1
|
Sun R, Liu H, Sun S, Wang Y, Shan Y, Li X, Fang W, Yang Y, Xie R, Zhao L. Development of a duplex real-time recombinase aided amplification assay for the simultaneous and rapid detection of PCV3 and PCV4. Virol J 2025; 22:23. [PMID: 39893430 PMCID: PMC11786481 DOI: 10.1186/s12985-025-02625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Porcine circoviruses 3 (PCV3) and 4 (PCV4) are emerging pathogens with global implications for swine industry, disturbing the diagnosis of PCVs associated diseases due to a range of similar clinical symptoms and increasingly coinfections. A rapid and accurate method for detection of PCV3 and PCV4 is critical for controlling the transmission of associated disease. METHODS We developed a duplex real-time recombinase aided amplification (RAA) assay for detection of both PCV3 and PCV4 simultaneously. The assay was completed within 20 min at 39℃ with the designed optimal primers and probes. RESULTS The established assay was more convenient and simpler operation compared with conventional molecular biological assays. The assay achieved a detection limit of 73.67 copies/reaction for each circovirus (at 95% probability by probit regression analysis) and showed high specificity and no cross-reactivity with other important porcine viruses (including PCV2). The intra- and inter-group coefficients of variation (CV) were ranged from 2.08 to 4.97%, indicating high stability and reliability. Comparative analysis with PCV3 and PCV4 qPCR on 60 clinical samples and artificially spiked samples indicated high congruence (the kappa value was 0.966 and 1, respectively, with p < 0.001), with only minor discrepancies, validating effectiveness of the duplex RAA assay in detecting co-infections and its suitability for preliminary clinical diagnosis of PCV3 and PCV4. CONCLUSIONS This study provides a robust basis for multiplex detection of veterinary pathogens using RAA technique, enhancing the field's capacity to control PCV3 and PCV4, and supporting reliable aid for epidemiological understanding of emerging circoviruses.
Collapse
Affiliation(s)
- Renjie Sun
- Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou, 311199, China
| | - Hanze Liu
- China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Siqi Sun
- Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou, 311199, China
| | - Yating Wang
- Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou, 311199, China
| | - Ying Shan
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoliang Li
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yongle Yang
- Xianghu Laboratory, Hangzhou, 311231, China.
| | - Ronghui Xie
- Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou, 311199, China.
| | - Lingyan Zhao
- Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou, 311199, China.
| |
Collapse
|
2
|
Wang Q, Zhang R, Wang Y, Wang Y, Liang L, Ma H, Wang H, Si L, Wu X. A Subunit Vaccine Harboring the Fusion Capsid Proteins of Porcine Circovirus Types 2, 3, and 4 Induces Protective Immune Responses in a Mouse Model. Viruses 2024; 16:1964. [PMID: 39772270 PMCID: PMC11728783 DOI: 10.3390/v16121964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Coinfections with porcine circovirus types 2, 3, and 4 (PCV2, PCV3, and PCV4) are increasingly being detected in the swine industry. However, there is no commercially available vaccine which prevents coinfection with PCV2, PCV3, and PCV4. The development of a vaccine expressing capsid (Cap) fusion proteins of multiple PCVs represents a promising approach for broadly preventing infection with PCVs. In this study, we developed a PCV subunit vaccine candidate (Cap 2-3-4) by predicting, screening, and fusing antigenic epitopes of Cap proteins of PCV2, PCV3, and PCV4. Immunoprotection assays showed that the prokaryotic expression of Cap 2-3-4 could effectively induce high levels of PCV2, PCV3, and PCV4 Cap-specific antibodies and successfully neutralize both PCV2 and PCV3. Furthermore, Cap 2-3-4 demonstrated a potent ability to activate cellular immunity and thus prevent lung damage in mice. This study provides a new option for the development of broad vaccines against PCVs.
Collapse
Affiliation(s)
- Qikai Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Ran Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Yue Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Ying Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Libin Liang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Haili Ma
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Longlong Si
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchen Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Xu A, Zhang M, Chen X, Wan Z, Zhao Y, Wang JH, Zhang C. A duplex HiFi-LAMP assay for screening of two novel human circoviruses HCirV-1 and HCirV-2. BMC Infect Dis 2024; 24:1388. [PMID: 39639190 PMCID: PMC11619094 DOI: 10.1186/s12879-024-10283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Circoviruses belong to the family Circoviridae, which is classified into two genera, Circovirus and Cyclovirus. Some circoviruses have been identified in various organisms and/or their fecal samples and might be associated with diseases in their hosts. However, few circoviruses are reported in human. Recently, two novel circoviruses HCirV-1 and HCirV-2 were identified in humans through next-generation sequencing and were defined as the species of Circovirus human in the family Circoviridae. Both viruses are suspected to be associated with liver diseases, particularly among immunosuppressed people, showing potential health implication. Investigation on the prevalence of both viruses, and identification of vulnerable population are important and need a rapid, accurate, and specific assay for detecting and screening the two viruses. In this study, we developed a duplex HiFi-LAMP assay for simultaneous detection of HCirV-1 and HCirV-2. The assay exhibits high sensitivity with LOD of 64 and 49 copies per 25 µL reaction for HCirV-1 and HCirV-2, respectively. The duplex assay was demonstrated to have a rapid reaction time within 35 min. Clinical screening tests showed that neither HCirV-1 nor HCirV-2 were detected among 875 patients with infection of HBV, HIV-1 or other viruses. Large-scale screening of both viruses in diverse populations is encouraged to enhance our understanding of their relevance to various diseases.
Collapse
Affiliation(s)
- Aijuan Xu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
- Pingyuan Laboratory, Xinxiang, Henan, 453007, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
- Guangzhou Hybribio Medical Laboratory, Guangzhou, 510730, China
| | - Min Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Xin Chen
- Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zhenzhou Wan
- Taizhou Fourth People's Hospital, Taizhou, 225300, China
| | - Yongjuan Zhao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jian-Hua Wang
- Pingyuan Laboratory, Xinxiang, Henan, 453007, China.
