1
|
Duan Y, Liu Z, Zang N, Cong B, Shi Y, Xu L, Jiang M, Wang P, Zou J, Zhang H, Feng Z, Feng L, Ren L, Liu E, Li Y, Zhang Y, Xie Z. Landscape of respiratory syncytial virus. Chin Med J (Engl) 2024; 137:2953-2978. [PMID: 39501814 PMCID: PMC11706595 DOI: 10.1097/cm9.0000000000003354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Indexed: 01/11/2025] Open
Abstract
ABSTRACT Respiratory syncytial virus (RSV) is an enveloped, negative-sense, single-stranded RNA virus of the Orthopneumovirus genus of the Pneumoviridae family in the order Mononegavirales. RSV can cause acute upper and lower respiratory tract infections, sometimes with extrapulmonary complications. The disease burden of RSV infection is enormous, mainly affecting infants and older adults aged 75 years or above. Currently, treatment options for RSV are largely supportive. Prevention strategies remain a critical focus, with efforts centered on vaccine development and the use of prophylactic monoclonal antibodies. To date, three RSV vaccines have been approved for active immunization among individuals aged 60 years and above. For children who are not eligible for these vaccines, passive immunization is recommended. A newly approved prophylactic monoclonal antibody, Nirsevimab, which offers enhanced neutralizing activity and an extended half-life, provides exceptional protection for high-risk infants and young children. This review provides a comprehensive and detailed exploration of RSV's virology, immunology, pathogenesis, epidemiology, clinical manifestations, treatment options, and prevention strategies.
Collapse
Affiliation(s)
- Yuping Duan
- School of Population Medicine and Public Health, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Zimeng Liu
- National Health Commission Key Laboratory of Systems Biology of Pathogen, Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Na Zang
- Department of Respiratory Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Key Laboratory of Children’s Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing 400014, China
| | - Bingbing Cong
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuqing Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences (2019RU016), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health,Beijing 100045, China
| | - Mingyue Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Peixin Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogen, Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Jing Zou
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Han Zhang
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences (2019RU016), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health,Beijing 100045, China
| | - Luzhao Feng
- School of Population Medicine and Public Health, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lili Ren
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
- National Health Commission Key Laboratory of Systems Biology of Pathogen, Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Enmei Liu
- Department of Respiratory Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Key Laboratory of Children’s Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing 400014, China
| | - You Li
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
- Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yan Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences (2019RU016), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health,Beijing 100045, China
| |
Collapse
|
2
|
Na B, Park YJ, Seo J, Park M, Baek JY, Lee JY, Kim M, Ahn JG, Lee ST, Kang JM. Genotype Analysis of Respiratory Syncytial Virus Before and After the COVID-19 Pandemic Using Whole-Genome Sequencing: A Prospective, Single-Center Study in Korea From 2019 to 2022. J Korean Med Sci 2024; 39:e206. [PMID: 39048301 PMCID: PMC11263766 DOI: 10.3346/jkms.2024.39.e206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV), a highly transmissible virus, is the leading cause of lower respiratory tract infections. We examined molecular changes in the RSV genome before and after the coronavirus disease 2019 (COVID-19) pandemic in Korea, and investigated whether drug-resistant mutations were present. METHODS In this prospective, single-center study, RSV-positive respiratory samples were collected between September 2019 and December 2022. Long-read whole-genome sequencing (WGS) was performed, and the presence of known drug-resistant substitutions for palivizumab, nirsevimab, and suptavumab was investigated. RESULTS Overall, 288 respiratory samples were collected from 276 children. WGS data were available for 133 samples (71 and 62 samples from the pre- and post-pandemic periods, respectively). All RSV-A strains (n = 56) belonged to the GA2.3.5 (ON1) genotype, whereas all RSV-B strains (n = 77) belonged to the GB5.0.5a (BA) genotype. No significant differences in genotypes were observed between the pre- and post-pandemic periods. In addition, no notable mutations related to nirsevimab or palivizumab resistance were detected in the F gene. However, the L172Q and S173L substitutions, which are known to confer resistance to suptavumab, were present in all RSV-B samples. CONCLUSION Despite the unprecedented interruption of RSV seasonality, there were no significant molecular changes in circulating RSV strains in Korea related to nirsevimab or palivizumab resistance before and after the COVID-19 pandemic. However, RSV-specific drug-resistance substitutions for suptavumab were identified.
