1
|
Liew KY, Chee HY, Abas F, Leong SW, Harith HH, Israf DA, Sulaiman MR, Tham CL. A synthetic curcumin-like diarylpentanoid analog inhibits rhinovirus infection in H1 hela cells via multiple antiviral mechanisms. Daru 2024:10.1007/s40199-024-00542-x. [PMID: 39395148 DOI: 10.1007/s40199-024-00542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/19/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Rhinovirus (RV) infection is a major cause of common colds and asthma exacerbations, with no antiviral drug available. Curcumin exhibits broad-spectrum antiviral activities, but its therapeutic effect is limited by a poor pharmacokinetics profile. Curcumin-like diarylpentanoid analogs, particularly 2-benzoyl-6-(3,4-dihydroxybenzylidene)cyclohexen-1-ol (BDHBC) and 5-(3,4-dihydroxyphenyl)-3-hydroxy-1-(2-hydroxyphenyl)penta-2,4-dien-1-one (DHHPD), have better solubility and stability compared to curcumin. OBJECTIVES Therefore, this study aims to evaluate and compare the antiviral effects of curcumin, BDHBC, and DHHPD in an in vitro model of RV infection. METHODS The inhibitory effects on RV-16 infection in H1 HeLa cells were assessed using cytopathic effect (CPE) reduction assay, virus yield reduction assay, RT-qPCR, and Western blot. Antiviral effects in different modes of treatment (pre-, co-, and post-treatment) were also compared. Additionally, intercellular adhesion molecule 1 (ICAM-1) expression, RV binding, and infectivity were measured with Western blot, flow cytometry, and virucidal assay, respectively. RESULTS When used as a post-treatment, BDHBC (EC50: 4.19 µM; SI: 8.32) demonstrated stronger antiviral potential on RV-16 compared to DHHPD (EC50: 18.24 µM; SI: 1.82) and curcumin (less than 50% inhibition). BDHBC also showed the strongest inhibitory effect on RV-induced CPE, virus yield, vRNA, and viral proteins (P1, VP0, and VP2). Furthermore, BDHBC pre-treatment has a prophylactic effect against RV infection, which was attributed to reduced basal expression of ICAM-1. However, it did not affect virus binding, but exerted virucidal activity on RV-16, contributing to its antiviral effect during co-treatment. CONCLUSION BDHBC exhibits multiple antiviral mechanisms against RV infection and thus could be a potential antiviral agent for RV.
Collapse
Affiliation(s)
- Kong Yen Liew
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui-Yee Chee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sze Wei Leong
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Viktorova VV, Obydennov DL, Kovaleva KS, Yarovaya OI, Khasanov SA, Bormotov NI, Esaulkova IL, Serova OA, Zarubaev VV, Shishkina LN, Salakhutdinov NF, Sosnovskikh VY. The Reaction of Fenchone and Camphor Hydrazones with 5-Acyl-4-Pyrones as a Method for the Synthesis of New Polycarbonyl Conjugates: Tautomeric Equilibrium and Antiviral Activity. Chem Biodivers 2024:e202401461. [PMID: 39233581 DOI: 10.1002/cbdv.202401461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Selective synthesis of polycarbonyl conjugates of (+)-fenchone and (+)-camphor was carried out (44-91 % yields) via the ring-opening transformation of 5-acyl-4-pyrones with hydrazones of the corresponding monoterpenoids. A strong influence of the hydrazone fragment on the observed tautomeric equilibrium of the tricarbonyl system was shown. Although the major tautomer of the conjugates is the acyclic polycarbonyl form, the camphor-based conjugates undergo new type of ring-chain tautomerism, diketoenaminone-dihydropyridone equilibrium, and predominantly exist in the cyclic dihydropyridone form in DMSO-d6. The polyketones can undergo intramolecular cyclization to form N-amino-4-pyridones in high selectivity. In vitro screening for activity against the influenza virus H1 N1 and vaccinia virus was estimated for the obtained conjugates. The (+)-fenchone derivatives demonstrated the higher activity against vaccinia virus than camphor derivatives. The conjugate, which was prepared from diethyl isochelidonate and hydrazone (+)-fenchone, showed the highest activity against vaccinia virus (SI=17).
Collapse
Affiliation(s)
- Viktoria V Viktorova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000, Ekaterinburg, Russian Federation
| | - Dmitrii L Obydennov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000, Ekaterinburg, Russian Federation
| | - Kseniya S Kovaleva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 630090, Novosibirsk, Russian Federation
| | - Olga I Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 630090, Novosibirsk, Russian Federation
| | | | - Nikolay I Bormotov
- State Research Center of Virology and Biotechnology "VECTOR", Novosibirsk Region, 6300559, Koltsovo, Russian Federation
| | - Iana L Esaulkova
- St. Petersburg Pasteur Institute, 197001, St. Petersburg, Russian Federation
| | - Olga A Serova
- State Research Center of Virology and Biotechnology "VECTOR", Novosibirsk Region, 6300559, Koltsovo, Russian Federation
| | - Vladimir V Zarubaev
- St. Petersburg Pasteur Institute, 197001, St. Petersburg, Russian Federation
| | - Larisa N Shishkina
- State Research Center of Virology and Biotechnology "VECTOR", Novosibirsk Region, 6300559, Koltsovo, Russian Federation
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 630090, Novosibirsk, Russian Federation
| | - Vyacheslav Y Sosnovskikh
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000, Ekaterinburg, Russian Federation
| |
Collapse
|
3
|
Castillo F, Ramírez D, Ramos MC, Martinez-Arribas B, Domingo-Contreras E, Mackenzie TA, Peña-Varas C, Lindemann S, Montero F, Annang F, Vicente F, Genilloud O, González-Pacanowska D, Fernandez-Godino R. Repurposing the Open Global Health Library for the discovery of novel Mpro destabilizers with scope as broad-spectrum antivirals. Front Pharmacol 2024; 15:1390705. [PMID: 39050758 PMCID: PMC11267763 DOI: 10.3389/fphar.2024.1390705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024] Open
Abstract
The SARS coronavirus 2 (SARS-CoV-2) epidemic remains globally active. The emergence of new variants of interest and variants of concern (VoCs), which are potentially more vaccine-resistant and less sensitive to existing treatments, is evident due to their high prevalence. The prospective spread of such variants and other coronaviruses with epidemic potential demands preparedness that can be met by developing fast-track workflows to find new candidates that target viral proteins with a clear in vitro and in vivo phenotype. Mpro (or 3CLpro) is directly involved in the viral replication cycle and the production and function of viral polyproteins, which makes it an ideal target. The biological relevance of Mpro is highly conserved among betacoronaviruses like HCoV-OC43 and SARS-CoV-2, which makes the identification of new chemical scaffolds targeting them a good starting point for designing broad-spectrum antivirals. We report an optimized methodology based on orthogonal cell-free assays to identify small molecules that inhibit the binding pockets of both SARS-CoV-2-Mpro and HCoV-OC43-Mpro; this blockade correlates with antiviral activities in HCoV-OC43 cellular models. By using such a fast-tracking approach against the Open Global Health Library (Merck KGaA), we have found evidence of the antiviral activity of compound OGHL98. In silico studies dissecting intermolecular interactions between OGHL98 and both proteases and comprising docking and molecular dynamics simulations (MDSs) concluded that the binding mode was primarily governed by conserved H-bonds with their C-terminal amino acids and that the rational design of OGHL98 has potential against VoCs proteases resistant to current therapeutics.
Collapse
Affiliation(s)
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | - Blanca Martinez-Arribas
- Instituto de Parasitología y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | - Carlos Peña-Varas
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Doctorado en Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Sven Lindemann
- Strategic Innovation, Merck Healthcare KGaA, Darmstadt, Germany
| | - Fernando Montero
- Fundación MEDINA, Granada, Spain
- Department of Physical Chemistry and Institute of Biotechnology, Universidad de Granada, Granada, Spain
| | | | | | | | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | |
Collapse
|
4
|
de Sousa NF, Duarte GD, Moraes CB, Barbosa CG, Martin HJ, Muratov NN, do Nascimento YM, Scotti L, de Freitas-Júnior LHG, Filho JMB, Scotti MT. In Silico and In Vitro Studies of Terpenes from the Fabaceae Family Using the Phenotypic Screening Model against the SARS-CoV-2 Virus. Pharmaceutics 2024; 16:912. [PMID: 39065609 PMCID: PMC11279753 DOI: 10.3390/pharmaceutics16070912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
In 2019, the emergence of the seventh known coronavirus to cause severe illness in humans triggered a global effort towards the development of new drugs and vaccines for the SARS-CoV-2 virus. These efforts are still ongoing in 2024, including the present work where we conducted a ligand-based virtual screening of terpenes with potential anti-SARS-CoV-2 activity. We constructed a Quantitative Structure-Activity Relationship (QSAR) model from compounds with known activity against SARS-CoV-2 with a model accuracy of 0.71. We utilized this model to predict the activity of a series of 217 terpenes isolated from the Fabaceae family. Four compounds, predominantly triterpenoids from the lupane series, were subjected to an in vitro phenotypic screening in Vero CCL-81 cells to assess their inhibitory activity against SARS-CoV-2. The compounds which showed high rates of SARS-CoV-2 inhibition along with substantial cell viability underwent molecular docking at the SARS-CoV-2 main protease, papain-like protease, spike protein and RNA-dependent RNA polymerase. Overall, virtual screening through our QSAR model successfully identified compounds with the highest probability of activity, as validated using the in vitro study. This confirms the potential of the identified triterpenoids as promising candidates for anti-SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Natália Ferreira de Sousa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (N.F.d.S.); (Y.M.d.N.); (L.S.); (J.M.B.F.)
| | - Gabrielly Diniz Duarte
- Postgraduate Program in Development and Innovation of Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Carolina Borsoi Moraes
- Institute of Biomedical Sciences, University of São Paulo (ICB-USP), São Paulo 05508-000, Brazil; (C.B.M.); (C.G.B.); (L.H.G.d.F.-J.)
| | - Cecília Gomes Barbosa
- Institute of Biomedical Sciences, University of São Paulo (ICB-USP), São Paulo 05508-000, Brazil; (C.B.M.); (C.G.B.); (L.H.G.d.F.-J.)
| | - Holli-Joi Martin
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Nail N. Muratov
- Department of Chemical Technology, Odessa National Polytechnic University, 65000 Odessa, Ukraine;
- A. V. Bogatsky Physical-Chemical Institute of NASU, 65047 Odessa, Ukraine
| | - Yuri Mangueira do Nascimento
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (N.F.d.S.); (Y.M.d.N.); (L.S.); (J.M.B.F.)
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (N.F.d.S.); (Y.M.d.N.); (L.S.); (J.M.B.F.)
| | | | - José Maria Barbosa Filho
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (N.F.d.S.); (Y.M.d.N.); (L.S.); (J.M.B.F.)