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
4
|
Zhang H, Li X, Lv X, Han Y, Zheng J, Ren L. Soluble expression and immunogenicity analysis of capsid proteins of porcine circoviruses types 2, 3, and 4. Vet J 2024; 307:106199. [PMID: 39038778 DOI: 10.1016/j.tvjl.2024.106199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Porcine circoviruses (PCVs) contain four types: PCV1, PCV2, PCV3, and PCV4, all of which can infect pigs. Among them, PCV1 is non-pathogenic, and PCV2 can cause porcine circovirus diseases (PCVD) or porcine circovirus-associated diseases (PCVAD). Although the pathogenicity of PCV3 and PCV4 is still controversial, increasing evidence shows that PCV3 and PCV4 can cause PCV-related disease. However, mixed infection of PCV2, PCV3, and PCV4 with other pathogens often occurs in large-scale pig breeding, bringing severe economic losses to the global pig industry. In this study, the soluble recombinant proteins of PCV2, PCV3, and PCV4 Cap were expressed by the prokaryotic expression system and biotinylated to combine with the Streptavidin magnetic beads, followed by immunogenicity evaluation of the recombinant proteins. Furthermore, we also assessed the efficacy and immunogenicity of trivalent recombinant proteins conjugated with different adjuvants in mice. The results showed that the highly effective anti-PCV serum was successfully prepared, and the recombinant proteins conjugated with different adjuvants produced various degrees of humoral and cellular immunity in mice. Three recombinant proteins are effective immunogens, and the trivalent proteins coupled with the aluminum adjuvant or GM-CSF-CpG for two-dose immunization can stimulate prominent humoral and cellular immunity against PCVs in vivo. The soluble recombinant proteins are the most promising candidate for developing a trivalent vaccine against PCVs (PCV2, PCV3, and PCV4) infection simultaneously.
Collapse
Affiliation(s)
- Huimin Zhang
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Xue Li
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Xinru Lv
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Yaqi Han
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Jiawei Zheng
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Linzhu Ren
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China; College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China.
| |
Collapse
|
5
|
Wang H, Zhou G, Liu H, Peng R, Sun T, Li S, Chen M, Wang Y, Shi Q, Xie X. Detection of Porcine Circovirus (PCV) Using CRISPR-Cas12a/13a Coupled with Isothermal Amplification. Viruses 2024; 16:1548. [PMID: 39459882 PMCID: PMC11512303 DOI: 10.3390/v16101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
The impact of porcine circovirus (PCV) on the worldwide pig industry is profound, leading to notable economic losses. Early and prompt identification of PCV is essential in managing and controlling this disease effectively. A range of detection techniques for PCV have been developed and primarily divided into two categories focusing on nucleic acid or serum antibody identification. The methodologies encompass conventional polymerase chain reaction (PCR), real-time fluorescence quantitative PCR (qPCR), fluorescence in situ hybridization (FISH), loop-mediated isothermal amplification (LAMP), immunofluorescence assay (IFA), immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA). Despite their efficacy, these techniques are often impeded by the necessity for substantial investment in equipment, specialized knowledge, and intricate procedural steps, which complicate their application in real-time field detections. To surmount these challenges, a sensitive, rapid, and specific PCV detection method using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas12a/13a coupled with isothermal amplification, such as enzymatic recombinase amplification (ERA), recombinase polymerase amplification (RPA), and loop-mediated isothermal amplification (LAMP), has been developed. This novel method has undergone meticulous optimization for detecting PCV types 2, 3, and 4, boasting a remarkable sensitivity to identify a single copy per microliter. The specificity of this technique is exemplary, with no observable interaction with other porcine viruses such as PEDV, PRRSV, PRV, and CSFV. Its reliability has been validated with clinical samples, where it produced a perfect alignment with qPCR findings, showcasing a 100% coincidence rate. The elegance of merging CRISPR-Cas technology with isothermal amplification assays lies in its on-site testing without the need for expensive tools or trained personnel, rendering it exceptionally suitable for on-site applications, especially in resource-constrained swine farming environments. This review assesses and compares the process and characteristics inherent in the utilization of ERA/LAMP/RPA-CRISPR-Cas12a/Cas13a methodologies for the detection of PCV, providing critical insights into their practicality and effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.W.); (G.Z.); (H.L.); (R.P.); (T.S.); (S.L.); (M.C.); (Y.W.); (Q.S.)
| |
Collapse
|
6
|
Lin M, Wang P, Lu B, Jin M, Tan J, Liu W, Yuan J, Peng X, Chen Y. Development and evaluation of a rapid visual loop-mediated isothermal amplification assay for the tcdA gene in Clostridioides difficile detection. PeerJ 2024; 12:e17776. [PMID: 39224820 PMCID: PMC11368091 DOI: 10.7717/peerj.17776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Background The tcdA gene codes for an important toxin produced by Clostridioides difficile (C. difficile), but there is currently no simple and cost-effective method of detecting it. This article establishes and validates a rapid and visual loop-mediated isothermal amplification (LAMP) assay for the detection of the tcdA gene. Methods Three sets of primers were designed and optimized to amplify the tcdA gene in C. difficile using a LAMP assay. To evaluate the specificity of the LAMP assay, C. difficile VPI10463 was used as a positive control, while 26 pathogenic bacterial strains lacking the tcdA gene and distilled water were utilized as negative controls. For sensitivity analysis, the LAMP assay was compared to PCR using ten-fold serial dilutions of DNA from C. difficile VPI10463, ranging from 207 ng/µl to 0.000207 pg/µl. The tcdA gene of C.difficile was detected in 164 stool specimens using both LAMP and polymerase chain reaction (PCR). Positive and negative results were distinguished using real-time monitoring of turbidity and chromogenic reaction. Results At a temperature of 66 °C, the target DNA was successfully amplified with a set of primers designated, and visualized within 60 min. Under the same conditions, the target DNA was not amplified with the tcdA12 primers for 26 pathogenic bacterial strains that do not carry the tcdA gene. The detection limit of LAMP was 20.700 pg/µl, which was 10 times more sensitive than that of conventional PCR. The detection rate of tcdA in 164 stool specimens using the LAMP method was 17% (28/164), significantly higher than the 10% (16/164) detection rate of the PCR method (X2 = 47, p < 0.01). Conclusion LAMP method is an effective technique for the rapid and visual detection of the tcdA gene of C. difficile, and shows potential advantages over PCR in terms of speed, simplicity, and sensitivity. The tcdA-LAMP assay is particularly suitable for medical diagnostic environments with limited resources and is a promising diagnostic strategy for the screening and detection of C. difficile infection in populations at high risk.