Collapse
Affiliation(s)
- Bonhyang Na
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Jin Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Jieun Seo
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Miri Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jee Yeon Baek
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Lee
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Minyoung Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Gyun Ahn
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- Dxome Co., Ltd., Seongnam, Korea
| | - Ji-Man Kang
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Kitai Y, Watanabe O, Ohmiya S, Kisu T, Ota R, Kawakami K, Katoh H, Fukuzawa K, Takeda M, Nishimura H. Detailed analysis of low temperature inactivation of respiratory syncytial virus. Sci Rep 2024; 14:11823. [PMID: 38783052 PMCID: PMC11116427 DOI: 10.1038/s41598-024-62658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Our previous findings indicated that many respiratory syncytial virus (RSV) isolates are unstable at 4 °C compared to 20 °C. Some of the strains completely lose infectivity after 24 h at 4 °C. This study analyzed the inactivation process at 4 °C using a representative strain, RSV/Sendai/851/13. After 24 h of storage at 4 °C, the virus was completely inactivated but retained its ability to attach to and to be taken into host cells. It suggested a reduced fusion ability between the viral and cellular membranes. During storage at 4 °C, the RSV fusion (F) protein underwent a conformational change and was no longer recognized by pre-fusion form-specific antibodies. When the RSV/Sendai/851/13 strain was passaged at 4 °C, a variant with an amino acid substitution, I148T, in the F protein fusion peptide was selected. Also, an amino acid change in G protein demonstrating stability at low temperatures was obtained. These results show that the inactivation of RSV at 4 °C is due to the loss of membrane fusion activity in the F protein, which cannot maintain its pre-fusion state at 4 °C.
Collapse
Affiliation(s)
- Yuki Kitai
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan.
| | - Oshi Watanabe
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
| | - Suguru Ohmiya
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
| | - Tomoko Kisu
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
| | - Reiko Ota
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroshi Katoh
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaori Fukuzawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Makoto Takeda
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan.
| |
Collapse
|
4
|
Fröhlich GC, Gregianini TS, Pinheiro FG, Nascimento R, Cezar TM, Pscheidt VM, Selayaran T, Martins LG, Gomes MFDC, Salvato RS, Pereira EC, Guimarães-Ribeiro V, Scalioni LDP, Siqueira MM, Resende PC, Veiga ABG. Resurgence of human respiratory syncytial virus during COVID-19 pandemic in Southern Brazil. J Med Virol 2024; 96:e29551. [PMID: 38506236 DOI: 10.1002/jmv.29551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Respiratory Syncytial Virus (RSV) is an important cause of respiratory infection in humans. Severe cases are common in children ≤2 years old, immunocompromised individuals, and the elderly. In 2020, RSV infection reduced in Rio Grande do Sul (RS), southern Brazil; however, in 2021 resurgence of RSV was observed. This study analyzed epidemiological and genetic features of RSV infection cases reported in 2021 in RS. Nasopharyngeal samples collected from individuals with respiratory infection negative for SARS-CoV-2, Influenza A and B viruses were assessed for the presence of RSV by real time RT-qPCR. RSV-A and RSV-B genomic sequencing and phylogenetic reconstructions were performed for genotyping and clade characterization. Among 21,035 respiratory samples analyzed, 2,947 were positive for RSV, 947 of which were hospitalized patients. Positive cases were detected year-round, with the highest number in June-July (winter). Children <1 year comprised 56.28% (n = 533) of the hospitalized patients infected with RSV, whereas 14.46% (n = 137) were individuals >60 years. Of a total of 361 deaths, 14.68% (n = 53) were RSV positive, mostly patients >60 years old (73.58%, n = 39). Chronic kidney disease, cardiopathy, Down syndrome and neurological diseases were associated with RSV infection. RSV-A was identified in 58.5% (n = 117/200) of the patients, and RSV-B in 41.5% (n = 83/200). Of 95 RSV genomes recovered from SARI cases, 66 were RSV-A GA.2.3.5 genotype, while 29 were RSV-B GB.5.0.5a genotype. This study provides epidemiological and molecular data on RSV cases in RS during the COVID-19 pandemic and highlights that investigation of different respiratory viruses is essential for decision-making and disease prevention and control measures.