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (N.F.d.S.); (Y.M.d.N.); (L.S.); (J.M.B.F.)
| |
Collapse
|
5
|
Kim HJ, Park JG, Moon KS, Jung SB, Kwon YM, Kang NS, Kim JH, Nam SJ, Choi G, Baek YB, Park SI. Identification and characterization of a marine bacterium extract from Mameliella sp. M20D2D8 with antiviral effects against influenza A and B viruses. Arch Virol 2024; 169:41. [PMID: 38326489 PMCID: PMC10850258 DOI: 10.1007/s00705-024-05979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/24/2023] [Indexed: 02/09/2024]
Abstract
Despite significant improvements in vaccines and chemotherapeutic drugs, pathogenic RNA viruses continue to have a profound impact on the global economy and pose a serious threat to animal and human health through emerging and re-emerging outbreaks of diseases. To overcome the challenge of viral adaptation and evolution, increased vigilance is required. Particularly, antiviral drugs derived from new, natural sources provide an attractive strategy for controlling problematic viral diseases. In this antiviral study, we discovered a previously unknown bacterium, Mameliella sp. M20D2D8, by conducting an antiviral screening of marine microorganisms. An extract from M20D2D8 exhibited antiviral activity with low cytotoxicity and was found to be effective in vitro against multiple influenza virus strains: A/PR8 (IC50 = 2.93 µg/mL, SI = 294.85), A/Phil82 (IC50 = 1.42 µg/mL, SI = 608.38), and B/Yamagata (IC50 = 1.59 µg/mL, SI = 543.33). The antiviral action was found to occur in the post-entry stages of viral replication and to suppress viral replication by inducing apoptosis in infected cells. Moreover, it efficiently suppressed viral genome replication, protein synthesis, and infectivity in MDCK and A549 cells. Our findings highlight the antiviral capabilities of a novel marine bacterium, which could potentially be useful in the development of drugs for controlling viral diseases.
Collapse
Affiliation(s)
- Hyo-Jin Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jun-Gyu Park
- Laboratory of Veterinary Zoonotic Diseases, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyeong-Seo Moon
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Su-Bin Jung
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Yong Min Kwon
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| | - Nam Seon Kang
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| | - Jeong-Hyeon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Grace Choi
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea.
| | - Yeong-Bin Baek
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
6
|
Kakimoto M, Nomura T, Nazmul T, Yamamoto A, Sasaki H, Higashiura A, Ito M, Ohge H, Mikage M, Ogawa KO, Sakaguchi T. In vitro anti-severe acute respiratory syndrome coronavirus 2 effect of Ephedra przewalskii Stapf extract. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117341. [PMID: 37879507 DOI: 10.1016/j.jep.2023.117341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The terrestrial stems of Ephedra (Ephedra spp.; including Ephedra sinica Stapf and Ephedra przewalskii Stapf) extracts are used in traditional medicines in East Asia. In Japan, the Kampo formula containing E. sinica extract is prescribed for the treatment of the common cold, influenza virus infections, and mild symptoms of coronavirus disease 2019 (COVID-19). Although ephedrine alkaloids in E. sinica exert antitussive effects, they may have side effects associated with the sympathetic nervous system. E. przewalskii extract, a drug used in traditional Uyghur and Mongolian medicine, is considered to be free of ephedrine alkaloids and is a promising candidate for the treatment of infectious diseases. However, its use is currently limited because evidence of its antiviral efficacy remains inconclusive. AIM OF THE STUDY We compared the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) effects of E. przewalskii and E. sinica extracts in vitro. Additionally, we examined the differences in their antiviral effects against different SARS-CoV-2 strains. MATERIALS AND METHODS VeroE6/TMPRSS2 cells were infected with SARS-CoV-2 (Conventional, Delta, and Omicron strains-BA.1, BA.2, BA.4, and BA.5), and lysates prepared from each herbal extract were added. The infectious titer was determined using the 50% tissue culture infectious dose (TCID50) method; in turn, the half-maximal inhibitory concentration (IC50) was calculated for each extract to compare the antiviral efficacy of E. sinica and E. przewalskii extracts. Further, the extracts were compared with remdesivir for their antiviral efficacy against the conventional viral strain. To verify the effect of the inactivation of virus particles, these extracts were added to each SARS-CoV-2 strain, and the infectious titers were determined using the TCID50 method. RESULTS The antiviral efficacy (i.e., IC50) of the E. przewalskii extract against each SARS-CoV-2 strain was 2.7-10.8-fold greater than that of the E. sinica extract. The antiviral efficacy of the E. przewalskii extract against conventional viral strains was compared with that of remdesivir, which was 1/27.6 of remdesivir's efficacy. The E. sinica extract showed minimal inactivation of virus particles of each strain, whereas the E. przewalskii extract resulted in substantial viral inactivation. CONCLUSIONS The E. przewalskii extract showed higher antiviral activity against SARS-CoV-2 than the E. sinica extract. Overall, our study suggests that E. przewalskii extract can be used for the treatment of viral infections, including COVID-19.
Collapse
Affiliation(s)
- Masaki Kakimoto
- Department of Community Based Medical System, School of Medicine, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan; Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan.
| | - Toshihito Nomura
- Department of Infectious Diseases, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan; Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Tanuza Nazmul
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Akima Yamamoto
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Hiroaki Sasaki
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan; Division of Health, First Service School, Japan Maritime Self Defense Force, Etajimacho Kokuyu-mubanchi, Etajima, 737-2195, Japan
| | - Akifumi Higashiura
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Masanori Ito
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Masayuki Mikage
- Emeritus of Kanazawa University, Kakumamachi, Kanazawa, 920-1192, Japan
| | - Keiko Ochiai Ogawa
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan; Department of Kampo Clinical Center, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| |
Collapse
|
7
|
Martínez-Arribas B, Annang F, Díaz-González R, Pérez-Moreno G, Martín J, Mackenzie TA, Castillo F, Reyes F, Genilloud O, Ruiz-Pérez LM, Vicente F, Ramos MC, González-Pacanowska D. Establishment of a screening platform based on human coronavirus OC43 for the identification of microbial natural products with antiviral activity. Microbiol Spectr 2024; 12:e0167923. [PMID: 38009959 PMCID: PMC10783114 DOI: 10.1128/spectrum.01679-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE The COVID-19 pandemic has revealed the lack of effective treatments against betacoronaviruses and the urgent need for new broad-spectrum antivirals. Natural products are a valuable source of bioactive compounds with pharmaceutical potential that may lead to the discovery of new antiviral agents. Specifically, compared to conventional synthetic molecules, microbial natural extracts possess a unique and vast chemical diversity and are amenable to large-scale production. The implementation of a high-throughput screening platform using the betacoronavirus OC43 in a human cell line infection model has provided proof of concept of the approach and has allowed for the rapid and efficient evaluation of 1,280 microbial extracts. The identification of several active compounds validates the potential of the platform for the search for new compounds with antiviral capacity.
Collapse
Affiliation(s)
- Blanca Martínez-Arribas
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Frederick Annang
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Rosario Díaz-González
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Jesús Martín
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Thomas A. Mackenzie
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Francisco Castillo
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Luis Miguel Ruiz-Pérez
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - María C. Ramos
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
8
|
Petrova A, Tretyakova E, Khusnutdinova E, Kazakova O, Slita A, Zarubaev V, Ma X, Jin H, Xu H, Xiao S. Antiviral opportunities of Mannich bases derived from triterpenic N-propargylated indoles. Chem Biol Drug Des 2024; 103:e14370. [PMID: 37802645 DOI: 10.1111/cbdd.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Oleanolic and glycyrrhetic acids alkyne derivatives were synthesized as a result of propargylation of the indole NH-group condensed with the triterpene A-ring, the following aminomethylation led to a series of Mannich bases. The synthesized compounds were tested for their potential inhibition of influenza A/PuertoRico/8/34 (H1N1) virus in Madin-Darby canine kidney (MDCK) cell culture and SARS-CoV-2 pseudovirus in baby hamster kidney-21-human angiotensin-converting enzyme 2 (BHK-21-hACE2) cells. Mannich bases of oleanolic and glycyrrhetic acids N-propargylated indoles 7, 8, and 12 were the most efficacious against influenza virus A with IC50 7-10 μM together with a low toxicity (CC50 > 145 μM) and high selectivity index SI value 20. Indolo-oleanolic acid morpholine amide Mannich base holding N-methylpiperazine moiety 9 showed anti-SARS-CoV-2 pseudovirus activity with EC50 value of 14.8 μM. Molecular docking and dynamics modeling investigated the binding mode of the compounds 7 and 12 into the binding pocket of influenza A virus M2 protein and compound 9 into the RBD domain of SARS-CoV-2 spike glycoprotein.
Collapse
Affiliation(s)
| | | | | | - Oxana Kazakova
- Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| | - Alexander Slita
- Department of Virology, St. Petersburg Pasteur Institute of Epidemiology and Microbiology, Experimental Virology Laboratory, St. Petersburg, Russian Federation
| | - Vladimir Zarubaev
- Department of Virology, St. Petersburg Pasteur Institute of Epidemiology and Microbiology, Experimental Virology Laboratory, St. Petersburg, Russian Federation
| | - Xinyuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Huan Xu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
9
|
Kazakova O, Ma X, Tretyakova E, Smirnova I, Slita A, Sinegubova E, Zarubaev V, Jin H, Zhou D, Xiao S. Evaluation of A-ring hydroxymethylene-amino- triterpenoids as inhibitors of SARS-CoV-2 spike pseudovirus and influenza H1N1. J Antibiot (Tokyo) 2024; 77:39-49. [PMID: 38001284 DOI: 10.1038/s41429-023-00677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
A set of triterpene A-ring hydroxymethylene-amino-derivatives was synthesized and their antiviral activity was studied. The synthesized compounds were tested for their potential inhibition of SARS-CoV-2 pseudovirus in BHK-21-hACE2 cells and influenza A/PuertoRico/8/34 (H1N1) virus in MDCK cell culture. Compounds 6, 8 and 19 showed significant anti-SARS-CoV-2 pseudovirus activity with EC50 value of 3.20-11.13 µM, which is comparable to the positive control amodiaquine (EC50 3.17 µM). Among them, 28-O-imidazolyl-azepano-betulin 6 and C3-hydroxymethylene-amino-glycyrrhetol-11,13-diene 19 were identified as the lead compounds with SI values of 7 and 10. The binding mode of compound 6 into the RBD domain of SARS-CoV-2 spike glycoprotein (PDB code: 7DK3) by docking and molecular dynamics simulation was investigated.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry UFRC RAS, pr. Oktyabrya 71, 450054, Ufa, Russia.
| | - Xinyuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Elena Tretyakova
- Ufa Institute of Chemistry UFRC RAS, pr. Oktyabrya 71, 450054, Ufa, Russia
| | - Irina Smirnova
- Ufa Institute of Chemistry UFRC RAS, pr. Oktyabrya 71, 450054, Ufa, Russia
| | - Alexander Slita
- Department of Virology, St. Petersburg Pasteur Institute of Epidemiology and Microbiology, Experimental Virology Laboratory, 14 Mira St., St. Petersburg, 197001, Russia
| | - Ekaterina Sinegubova
- Department of Virology, St. Petersburg Pasteur Institute of Epidemiology and Microbiology, Experimental Virology Laboratory, 14 Mira St., St. Petersburg, 197001, Russia
| | - Vladimir Zarubaev
- Department of Virology, St. Petersburg Pasteur Institute of Epidemiology and Microbiology, Experimental Virology Laboratory, 14 Mira St., St. Petersburg, 197001, Russia
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
10
|
Lewis MA, Cortés-Penfield NW, Ettayebi K, Patil K, Kaur G, Neill FH, Atmar RL, Ramani S, Estes MK. Standardization of an antiviral pipeline for human norovirus in human intestinal enteroids demonstrates nitazoxanide has no to weak antiviral activity. Antimicrob Agents Chemother 2023; 67:e0063623. [PMID: 37787556 PMCID: PMC10583671 DOI: 10.1128/aac.00636-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/02/2023] [Indexed: 10/04/2023] Open
Abstract
Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis. In immunocompetent hosts, symptoms usually resolve within 3 days; however, in immunocompromised persons, HuNoV infection can become persistent, debilitating, and sometimes life-threatening. There are no licensed therapeutics for HuNoV due to a near half-century delay in its cultivation. Treatment for chronic HuNoV infection in immunosuppressed patients anecdotally includes nitazoxanide, a broad-spectrum antimicrobial licensed for treatment of parasite-induced gastroenteritis. Despite its off-label use for chronic HuNoV infection, nitazoxanide has not been clearly demonstrated to be an effective treatment. In this study, we standardized a pipeline for antiviral testing using multiple human small intestinal enteroid lines representing different intestinal segments and evaluated whether nitazoxanide inhibits replication of five HuNoV strains in vitro. Nitazoxanide did not exhibit high selective antiviral activity against any HuNoV strain tested, indicating it is not an effective antiviral for HuNoV infection. Human intestinal enteroids are further demonstrated as a model to serve as a preclinical platform to test antivirals against HuNoVs to treat gastrointestinal disease. Abstr.