Collapse
Affiliation(s)
- Minyi Lin
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Pu Wang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingyun Lu
- Integrative Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ming Jin
- Integrative Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jiasheng Tan
- Department of Gastroenterology, SongShan Lake Central Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Wei Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Jing Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Xiaomou Peng
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Ye Chen
- Integrative Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
7
|
Wang LQ, Li JX, Chen XM, Cao XY, Zhang HL, Zheng LL, Ma SJ. Molecular detection and genetic characteristics of porcine circovirus 3 and porcine circovirus 4 in central China. Arch Virol 2024; 169:115. [PMID: 38709425 DOI: 10.1007/s00705-024-06039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/20/2024] [Indexed: 05/07/2024]
Abstract
Porcine circoviruses (PCVs) are a significant cause of concern for swine health, with four genotypes currently recognized. Two of these, PCV3 and PCV4, have been detected in pigs across all age groups, in both healthy and diseased animals. These viruses have been associated with various clinical manifestations, including porcine dermatitis and nephropathy syndrome (PDNS) and respiratory and enteric signs. In this study, we detected PCV3 and PCV4 in central China between January 2022 and February 2023. We tested fecal swabs and tissue samples from growing-finishing and suckling pigs with or without respiratory and systemic manifestations and found the prevalence of PCV3 to be 15.15% (15/99) and that of PCV3/PCV4 coinfection to be 4.04% (4/99). This relatively low prevalence might be attributed to the fact that most of the clinical samples were collected from pigs exhibiting respiratory signs, with only a few samples having been obtained from pigs with diarrhea. In some cases, PCV2 was also detected, and the coinfection rates of PCV2/3, PCV2/4, and PCV2/3/4 were 6.06% (6/99), 5.05% (5/99), and 3.03% (3/99), respectively. The complete genomic sequences of four PCV3 and two PCV4 isolates were determined. All four of the PCV3 isolates were of subtype PCV3b, and the two PCV4 isolates were of subtype PCV4b. Two mutations (A24V and R27K) were found in antibody recognition domains of PCV3, suggesting that they might be associated with immune escape. This study provides valuable insights into the molecular epidemiology and evolution of PCV3 and PCV4 that will be useful in future investigations of genotyping, immunogenicity, and immune evasion strategies.
Collapse
Affiliation(s)
- Lin-Qing Wang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
- Department of Life Science, Zhengzhou Normal University, Zhengzhou, 450044, Henan Province, People's Republic of China
| | - Jia-Xin Li
- Faculty of Arts & Science, University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| | - Xi-Meng Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Xin-Yue Cao
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Hong-Lei Zhang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Lan-Lan Zheng
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China.
| | - Shi-Jie Ma
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China.
| |
Collapse
|
8
|
Fu PF, Wang YH, Liu G, Wang DM, Huang WW, Guo DQ, Li XY, Liu P, Wei MX, Lu M, Hong J. First molecular detection and genetic characterization of porcine circovirus 4 in the Gansu Province of China. PLoS One 2024; 19:e0293135. [PMID: 38315677 PMCID: PMC10843115 DOI: 10.1371/journal.pone.0293135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/06/2023] [Indexed: 02/07/2024] Open
Abstract
Since its initial discovery in the Hunan province of China, genomic DNA of porcine circovirus 4 (PCV4) has been detected in pigs across multiple provinces in China, as well as in South Korea. However, the prevalence of porcine circovirus type 4 in Gansu Province, China, remains unknown. To address this gap, we undertook an extensive study where we gathered 121 clinical samples displaying diverse clinical manifestations from pig farms in Gansu Province between 2022 and 2023. Employing a real-time fluorescence quantification method, we identified the presence of PCV4 genome. Out of the 121 clinical samples analyzed, 13 samples tested positive for PCV4, resulting in a positive rate of 10.74% (13/121). This finding confirms the presence of PCV4 in pig farms within Gansu Province, China. Furthermore, we successfully sequenced and analyzed the complete genomes of two distinct PCV4 strains, comparing them with 60 reference sequences archived in the GenBank database. The results revealed a high nucleotide homology (98.2-98.8%) between the strains obtained in this study and the PCV4 reference strains, indicating a relatively low evolutionary rate of the PCV4 genome. Phylogenetic analysis revealed that two strains in this study belong to PCV4a and PCV4c. As far as we know, this study marks the inaugural report on the molecular identification and genomic attributes of PCV4 in Gansu Province, China, offering valuable insights for devising preventive and control strategies against this emerging virus.
Collapse
Affiliation(s)
- Peng-Fei Fu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan Province, China
| | - Yan-Hong Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan Province, China
| | - Guo Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Dong-Mei Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan Province, China
| | - Wei-Wei Huang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan Province, China
| | - Duan-Qiang Guo
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan Province, China
| | - Xin-Yang Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan Province, China
| | - Ping Liu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan Province, China
| | - Meng-Xiang Wei
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan Province, China
| | - Min Lu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan Province, China
| | - Jun Hong
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan Province, China
| |
Collapse
|
9
|
Park S, Kim S, Jeong T, Oh B, Lim CW, Kim B. Prevalence of porcine circovirus type 2 and type 3 in slaughtered pigs and wild boars in Korea. Vet Med Sci 2024; 10:e1329. [PMID: 38050451 PMCID: PMC10766032 DOI: 10.1002/vms3.1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Porcine circovirus, a non-enveloped single-stranded DNA virus belonging to the genus Circovirus of the family Circoviridae, is a major pathogen of porcine circovirus-associated disease. Porcine circovirus 3, a novel porcine circovirus, has been identified in individuals with clinical symptoms. OBJECTIVES The prevalence of porcine circovirus 2 and porcine circovirus 3 and the confirmation of diagnosis of this emerging viral disease have not been fully studied yet. Therefore, the objective of the present study was to investigate the prevalence of porcine circovirus 2 and porcine circovirus 3 in slaughtered pigs and wild boars in Korea between 2018 and 2019. METHODS Lungs and hilar lymph nodes of healthy pigs slaughtered in slaughterhouses and captured wild pigs were collected, and viruses were detected by multiplex quantitative polymerase chain reaction and two staining methods (in situ hybridization and immunohistochemistry) to confirm the presence of porcine circovirus 2 and porcine circovirus 3. RESULTS Positive rates of porcine circovirus 2 in lungs and hilar lymph nodes were 78.1% (75/96) and 89.5% (86/96) in slaughtered pigs, respectively. They were 18.0% (30/167) and 46.3% (24/55) in wild boars, respectively. Positive rates of porcine circovirus 3 in lungs and hilar lymph nodes were 30.2% (29/96) and 13.5% (13/96) in slaughtered pigs, respectively. They were 4.2% (7/167) and 5.5% (3/55) in wild boars, respectively. At the farm level, positive rates of porcine circovirus 2 and porcine circovirus 3 were 97.9% (47/48) and 54.2% (26/48), respectively. Positive rates of porcine circovirus 2 and porcine circovirus 3 decreased in spring. Immunohistochemistry and in situ hybridization confirmed the presence of porcine circovirus 2 and porcine circovirus 3 in lungs, but not porcine circovirus 3 in the hilar lymph nodes. CONCLUSION These results suggest that the prevalence of porcine circovirus 2 and porcine circovirus 3 might vary depending on the season and the type of sample. Wild boars might play a role in the epidemiology of porcine circovirus 2 and porcine circovirus 3 in South Korea. Continuous surveillance and further study are needed for this emerging disease.
