1
|
Medrouh B, Abdelli A, Belkessa S, Ouinten Y, Brahimi M, Hakem A, Kernif T, Singer SM, Ziam H, Tsaousis AD, Jokelainen P, Savini G, Pasolli E. Seroprevalence and risk factors of bluetongue virus in domestic cattle, sheep, goats and camels in Africa: a systematic review and meta-analysis. Vet Q 2024; 44:1-12. [PMID: 39210745 PMCID: PMC11370698 DOI: 10.1080/01652176.2024.2396118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Bluetongue (BT) is a vector-borne disease affecting wild and domestic ruminants in many parts of the world. Although bluetongue virus (BTV) is widespread in ungulates in Africa, available epidemiological information on BT in this continent is limited. This systematic review and meta-analysis aimed to estimate the seroprevalence of BTV and summarize information on associated risk factors in domestic ruminants and camels in Africa. Systematic searches were conducted from the inception of the database to November 2022 on PubMed/MEDLINE, ScienceDirect, Web of Science, and Google/Google Scholar. Forty-four eligible publications were identified, published in the range from 1973 to 2020, and statistically analyzed. The pooled overall seroprevalence of BTV was 45.02% (95% confidence interval [CI]: 36.00-54.00%). The pooled seroprevalence was 49.70% (95% CI: 34.50-65.00%) in cattle, 47.00% (95% CI: 29.90-64.50%) in goats, 40.80% (95% CI: 19.60-63.90%) in camels, and 36.30% (95% CI: 29.00-44.90%) in sheep. The pooled seroprevalence decreased after 1990 and increased again after 2010. The highest pooled overall seroprevalence was found in the southeastern region, and the highest pooled overall seroprevalence was obtained by Competitive Enzyme-Linked Immunosorbent Assay. Finally, the seroprevalence in females (53.30%, 95% CI: 34.80-71.00%) was significantly higher than in males (28.10%, 95% CI: 17.40-40.30%) (p < 0.05). We showed that antibodies against BTV were common in African ruminants and camels. Monitoring the seroprevalence of BTV, as well as systematic and continuous surveillance of the Culicoides population, are encouraged to prevent and control the spread of BT.
Collapse
Affiliation(s)
| | - Amine Abdelli
- Department of Agricultural Sciences, University of Bouira, Bouira, Algeria
| | - Salem Belkessa
- Laboratory of Exploration and Valorization of Steppic Ecosystems, Department of Biology, Faculty of Nature and Life Sciences, Ziane Achour University of Djelfa, Djelfa, Algeria
| | | | | | - Ahcène Hakem
- Research Centre for Agropastoralism, Djelfa, Algeria
| | - Tahar Kernif
- Laboratory of Parasitic Eco-epidemiology and Population Genetics, Pasteur Institute of Algeria, Dely-Brahim, Algeria
| | - Steven M. Singer
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Hocine Ziam
- Laboratory of Biotechnology, Environment and Health, University of Blida 1, Blida, Algeria
| | - Anastasios D. Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Pikka Jokelainen
- Infectious Disease Preparedness and One Health, Statens Serum Institut, Copenhagen, Denmark
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise (IZS-Teramo), Teramo, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Portici, Italy
| |
Collapse
|
2
|
Martinelle L, Haegeman A, Lignereux L, Chaber AL, Dal Pozzo F, De Leeuw I, De Clercq K, Saegerman C. Orbivirus Screening from Imported Captive Oryx in the United Arab Emirates Stresses the Importance of Pre-Import and Transit Measures. Pathogens 2022; 11:pathogens11060697. [PMID: 35745551 PMCID: PMC9229846 DOI: 10.3390/pathogens11060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
From 1975 to 2021, the United Arab Emirates (UAE) imported more than 1300 live Arabian oryxes (AOs) and scimitar-horned oryxes (SHOs) for conservation programs. The objective of this study was to estimate the prevalence of orbiviruses Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) in AOs and SHOs from captive herds in the UAE. Between October 2014 and April 2015, 16 AOs and 13 SHOs originating from Texas (USA) and 195 out of about 4000 SHOs from two locations in the UAE were blood sampled to be tested by indirect enzyme-linked immunosorbent assay (ELISA) and real-time reverse transcriptase polymerase chain reaction (RT-qPCR) assays. Eight imported AOs (50% CI [24.7–75.4%]) and eight imported SHOs (61.5% CI [31.6–86.1%]) were found BTV seropositive, in contrast with three out of 195 SHOs (1.5% CI [0.3–4.4%]) from the Emirates. BTV-2 genome was detected in 6/16 of the Arabian Oryx, and amongst those, one out of six was seronegative. None of the tested samples was found positive for EHDV. Our results illustrate the wide local variation regarding BTV seroprevalence in domestic and wild ruminants in the Arabian Peninsula. These results stress the need for pre-import risk assessment when considering translocation of wild ruminant species susceptible to orbiviruses not only in the country of destination but also where transit happens.