Collapse
Affiliation(s)
- Miranda A. Lewis
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Nicolás W. Cortés-Penfield
- Department of Medicine, Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Gurpreet Kaur
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Frederick H. Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
11
|
Hassan AEA, Hegazy HA, Zaki I, Hassan MH, Ramadan M, Haikal AZ, Sheng J, Abou-Elkhair RAI. Design, synthesis, and evaluation of 4'-phosphonomethoxy pyrimidine ribonucleosides as potential anti-influenza agents. Arch Pharm (Weinheim) 2023:e2200382. [PMID: 36792964 DOI: 10.1002/ardp.202200382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Influenza viruses belong to the Orthomyxoviridae family and cause acute respiratory distress in humans. The developed drug resistance toward existing drugs and the emergence of viral mutants that can escape vaccines mandate the search for novel antiviral drugs. Herein, the synthesis of epimeric 4'-methyl-4'-phosphonomethoxy [4'-C-Me-4'-C-(O-CH2 P═O)] pyrimidine ribonucleosides, their phosphonothioate [4'-C-Me-4'-C-(O-CH2 P═S)] derivatives, and their evaluation against an RNA viral panel are described. Selective formation of the α- l-lyxo epimer, [4'-C-(α)-Me-4'-C-(β)-(O-CH2 -P(═O)(OEt)2 )] over the β- d-ribo epimer [4'-C-(β)-Me-4'-C-(α)-(O-CH2 -P(═O)(OEt)2 )] was explained by DFT equilibrium geometry optimizations studies. Pyrimidine nucleosides having the [4'-C-(α)-Me-4'-C-(β)-(O-CH2 -P(═O)(OEt)2 )] framework showed specific activity against influenza A virus. Significant anti-influenza virus A (H1N1 California/07/2009 isolate) was observed with the 4'-C-(α)-Me-4'-C-(β)-O-CH2 -P(═O)(OEt)2 -uridine derivative 1 (EC50 = 4.56 mM, SI50 > 56), 4-ethoxy-2-oxo-1(2H)-pyrimidin-1-yl derivative 3 (EC50 = 5.44 mM, SI50 > 43) and the cytidine derivative 2 (EC50 = 0.81 mM, SI50 > 13), respectively. The corresponding thiophosphonates 4'-C-(α)-Me-4'-C-(β)-(O-CH2 -P( S)(OEt)2 ) and thionopyrimidine nucleosides were devoid of any antiviral activity. This study shows that the 4'-C-(α)-Me-4'-(β)-O-CH2 -P(═O)(OEt)2 ribonucleoside can be further optimized to provide potent antiviral agents.
Collapse
Affiliation(s)
- Abdalla E A Hassan
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Hend A Hegazy
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Marwa H Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Medhat Ramadan
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Abdelfattah Z Haikal
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
| | - Reham A I Abou-Elkhair
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Phumesin P, Panaampon J, Kariya R, Limjindaporn T, Yenchitsomanus PT, Okada S. Cepharanthine inhibits dengue virus production and cytokine secretion. Virus Res 2023; 325:199030. [PMID: 36587870 DOI: 10.1016/j.virusres.2022.199030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Dengue virus (DENV) infection is a public health problem in tropical and subtropical regions. It can cause a spectrum of clinical manifestations ranging from mild dengue fever (DF) to severe dengue haemorrhagic fever (DHF) and potentially life-threatening disease including dengue shock syndrome (DSS). Severe DENV infection is caused by high viral load and cytokine storm in dengue-infected patients. Currently, there is no specific antiviral drug for DENV infection. An anti-DENV agent that demonstrates inhibitory effects on both DENV replication and cytokine secretion is urgently needed. In this study, cepharanthine (CEP), which is an anti-inflammatory, anti-HIV, and anti-tumor compound isolated from Stephania cepharantha Hayata, was tested for inhibition of DENV infection. We investigated the efficacy of CEP to inhibit DENV infection, replication, and cytokine production. The inhibitory effect of CEP treatment was studied in DENV-infected human chronic myeloid leukemia (K562) cells. The levels of DENV E protein and DENV production were determined by flow cytometry and FFU assay, respectively. CEP treatment significantly reduced viral E protein and viral production in all DENV-1, 2, 3, 4 serotypes. In addition, CEP treatment reduced the IL-6 proinflammatory cytokine production in DENV-infected A549 cells. Taken together, CEP has inhibitory effects on DENV infection specifically at the initial viral replication states and proinflammatory cytokine secretion, and is a promising candidate for further development as an anti-DENV treatment.
Collapse
Affiliation(s)
- Patta Phumesin
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Jutatip Panaampon
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Thawornchai Limjindaporn
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
13
|
Yaneva Z, Ivanova D, Nikolova N, Toneva M. Organic dyes in contemporary medicinal chemistry and biomedicine. I. From the chromophore to the bioimaging/bioassay agent. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2039077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Zvezdelina Yaneva
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Donika Ivanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Nevena Nikolova
- Ecology Unit, Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Monika Toneva
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
14
|
Drokin RA, Fesenko EA, Mozharovskaia PN, Medvedeva MV, Svalova TS, Kozitsina AN, Esaulkova YL, Volobueva AS, Zarubaev VV, Rusinov VL. 4-Hydroxy-3-nitro-1,4-dihydrotriazolo[5,1- c][1,2,4]triazines: synthesis, antiviral activity, and electrochemical characteristics. Russ Chem Bull 2022; 71:2460-2466. [PMID: 36569657 PMCID: PMC9762649 DOI: 10.1007/s11172-022-3674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 12/23/2022]
Abstract
A new method for preparation of 4-hydroxy-3-nitro-1,4-dihydrotriazolo[5,1-c][1,2,4]-triazines using 1-nitro-2-morpholinoethylene and 3-diazo-1,2,4-triazoles is proposed. Antiviral activity against the Coxsackie B3 virus and electrochemical transformations of the prepared compounds are studied.
Collapse
Affiliation(s)
- R. A. Drokin
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 ul. Mira, 620002 Yekaterinburg, Russian Federation
| | - E. A. Fesenko
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 ul. Mira, 620002 Yekaterinburg, Russian Federation
| | - P. N. Mozharovskaia
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 ul. Mira, 620002 Yekaterinburg, Russian Federation
| | - M. V. Medvedeva
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 ul. Mira, 620002 Yekaterinburg, Russian Federation
| | - T. S. Svalova
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 ul. Mira, 620002 Yekaterinburg, Russian Federation
| | - A. N. Kozitsina
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 ul. Mira, 620002 Yekaterinburg, Russian Federation
| | - Ya. L. Esaulkova
- St. Petersburg Pasteur Institute, 14 ul. Mira, 197101, St. Petersburg, Russian Federation
| | - A. S. Volobueva
- St. Petersburg Pasteur Institute, 14 ul. Mira, 197101, St. Petersburg, Russian Federation
| | - V. V. Zarubaev
- St. Petersburg Pasteur Institute, 14 ul. Mira, 197101, St. Petersburg, Russian Federation
| | - V. L. Rusinov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 ul. Mira, 620002 Yekaterinburg, Russian Federation
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Sciences, 22/20 ul. S. Kovalevskoi, 620108 Yekaterinburg, Russian Federation
| |
Collapse
|
15
|
The IMDAV approach towards thieno- and furoisoindolo[2,1-a]quinazolines-11(13)-carboxylic acids possessing antimicrobial and antiviral activities. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Silva-Trujillo L, Quintero-Rueda E, Stashenko EE, Conde-Ocazionez S, Rondón-Villarreal P, Ocazionez RE. Essential Oils from Colombian Plants: Antiviral Potential against Dengue Virus Based on Chemical Composition, In Vitro and In Silico Analyses. Molecules 2022; 27:6844. [PMID: 36296437 PMCID: PMC9607004 DOI: 10.3390/molecules27206844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/26/2022] Open
Abstract
Currently, there are no therapies to prevent severe dengue disease. Essential oils (EOs) can serve as primary sources for research and the discovery of phytomedicines for alternative therapy. Fourteen EOs samples were obtained by distillation from six plants used in Colombian folk medicine. GC/MS analysis identified 125 terpenes. Cytopathic effect (CPE) reduction assays revealed differences in antiviral activity. EOs of Lippia alba, citral chemotype and carvone-rich fraction; Lippia origanoides, phellandrene chemotype; and Turnera diffusa, exhibited strong antiviral activity (IC50: 29 to 82 µg/mL; SI: 5.5 to 14.3). EOs of Piper aduncum, Ocimum basilicum, and L. origanoides, carvacrol, and thymol chemotypes, exhibited weak antiviral activity (32 to 53% DENV-CPE reduction at 100 µg/mL; SI > 5.0). Cluster and one-way ANOVA analyses suggest that the strong antiviral activity of EOs could be attributed to increased amounts of non-phenolic oxygenated monoterpenes and sesquiterpene hydrocarbons. Docking analyses (AutoDock Vina) predicted binding affinity between the DENV-2 E protein and terpenes: twenty sesquiterpene hydrocarbons (−8.73 to −6.91 kcal/mol), eight oxygenated monoterpenes (−7.52 to −6.98 kcal/mol), and seven monoterpene hydrocarbons (−7.60 to −6.99 kcal/mol). This study reports for the first time differences in the antiviral activity of EOs against DENV, corresponding to their composition of monoterpenes and sesquiterpenes.