Collapse
Affiliation(s)
- Seok‐Chan Park
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National UniversityIksanRepublic of Korea
| | - Suwon Kim
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National UniversityIksanRepublic of Korea
| | - Tae‐Won Jeong
- HLB BIOSTEP Co., Ltd., Research CenterIncheonRepublic of Korea
| | - Byungkwan Oh
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National UniversityIksanRepublic of Korea
| | - Chae Woong Lim
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National UniversityIksanRepublic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National UniversityIksanRepublic of Korea
| |
Collapse
|
10
|
Xu T, Deng LS, Jian ZJ, Xu L, Li FQ, Lai SY, Ai YR, Zhu L, Xu ZW. First report on identification and genomic analysis of a novel porcine circovirus (porcine circovirus 4) in cats. Front Microbiol 2023; 14:1258484. [PMID: 37808320 PMCID: PMC10556453 DOI: 10.3389/fmicb.2023.1258484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Porcine circovirus type 4 (PCV4) is an emerging circovirus, which has been detected in domestic pigs across various provinces in China and Korea. In this study, we aimed to investigate whether cats are susceptible to PCV4. For this purpose, we collected 116 cat samples from animal hospitals in Sichuan Province, China, between 2021 and 2022. Using a SYBR Green-based real-time PCR assay, we detected PCV4 in 5 out of the 116 clinical samples, indicating a positive rate of 4.31% (5/116) and confirming the presence of PCV4 in cats from Sichuan Province, China. Moreover, we successfully sequenced and analyzed the complete genome of one PCV4 strain (SCGA-Cat) along with 60 reference sequences deposited in the GenBank database. SCGA-Cat exhibited high nucleotide homology (98.2-99.0%) with PCV4 strains from other species, including dogs, pigs, dairy cows, and fur animals. Notably, the SCGA-Cat strain from cats clustered closely with a PCV4 strain derived from a pig collected in Fujian Province, China. To the best of our knowledge, this study represents the first report on the molecular detection of PCV4 in cats worldwide, which prompted us to understand the genetic diversity and cross-species transmission of the ongoing PCV4 cases. However, further investigations are needed to explore the association between PCV4 infection and clinical syndromes in cats.
Collapse
Affiliation(s)
- Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Shuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Jie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Feng-Qin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Si-Yuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan-Ru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Wen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Liu Y, Zhang X, Han X, Liu J, Yao L. Development of a droplet digital PCR method for detection of porcine circovirus 4. BMC Vet Res 2023; 19:129. [PMID: 37608311 PMCID: PMC10464377 DOI: 10.1186/s12917-023-03690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Porcine circovirus 4 (PCV4), a newly emerging virus that was first discovered in 2019, may pose a potential threat to the pig industry. Droplet digital PCR (ddPCR) is an absolute quantitative method that has high sensitivity and accuracy. In this study, we developed a novel ddPCR assay to detect PCV4. Furthermore, we evaluated the detection limit, sensitivity, specificity and reproducibility of the ddPCR and TaqMan real-time quantitative PCR (qPCR) and tested 160 clinical samples to compare the detection rate of the two methods. RESULTS The detection limit for ddPCR was 0.54 copies/µL, 10.6 times greater sensitivity than qPCR. Both ddPCR and qPCR assays exhibited good linearity and repeatability, and the established ddPCR method was highly specific for PCV4. The results of clinical sample testing showed that the positivity rate of ddPCR (5.6%) was higher than that of qPCR (4.4%). CONCLUSIONS This study successfully developed a sensitive, specific and repeatable ddPCR assay for PCV4 detection, which can be widely used in clinical diagnosis of PCV4 infections.
Collapse
Affiliation(s)
- Yangkun Liu
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Xinru Zhang
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Xueying Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiaxing Liu
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Lunguang Yao
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, Henan, China.
| |
Collapse
|
12
|
Maity HK, Samanta K, Deb R, Gupta VK. Revisiting Porcine Circovirus Infection: Recent Insights and Its Significance in the Piggery Sector. Vaccines (Basel) 2023; 11:1308. [PMID: 37631876 PMCID: PMC10457769 DOI: 10.3390/vaccines11081308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine circovirus (PCV), a member of the Circoviridae family within the genus Circovirus, poses a significant economic risk to the global swine industry. PCV2, which has nine identified genotypes (a-i), has emerged as the predominant genotype worldwide, particularly PCV2d. PCV2 has been commonly found in both domestic pigs and wild boars, and sporadically in non-porcine animals. The virus spreads among swine populations through horizontal and vertical transmission routes. Despite the availability of commercial vaccines for controlling porcine circovirus infections and associated diseases, the continuous genotypic shifts from a to b, and subsequently from b to d, have maintained PCV2 as a significant pathogen with substantial economic implications. This review aims to provide an updated understanding of the biology, genetic variation, distribution, and preventive strategies concerning porcine circoviruses and their associated diseases in swine.
Collapse
Affiliation(s)
- Hemanta Kumar Maity
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Kartik Samanta
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Rajib Deb
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| | - Vivek Kumar Gupta
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| |
Collapse
|
13
|
Kim JM, Kim HR, Baek JS, Kwon OK, Kang HE, Shin YK, Park CK. Simple and Rapid Colorimetric Detection of Canine Parainfluenza Virus 5 ( Orthorubulavirus mammalis) Using a Reverse-Transcription Loop-Mediated Isothermal Amplification Assay. Pathogens 2023; 12:921. [PMID: 37513767 PMCID: PMC10384626 DOI: 10.3390/pathogens12070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Despite its many advantages, a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay has yet to be developed for canine parainfluenza virus 5 (CPIV5). In this study, a visual RT-LAMP (vRT-LAMP) assay was developed for the rapid detection of CPIV5 in clinical samples. At a constant reaction temperature of 62 °C, the assay was completed within 40 min, and the results could be directly detected with the naked eye using a hydroxynaphthol blue (HNB) metal indicator without any additional detection apparatuses. The assay specifically amplified CPIV5 RNA with a limit of detection of 10 RNA copies/reaction, which was 10-fold more sensitive than the previously reported conventional reverse-transcription polymerase chain reaction (cRT-PCR) assay and was comparable to the previously reported real-time RT-PCR (qRT-PCR) assay. In a clinical evaluation using 267 nasopharyngeal swab samples collected from hospitalized dogs with respiratory symptoms, the CPIV5 detection rate using the vRT-LAMP assay was 5.24% (14/267), which was higher than that of the cRT-PCR assay (4.49%, 12/267) and consistent with that of the qRT-PCR assay, demonstrating 100% concordance with a kappa coefficient value (95% confidence interval) of 1 (1.00-1.00). The discrepancies in the results of the assays were confirmed to be attributed to the low sensitivity of the cRT-PCR assay. Owing to the advantages of a high specificity, rapidity, and simplicity, the developed vRT-LAMP assay using an HNB metal indicator will be a valuable diagnostic tool for the detection of CPIV5 in canine clinical samples, even in resource-limited laboratories.