Collapse
Affiliation(s)
- Ludovic Martinelle
- CARE-FEPEX Experimental Station, Fundamental and Applied Research for Animals & Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium; (L.L.); (F.D.P.); (C.S.)
- Correspondence: ; Tel.: +32-4-366-40-39
| | - Andy Haegeman
- Sciensano, Infectious Diseases in Animals, Exotic and Particular Diseases, 1050 Brussels, Belgium; (A.H.); (I.D.L.); (K.D.C.)
| | - Louis Lignereux
- CARE-FEPEX Experimental Station, Fundamental and Applied Research for Animals & Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium; (L.L.); (F.D.P.); (C.S.)
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Anne-Lise Chaber
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Fabiana Dal Pozzo
- CARE-FEPEX Experimental Station, Fundamental and Applied Research for Animals & Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium; (L.L.); (F.D.P.); (C.S.)
| | - Ilse De Leeuw
- Sciensano, Infectious Diseases in Animals, Exotic and Particular Diseases, 1050 Brussels, Belgium; (A.H.); (I.D.L.); (K.D.C.)
| | - Kris De Clercq
- Sciensano, Infectious Diseases in Animals, Exotic and Particular Diseases, 1050 Brussels, Belgium; (A.H.); (I.D.L.); (K.D.C.)
| | - Claude Saegerman
- CARE-FEPEX Experimental Station, Fundamental and Applied Research for Animals & Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium; (L.L.); (F.D.P.); (C.S.)
| |
Collapse
|
3
|
Kirkland PD, Farrugia B, Frost MJ, Zhang C, Finlaison DS. Multiplexed serotype-specific real time PCR assays - a valuable tool to support large scale surveillance for bluetongue virus infection. Transbound Emerg Dis 2022; 69:e2590-e2601. [PMID: 35621508 DOI: 10.1111/tbed.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
In the last decade, real time PCR has been increasingly adopted for bluetongue diagnosis with both broadly reactive and serotype-specific assays widely used. The use of these assays and nucleic acid sequencing technologies have enhanced bluetongue virus detection, resulting in the identification of a number of new serotypes. As a result, 27 different serotypes are officially recognised and at least 3 more are proposed. Rapid identification of the virus serotype is essential for matching of antigens used in vaccines and to undertake surveillance and epidemiological studies to assist risk management. However, it is not uncommon for multiple serotypes to circulate in a region either concurrently or in successive years. It is therefore necessary to have a large suite of assays available to ensure that the full spectrum of viruses is detected. Nevertheless, covering a large range of virus serotypes is demanding from both a time and resource perspective. To overcome these challenges, real time PCR assays were optimised to match local virus strains and then combined in a panel of quadriplex assays, resulting in 3 assays to detect 12 serotypes directly from blood samples from cattle and sheep. These multiplex assays have been used extensively for bluetongue surveillance in both sentinel animals and opportunistically collected samples. A protocol to adapt these assays to capture variations in local strains of bluetongue virus and to expand the panel is described. Collectively these assays provide powerful tools for surveillance and the rapid identification of bluetongue virus serotypes directly from animal blood samples. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- P D Kirkland
- Virology Laboratory, Elizabeth Macarthur Agriculture Institute, NSW Department of Primary Industries, Woodbridge Rd, Menangle, NSW, 2568, Australia
| | - B Farrugia
- Virology Laboratory, Elizabeth Macarthur Agriculture Institute, NSW Department of Primary Industries, Woodbridge Rd, Menangle, NSW, 2568, Australia
| | - M J Frost
- Virology Laboratory, Elizabeth Macarthur Agriculture Institute, NSW Department of Primary Industries, Woodbridge Rd, Menangle, NSW, 2568, Australia
| | - C Zhang
- Virology Laboratory, Elizabeth Macarthur Agriculture Institute, NSW Department of Primary Industries, Woodbridge Rd, Menangle, NSW, 2568, Australia
| | - D S Finlaison
- Virology Laboratory, Elizabeth Macarthur Agriculture Institute, NSW Department of Primary Industries, Woodbridge Rd, Menangle, NSW, 2568, Australia
| |
Collapse
|
4
|
López-Vázquez C, Bandín I, Dopazo CP. Design and Evaluation of a Macroarray for Detection, Identification, and Typing of Viral Hemorrhagic Septicemia Virus (VHSV). Animals (Basel) 2021; 11:841. [PMID: 33809757 PMCID: PMC8002285 DOI: 10.3390/ani11030841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