Collapse
Affiliation(s)
- Lina Silva-Trujillo
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Santander, Colombia
| | - Elizabeth Quintero-Rueda
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Santander, Colombia
| | - Elena E. Stashenko
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Santander, Colombia
| | - Sergio Conde-Ocazionez
- Instituto de Investigación Masira, Facultad de Ciencias de la Salud, Universidad de Santander, Bucaramanga 680003, Santander, Colombia
| | - Paola Rondón-Villarreal
- Instituto de Investigación Masira, Facultad de Ciencias de la Salud, Universidad de Santander, Bucaramanga 680003, Santander, Colombia
| | - Raquel E. Ocazionez
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Santander, Colombia
| |
Collapse
|
17
|
Tret'yakova EV, Ma X, Kazakova OB, Shtro AA, Petukhova GD, Klabukov AM, Dyatlov DS, Smirnova AA, Xu H, Xiao S. Synthesis and evaluation of diterpenic Mannich bases as antiviral agents against influenza A and SARS-CoV-2. PHYTOCHEMISTRY LETTERS 2022; 51:91-96. [PMID: 35935343 PMCID: PMC9343747 DOI: 10.1016/j.phytol.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
A chemical library was constructed based on the resin acids (abietic, dehydroabietic, and 12-formylabietic) and its diene adducts (maleopimaric and quinopimaric acid derivatives). The one-pot three-component CuCl-catalyzed aminomethylation of the abietane diterpenoid propargyl derivatives was carried out by formaldehyde and secondary amines (diethylamine, pyrrolidine, morpholine, and homopiperazine). All compounds were tested for cytotoxicity and antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells and SARS-CoV-2 pseudovirus in BHK-21-hACE2 cells. Among 21 tested compounds, six derivatives demonstrated a selectivity index (SI) higher than 10, and their IC50 values ranged from 0.19 to 5.0 μM. Moreover, two derivatives exhibited potent anti-SARS-CoV-2 infection activity. The antiviral activity and toxicity strongly depended on the nature of the diterpene core and heterocyclic substituent. Compounds 12 and 21 bearing pyrrolidine moieties demonstrated the highest virus-inhibiting activity with SIs of 128.6 and 146.8, respectively, and appeared to be most effective when added at the time points 0-10 and 1-10 h of the viral life cycle. Molecular docking and dynamics modeling were adopted to investigate the binding mode of compound 12 into the binding pocket of influenza A virus M2 protein. Compound 9 with a pyrrolidine group at C20 of 17-formylabietic acid was a promising anti-SARS-CoV-2 agent with an EC50 of 10.97 µM and a good SI value > 18.2. Collectively, our data suggested the potency of diterpenic Mannich bases as effective anti-influenza and anti-COVID-19 compounds.
Collapse
Affiliation(s)
- Elena V Tret'yakova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Prospect Oktyabrya, 450054, Ufa, Russia
| | - Xinyuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Oxana B Kazakova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Prospect Oktyabrya, 450054, Ufa, Russia
| | - Anna A Shtro
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova St., St. Petersburg 197376, Russia
| | - Galina D Petukhova
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova St., St. Petersburg 197376, Russia
| | - Artem M Klabukov
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova St., St. Petersburg 197376, Russia
| | - Danil S Dyatlov
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Prospect Oktyabrya, 450054, Ufa, Russia
| | - Anna A Smirnova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Prospect Oktyabrya, 450054, Ufa, Russia
| | - Huan Xu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
18
|
Shcherbakov KV, Panova MA, Burgart YV, Sinegubova EO, Orshanskaya IR, Zarubaev VV, Gerasimova NA, Evstigneeva NP, Saloutin VI. Alternative Functionalization of 2‐(3,4‐Dihalophenyl)‐4
H
‐chromen‐4‐ones via Metal‐Free Nucleophilic Aromatic Fluorine Substitution and Palladium‐Catalyzed Cross‐Coupling Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202201775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Konstantin V. Shcherbakov
- Laboratory of fluoroorganic compounds Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences 22/20 S. Kovalevskoy St. Ekaterinburg 620108 Russian Federation
| | - Mariya A. Panova
- Laboratory of fluoroorganic compounds Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences 22/20 S. Kovalevskoy St. Ekaterinburg 620108 Russian Federation
| | - Yanina V. Burgart
- Laboratory of fluoroorganic compounds Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences 22/20 S. Kovalevskoy St. Ekaterinburg 620108 Russian Federation
| | - Ekaterina O. Sinegubova
- Department of virology Institute Pasteur in Saint-Petersburg for Research in Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing 14 Mira St. Saint-Petersburg 197101 Russian Federation
| | - Iana R. Orshanskaya
- Department of virology Institute Pasteur in Saint-Petersburg for Research in Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing 14 Mira St. Saint-Petersburg 197101 Russian Federation
| | - Vladimir V. Zarubaev
- Department of virology Institute Pasteur in Saint-Petersburg for Research in Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing 14 Mira St. Saint-Petersburg 197101 Russian Federation
| | - Natalia A. Gerasimova
- Experimental laboratory Ural Research Institute for Dermatology, Venereology and Immunopathology 8 Shcherbakova St. Ekaterinburg 620076 Russian Federation
| | - Natalia P. Evstigneeva
- Experimental laboratory Ural Research Institute for Dermatology, Venereology and Immunopathology 8 Shcherbakova St. Ekaterinburg 620076 Russian Federation
| | - Victor I. Saloutin
- Laboratory of fluoroorganic compounds Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences 22/20 S. Kovalevskoy St. Ekaterinburg 620108 Russian Federation
| |
Collapse
|
19
|
Abietic, maleopimaric and quinopimaric dipeptide Ugi-4CR derivatives and their potency against influenza A and SARS-CoV-2. Nat Prod Res 2022; 37:1954-1960. [PMID: 35975755 DOI: 10.1080/14786419.2022.2112040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A set of 12 abietane diterpene derivatives have been synthesised by the Ugi-four component reaction (Ugi-4CR) and tested for cytotoxicity and activity against influenza virus A/Puerto Rico/8/34 (H1N1) and SARS-CoV-2 pseudovirus. Five dipeptide derivatives demonstrated a selectivity index (SI) higher than 10 and IC50 values from 2 to 32 μM against influenza virus. Compound 11 was found to be a lead with SI of 200, and time-of-addition experiments showed the viral entry into the cell and the binding of the virus to the receptor as a possible target. Compound 7 was the only one showed weak anti-SARS-CoV-2 activity with EC50 value of 80.96 µM. Taken together, our data suggest the potency of diterpene acids-Ugi products as new effective anti-influenza compounds.
Collapse
|
20
|
Synthesis and Biological Activity of Unsymmetrical Monoterpenylhetaryl Disulfides. Molecules 2022; 27:molecules27165101. [PMID: 36014334 PMCID: PMC9416111 DOI: 10.3390/molecules27165101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
New unsymmetrical monoterpenylhetaryl disulfides based on heterocyclic disulfides and monoterpene thiols were synthesized for the first time in 48–88% yields. Hydrolysis of disulfides with fragments of methyl esters of 2-mercaptonicotinic acid was carried out in 73–95% yields. The obtained compounds were evaluated for antioxidant, antibacterial, antifungal activity, cytotoxicity and mutagenicity.
Collapse
|
21
|
Silva PG, Branco PTBS, Soares RRG, Mesquita JR, Sousa SIV. SARS-CoV-2 air sampling: A systematic review on the methodologies for detection and infectivity. INDOOR AIR 2022; 32:e13083. [PMID: 36040285 PMCID: PMC9538005 DOI: 10.1111/ina.13083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
This systematic review aims to present an overview of the current aerosol sampling methods (and equipment) being used to investigate the presence of SARS-CoV-2 in the air, along with the main parameters reported in the studies that are essential to analyze the advantages and disadvantages of each method and perspectives for future research regarding this mode of transmission. A systematic literature review was performed on PubMed/MEDLINE, Web of Science, and Scopus to assess the current air sampling methodologies being applied to SARS-CoV-2. Most of the studies took place in indoor environments and healthcare settings and included air and environmental sampling. The collection mechanisms used were impinger, cyclone, impactor, filters, water-based condensation, and passive sampling. Most of the reviewed studies used RT-PCR to test the presence of SARS-CoV-2 RNA in the collected samples. SARS-CoV-2 RNA was detected with all collection mechanisms. From the studies detecting the presence of SARS-CoV-2 RNA, fourteen assessed infectivity. Five studies detected viable viruses using impactor, water-based condensation, and cyclone collection mechanisms. There is a need for a standardized protocol for sampling SARS-CoV-2 in air, which should also account for other influencing parameters, including air exchange ratio in the room sampled, relative humidity, temperature, and lighting conditions.
Collapse
Affiliation(s)
- Priscilla G Silva
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- Epidemiology Research Unit (EPI Unit), Institute of Public Health, University of Porto, Porto, Portugal
| | - Pedro T B S Branco
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Ruben R G Soares
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - João R Mesquita
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Epidemiology Research Unit (EPI Unit), Institute of Public Health, University of Porto, Porto, Portugal
| | - Sofia I V Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
22
|
Oreshko VV, Kovaleva KS, Mordvinova ED, Yarovaya OI, Gatilov YV, Shcherbakov DN, Bormotov NI, Serova OA, Shishkina LN, Salakhutdinov NF. Synthesis and Antiviral Properties of Camphor-Derived Iminothiazolidine-4-Ones and 2,3-Dihydrothiazoles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154761. [PMID: 35897931 PMCID: PMC9331314 DOI: 10.3390/molecules27154761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
A set of heterocyclic products was synthesized from natural (+)-camphor and semi-synthetic (−)-camphor. Then, 2-Imino-4-thiazolidinones and 2,3-dihydrothiazoles were obtained using a three-step procedure. For the synthesized compounds, their antiviral activity against the vaccinia virus and Marburg virus was studied. New promising agents active against both viruses were found among the tested compounds.
Collapse
Affiliation(s)
- Vladislav V. Oreshko
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova St., 1, 630090 Novosibirsk, Russia;
| | - Kseniya S. Kovaleva
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
| | - Ekaterina D. Mordvinova
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova St., 1, 630090 Novosibirsk, Russia;
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova St., 1, 630090 Novosibirsk, Russia;
- Correspondence: ; Tel.: +7-383-330-88-70
| | - Yuri V. Gatilov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Nikolai I. Bormotov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Olga A. Serova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Larisa N. Shishkina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
| |
Collapse
|
23
|
Triterpenes and Phenolic Compounds from Euphorbia deightonii with Antiviral Activity against Herpes Simplex Virus Type-2. PLANTS 2022; 11:plants11060764. [PMID: 35336645 PMCID: PMC8955370 DOI: 10.3390/plants11060764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022]
Abstract
Two undescribed compounds, 3β,7β-dihydroxy-24-methylenelanosta-8-ene-11-one (1) and neolignane deightonin (4) were isolated from the aerial parts of Euphorbia deightonii Croizat together with six known compounds, namely, kansenone (2), euphorbol-7-one (3), dehydrodiconiferyl diacetate (5), marylaurencinol D (6), scoparon (7), and 3,4,3′-tri-O-methylellagic acid (8). The structures of the isolated compounds were determined by HRESIMS, 1D (1H, 13C JMOD) and 2D NMR (HSQC, HMBC, 1H–1H COSY, NOESY) spectroscopic analysis, and by comparison of the assignments with literature data. The anti-herpes simplex virus type-2 activity of the isolated compounds were investigated by qRT-PCR assay on Vero cells after determining cytotoxic concentration 50% (CC50). Compounds 1, 3, 4, and 7 exhibited inhibitory effects with respective IC50 values of 7.05, 2.42, 11.73, and 0.032 µM. Scoparon (7) showed the strongest anti-HSV activity with a selectivity index of 10.93.
Collapse
|
24
|
Novel O-acylated amidoximes and substituted 1,2,4-oxadiazoles synthesised from (+)-ketopinic acid possessing potent virus-inhibiting activity against phylogenetically distinct influenza A viruses. Bioorg Med Chem Lett 2022; 55:128465. [PMID: 34808389 DOI: 10.1016/j.bmcl.2021.128465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/02/2022]
Abstract
This article describes the synthesis and antiviral activity evaluation of new substituted 1,2,4-oxadiazoles containing a bicyclic substituent at position 5 of the heterocycle and O-acylated amidoximes as precursors for their synthesis. New compounds were obtained from the (+)-camphor derivative (+)-ketopinic acid. The chemical library was tested in vitro for cytotoxicity against the MDCK cell line and for antiviral activity against influenza viruses of H1N1 and H7N9 subtypes. The synthesised compounds exhibited high virus-inhibiting activity against the H1N1 influenza virus. Some synthesised compounds were also active against the influenza virus of a different antigenic subtype: H7N9. The mechanism of the virus-inhibiting activity of these compounds is based on their interference with the fusion activity of viral hemagglutinin (HA). No interference with the receptor-binding activity of HA has been demonstrated. According to molecular docking results, the selective antiviral activity of O-acylated amidoximes and 1,2,4-oxadiazoles is associated with their structural features. O-Acylated amidoximes are likely more complementary to the binding site located at the site of the fusion peptide, and 1,2,4-oxadiazoles are more complimentary to the site located at the site of proteolysis. Significant differences in the amino acid residues of the binding sites of HA's of different types allow us to explain the selective antiviral activity of the compounds under study.