Collapse
Affiliation(s)
- Jong-Min Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye-Ryung Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
- DIVA Bio Incorporation, Daegu 41519, Republic of Korea
| | - Ji-Su Baek
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Oh-Kyu Kwon
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Hae-Eun Kang
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Yeun-Kyung Shin
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
14
|
Zhang LH, Wang TX, Fu PF, Zhao YY, Li HX, Wang DM, Ma SJ, Chen HY, Zheng LL. First Molecular Detection and Genetic Analysis of a Novel Porcine Circovirus (Porcine Circovirus 4) in Dogs in the World. Microbiol Spectr 2023; 11:e0433322. [PMID: 36728419 PMCID: PMC10100769 DOI: 10.1128/spectrum.04333-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
A novel circovirus species was identified in farmed pigs and designated porcine circovirus 4 (PCV4); it has recently been proved to be pathogenic to piglets. However, little is known about its cross-species transmission, and there is no evidence of PCV4 in dogs. A total of 217 fecal samples were collected from diarrheal dogs in Henan Province, China, and tested for the presence of PCV4 using a real-time PCR assay. Among the 217 samples, the total positivity rate for PCV4 was 5.99% (13/217 samples), with rates of 7.44% and 4.17% in 2020 and 2021, respectively. PCV4 was detected in dogs in 6 of 10 cities, demonstrating that PCV4 could be detected in dogs in Henan Province, China. One PCV4 strain (HN-Dog) was sequenced in this study and shared high levels of identity (97.9% to 99.6%) with reference strains at the genome level. Phylogenetic analysis based on complete genome sequences of HN-Dog and 42 reference strains showed that the HN-Dog strain was closely related to 3 PCV4 reference strains (from pig, raccoon dog, and fox) but differed genetically from other viruses in the genus Circovirus. Three genotypes, i.e., PCV4a, PCV4b, and PCV4c, were confirmed by phylogenetic analysis of complete genome sequences of 42 PCV4 strains, and one amino acid variation in Rep protein (V239L) and three amino acid variations in Cap protein (N27S, R28G, and M212L) were considered conserved genotype-specific molecular markers. In conclusion, the present study is the first to report the discovery of the PCV4 genome in dogs, and the association between PCV4 infection and diarrhea warrants further study. IMPORTANCE This study is the first to report the presence of PCV4 in dogs worldwide, and the first complete genome sequence was obtained from a dog affected with diarrhea. Three genotypes of PCV4 strains (PCV4a, PCV4b, and PCV4c) were determined, as supported by specific amino acid markers (V239L for open reading frame 1 [ORF1] and N27S R28G and M212L for ORF2). These findings help us understand the current status of intestinal infections in pet dogs in Henan Province, China, and also prompted us to accelerate research on the pathogenesis, epidemiology, and cross-species transmission of PCV4.
Collapse
Affiliation(s)
- Liu-Hui Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
| | - Tong-Xuan Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
| | - Peng-Fei Fu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan Province, People’s Republic of China
| | - You-Yi Zhao
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
| | - Hong-Xuan Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
| | - Dong-Mei Wang
- Lushan Dabei Agriculture and Animal Husbandry Food Co., Ltd., Lushan, Henan Province, People’s Republic of China
| | - Shi-Jie Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
| | - Hong-Ying Chen
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
| | - Lan-Lan Zheng
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
| |
Collapse
|
15
|
Xu T, Chen L, Huang BZ, Zhu L, Sun XG, Lai SY, Ai YR, Zhou YC, Xu ZW. The first dog-origin porcine circovirus type 4 complete genomic sequence have high homology with that of pig-derived strains. Front Microbiol 2023; 14:1121177. [PMID: 36910182 PMCID: PMC10002969 DOI: 10.3389/fmicb.2023.1121177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/31/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction: Porcine circovirus 4 (PCV4) was discovered in 2019 and then proved to be pathogenic to piglets. Nevertheless, few studies were currently available about PCV4 infection in species other than pigs and there is no information about the prevalence of PCV4 in dogs. Methods: To fill this gap, 264 dog samples were collected from animal hospitals in the Southwest of China from 2021 to 2022 and screened for PCV4. Moreover, the complete genome of one PCV4 strain (SCABTC-Dog2022) were obtained successfully and shared a high identity (97.9-99.0%) with other PCV4 strains derived from pigs, dairy cows, raccoon dogs and foxes. The SCABTC-Dog2022 were analyzed together with 51 reference sequences. Results and Discussion: The detected results showed a low percentage of PCV-4 DNA (1.14%, 3/264), indicating that PCV4 could be identified in dogs in southwest China. Phylogenetic tree showed that SCABTC-Dog2022 strain derived from dog were clustered in a closed relative and geographically coherent branch with other PCV4 strains collected from four provinces (Sichuan, Fujian, Hunan and Inner Mongolia) of China. To our knowledge, it is the first detection of PCV4 in dogs globally. The association between PCV4 status and clinical syndromes in dogs deserves additional investigations.
Collapse
Affiliation(s)
- Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lan Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bing-Zhou Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xian-Gang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Si-Yuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan-Ru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan-Cheng Zhou
- Key Laboratory of Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China.,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhi-Wen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Phusantisampan T, Yamkasem J, Tattiyapong P, Sriariyanun M, Surachetpong W. Specific and rapid detection of tilapia parvovirus using loop-mediated isothermal amplification (LAMP) method. JOURNAL OF FISH DISEASES 2022; 45:1893-1898. [PMID: 36048556 DOI: 10.1111/jfd.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Theerawut Phusantisampan
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
- Microbial Informatics and Industrial Product of Microbe Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Jidapa Yamkasem
- Graduate Program in Animal Health and Biomedical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate school, Kasetsart University, Bangkok, Thailand
| | - Malinee Sriariyanun
- Department of Chemical and Process Engineering, Biorefinery and Process Automation Engineering Center, The Sirindhorn Thai-German International Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Win Surachetpong
- Graduate Program in Animal Health and Biomedical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate school, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
17
|
Xu T, You D, Wu F, Zhu L, Sun XG, Lai SY, Ai YR, Zhou YC, Xu ZW. First molecular detection and genetic analysis of porcine circovirus 4 in the Southwest of China during 2021–2022. Front Microbiol 2022; 13:1052533. [PMID: 36406418 PMCID: PMC9668871 DOI: 10.3389/fmicb.2022.1052533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Porcine circovirus 4 (PCV4) was identified in 2019 as a novel circovirus species and then proved to be pathogenic to piglets. However, there is a lack of its prevalence in the Southwest of China. To investigate whether PCV4 DNA existed in the Southwest of China, 374 samples were collected from diseased pigs during 2021–2022 and detected by a real-time PCR assay. The results showed that the positive rate of PCV4 was 1.34% (5/374) at sample level, and PCV4 was detected in two of 12 cities, demonstrating that PCV4 could be detected in pig farms in the Southwest of China, but its prevalence was low. Furthermore, one PCV4 strain (SC-GA2022ABTC) was sequenced in this study and shared a high identity (98.1–99.7%) with reference strains at the genome level. Combining genetic evolution analysis with amino acid sequence analysis, three genotypes PCV4a, PCV4b, and PCV4c were temporarily identified, and the SC-GA2022ABTC strain belonged to PCV4c with a specific amino acid pattern (239V for Rep protein, 27N, 28R, and 212M for Cap protein). Phylogenetic tree and amino acid alignment showed that PCV4 had an ancient ancestor with mink circovirus. In conclusion, the present study was the first to report the discovery and the evolutionary analysis of the PCV4 genome in pig herds of the Southwest of China and provide insight into the molecular epidemiology of PCV4.
