estimated 70,000 human cases each year with approximately 10,000 fatalities. The virus contains a positive sense RNA genome within a host-derived membrane and is classified within the family Flaviviridae. Like many flaviviruses, it is transmitted by mosquitoes, particularly those of the genus Culex in a natural cycle involving birds and some livestock species. Spill-over into domestic animals results in a spectrum of disease ranging from asymptomatic infection in some species to acute neurological signs in others. The impact of JEV infection is particularly apparent in pigs. Although infection in adult swine does not result in symptomatic disease, it is considered a significant reproductive problem causing abortion, still-birth and birth defects. Infected piglets can display fatal neurological disease. Equines are also infected, resulting in non-specific signs including pyrexia, but occasionally leading to overt neurological disease that in extreme cases can lead to death. Veterinary vaccination is available for both pigs and horses. This review of JEV disease in livestock considers the current diagnostic techniques available for detection of the virus. Options for disease control and prevention within the veterinary sector are discussed. Such measures are critical in breaking the link to zoonotic transmission into the human population where humans are dead-end hosts.
Collapse
Affiliation(s)
- Karen L Mansfield
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom; Department of Clinical Infection, Microbiology and Immunology, Institute for Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, United Kingdom
| | - Luis M Hernández-Triana
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom; Department of Clinical Infection, Microbiology and Immunology, Institute for Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, United Kingdom
| | - Nicholas Johnson
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom; Faculty of Health and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
| |
Collapse
|
13
|
Shi X, Liu X, Wang Q, Das A, Ma G, Xu L, Sun Q, Peddireddi L, Jia W, Liu Y, Anderson G, Bai J, Shi J. A multiplex real-time PCR panel assay for simultaneous detection and differentiation of 12 common swine viruses. J Virol Methods 2016; 236:258-265. [PMID: 27506582 PMCID: PMC7119729 DOI: 10.1016/j.jviromet.2016.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 11/17/2022]
Abstract
A multiplex real-time PCR panel assay was developed for the detection of 12 major swine pathogens including VSV-IN, VSV-NJ, SVDV, CSFV, ASFV, FMDV, PCV2, PPV, PRV, PRRSV-NA, PRRSV-EU;. The panel assay was 100% specific against common swine pathogens;. Limits of detection of the assay were ranged 1–16 copies per reaction;. Detection sensitivity was not reduced by multiplexing three targets into one PCR reaction.
Mixed infection with different pathogens is common in swine production systems especially under intensive production conditions. Quick and accurate detection and differentiation of different pathogens are necessary for epidemiological surveillance, disease management and import and export controls. In this study, we developed and validated a panel of multiplex real-time PCR/RT-PCR assays composed of four subpanels, each detects three common swine pathogens. The panel detects 12 viruses or viral serotypes, namely, VSV-IN, VSV-NJ, SVDV, CSFV, ASFV, FMDV, PCV2, PPV, PRV, PRRSV-NA, PRRSV-EU and SIV. Correlation coefficients (R2) and PCR amplification efficiencies of all singular and triplex real-time PCR reactions are within the acceptable range. Comparison between singular and triplex real-time PCR assays of each subpanel indicates that there is no significant interference on assay sensitivities caused by multiplexing. Specificity tests on 226 target clinical samples or 4 viral strains and 91 non-target clinical samples revealed that the real-time PCR panel is 100% specific, and there is no cross amplification observed. The limit of detection of each triplex real-time PCR is less than 10 copies per reaction for DNA, and less than 16 copies per reaction for RNA viruses. The newly developed multiplex real-time PCR panel also detected different combinations of co-infections as confirmed by other means of detections.