Collapse
|
25
|
Activity of Galidesivir in a Hamster Model of SARS-CoV-2. Viruses 2021; 14:v14010008. [PMID: 35062212 PMCID: PMC8780270 DOI: 10.3390/v14010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has claimed the lives of millions of people worldwide since it first emerged. The impact of the COVID-19 pandemic on public health and the global economy has highlighted the medical need for the development of broadly acting interventions against emerging viral threats. Galidesivir is a broad-spectrum antiviral compound with demonstrated in vitro and in vivo efficacy against several RNA viruses of public health concern, including those causing yellow fever, Ebola, Marburg, and Rift Valley fever. In vitro studies have shown that the antiviral activity of galidesivir also extends to coronaviruses. Herein, we describe the efficacy of galidesivir in the Syrian golden hamster model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Treatment with galidesivir reduced lung pathology in infected animals compared with untreated controls when treatment was initiated 24 h prior to infection. These results add to the evidence of the applicability of galidesivir as a potential medical intervention for a range of acute viral illnesses, including coronaviruses.
Collapse
|
26
|
Aherfi S, Pradines B, Devaux C, Honore S, Colson P, Scola BL, Raoult D. Drug repurposing against SARS-CoV-1, SARS-CoV-2 and MERS-CoV. Future Microbiol 2021; 16:1341-1370. [PMID: 34755538 PMCID: PMC8579950 DOI: 10.2217/fmb-2021-0019] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Since the beginning of the COVID-19 pandemic, large in silico screening studies and numerous in vitro studies have assessed the antiviral activity of various drugs on SARS-CoV-2. In the context of health emergency, drug repurposing represents the most relevant strategy because of the reduced time for approval by international medicines agencies, the low cost of development and the well-known toxicity profile of such drugs. Herein, we aim to review drugs with in vitro antiviral activity against SARS-CoV-2, combined with molecular docking data and results from preliminary clinical studies. Finally, when considering all these previous findings, as well as the possibility of oral administration, 11 molecules consisting of nelfinavir, favipiravir, azithromycin, clofoctol, clofazimine, ivermectin, nitazoxanide, amodiaquine, heparin, chloroquine and hydroxychloroquine, show an interesting antiviral activity that could be exploited as possible drug candidates for COVID-19 treatment.
Collapse
Affiliation(s)
- Sarah Aherfi
- Aix-Marseille Université, Assistance Publique – Hôpitaux de Marseille (AP-HM), Marseille, 13005, France
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
- Microbes, Evolution, Phylogeny & Infection (MEΦI), Marseille, 13005, France
| | - Bruno Pradines
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, 13005, France
- Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, 13005, France
- Centre national de référence du paludisme, Marseille, 13005, France
| | - Christian Devaux
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
| | - Stéphane Honore
- Aix Marseille Université, Laboratoire de Pharmacie Clinique, Marseille, 13005, France
- AP-HM, hôpital Timone, service pharmacie, Marseille, 13005, France
| | - Philippe Colson
- Aix-Marseille Université, Assistance Publique – Hôpitaux de Marseille (AP-HM), Marseille, 13005, France
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
- Microbes, Evolution, Phylogeny & Infection (MEΦI), Marseille, 13005, France
| | - Bernard La Scola
- Aix-Marseille Université, Assistance Publique – Hôpitaux de Marseille (AP-HM), Marseille, 13005, France
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
- Microbes, Evolution, Phylogeny & Infection (MEΦI), Marseille, 13005, France
| | - Didier Raoult
- Aix-Marseille Université, Assistance Publique – Hôpitaux de Marseille (AP-HM), Marseille, 13005, France
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
| |
Collapse
|
27
|
Evaluation of AT-752, a Double Prodrug of a Guanosine Nucleotide Analog with In Vitro and In Vivo Activity against Dengue and Other Flaviviruses. Antimicrob Agents Chemother 2021; 65:e0098821. [PMID: 34424050 PMCID: PMC8522752 DOI: 10.1128/aac.00988-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Every year, millions of people worldwide are infected with dengue virus (DENV), with a significant number developing severe life-threatening disease. There are currently no broadly indicated vaccines or therapeutics available for treatment of DENV infection. Here, we show that AT-281, the free base of AT-752, an orally available double prodrug of a guanosine nucleotide analog, was a potent inhibitor of DENV serotypes 2 and 3 in vitro, requiring concentrations of 0.48 and 0.77 μM, respectively, to inhibit viral replication by 50% (EC50) in Huh-7 cells. AT-281 was also a potent inhibitor of all other flaviviruses tested, with EC50 values ranging from 0.19 to 1.41 μM. Little to no cytotoxicity was observed for AT-281 at concentrations up to 170 μM. After oral administration of AT-752, substantial levels of the active triphosphate metabolite AT-9010 were formed in vivo in peripheral blood mononuclear cells of mice, rats, and monkeys. Furthermore, AT-9010 competed with GTP in RNA template-primer elongation assays with DENV2 RNA polymerase, which is essential for viral replication, with incorporation of AT-9010 resulting in termination of RNA synthesis. In AG129 mice infected with DENV D2Y98P, treatment with AT-752 significantly reduced viremia and morbidity and increased survival. The demonstrated in vitro and in vivo activity of AT-752 suggests that it is a promising compound for the treatment of dengue virus infection and is currently under evaluation in clinical studies.
Collapse
|
28
|
Ye M, Keicher M, Gentschev I, Szalay AA. Efficient Selection of Recombinant Fluorescent Vaccinia Virus Strains and Rapid Virus Titer Determination by Using a Multi-Well Plate Imaging System. Biomedicines 2021; 9:biomedicines9081032. [PMID: 34440236 PMCID: PMC8393244 DOI: 10.3390/biomedicines9081032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
Engineered vaccinia virus (VACV) strains are used extensively as vectors for the development of novel cancer vaccines and cancer therapeutics. In this study, we describe for the first time a high-throughput approach for both fluorescent rVACV generation and rapid viral titer measurement with the multi-well plate imaging system, IncuCyte®S3. The isolation of a single, well-defined plaque is critical for the generation of novel recombinant vaccinia virus (rVACV) strains. Unfortunately, current methods of rVACV engineering via plaque isolation are time-consuming and laborious. Here, we present a modified fluorescent viral plaque screening and selection strategy that allows one to generally obtain novel fluorescent rVACV strains in six days, with a minimum of just four days. The standard plaque assay requires chemicals for fixing and staining cells. Manual plaque counting based on visual inspection of the cell culture plates is time-consuming. Here, we developed a fluorescence-based plaque assay for quantifying the vaccinia virus that does not require a cell staining step. This approach is less toxic to researchers and is reproducible; it is thus an improvement over the traditional assay. Lastly, plaque counting by virtue of a fluorescence-based image is very convenient, as it can be performed directly on the computer.
Collapse
Affiliation(s)
- Mingyu Ye
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Biocenter, University of Wuerzburg, Theodor-Boveri-Weg 1, 97074 Wuerzburg, Germany; (M.K.); (I.G.)
- Correspondence: (M.Y.); (A.A.S.); Tel.:+49-931-3189187 (M.Y.); +49-931-3184410 (A.A.S.)
| | - Markus Keicher
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Biocenter, University of Wuerzburg, Theodor-Boveri-Weg 1, 97074 Wuerzburg, Germany; (M.K.); (I.G.)
| | - Ivaylo Gentschev
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Biocenter, University of Wuerzburg, Theodor-Boveri-Weg 1, 97074 Wuerzburg, Germany; (M.K.); (I.G.)
| | - Aladar A. Szalay
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Biocenter, University of Wuerzburg, Theodor-Boveri-Weg 1, 97074 Wuerzburg, Germany; (M.K.); (I.G.)
- Department of Radiation Oncology, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, CA 92093, USA
- Department of Pathology, Center of Immune Technologies, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: (M.Y.); (A.A.S.); Tel.:+49-931-3189187 (M.Y.); +49-931-3184410 (A.A.S.)
| |
Collapse
|
29
|
Moquin SA, Simon O, Karuna R, Lakshminarayana SB, Yokokawa F, Wang F, Saravanan C, Zhang J, Day CW, Chan K, Wang QY, Lu S, Dong H, Wan KF, Lim SP, Liu W, Seh CC, Chen YL, Xu H, Barkan DT, Kounde CS, Sim WLS, Wang G, Yeo HQ, Zou B, Chan WL, Ding M, Song JG, Li M, Osborne C, Blasco F, Sarko C, Beer D, Bonamy GMC, Sasseville VG, Shi PY, Diagana TT, Yeung BKS, Gu F. NITD-688, a pan-serotype inhibitor of the dengue virus NS4B protein, shows favorable pharmacokinetics and efficacy in preclinical animal models. Sci Transl Med 2021; 13:13/579/eabb2181. [PMID: 33536278 DOI: 10.1126/scitranslmed.abb2181] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that poses a threat to public health, yet no antiviral drug is available. We performed a high-throughput phenotypic screen using the Novartis compound library and identified candidate chemical inhibitors of DENV. This chemical series was optimized to improve properties such as anti-DENV potency and solubility. The lead compound, NITD-688, showed strong potency against all four serotypes of DENV and demonstrated excellent oral efficacy in infected AG129 mice. There was a 1.44-log reduction in viremia when mice were treated orally at 30 milligrams per kilogram twice daily for 3 days starting at the time of infection. NITD-688 treatment also resulted in a 1.16-log reduction in viremia when mice were treated 48 hours after infection. Selection of resistance mutations and binding studies with recombinant proteins indicated that the nonstructural protein 4B is the target of NITD-688. Pharmacokinetic studies in rats and dogs showed a long elimination half-life and good oral bioavailability. Extensive in vitro safety profiling along with exploratory rat and dog toxicology studies showed that NITD-688 was well tolerated after 7-day repeat dosing, demonstrating that NITD-688 may be a promising preclinical candidate for the treatment of dengue.