Collapse
Affiliation(s)
- Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong You
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fang Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| | - Xian-Gang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Si-Yuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan-Ru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan-Cheng Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhi-Wen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Zhi-Wen Xu,
| |
Collapse
|
18
|
Hu X, Ding Z, Li Y, Chen Z, Wu H. Serum investigation of antibodies against porcine circovirus 4 Rep and Cap protein in Jiangxi Province, China. Front Microbiol 2022; 13:944679. [PMID: 36338086 PMCID: PMC9634748 DOI: 10.3389/fmicb.2022.944679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
In 2019, a novel porcine circovirus 4 (PCV4) was first identified in Hunan Province, China. The circular PCV4 DNA was detected in both diseased and healthy pigs. Recently, PCV4 prevalence surveys have been analyzed in many provinces in both China and South Korea with low positive rates. However, no serological data has been conducted to investigate the prevalence of PCV4 in pigs from Jiangxi Province. To address this issue, an indirect anti-PCV4 antibody enzyme-linked immunosorbent assay (ELISA) based on Cap and Rep protein as a coating antigen was established and applied to study the serum epidemiology of PCV4 in Jiangxi Province. Purified PCV4-His-tagged Cap and Rep were used as the coating antigen to develop an ELISA detection kit. There was no cross-reaction of the Cap/Rep-based ELISA with antisera against PCV2, TGEV and PRRSV, indicating a high specificity of this ELISA assay. The intra-assay coefficient variations (CVs) of Cap-based were 1.239%−9.796%, Rep-based 1.288%−5.011%, and inter-assay CVs of 1.167%−4.694% and 1.621%−8.979%, respectively, indicating a good repeatability. Finally, a total number of 507 serum samples were collected from Jiangxi Province to test for antibody prevalence of PCV4, and 17 (3.35%) and 36 (7.10%) of the samples were Cap and Rep antibody positive, respectively. In summary, our established ELISA kit could be used to detect PCV4 antibodies in serum with good repeatability and high specificity. In addition, field samples detection results showed that the antibody of PCV4 was poorly distributed in intensive pig farms in Jiangxi Province, China.
Collapse
Affiliation(s)
- Xifeng Hu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Department of Veterinary Microbiology, Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhen Ding
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Department of Veterinary Microbiology, Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yu Li
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Department of Veterinary Microbiology, Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zheng Chen
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Department of Veterinary Microbiology, Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huansheng Wu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Department of Veterinary Microbiology, Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Huansheng Wu
| |
Collapse
|
19
|
Xu T, Chen XM, Fu Y, Ai Y, Wang DM, Wei ZY, Li XS, Zheng LL, Chen HY. Cross-species transmission of an emerging porcine circovirus (PCV4): First molecular detection and retrospective investigation in dairy cows. Vet Microbiol 2022; 273:109528. [PMID: 35944390 DOI: 10.1016/j.vetmic.2022.109528] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Porcine circovirus 4 (PCV4), a novel porcine circovirus identified in pigs, has recently been proved to be pathogenic to piglets. However, little is known about its cross-species transmission, and demonstration of PCV4 in dairy cows is lacking. To explore whether the PCV4 genome exists in dairy cows, 1170 fecal samples were collected from dairy farms in 7 cities in Henan Province of China during 2012-2021, and screened by qPCR for the presence of PCVs (PCV2-PCV4). The detection results showed that the positive rate of PCV4 in dairy cows was 2.22 % (26/1170), but all fecal samples were negative for PCV2 and PCV3. Three full-length and five partial genomes of PCV4 strains were acquired, of which two PCV4 strains (NY2012-DC and XC2013-DC) were achieved from 2012 and 2013, indicating that PCV4 has been circulating in dairy cows in Henan Province of China for at least 10 years. The three PCV4 strains sequenced in this study shared high identity (97.5-99.5 %) with reference strains at the genome level. In phylogenetic analysis, three genotypes (PCV4a, PCV4b and PCV4c) were temporarily confirmed by analyzing 44 strains, and one amino acid variation in Rep (V239L) and three amino acid variations in Cap (N27S, R28G and M212L) were considered as a conserved genotype specific molecular marker. Analyzed from three perspectives (cross-time, cross-species and transboundary), the high nucleotide homology of PCV4 strains indicated the PCV4 evolutionary rate might be slow. Overall, this study was the first to report the detection of PCV4 in dairy cows and conducted a long-term retrospective investigation of PCV4 in Henan Province of China, which has important implications for understanding the genetic diversity and cross-species transmission of the ongoing PCV4 cases.
Collapse
Affiliation(s)
- Tong Xu
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District, Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Xi-Meng Chen
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District, Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Yin Fu
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District, Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Yi Ai
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District, Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Dong-Mei Wang
- Lushan Dabei Agriculture and Animal Husbandry Food Co., Ltd., Lushan 467300, Henan Province, People's Republic of China
| | - Zhan-Yong Wei
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District, Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Xin-Sheng Li
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District, Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Lan-Lan Zheng
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District, Longzi Lake 15#, Zhengzhou 450046, People's Republic of China.
| | - Hong-Ying Chen
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District, Longzi Lake 15#, Zhengzhou 450046, People's Republic of China.
| |
Collapse
|
20
|
Liang J, Zeng J, Huang X, Zhu T, Gong Y, Dong C, Wang X, Zhao L, Xie L, Liang K, Tan Q, Cui Y, Kong B, Hui W. Super-assembly of integrated gold magnetic assay with loop-mediated isothermal amplification for point-of-care testing. NANO RESEARCH 2022; 16:1242-1251. [PMID: 35966151 PMCID: PMC9362447 DOI: 10.1007/s12274-022-4692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED With the increasing global threat of various diseases and infections, it is essential to develop a fast, low-cost, and easy-to-use point-of-care testing (POCT) system for inspections at all levels of medical institutions and self-examination at home. In this work, gold magnetic nanoparticles (GMNPs) are used as the key material, and a rapid visual detection method is designed through integrating loop-mediated isothermal amplification (LAMP) and lateral flow assay (LFA) biosensor for detecting a variety of analytes which includes whole blood, buccal swabs, and DNA. It is worth to note that the proposed method does not need DNA extraction. Furthermore, uracil DNA glycosylase (UDG) is employed to eliminate carrier contamination for preventing false positive results. The whole detection process can be finished within 25 min. The accuracy of detection is measured by assessing the polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) C677T. The detection limit of the newly developed extraction-free detection system for MTHFR C677T is 0.16 ng/μL. A preliminary clinical study of the proposed method is carried out by analyzing 600 clinical samples (including 200 whole blood samples, 100 buccal swabs, and 300 genomic DNA samples). The results indicate that the proposed method is 100% consistent with the sequencing results which provides a new choice for POCT and shows a broad application prospect in all levels of medical clinics and at home. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (details for MTHFR C677T primer sequences, the cell count results of samples at different dilution ratios, genotyping results and frequency samples, a Hardy-Weinberg equilibrium test, the sensitivity of the system, detection results of multiple samples, and optimization of the system) is available in the online version of this article at 10.1007/s12274-022-4692-9.