The viral hemorrhagic septicemia virus (VHSV) is the causative agent of an important disease in freshwater and marine fishes. Its diagnosis officially relies on the isolation of the virus in cell culture and its identification by serological or polymerase chain reaction (PCR) methodologies. Nowadays, reverse transcription real-time quantitative PCR (RT-qPCR) is the most widely employed technique for the detection of this virus and some studies have reported the validation of RT-qPCR procedures for the detection, typing, and quantification of VHSV isolates. However, although the efficacy of this technique is not in doubt, it can be cumbersome and even impractical when it comes to processing large numbers of samples, a situation in which cross-contamination problems cannot be ruled out. In the present study, we have designed and validated a macroarray for the simultaneous detection, typing, and quantification of VHSV strains. Its analytical sensitivity (5-50 TCID50/mL), analytical specificity (intra and intergroup), efficiency (E = 100.0-101.1) and reliability (repeatability and reproducibility with CV < 5%, and standard curves with R2 < 0.95) with strains from any VHSV genotype have been widely demonstrated. The procedure is based on the 'binary multiplex RT-qPCR system (bmRT-qPCR)' previously reported by the same team, applied to arrays of 96-well PCR strip tubes plates, which can be stored at -25 °C for three months and up to one year before their use, without significant loss of efficiency.
Collapse
Affiliation(s)
- Carmen López-Vázquez
- Unidad de Ictiopatología, Instituto de Acuicultura y Departamento de Microbiología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Isabel Bandín
- Unidad de Ictiopatología, Instituto de Acuicultura y Departamento de Microbiología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos P Dopazo
- Unidad de Ictiopatología, Instituto de Acuicultura y Departamento de Microbiología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Swift and Reliable "Easy Lab" Methods for the Sensitive Molecular Detection of African Swine Fever Virus. Int J Mol Sci 2021; 22:ijms22052307. [PMID: 33669073 PMCID: PMC7956467 DOI: 10.3390/ijms22052307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 01/19/2023] Open
Abstract
African swine fever (ASF) is a contagious viral hemorrhagic disease of domestic pigs and wild boars. The disease is notifiable to the World Organisation for Animal Health (OIE) and is responsible for high mortality and serious economic losses. PCR and real-time PCR (qPCR) are the OIE-recommended standard methods for the direct detection of African swine fever virus (ASFV) DNA. The aim of our work was the simplification and standardization of the molecular diagnostic workflow in the lab. For validation of this “easy lab” workflow, different sample materials from animal trials were collected and analyzed (EDTA blood, serum, oral swabs, chewing ropes, and tissue samples) to identify the optimal sample material for diagnostics in live animals. Based on our data, the EDTA blood samples or bloody tissue samples represent the best specimens for ASFV detection in the early and late phases of infection. The application of prefilled ready-to-use reagents for nucleic acid extraction or the use of a Tissue Lysis Reagent (TLR) delivers simple and reliable alternatives for the release of the ASFV nucleic acids. For the qPCR detection of ASFV, different published and commercial kits were compared. Here, a lyophilized commercial kit shows the best results mainly based on the increased template input. The good results of the “easy lab” strategy could be confirmed by the ASFV detection in field samples from wild boars collected from the 2020 ASFV outbreak in Germany. Appropriate internal control systems for extraction and PCR are key features of the “easy lab” concept and reduce the risk of false-negative and false-positive results. In addition, the use of easy-to-handle machines and software reduces training efforts and the misinterpretation of results. The PCR diagnostics based on the “easy lab” strategy can realize a high sensitivity and specificity comparable to the standard PCR methods and should be especially usable for labs with limited experiences and resources.