Collapse
Affiliation(s)
- Stephanie A Moquin
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA.,Novartis Institute for Tropical Diseases, Emeryville, CA 94608, USA
| | - Oliver Simon
- Novartis (Singapore) Pte Ltd, Singapore 117432, Singapore
| | - Ratna Karuna
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | | | - Fumiaki Yokokawa
- Novartis Institute for Tropical Diseases, Emeryville, CA 94608, USA
| | - Feng Wang
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA
| | - Chandra Saravanan
- Novartis Institutes for Biomedical Research, Translational Medicine: Preclinical Safety, Cambridge, MA 02139, USA
| | - Jin Zhang
- Novartis Institutes for Biomedical Research, Translational Medicine: Pharmacokinetics, East Hanover, NJ 07936, USA
| | - Craig W Day
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Katherine Chan
- Novartis Institute for Tropical Diseases, Emeryville, CA 94608, USA
| | - Qing-Yin Wang
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Siyan Lu
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Hongping Dong
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Kah Fei Wan
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Siew Pheng Lim
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Wei Liu
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Cheah Chen Seh
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Yen-Liang Chen
- Novartis Institute for Tropical Diseases, Emeryville, CA 94608, USA
| | - Haoying Xu
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - David T Barkan
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA
| | - Cyrille S Kounde
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | | | - Gang Wang
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Hui-Quan Yeo
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Bin Zou
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Wai Ling Chan
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Mei Ding
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Jae-Geun Song
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA
| | - Min Li
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA
| | - Colin Osborne
- Novartis Institute for Tropical Diseases, Emeryville, CA 94608, USA
| | - Francesca Blasco
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | | | - David Beer
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | | | - Vito G Sasseville
- Novartis Institutes for Biomedical Research, Translational Medicine: Preclinical Safety, Cambridge, MA 02139, USA
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | | | - Bryan K S Yeung
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore.
| | - Feng Gu
- Novartis Institute for Tropical Diseases, Emeryville, CA 94608, USA.
| |
Collapse
|
30
|
Zubair MS, Khairunisa SQ, Sulastri E, Ihwan, Widodo A, Nasronudin, Pitopang R. Antioxidant and antiviral potency of Begonia medicinalis fractions. J Basic Clin Physiol Pharmacol 2021; 32:845-851. [PMID: 34214356 DOI: 10.1515/jbcpp-2020-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/08/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study aims to evaluate the antioxidant and antiviral potency of n-hexane, ethyl acetate and, water fractions of Begonia medicinalis Ardi & D.C.Thomas as well as to identify the chemical constituents. METHODS Assays for antioxidant and antiviral activity (HIV-1) were carried out on MT-4 cells infected with HIV using the DPPH method and the determination of the cytopathic effect. Meanwhile, GC-MS was used to identify the chemical compounds. RESULTS The determination of antioxidants showed that all fractions possessed potent activity with the IC50 ranging from 2.61 to 8.26 μg/mL. From the antiviral activity of MT-4 cells infected by HIV, the n-hexane fraction of B. medicinalis showed the most potency with the IC50 of 0.04 ± 0.05 μg/mL. It has less cytotoxicity (11.08 ± 4.60 μg/mL) affording the high selectivity index of 238.80. Furthermore, GC-MS analysis of n-hexane fraction found the major compound of carboxylic acid derivate with the area percentage of 76.4% and the presence of phenolic compounds (8.38%). Meanwhile, in water fraction, terpenoids were found in a higher concentration (10.05%) than others. CONCLUSIONS Therefore, this study supports the application of B. medicinalis as a herbal medicine for antioxidant and antiviral.
Collapse
Affiliation(s)
| | | | - Evi Sulastri
- Department of Pharmacy, Tadulako University, Palu, Indonesia
| | - Ihwan
- Department of Pharmacy, Tadulako University, Palu, Indonesia
| | | | - Nasronudin
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | | |
Collapse
|
31
|
Antiviral screening on Alpinia eremochlamys, Etlingera flexuosa, and Etlingera acanthoides extracts against HIV-infected MT-4 cells. Heliyon 2021; 7:e06710. [PMID: 33869876 PMCID: PMC8045043 DOI: 10.1016/j.heliyon.2021.e06710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Alpinia eremochlamys K. Schum, Etlingera flexuosa A.D. Poulsen, and Etlingera acanthoides A.D. Poulsen are endemic Zingiberaceae plants from Central Sulawesi, Indonesia. This study is the first report on screening the potential antiviral activity of ethanol extracts of the leaves, pseudostems, and rhizomes parts on HIV-infected MT-4 cells and identifying chemical constituents by GC-MS. The plants were extracted by the maceration method using 96% ethanol as a solvent. The antiviral activity was measured using Viral-ToxGlo colorimetric method and using the extracts at concentrations ranging from 7.8 to 1000 μg/mL. GC-MS was used to identify the secondary metabolites of potential extracts. The results showed that ethanol extract of E. acanthoides rhizome was the most potent antiviral activity (IC50 of 1.74 ± 2.46 μg/mL) and less toxic on lymphocyte (MT-4) cells (CC50 of 204.90 ± 106.35 μg/mL), affording the highest value of selectivity index (SI) of 117.76. A. eremochlamys rhizomes also showed promising antiviral activity with IC50 of 64.18 ± 2.58 μg/mL and no toxicity on MT-4 cells affording a high SI value 19.05. Preliminary GC-MS identification showed the presence of terpenoids and fatty acids as major compounds. Zerumbone, ar-turmerone, caryophyllene, and caryophyllene oxide were also detected. Chemical constituents identified by GC-MS might be responsible for the antiviral activity of extracts, suggesting further isolation and antiviral testing of the purified compounds.
Collapse
|
32
|
Gómez-García M, Puente H, Argüello H, Mencía-Ares Ó, Rubio P, Carvajal A. In vitro Assessment of Antiviral Effect of Natural Compounds on Porcine Epidemic Diarrhea Coronavirus. Front Vet Sci 2021; 8:652000. [PMID: 33855058 PMCID: PMC8039285 DOI: 10.3389/fvets.2021.652000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Organic acid and essential oils (EOs), well-known antimicrobials, could also possess antiviral activity, a characteristic which has not been completely addressed up to now. In this study, the effect of two organic acids (formic acid and sodium salt of coconut fatty acid distillates) and two single EO compounds (thymol and cinnamaldehye) was evaluated against porcine epidemic diarrhea virus (PEDV). The concentration used for each compound was established by cytotoxicity assays in Vero cells. The antiviral activity was then evaluated at three multiplicities of infection (MOIs) through visual cytopathic effect (CPE) evaluation and an alamarBlue assay as well as real-time reverse-transcription PCR (RT-qPCR) and viral titration of cell supernatants. Formic acid at at a dose of 1,200 ppm was the only compound which showed antiviral activity, with a weak reduction of CPE caused by PEDV. Through the alamarBlue fluorescence assay, we showed a significant anti-CPE effect of formic acid which could not be observed by using an inverted optical microscope. RT-qPCR and infectivity analysis also showed that formic acid significantly reduced viral RNA and viral titers in a PEDV MOI-dependent manner. Our results suggest that the antiviral activity of formic acid could be associated to its inhibitory effect on viral replication. Further studies are required to explore the anti-PEDV activity of formic acid under field conditions alone or together with other antiviral agents.
Collapse
Affiliation(s)
- Manuel Gómez-García
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Héctor Puente
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Héctor Argüello
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Óscar Mencía-Ares
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Pedro Rubio
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Ana Carvajal
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| |
Collapse
|
33
|
AT-527, a Double Prodrug of a Guanosine Nucleotide Analog, Is a Potent Inhibitor of SARS-CoV-2 In Vitro and a Promising Oral Antiviral for Treatment of COVID-19. Antimicrob Agents Chemother 2021; 65:AAC.02479-20. [PMID: 33558299 PMCID: PMC8097421 DOI: 10.1128/aac.02479-20] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/03/2021] [Indexed: 01/17/2023] Open
Abstract
The impact of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, is global and unprecedented. Although remdesivir has recently been approved by the FDA to treat SARS-CoV-2 infection, no oral antiviral is available for outpatient treatment. AT-527, an orally administered double prodrug of a guanosine nucleotide analog, was previously shown to be highly efficacious and well tolerated in hepatitis C virus (HCV)-infected subjects. Here, we report the potent in vitro activity of AT-511, the free base of AT-527, against several coronaviruses, including SARS-CoV-2. In normal human airway epithelial cells, the concentration of AT-511 required to inhibit replication of SARS-CoV-2 by 90% (EC90) was 0.47 μM, very similar to its EC90 against human coronavirus (HCoV)-229E, HCoV-OC43, and SARS-CoV in Huh-7 cells. Little to no cytotoxicity was observed for AT-511 at concentrations up to 100 μM. Substantial levels of the active triphosphate metabolite AT-9010 were formed in normal human bronchial and nasal epithelial cells incubated with 10 μM AT-511 (698 ± 15 and 236 ± 14 μM, respectively), with a half-life of at least 38 h. Results from steady-state pharmacokinetic and tissue distribution studies of nonhuman primates administered oral doses of AT-527, as well as pharmacokinetic data from subjects given daily oral doses of AT-527, predict that twice daily oral doses of 550 mg AT-527 will produce AT-9010 trough concentrations in human lung that exceed the EC90 observed for the prodrug against SARS-CoV-2 replication. This suggests that AT-527 may be an effective treatment option for COVID-19.
Collapse
|
34
|
Welch JL, Xiang J, Mackin SR, Perlman S, Thorne P, O’Shaughnessy P, Strzelecki B, Aubin P, Ortiz-Hernandez M, Stapleton JT. Inactivation of Severe Acute Respiratory Coronavirus Virus 2 (SARS-CoV-2) and Diverse RNA and DNA Viruses on Three-Dimensionally Printed Surgical Mask Materials. Infect Control Hosp Epidemiol 2021; 42:253-260. [PMID: 32783787 PMCID: PMC7463154 DOI: 10.1017/ice.2020.417] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Personal protective equipment (PPE) is a critical need during the coronavirus disease 2019 (COVID-19) pandemic. Alternative sources of surgical masks, including 3-dimensionally (3D) printed approaches that may be reused, are urgently needed to prevent PPE shortages. Few data exist identifying decontamination strategies to inactivate viral pathogens and retain 3D-printing material integrity. OBJECTIVE To test viral disinfection methods on 3D-printing materials. METHODS The viricidal activity of common disinfectants (10% bleach, quaternary ammonium sanitizer, 3% hydrogen peroxide, or 70% isopropanol and exposure to heat (50°C, and 70°C) were tested on four 3D-printed materials used in the healthcare setting, including a surgical mask design developed by the Veterans' Health Administration. Inactivation was assessed for several clinically relevant RNA and DNA pathogenic viruses, including severe acute respiratory coronavirus virus 2 (SARS-CoV-2) and human immunodeficiency virus 1 (HIV-1). RESULTS SARS-CoV-2 and all viruses tested were completely inactivated by a single application of bleach, ammonium quaternary compounds, or hydrogen peroxide. Similarly, exposure to dry heat (70°C) for 30 minutes completely inactivated all viruses tested. In contrast, 70% isopropanol reduced viral titers significantly less well following a single application. Inactivation did not interfere with material integrity of the 3D-printed materials. CONCLUSIONS Several standard decontamination approaches effectively disinfected 3D-printed materials. These approaches were effective in the inactivation SARS-CoV-2, its surrogates, and other clinically relevant viral pathogens. The decontamination of 3D-printed surgical mask materials may be useful during crisis situations in which surgical mask supplies are limited.