Collapse
Affiliation(s)
- Jianping Liang
- The College of life science, Northwest University, Xi’an, 710069 China
| | - Jie Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438 China
| | - Xiaojuan Huang
- The College of life science, Northwest University, Xi’an, 710069 China
| | - Tengteng Zhu
- The College of life science, Northwest University, Xi’an, 710069 China
| | - Yonglong Gong
- The College of life science, Northwest University, Xi’an, 710069 China
| | - Chen Dong
- The College of life science, Northwest University, Xi’an, 710069 China
| | - Xiangrong Wang
- The College of life science, Northwest University, Xi’an, 710069 China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 China
| | - Lingzhi Zhao
- The College of life science, Northwest University, Xi’an, 710069 China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438 China
| | - Kang Liang
- School of Chemical Engineering, Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052 Australia
| | - Qiongxiang Tan
- The College of life science, Northwest University, Xi’an, 710069 China
| | - Yali Cui
- The College of life science, Northwest University, Xi’an, 710069 China
- Shaanxi Provincial Engineering Research Center for Nano-Biomedical Detection, Xi’an, 710077 China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438 China
| | - Wenli Hui
- The College of life science, Northwest University, Xi’an, 710069 China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, 710069 China
| |
Collapse
|
21
|
Li Y, Zhao Y, Li C, Yang K, Li Z, Shang W, Song X, Shao Y, Qi K, Tu J. Rapid detection of porcine circovirus type 4 via multienzyme isothermal rapid amplification. Front Vet Sci 2022; 9:949172. [PMID: 35968022 PMCID: PMC9366244 DOI: 10.3389/fvets.2022.949172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Porcine circovirus type 4 (PCV4) is a newly emerging pathogen that was first detected in 2019 and is associated with diverse clinical signs, including respiratory and gastrointestinal distress, dermatitis and various systemic inflammations. It was necessary to develop a sensitive and specific diagnostic method to detect PCV4 in clinical samples, so in this study, a multienzyme isothermal rapid amplification (MIRA) assay was developed for the rapid detection of PCV4 and evaluated for sensitivity, specificity and applicability. It was used to detect the conserved Cap gene of PCV4, operated at 41°C and completed in 20 min. With the screening of MIRA primer-probe combination, it could detect as low as 101 copies of PCV4 DNA per reaction and was highly specific, with no cross-reaction with other pathogens. Further assessment with clinical samples showed that the developed MIRA assay had good correlation with real-time polymerase chain reaction assay for the detection of PCV4. The developed MIRA assay will be a valuable tool for the detection of the novel PCV4 in clinical samples due to its high sensitivity and specificity, simplicity of operation and short testing time.
Collapse
Affiliation(s)
- Yuqing Li
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, China
| | - Yanli Zhao
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, China
| | - Chen Li
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, China
| | - Kankan Yang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, China
| | - Zhe Li
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, China
| | - Wenbin Shang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, China
| | - Xiangjun Song
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, China
| | - Ying Shao
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, China
| | - Kezong Qi
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, China
| | - Jian Tu
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, China
- *Correspondence: Jian Tu
| |
Collapse
|
22
|
Expression and immunogenicity analysis of the capsid proteins of porcine circovirus types 2 to 4. Int J Biol Macromol 2022; 218:828-838. [PMID: 35907450 DOI: 10.1016/j.ijbiomac.2022.07.204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022]
Abstract
Porcine circovirus (PCV) comprises four types, PCV1, PCV2, PCV3, and PCV4, which belong to the Circovirus genus of the family Circoviridae. PCV1 is nonpathogenic, whereas PCV2, PCV3, and PCV4 can infect pigs and cause disease. However, due to a lack of experimental evidence, whether vaccines based on PCV capsid (Cap) can induce cross-reactivity against PCVs remains controversial. In this study, recombinant truncated capsids (rCaps) of PCV2, PCV3, and PCV4 were highly and efficiently expressed and purified, followed by the development and evaluation of antibodies against PCVs. The results showed that monovalent and trivalent antigens based on the recombinant Caps had adequate immunogenicity to stimulate specific antibodies against the corresponding protein and virus. Furthermore, antisera prepared from the recombinant Caps also cross-reacted with different PCVs. Therefore, recombinant proteins can be used as candidate antigens to develop vaccines and ELISA diagnostic kits. In addition, the antibodies prepared in this study are promising candidates for the simultaneous prevention and treatment of PCVs in the clinic.
Collapse
|
23
|
Advances in Crosstalk between Porcine Circoviruses and Host. Viruses 2022; 14:v14071419. [PMID: 35891399 PMCID: PMC9315664 DOI: 10.3390/v14071419] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine circoviruses (PCVs), including PCV1 to PCV4, are non-enveloped DNA viruses with a diameter of about 20 nm, belonging to the genus Circovirus in the family Circoviridae. PCV2 is an important causative agent of porcine circovirus disease or porcine circovirus-associated disease (PCVD/PCVAD), which is highly prevalent in pigs and seriously affects the swine industry globally. Furthermore, PCV2 mainly causes subclinical symptoms and immunosuppression, and PCV3 and PCV4 were detected in healthy pigs, sick pigs, and other animals. Although the pathogenicity of PCV3 and PCV4 in the field is still controversial, the infection rates of PCV3 and PCV4 in pigs are increasing. Moreover, PCV3 and PCV4 rescued from infected clones were pathogenic in vivo. It is worth noting that the interaction between virus and host is crucial to the infection and pathogenicity of the virus. This review discusses the latest research progress on the molecular mechanism of PCVs–host interaction, which may provide a scientific basis for disease prevention and control.
