1
|
Clark-Patterson GL, Buchanan LM, Ogola BO, Florian-Rodriguez M, Lindsey SH, De Vita R, Miller KS. Smooth muscle contribution to vaginal viscoelastic response. J Mech Behav Biomed Mater 2023; 140:105702. [PMID: 36764168 DOI: 10.1016/j.jmbbm.2023.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Smooth muscle cells contribute to the mechanical function of various soft tissues, however, their contribution to the viscoelastic response when subjected to multiaxial loading remains unknown. The vagina is a fibromuscular viscoelastic organ that is exposed to prolonged and increased pressures with daily activities and physiologic processes such as vaginal birth. The vagina changes in geometry over time under prolonged pressure, known as creep. Vaginal smooth muscle cells may contribute to creep. This may be critical for the function of vaginal and other soft tissues that experience fluctuations in their biomechanical environment. Therefore, the objective of this study was to develop methods to evaluate the contribution of smooth muscle to vaginal creep under multiaxial loading using extension - inflation tests. The vaginas from wildtype mice (C57BL/6 × 129SvEv; 3-6 months; n = 10) were stimulated with various concentrations of potassium chloride then subjected to the measured in vivo pressure (7 mmHg) for 100 s. In a different cohort of mice (n = 5), the vagina was stimulated with a single concentration of potassium chloride then subjected to 5 and 15 mmHg. A laser micrometer measured vaginal outer diameter in real-time. Immunofluorescence evaluated the expression of alpha-smooth muscle actin and myosin heavy chain in the vaginal muscularis (n = 6). When smooth muscle contraction was activated, vaginal creep behavior increased compared to the relaxed state. However, increased pressure decreased the active creep response. This study demonstrated that extension - inflation protocols can be used to evaluate smooth muscle contribution to the viscoelastic response of tubular soft tissues.
Collapse
Affiliation(s)
| | - Lily M Buchanan
- University of Texas at Dallas, Department of Bioengineering, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| | - Benard O Ogola
- Augusta University, Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912, USA.
| | - Maria Florian-Rodriguez
- University of Texas Southwestern Medical Center, Department of Obstetrics and Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery and Cecil H and Ida Green Center for Reproductive Biological Sciences, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9032, USA.
| | - Sarah H Lindsey
- Tulane University School of Medicine, Department of Pharmacology, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Raffaella De Vita
- Virginia Tech,Department of Biomedical Engineering and Mechanics, 330 A Kelly Hall, 325 Stanger St, Blacksburg, VA, 24061, USA.
| | - Kristin S Miller
- Tulane University, Department of Biomedical Engineering, 6823 St Charles Ave, New Orleans, LA, 70118, USA; University of Texas at Dallas, Department of Bioengineering, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
2
|
Fang C, Magaki SD, Kim RC, Kalaria RN, Vinters HV, Fisher M. Arteriolar neuropathology in cerebral microvascular disease. Neuropathol Appl Neurobiol 2023; 49:e12875. [PMID: 36564356 DOI: 10.1111/nan.12875] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Cerebral microvascular disease (MVD) is an important cause of vascular cognitive impairment. MVD is heterogeneous in aetiology, ranging from universal ageing to the sporadic (hypertension, sporadic cerebral amyloid angiopathy [CAA] and chronic kidney disease) and the genetic (e.g., familial CAA, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL] and cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy [CARASIL]). The brain parenchymal consequences of MVD predominantly consist of lacunar infarcts (lacunes), microinfarcts, white matter disease of ageing and microhaemorrhages. MVD is characterised by substantial arteriolar neuropathology involving ubiquitous vascular smooth muscle cell (SMC) abnormalities. Cerebral MVD is characterised by a wide variety of arteriolar injuries but only a limited number of parenchymal manifestations. We reason that the cerebral arteriole plays a dominant role in the pathogenesis of each type of MVD. Perturbations in signalling and function (i.e., changes in proliferation, apoptosis, phenotypic switch and migration of SMC) are prominent in the pathogenesis of cerebral MVD, making 'cerebral angiomyopathy' an appropriate term to describe the spectrum of pathologic abnormalities. The evidence suggests that the cerebral arteriole acts as both source and mediator of parenchymal injury in MVD.