Collapse
Affiliation(s)
- Jennifer L. Welch
- Medical Service, Iowa City Veterans’ Affairs Medical Center, Iowa City, Iowa
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Jinhua Xiang
- Medical Service, Iowa City Veterans’ Affairs Medical Center, Iowa City, Iowa
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Samantha R. Mackin
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Stanley Perlman
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Peter Thorne
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Patrick O’Shaughnessy
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | | | - Patrick Aubin
- Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Washington
- Department of Mechanical Engineering, University of Washington, Seattle, Washington
| | - Monica Ortiz-Hernandez
- Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Washington
- Department of Mechanical Engineering, University of Washington, Seattle, Washington
| | - Jack T. Stapleton
- Medical Service, Iowa City Veterans’ Affairs Medical Center, Iowa City, Iowa
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
35
|
Hoffman RL, Kania RS, Brothers MA, Davies JF, Ferre RA, Gajiwala KS, He M, Hogan RJ, Kozminski K, Li LY, Lockner JW, Lou J, Marra MT, Mitchell LJ, Murray BW, Nieman JA, Noell S, Planken SP, Rowe T, Ryan K, Smith GJ, Solowiej JE, Steppan CM, Taggart B. Discovery of Ketone-Based Covalent Inhibitors of Coronavirus 3CL Proteases for the Potential Therapeutic Treatment of COVID-19. J Med Chem 2020; 63:12725-12747. [PMID: 33054210 PMCID: PMC7571312 DOI: 10.1021/acs.jmedchem.0c01063] [Citation(s) in RCA: 347] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 01/16/2023]
Abstract
The novel coronavirus disease COVID-19 that emerged in 2019 is caused by the virus SARS CoV-2 and named for its close genetic similarity to SARS CoV-1 that caused severe acute respiratory syndrome (SARS) in 2002. Both SARS coronavirus genomes encode two overlapping large polyproteins, which are cleaved at specific sites by a 3C-like cysteine protease (3CLpro) in a post-translational processing step that is critical for coronavirus replication. The 3CLpro sequences for CoV-1 and CoV-2 viruses are 100% identical in the catalytic domain that carries out protein cleavage. A research effort that focused on the discovery of reversible and irreversible ketone-based inhibitors of SARS CoV-1 3CLpro employing ligand-protease structures solved by X-ray crystallography led to the identification of 3 and 4. Preclinical experiments reveal 4 (PF-00835231) as a potent inhibitor of CoV-2 3CLpro with suitable pharmaceutical properties to warrant further development as an intravenous treatment for COVID-19.
Collapse
Affiliation(s)
- Robert L. Hoffman
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Robert S. Kania
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Mary A. Brothers
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Jay F. Davies
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Rose A. Ferre
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Ketan S. Gajiwala
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Mingying He
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Robert J. Hogan
- Southern Research
Institute, 2000 9th Avenue South, Birmingham,
Alabama 35205 United States
| | - Kirk Kozminski
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Lilian Y. Li
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Jonathan W. Lockner
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Jihong Lou
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Michelle T. Marra
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Lennert J. Mitchell
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Brion W. Murray
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - James A. Nieman
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Stephen Noell
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Simon P. Planken
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Thomas Rowe
- Southern Research
Institute, 2000 9th Avenue South, Birmingham,
Alabama 35205 United States
| | - Kevin Ryan
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - George J. Smith
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - James E. Solowiej
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Claire M. Steppan
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Barbara Taggart
- Southern Research
Institute, 2000 9th Avenue South, Birmingham,
Alabama 35205 United States
| |
Collapse
|
36
|
Perricone C, Triggianese P, Bartoloni E, Cafaro G, Bonifacio AF, Bursi R, Perricone R, Gerli R. The anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19. J Autoimmun 2020; 111:102468. [PMID: 32317220 PMCID: PMC7164894 DOI: 10.1016/j.jaut.2020.102468] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has posed the world at a pandemic risk. Coronavirus-19 disease (COVID-19) is an infectious disease caused by SARS-CoV-2, which causes pneumonia, requires intensive care unit hospitalization in about 10% of cases and can lead to a fatal outcome. Several efforts are currently made to find a treatment for COVID-19 patients. So far, several anti-viral and immunosuppressive or immunomodulating drugs have demonstrated some efficacy on COVID-19 both in vitro and in animal models as well as in cases series. In COVID-19 patients a pro-inflammatory status with high levels of interleukin (IL)-1B, IL-1 receptor (R)A and tumor necrosis factor (TNF)-α has been demonstrated. Moreover, high levels of IL-6 and TNF-α have been observed in patients requiring intensive-care-unit hospitalization. This provided rationale for the use of anti-rheumatic drugs as potential treatments for this severe viral infection. Other agents, such as hydroxychloroquine and chloroquine might have a direct anti-viral effect. The anti-viral aspect of immunosuppressants towards a variety of viruses has been known since long time and it is herein discussed in the view of searching for a potential treatment for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Angelo F Bonifacio
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Roberto Bursi
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy.
| |
Collapse
|
37
|
Tilorone, a Broad-Spectrum Antiviral for Emerging Viruses. Antimicrob Agents Chemother 2020; 64:AAC.00440-20. [PMID: 32205350 PMCID: PMC7179581 DOI: 10.1128/aac.00440-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/14/2020] [Indexed: 11/21/2022] Open
Abstract
Tilorone is a 50-year-old synthetic small-molecule compound with antiviral activity that is proposed to induce interferon after oral administration. This drug is used as a broad-spectrum antiviral in several countries of the Russian Federation. We have recently described activity in vitro and in vivo against the Ebola virus. After a broad screening of additional viruses, we now describe in vitro activity against Chikungunya virus (CHIK) and Middle Eastern respiratory syndrome coronavirus (MERS-CoV). Tilorone is a 50-year-old synthetic small-molecule compound with antiviral activity that is proposed to induce interferon after oral administration. This drug is used as a broad-spectrum antiviral in several countries of the Russian Federation. We have recently described activity in vitro and in vivo against the Ebola virus. After a broad screening of additional viruses, we now describe in vitro activity against Chikungunya virus (CHIK) and Middle Eastern respiratory syndrome coronavirus (MERS-CoV).
Collapse
|
38
|
Abou-Elkhair RAI, Wasfy AA, Mao S, Du J, Eladl S, Metwally K, Hassan AEA, Sheng J. 2-Hydroxyimino-6-aza-pyrimidine nucleosides: synthesis, DFT calculations, and antiviral evaluations. NEW J CHEM 2020. [DOI: 10.1039/d0nj04154h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis, DFT calculations, and antiviral evaluation of a series of novel 2-hydroxyimino-6-aza-pyrimidine ribonucleosides is reported. The hydrogen bonding between the C2N–OH moiety and N3–H and/or N3 moieties shapes the pyrimidine nucleoside as purine.
Collapse
Affiliation(s)
- Reham A. I. Abou-Elkhair
- Applied Nucleic Acids Research Center & Chemistry
- Faculty of Science
- Zagazig University
- Zagazig
- Egypt
| | - Abdalla A. Wasfy
- Applied Nucleic Acids Research Center & Chemistry
- Faculty of Science
- Zagazig University
- Zagazig
- Egypt
| | - Song Mao
- Department of Chemistry and The RNA Institute
- University at Albany
- State University of New York
- Albany
- USA
| | - Jinxi Du
- Department of Chemistry and The RNA Institute
- University at Albany
- State University of New York
- Albany
- USA
| | - Sobhy Eladl
- Department of Medicinal Chemistry
- Faculty of Pharmacy
- Zagazig University
- Zagazig
- Egypt
| | - Kamel Metwally
- Department of Medicinal Chemistry
- Faculty of Pharmacy
- Zagazig University
- Zagazig
- Egypt
| | - Abdalla E. A. Hassan
- Applied Nucleic Acids Research Center & Chemistry
- Faculty of Science
- Zagazig University
- Zagazig
- Egypt
| | - Jia Sheng
- Department of Chemistry and The RNA Institute
- University at Albany
- State University of New York
- Albany
- USA
| |
Collapse
|
39
|
Abdelnabi R, Jacobs S, Delang L, Neyts J. Antiviral drug discovery against arthritogenic alphaviruses: Tools and molecular targets. Biochem Pharmacol 2019; 174:113777. [PMID: 31874146 DOI: 10.1016/j.bcp.2019.113777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023]
Abstract
Alphaviruses are (mainly) arthropod-borne viruses that belong to the family of the Togaviridae. Based on the disease they cause, alphaviruses are divided into an arthritogenic and an encephalitic group. Arthritogenic alphaviruses such as the chikungunya virus (CHIKV), the Ross River virus (RRV) and the Mayaro virus (MAYV) have become a serious public health concern in recent years. Epidemics are associated with high morbidity and the infections cause in many patients debilitating joint pain that can persist for months to years. The recent (2013-2014) introduction of CHIKV in the Americas resulted in millions of infected persons. Massive outbreaks of CHIKV and other arthritogenic alphaviruses are likely to occur in the future. Despite the worldwide (re-)emergence of these viruses, there are no antivirals or vaccines available for the treatment or prevention of infections with alphaviruses. It is therefore of utmost importance to develop antiviral strategies against these viruses. We here review the possible molecular targets in the replication cycle of these viruses for the development of antivirals. In addition, we provide an overview of the currently available in vitro systems and mouse infection models that can be used to assess the potential antiviral effect against these viruses.
Collapse
Affiliation(s)
- Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Sofie Jacobs
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium.
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium.
| |
Collapse
|
40
|
Koutsoni OS, Karampetsou K, Dotsika E. In vitro Screening of Antileishmanial Activity of Natural Product Compounds: Determination of IC 50, CC 50 and SI Values. Bio Protoc 2019; 9:e3410. [PMID: 33654910 DOI: 10.21769/bioprotoc.3410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/28/2019] [Accepted: 10/10/2019] [Indexed: 11/02/2022] Open
Abstract
Neglected tropical diseases gain the scientific interest of numerous research programs in an attempt to achieve their effective control or elimination. In this attempt, more cutting-edge public health policies and research are needed for the discovery of new, safer and effective drugs originated from natural products. Here, we describe protocols for the in vitro screening of a natural product-derived compound required for the determination of its antileishmanial potency. For this purpose, the Total Phenolic Fraction (TPF) derived from extra virgin olive oil is evaluated through the in vitro cell culture method against extracellular promastigote and intracellular amastigote Leishmania spp. forms. The aim of this article is to describe a step-by-step procedure that can be easily applied to accurately estimate the 50% inhibitory concentration (IC50), the 50% cytotoxic concentration (CC50) and the selectivity index (SI) via the resazurin reduction assay. These protocols are based on the ability of resazurin (oxidized blue form) to be irreversibly reduced by enzymes in viable cells and generate a red fluorescent resorufin product and can be easily expanded to the investigation of the antimicrobial activity in other microorganisms.
Collapse
Affiliation(s)
- Olga S Koutsoni
- Laboratory of Cellular Immunology & National Reference Laboratory for Leishmaniasis, Department of Microbiology, Hellenic Pasteur Institute, 127 Vass. Sofias av., 11521 Athens, Greece
| | - Kalliopi Karampetsou
- Laboratory of Cellular Immunology & National Reference Laboratory for Leishmaniasis, Department of Microbiology, Hellenic Pasteur Institute, 127 Vass. Sofias av., 11521 Athens, Greece.,Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Eleni Dotsika
- Laboratory of Cellular Immunology & National Reference Laboratory for Leishmaniasis, Department of Microbiology, Hellenic Pasteur Institute, 127 Vass. Sofias av., 11521 Athens, Greece
| |
Collapse
|
41
|
Artyushin OI, Moiseeva AA, Zarubaev VV, Slita AV, Galochkina AV, Muryleva AA, Borisevich SS, Yarovaya OI, Salakhutdinov NF, Brel VK. Synthesis of Camphecene and Cytisine Conjugates Using Click Chemistry Methodology and Study of Their Antiviral Activity. Chem Biodivers 2019; 16:e1900340. [PMID: 31647170 DOI: 10.1002/cbdv.201900340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
A series of camphecene and quinolizidine alkaloid (-)-cytisine conjugates has been obtained for the first time using 'click' chemistry methodology. The cytotoxicity and virus-inhibiting activity of compounds were determined against MDCK cells and influenza virus A/Puerto Rico/8/34 (H1N1), correspondingly, in in vitro tests. Based on the results obtained, values of 50 % cytotoxic dose (CC50 ), 50 % inhibition dose (IC50 ) and selectivity index (SI) were determined for each compound. It has been shown that the antiviral activity is affected by the length and nature of linkers between cytisine and camphor units. Conjugate 13 ((1R,5S)-3-(6-{4-[(2-{(E)-[(1R,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene]amino}ethoxy)methyl]-1H-1,2,3-triazol-1-yl}hexyl)-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one), which contains cytisine fragment separated from triazole ring by -C6 H12 - aliphatic linker, showed the highest activity at relatively low toxicity (CC50 =168 μmol, IC50 =8 μmol, SI=20). Its selectivity index appeared higher than that of reference compound, rimantadine. According to theoretical calculations, the antiviral activity of the lead compound 13 can be explained by its influence on the functioning of neuraminidase.