Collapse
|
24
|
Wang D, Mai J, Yang Y, Xiao CT, Wang N. Current knowledge on epidemiology and evolution of novel porcine circovirus 4. Vet Res 2022; 53:38. [PMID: 35642044 PMCID: PMC9158299 DOI: 10.1186/s13567-022-01053-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Porcine circovirus type 4 (PCV4) is a newly emerging virus, with both PCV4 genomic DNA and specific antibodies detected in swine herds in several provinces in China and South Korea. Although the virus was first identified in 2019 in Hunan, China, retrospective research suggests that serum samples collected as early as 2008 were positive for PCV4 antibody. Infections with only PCV4 or co-infections with other pathogens have been associated with several clinical manifestations, but its pathogenesis remains to be determined. The purpose of this review was the following: (1) to characterize PCV4 epidemiology by assessing evolutionary dynamics and genetic diversity of PCV4 strains circulating in swine herds; (2) to reconstruct a computerized 3D model to analyze PCV4 Cap properties; (3) and to summarize the current evidence of PCV4-associated clinical-pathological manifestations. The origin of PCV4 is apparently distinct from other PCV, based on analysis of phylogenetic trees. Of note, PCV4 shares an ancient common ancestor with mink circoviruses. Furthermore, the amino acid residue at position 27 of the PCV4 Cap is a key benchmark to distinguish PCV4a (27S) from PCV4b (27 N), based on PCV4 strains currently available, and variation of this residue may alter Cap antigenicity. In addition, the capsid surface of PCV4 has characteristics of increased polar residues, compared to PCV2, which raises the possibility that PCV4 may target negatively charged host receptors to promote virus infection. Further studies are required, including virus isolation and culture, and more detailed characterization of molecular epidemiology and genetic diversity of PCV4 in swine herds.
Collapse
Affiliation(s)
- Dongliang Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP), Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jinhui Mai
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP), Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Yang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP), Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Chao-Ting Xiao
- Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, China.
| | - Naidong Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP), Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
25
|
Porcine Circovirus Type 4 Strains Circulating in China Are Relatively Stable and Have Higher Homology with Mink Circovirus than Other Porcine Circovirus Types. Int J Mol Sci 2022; 23:ijms23063288. [PMID: 35328710 PMCID: PMC8950282 DOI: 10.3390/ijms23063288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Porcine circovirus type 4 (PCV4) is a newly identified porcine circovirus (PCV) belonging to the Circovirus genus Circoviridae family. Although several groups have conducted epidemiological investigations on PCV4 and found that PCV4 also exists widely in pigs, there are few reports on the origin and evolution of PCV4. In this study, the genetic relationship between PCV4, mink circovirus (MiCV), bat circovirus (BtCV), PCV1, PCV2, and PCV3 was analyzed, and the consistency of viral proteins in three-dimensional (3D) structure and epitopes was predicted. We found that the genome and protein structure of PCV4 was relatively stable among current circulating PCV4 strains. Furthermore, PCV4 was more similar to MiCV in terms of its genome, protein structure, and epitope levels than other PCVs and BtCVs, suggesting that PCV4 may be derived from MiCV or have a common origin with MiCV, or mink may be an intermediate host of PCV4, which may pose a great threat to other animals and/or even human beings. Therefore, it is necessary to continuously monitor the infection and variation of PCV4, analyze the host spectrum of PCV4, and establish the prevention and treatment methods of PCV4 infection in advance.
Collapse
|
26
|
Niu G, Zhang X, Ji W, Chen S, Li X, Yang L, Zhang L, Ouyang H, Li C, Ren L. Porcine circovirus 4 rescued from an infectious clone is replicable and pathogenic in vivo. Transbound Emerg Dis 2022; 69:e1632-e1641. [PMID: 35240007 DOI: 10.1111/tbed.14498] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
Porcine circovirus 4 (PCV4) is a newly identified porcine circovirus in pigs, belonging to the Circoviridae family Circovirus genus. The virus was detected in all age groups and aborted fetuses. However, the virus hasn't been isolated from the field samples to date. In this study, PCV4 was successfully rescued from an infectious clone. The rescued PCV4 was replicable in PK-15 cells and piglets, which can be detected in almost all the collected samples of the challenge groups. No obvious clinical symptoms were observed in both sham- and PCV4-inoculated piglets during the whole experiment. However, visible pathological changes were found in several organs of the PCV4-inoculated piglets, indicating that rescued PCV4 was pathogenic in piglets. Furthermore, the viremia, PCV4-specific antibody, and up-regulated cytokines/chemokines were also detected in the PCV4-inoculated groups, suggesting effective humoral and cellular immune responses were stimulated in response to the virus challenge. The PCV4 rescued in this study may provide the basis for preventive and controlling the disease, and vaccine development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Guyu Niu
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' an Road, Changchun, 130062, China
| | - Xinwei Zhang
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' an Road, Changchun, 130062, China
| | - Weilong Ji
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' an Road, Changchun, 130062, China
| | - Si Chen
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' an Road, Changchun, 130062, China
| | - Xue Li
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' an Road, Changchun, 130062, China
| | - Lin Yang
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' an Road, Changchun, 130062, China
| | - Liying Zhang
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' an Road, Changchun, 130062, China
| | - Hongsheng Ouyang
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' an Road, Changchun, 130062, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' an Road, Changchun, 130062, China
| |
Collapse
|
27
|
Comprehensive Analysis of Codon Usage Patterns in Chinese Porcine Circoviruses Based on Their Major Protein-Coding Sequences. Viruses 2022; 14:v14010081. [PMID: 35062285 PMCID: PMC8778832 DOI: 10.3390/v14010081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 01/01/2023] Open
Abstract
Porcine circoviruses (PCVs) are distributed in swine herds worldwide and represent a threat to the health of domestic pigs and the profits of the swine industry. Currently, four PCV species, including PCV-1, PCV-2, PCV-3 and PCV-4, have been identified in China. Considering the ubiquitous characteristic of PCVs, the new emerged PCV-4 and the large scale of swine breeding in China, an overall analysis on codon usage bias for Chinese PCV sequences was performed by using the major proteins coding sequences (ORF1 and ORF2) to better understand the relationship of these viruses with their host. The data from genome nucleotide frequency composition and relative synonymous codon usage (RSCU) analysis revealed an overrepresentation of AT pair and the existence of a certain codon usage bias in all PCVs. However, the values of an effective number of codons (ENC) revealed that the bias was of low magnitude. Principal component analysis, ENC-plot, parity rule two analysis and correlation analysis suggested that natural selection and mutation pressure were both involved in the shaping of the codon usage patterns of PCVs. However, a neutrality plot revealed a stronger effect of natural selection than mutation pressure on codon usage patterns. Good host adaptation was also shown by the codon adaptation index analysis for all these viruses. Interestingly, obtained data suggest that PCV-4 might be more adapted to its host compared to other PCVs. The present study obtained insights into the codon usage pattern of PCVs based on ORF1 and ORF2, which further helps the understanding the molecular evolution of these swine viruses.
Collapse
|