Collapse
Affiliation(s)
- Xiju Shi
- Beijing Entry-Exit Inspection & Quarantine Bureau, Beijing, China; Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Xuming Liu
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Qin Wang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Amaresh Das
- Foreign Animal Diseases Diagnostic Laboratory, NVSL, APHIS, USDA, Greenport, NY, United States
| | - Guiping Ma
- Beijing Entry-Exit Inspection & Quarantine Bureau, Beijing, China
| | - Lu Xu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Qing Sun
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Lalitha Peddireddi
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Wei Jia
- Foreign Animal Diseases Diagnostic Laboratory, NVSL, APHIS, USDA, Greenport, NY, United States
| | - Yanhua Liu
- Beijing Entry-Exit Inspection & Quarantine Bureau, Beijing, China
| | - Gary Anderson
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
14
|
Zheng X, Liu G, Opriessnig T, Wang Z, Yang Z, Jiang Y. Rapid detection and grouping of porcine bocaviruses by an EvaGreen(®) based multiplex real-time PCR assay using melting curve analysis. Mol Cell Probes 2016; 30:195-204. [PMID: 27180269 DOI: 10.1016/j.mcp.2016.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 01/20/2023]
Abstract
Several novel porcine bocaviruses (PBoVs) have been identified in pigs in recent years and association of these viruses with respiratory signs or diarrhea has been suggested. In this study, an EvaGreen(®)-based multiplex real-time PCR (EG-mPCR) with melting curve analysis was developed for simultaneous detection and grouping of novel PBoVs into the same genogroups G1, G2 and G3. Each target produced a specific amplicon with a melting peak of 81.3 ± 0.34 °C for PBoV G1, 78.2 ± 0.37 °C for PBoV G2, and 85.0 ± 0.29 °C for PBoV G3. Non-specific reactions were not observed when other pig viruses were used to assess the EG-mPCR assay. The sensitivity of the EG-mPCR assay using purified plasmid constructs containing the specific viral target fragments was 100 copies for PBoV G1, 50 for PBoV G2 and 100 for PBoV G3. The assay is able to detect and distinguish three PBoV groups with intra-assay and inter-assay variations ranging from 0.13 to 1.59%. The newly established EG-mPCR assay was validated with 227 field samples from pigs. PBoV G1, G2 and G3 was detected in 15.0%, 25.1% and 41.9% of the investigated samples and coinfections of two or three PBoV groups were also detected in 25.1% of the cases, indicating that all PBoV groups are prevalent in Chinese pigs. The agreement of the EG-mPCR assay with an EvaGreen-based singleplex real-time PCR (EG-sPCR) assay was 99.1%. This EG-mPCR will serve as a rapid, sensitive, reliable and cost effective alternative for routine surveillance testing of multiple PBoVs in pigs and will enhance our understanding of the epidemiological features and possible also pathogenetic changes associated with these viruses in pigs.
Collapse
Affiliation(s)
- Xiaowen Zheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Gaopeng Liu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Zining Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zongqi Yang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yonghou Jiang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
15
|
The anti-porcine parvovirus activity of nanometer propolis flavone and propolis flavone in vitro and in vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:472876. [PMID: 25815034 PMCID: PMC4357139 DOI: 10.1155/2015/472876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 01/29/2023]
Abstract
Objectives. The present study was conducted to evaluate the activity of nanometer propolis flavone (NPF) on inhibiting porcine parvovirus (PPV) in vitro and in vivo. Methods. In vitro, the effect of NPF on cellular infectivity of PPV was carried out before and after adding drug and simultaneous adding and PPV after being mixed. In vivo, the anti-PPV effect of NPF in guinea pigs was performed. Results. The results showed that NPF could significantly inhibit PPV infecting porcine kidney- (PK-) 15 cells compared with propolis flavone (PF), and the activity of NPF was the best in preadding drug pattern. NPF at high and medium doses was able to observably restrain PPV copying in lung, gonad, blood, and spleen, decrease the impact of PPV on weight of guinea pigs, and improve hemagglutination inhibition (HI) of PPV in serum. In addition, it could also increase the contents of IL-2 and IL-6 in serum after PPV challenge. Conclusion. These results indicated that NPF could significantly improve the anti-PPV activity of PF, and its high concentration possessed the best efficacy. Therefore, NPF would be expected to be exploited into a new-style antiviral drug.
Collapse
|