Collapse
Affiliation(s)
- Oleg I Artyushin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova Str., Moscow, 119991, Russia
| | - Aleksandra A Moiseeva
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova Str., Moscow, 119991, Russia
| | - Vladimir V Zarubaev
- Paster Research Institute of Epidemiology and Microbiology, 14 Mira Str., St. Petersburg, 197101, Russia
| | - Aleksander V Slita
- Paster Research Institute of Epidemiology and Microbiology, 14 Mira Str., St. Petersburg, 197101, Russia
| | - Anastasiya V Galochkina
- Paster Research Institute of Epidemiology and Microbiology, 14 Mira Str., St. Petersburg, 197101, Russia
| | - Anna A Muryleva
- Paster Research Institute of Epidemiology and Microbiology, 14 Mira Str., St. Petersburg, 197101, Russia
| | | | - Olga I Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, 9 Lavrent'ev ave., Novosibirsk, 630090, Russia.,Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia
| | - Nariman F Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, 9 Lavrent'ev ave., Novosibirsk, 630090, Russia.,Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia
| | - Valery K Brel
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova Str., Moscow, 119991, Russia
| |
Collapse
|
42
|
Yarovaya OI, Sokolova AS, Mainagashev IY, Volobueva AS, Lantseva K, Borisevich SS, Shtro AA, Zarubaev VV, Salakhutdinov NF. Synthesis and structure-activity relationships of novel camphecene analogues as anti-influenza agents. Bioorg Med Chem Lett 2019; 29:126745. [PMID: 31668423 DOI: 10.1016/j.bmcl.2019.126745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023]
Abstract
A chemical library was constructed based on the scaffold of camphecene (2-(E)-((1R,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene-aminoethanol). The modifications included introduction of mono-and bicyclic heterocyclic moieties in place of the terminal hydroxyl group of camphecene. All compounds were tested for cytotoxicity and anti-viral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells. Among 15 tested compounds 11 demonstrated a selectivity index (SI) higher than 10 and IC50 values in the micromolar range. The antiviral activity and toxicity were shown to strongly depend on the nature of the heterocyclic substituent. Compounds 2 and 14 demonstrated the highest virus-inhibiting activity with SIs of 106 and 183, and bearing pyrrolidine and piperidine moieties, correspondingly. Compound 14 was shown to interfere with viral reproduction at early stages of the viral life cycle (0-2 h post-infection). Taken together, our data suggest potential of camphecene derivatives in particular and camphor-based imine derivatives in general as effective anti-influenza compounds.
Collapse
Affiliation(s)
- Olga I Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia.
| | - Anastasiya S Sokolova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Iliya Ya Mainagashev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Alexandrina S Volobueva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Str., 197101 St. Petersburg, Russia
| | - Khristina Lantseva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Str., 197101 St. Petersburg, Russia
| | - Sophia S Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, 71 Octyabrya pr., 450054 Ufa, Russia
| | - Anna A Shtro
- Department of Chemotherapy, Influenza Research Institute, 15/17 Prof. Popova St., 197376 St. Petersburg, Russia
| | - Vladimir V Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Str., 197101 St. Petersburg, Russia
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
| |
Collapse
|
43
|
Kovaleva KS, Zubkov FI, Bormotov NI, Novikov RA, Dorovatovskii PV, Khrustalev VN, Gatilov YV, Zarubaev VV, Yarovaya OI, Shishkina LN, Salakhutdinov NF. Synthesis of d-(+)-camphor-based N-acylhydrazones and their antiviral activity. MEDCHEMCOMM 2018; 9:2072-2082. [PMID: 30746065 DOI: 10.1039/c8md00442k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/22/2018] [Indexed: 12/26/2022]
Abstract
The design and synthesis of a series of novel d-(+)-camphor N-acylhydrazones exhibiting inhibitory activity against vaccinia and influenza viruses are presented. An easy pathway to camphor-based N-acylhydrazones containing in their structure aliphatic, aromatic, and heterocyclic pharmacophore scaffolds has been developed. The conformation and configuration of the synthesized hydrazones were thoroughly characterized by a complete set of spectral characterization techniques, including 2D NMR spectroscopy, mass spectrometry, and X-ray diffraction analysis. In vitro screening for activity against vaccinia virus (VV) and influenza H1N1 virus was carried out for the obtained compounds. It was revealed that the derived N-acylhydrazones exhibited significant antiviral activity with a selectivity index >280 against VV for the most promising compound.
Collapse
Affiliation(s)
- Kseniya S Kovaleva
- Novosibirsk Institute of Organic Chemistry , Siberian Branch of the Russian Academy of Sciences , Lavrentjev Ave. 9 , 630090 Novosibirsk , Russian Federation . .,Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russian Federation . .,RUDN University , 6 Miklukho-Maklaya St , 117198 Moscow , Russian Federation .
| | - Fedor I Zubkov
- RUDN University , 6 Miklukho-Maklaya St , 117198 Moscow , Russian Federation .
| | - Nikolay I Bormotov
- Department of Prevention and Treatment of Especially Dangerous Infections , State Research Centre of Virology and Biotechnology VECTOR , Koltsovo , Novosibirsk Region , 630559 , Russian Federation
| | - Roman A Novikov
- Engelhardt Institute of Molecular Biology , Russian Academy of Sciences , 32 Vavilov St. , 119991 Moscow , Russian Federation
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute" , 1 Acad. Kurchatov Sq. , 123182 Moscow , Russian Federation
| | - Victor N Khrustalev
- RUDN University , 6 Miklukho-Maklaya St , 117198 Moscow , Russian Federation . .,National Research Center "Kurchatov Institute" , 1 Acad. Kurchatov Sq. , 123182 Moscow , Russian Federation
| | - Yuriy V Gatilov
- Novosibirsk Institute of Organic Chemistry , Siberian Branch of the Russian Academy of Sciences , Lavrentjev Ave. 9 , 630090 Novosibirsk , Russian Federation . .,Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russian Federation .
| | - Vladimir V Zarubaev
- Pasteur Institute of Epidemiology and Microbiology , 14 Mira str. , 197101 St. Petersburg , Russia
| | - Olga I Yarovaya
- Novosibirsk Institute of Organic Chemistry , Siberian Branch of the Russian Academy of Sciences , Lavrentjev Ave. 9 , 630090 Novosibirsk , Russian Federation . .,Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russian Federation .
| | - Larisa N Shishkina
- Department of Prevention and Treatment of Especially Dangerous Infections , State Research Centre of Virology and Biotechnology VECTOR , Koltsovo , Novosibirsk Region , 630559 , Russian Federation
| | - Nariman F Salakhutdinov
- Novosibirsk Institute of Organic Chemistry , Siberian Branch of the Russian Academy of Sciences , Lavrentjev Ave. 9 , 630090 Novosibirsk , Russian Federation . .,Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russian Federation .
| |
Collapse
|
44
|
Smee DF, Jung KH, Westover J, Gowen BB. 2'-Fluoro-2'-deoxycytidine is a broad-spectrum inhibitor of bunyaviruses in vitro and in phleboviral disease mouse models. Antiviral Res 2018; 160:48-54. [PMID: 30339848 DOI: 10.1016/j.antiviral.2018.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/13/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
Abstract
2'-Fluoro-2'-deoxycytidine (2'-FdC) was reported to inhibit various viruses in vitro, including Borna disease, hepatitis C, Lassa fever, influenza and certain herpes viruses, and is inhibitory to influenza viruses in mice. We investigated the antiviral activity of 2'-FdC against several unrelated bunyaviruses in 50% cytopathic effect (CPE) inhibition assays and, with viruses that cause limited CPE, 90% virus yield reduction (VYR) assays. La Crosse (LACV), Maporal, Punta Toro, Rift Valley fever (RVFV), and San Angelo viruses were inhibited in CPE assays at 2.2-9.7 μM concentrations. In VYR assays, Heartland and severe fever with thrombocytopenia syndrome (SFTSV) viruses were inhibited at 0.9 and 3.7 μM, respectively. In contrast, ribavirin inhibited these viruses at an average of 47 μM. Antiviral efficacy studies were also conducted in mice infected with RVFV, SFTSV, and LACV. Against RVFV, 2'-FdC (100 and 200 mg/kg/day) and ribavirin (100 mg/kg/day) treatments each delayed mortality by approximately 6 days compared to placebo. Liver, spleen, and serum viral titers were significantly reduced by antiviral treatments. 2'-FdC (100 and 200 mg/kg/day) prevented death in SFTSV-infected mice, but was not as effective as favipiravir (100 mg/kg/day) based on body weight loss during infection. The 100 mg/kg/day doses of 2'-FdC and favipiravir significantly reduced liver, spleen, and serum viral titers. 2'-FdC and ribavirin afforded no protection against LACV infection in mice, which is encephalitic and thus inherently more difficult to treat. Taken together, our data suggest that 2'-FdC may be a viable candidate for treating certain non-encephalitic bunyavirus infections such as those caused by phleboviruses.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | - Kie-Hoon Jung
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Jonna Westover
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Brian B Gowen
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| |
Collapse
|
45
|
Smee DF, Prichard MN. Comparison of three dimensional synergistic analyses of percentage versus logarithmic data in antiviral studies. Antiviral Res 2017; 145:1-5. [PMID: 28676302 DOI: 10.1016/j.antiviral.2017.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/26/2023]
Abstract
Cell culture antiviral experiments were conducted in order to understand the relationship between percentage data generated by plaque reduction (PR) and logarithmic data derived by virus yield reduction (VYR) assays, using three-dimensional MacSynergy II software. The relationship between percentage and logarithmic data has not been investigated previously. Interpretation of drug-drug interactions is based on a Volume of Synergy (VS) calculation, which can be positive (synergy), negative (antagonistic), or neutral (no or minimal interaction). Interactions of two known inhibitors of vaccinia virus replication, cidofovir and 6-azauridine, used in combination by PR assay yielded a VS value of 265, indicative of strong synergy. By VYR, the VS value was only 37, or weak synergy using the same criterion, even though profound log10 reductions in virus titer occurred at multiple drug combinations. These results confirm that the differences in VS values is dependent of the measurement scale, and not that the degree of synergy differed between the assays. We propose that for logarithmic data, the calculated VS values will be lower for significant synergy and antagonism and that volumes of >10 μM2log10 PFU/ml (or other units such as μM2log10 genomic equivalents/ml or μM2log10 copies/ml) and <-10 μM2log10 PFU/ml are likely to be indicative of strong synergy and strong antagonism, respectively. Data presented here show that the interaction of cidofovir and 6-azauridine was strongly synergistic in vitro.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322-5600, USA.
| | - Mark N Prichard
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, 35233-1711, USA
| |
Collapse
|