Collapse
|
6
|
Ashby M, Rajko-Nenow P, Batten C, Flannery J. Simultaneous Detection of Bluetongue Virus Serotypes Using xMAP Technology. Microorganisms 2020; 8:microorganisms8101564. [PMID: 33050655 PMCID: PMC7650804 DOI: 10.3390/microorganisms8101564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
Bluetongue is an economically important disease of ruminants caused by the bluetongue virus (BTV). BTV is serologically diverse, which complicates vaccination strategies. Rapid identification of the causative BTV serotypes is critical, however, real-time PCR (RT-qPCR) can be costly and time consuming to perform when the circulating serotypes are unknown. The Luminex xMAP technology is a high-throughput platform that uses fluorescent beads to detect multiple targets simultaneously. We utilized existing BTV serotyping RT-qPCR assays for BTV-1 to BTV-24 and adapted them for use with the xMAP platform. The xMAP assay specifically detected all 24 BTV serotypes when testing reference strains. In all BTV-positive samples, the sensitivity of the BTV xMAP was 87.55% whereas the sensitivity of the serotype-specific RT-qPCR was 79.85%. The BTV xMAP assay allowed for the specific detection of BTV serotypes 1-24 at a lower cost than current RT-qPCR assays. Overall, the assay provides a useful novel diagnostic tool, particularly when analyzing large sample sets. The use of the BTV xMAP assay will allow for the rapid assessment of BTV epidemiology and may inform decision-making related to control and prevention measures.
Collapse
|
7
|
Isolation and Cultivation of a New Isolate of BTV-25 and Presumptive Evidence for a Potential Persistent Infection in Healthy Goats. Viruses 2020; 12:v12090983. [PMID: 32899808 PMCID: PMC7552037 DOI: 10.3390/v12090983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/26/2023] Open
Abstract
Recently, several so-called “atypical” Bluetongue virus (BTV) serotypes were discovered, including BTV-25 (Toggenburg virus), in Switzerland. Most “atypical” BTV were identified in small ruminants without clinical signs. In 2018, two goats from a holding in Germany tested positive for BTV-25 genome by RT-qPCR prior to export. After experimental inoculation of the two goats with the BTV-25 positive field blood samples for generation of reference materials, viremia could be observed in one animal. For the first time, the BTV-25-related virus was isolated in cell culture from EDTA-blood and the full genome of isolate “BTV-25-GER2018” could be generated. BTV-25-GER2018 was only incompletely neutralized by ELISA-positive sera. We could monitor the BTV-25 occurrence in the respective affected goat flock of approximately 120 goats over several years. EDTA blood samples were screened with RT-qPCR using a newly developed BTV-25 specific assay. For serological surveillance, serum samples were screened using a commercial cELISA. BTV-25-GER2018 was detected over 4.5 years in the goat flock with intermittent PCR-positivity in some animals, and with or without concomitantly detected antibodies since 2015. We could demonstrate the viral persistence of BTV-25-GER2018 in goats for up to 4.5 years, and the first BTV-25 isolate is now available for further characterization.
Collapse
|
8
|
Heterologous Combination of ChAdOx1 and MVA Vectors Expressing Protein NS1 as Vaccination Strategy to Induce Durable and Cross-Protective CD8+ T Cell Immunity to Bluetongue Virus. Vaccines (Basel) 2020; 8:vaccines8030346. [PMID: 32610561 PMCID: PMC7564706 DOI: 10.3390/vaccines8030346] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
The sequence of non-structural protein NS1 of bluetongue virus (BTV), which contains immunodominant CD8+ T cell epitopes, is highly conserved among BTV serotypes, and has therefore become a major tool in the development of a universal BTV vaccine. In this work, we have engineered multiserotype BTV vaccine candidates based on recombinant chimpanzee adenovirus (ChAdOx1) and modified vaccinia virus Ankara (MVA) vectors expressing the NS1 protein of BTV-4 or its truncated form NS1-Nt. A single dose of ChAdOx1-NS1 or ChAdOx1-NS1-Nt induced a moderate CD8+ T cell response and protected IFNAR(-/-) mice against a lethal dose of BTV-4/MOR09, a reassortant strain between BTV-1 and BTV-4, although the animals showed low viremia after infection. Furthermore, IFNAR(-/-) mice immunized with a single dose of ChAdOx1-NS1 were protected after challenge with a lethal dose of BTV-8 in absence of viremia nor clinical signs. Additionally, the heterologous prime-boost ChAdOx1/MVA expressing NS1 or NS1-Nt elicited a robust NS1 specific CD8+ T cell response and protected the animals against BTV-4/MOR09 even 16 weeks after immunization, with undetectable levels of viremia at any time after challenge. Subsequently, the best immunization strategy based on ChAdOx1/MVA-NS1 was assayed in sheep. Non-immunized animals presented fever and viremia levels up to 104 PFU/mL after infection. In contrast, although viremia was detected in immunized sheep, the level of virus in blood was 100 times lower than in non-immunized animals in absence of clinical signs.
Collapse
|