Collapse
Affiliation(s)
- Guilherme C Fröhlich
- Laboratório Central de Saúde Pública, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul-LACEN/CEVS/SES-RS, Porto Alegre, Brazil
- Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Tatiana S Gregianini
- Laboratório Central de Saúde Pública, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul-LACEN/CEVS/SES-RS, Porto Alegre, Brazil
| | - Felipe G Pinheiro
- Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Rodrigo Nascimento
- Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Thiago M Cezar
- Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Veridiane M Pscheidt
- Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Tainá Selayaran
- Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
- Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul-CDCT/CEVS/SES-RS, Porto Alegre, Brazil
| | - Letícia G Martins
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul-CEVS/SES-RS, Porto Alegre, Brazil
| | | | - Richard S Salvato
- Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul-CDCT/CEVS/SES-RS, Porto Alegre, Brazil
| | - Elisa C Pereira
- Laboratório Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais - LVRE/FIOCRUZ-RJ, Porto Alegre, Brazil
| | - Victor Guimarães-Ribeiro
- Laboratório Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais - LVRE/FIOCRUZ-RJ, Porto Alegre, Brazil
| | - Letícia de Paula Scalioni
- Laboratório Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais - LVRE/FIOCRUZ-RJ, Porto Alegre, Brazil
| | - Marilda M Siqueira
- Laboratório Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais - LVRE/FIOCRUZ-RJ, Porto Alegre, Brazil
| | - Paola C Resende
- Laboratório Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais - LVRE/FIOCRUZ-RJ, Porto Alegre, Brazil
| | - Ana B G Veiga
- Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| |
Collapse
|
5
|
Cichero E, Calautti A, Francesconi V, Tonelli M, Schenone S, Fossa P. Probing In Silico the Benzimidazole Privileged Scaffold for the Development of Drug-like Anti-RSV Agents. Pharmaceuticals (Basel) 2021; 14:ph14121307. [PMID: 34959708 PMCID: PMC8707824 DOI: 10.3390/ph14121307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Targeting the fusion (F) protein has been recognized as a fruitful strategy for the development of anti-RSV agents. Despite the considerable efforts so far put into the development of RSV F protein inhibitors, the discovery of adequate therapeutics for the treatment of RSV infections is still awaiting a positive breakthrough. Several benzimidazole-containing derivatives have been discovered and evaluated in clinical trials, with only some of them being endowed with a promising pharmacokinetic profile. In this context, we applied a computational study based on a careful analysis of a number of X-ray crystallographic data of the RSV F protein, in the presence of different clinical candidates. A deepen comparison of the related electrostatic features and H-bonding motifs allowed us to pave the way for the following molecular dynamic simulation of JNJ-53718678 and then to perform docking studies of the in-house library of potent benzimidazole-containing anti-RSV agents. The results revealed not only the deep flexibility of the biological target but also the most relevant and recurring key contacts supporting the benzimidazole F protein inhibitor ability. Among them, several hydrophobic interactions and π-π stacking involving F140 and F488 proved to be mandatory, as well as H-bonding to D486. Specific requirements turning in RSV F protein binding ability were also explored thanks to structure-based pharmacophore analysis. Along with this, in silico prediction of absorption, distribution, metabolism, excretion (ADME) properties, and also of possible off-target events was performed. The results highlighted once more that the benzimidazole ring represents a privileged scaffold whose properties deserve to be further investigated for the rational design of novel and orally bioavailable anti-RSV agents.
Collapse
Affiliation(s)
- Elena Cichero
- Correspondence: (E.C.); (M.T.); Tel.: +39-010-353-8350 (E.C.); +39-010-353-8378 (M.T.)
| | | | | | - Michele Tonelli
- Correspondence: (E.C.); (M.T.); Tel.: +39-010-353-8350 (E.C.); +39-010-353-8378 (M.T.)
| | | | | |
Collapse
|