Collapse
Affiliation(s)
- Chuo Fang
- Department of Neurology, University of California, Irvine Medical Center, 101 The City Drive South Shanbrom Hall (Building 55), Room 121, Orange, 92868, California, USA
| | - Shino D Magaki
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Ronald C Kim
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Orange, California, USA
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Harry V Vinters
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Mark Fisher
- Department of Neurology, University of California, Irvine Medical Center, 101 The City Drive South Shanbrom Hall (Building 55), Room 121, Orange, 92868, California, USA.,Department of Pathology & Laboratory Medicine, University of California, Irvine, Orange, California, USA
| |
Collapse
|
3
|
Ahn BY, Jeong Y, Kim S, Zhang Y, Kim SW, Leem YE, Kang JS. Cdon suppresses vascular smooth muscle calcification via repression of the Wnt/Runx2 Axis. Exp Mol Med 2023; 55:120-131. [PMID: 36609601 PMCID: PMC9898282 DOI: 10.1038/s12276-022-00909-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 01/09/2023] Open
Abstract
Osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) is a risk factor associated with vascular diseases. Wnt signaling is one of the major mechanisms implicated in the osteogenic conversion of VSMCs. Since Cdon has a negative effect on Wnt signaling in distinct cellular processes, we sought to investigate the role of Cdon in vascular calcification. The expression of Cdon was significantly downregulated in VSMCs of the aortas of patients with atherosclerosis and aortic stenosis. Consistently, calcification models, including vitamin D3 (VD3)-injected mice and VSMCs cultured with calcifying media, exhibited reduced Cdon expression. Cdon ablation mice (cKO) exhibited exacerbated aortic stiffness and calcification in response to VD3 compared to the controls. Cdon depletion induced the osteogenic conversion of VSMCs accompanied by cellular senescence. The Cdon-deficient aortas showed a significant alteration in gene expression related to cell proliferation and differentiation together with Wnt signaling regulators. Consistently, Cdon depletion or overexpression in VSMCs elevated or attenuated Wnt-reporter activities, respectively. The deletion mutant of the second immunoglobulin domain (Ig2) in the Cdon ectodomain failed to suppress Wnt signaling and osteogenic conversion of VSMCs. Furthermore, treatment with purified recombinant proteins of the entire ectodomain or Ig2 domain of Cdon displayed suppressive effects on Wnt signaling and VSMC calcification. Our results demonstrate a protective role of Cdon in VSMC calcification by suppressing Wnt signaling. The Ig2 domain of Cdon has the potential as a therapeutic tool to prevent vascular calcification.
Collapse
Affiliation(s)
- Byeong-Yun Ahn
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea
| | - Yideul Jeong
- Research Institute of Aging Related Disease, AniMusCure, Inc., Suwon, South Korea
| | - Sunghee Kim
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea
| | - Yan Zhang
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea
| | - Su Woo Kim
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea.
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea.
| |
Collapse
|
4
|
Senescence-Associated Secretory Phenotype of Cardiovascular System Cells and Inflammaging: Perspectives of Peptide Regulation. Cells 2022; 12:cells12010106. [PMID: 36611900 PMCID: PMC9818427 DOI: 10.3390/cells12010106] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
A senescence-associated secretory phenotype (SASP) and a mild inflammatory response characteristic of senescent cells (inflammaging) form the conditions for the development of cardiovascular diseases: atherosclerosis, coronary heart disease, and myocardial infarction. The purpose of the review is to analyze the pool of signaling molecules that form SASP and inflammaging in cells of the cardiovascular system and to search for targets for the action of vasoprotective peptides. The SASP of cells of the cardiovascular system is characterized by a change in the synthesis of anti-proliferative proteins (p16, p19, p21, p38, p53), cytokines characteristic of inflammaging (IL-1α,β, IL-4, IL-6, IL-8, IL-18, TNFα, TGFβ1, NF-κB, MCP), matrix metalloproteinases, adhesion molecules, and sirtuins. It has been established that peptides are physiological regulators of body functions. Vasoprotective polypeptides (liraglutide, atrial natriuretic peptide, mimetics of relaxin, Ucn1, and adropin), KED tripeptide, and AEDR tetrapeptide regulate the synthesis of molecules involved in inflammaging and SASP-forming cells of the cardiovascular system. This indicates the prospects for the development of drugs based on peptides for the treatment of age-associated cardiovascular pathology.
Collapse
|
5
|
Cao G, Xuan X, Hu J, Zhang R, Jin H, Dong H. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal 2022; 20:180. [PMID: 36411459 PMCID: PMC9677683 DOI: 10.1186/s12964-022-00993-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the most abundant cell in vessels. Earlier experiments have found that VSMCs possess high plasticity. Vascular injury stimulates VSMCs to switch into a dedifferentiated type, also known as synthetic VSMCs, with a high migration and proliferation capacity for repairing vascular injury. In recent years, largely owing to rapid technological advances in single-cell sequencing and cell-lineage tracing techniques, multiple VSMCs phenotypes have been uncovered in vascular aging, atherosclerosis (AS), aortic aneurysm (AA), etc. These VSMCs all down-regulate contractile proteins such as α-SMA and calponin1, and obtain specific markers and similar cellular functions of osteoblast, fibroblast, macrophage, and mesenchymal cells. This highly plastic phenotype transformation is regulated by a complex network consisting of circulating plasma substances, transcription factors, growth factors, inflammatory factors, non-coding RNAs, integrin family, and Notch pathway. This review focuses on phenotypic characteristics, molecular profile and the functional role of VSMCs phenotype landscape; the molecular mechanism regulating VSMCs phenotype switching; and the contribution of VSMCs phenotype switching to vascular aging, AS, and AA. Video Abstract.
Collapse
Affiliation(s)
- Genmao Cao
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Xuezhen Xuan
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Jie Hu
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Ruijing Zhang
- grid.452845.a0000 0004 1799 2077Department of Nephrology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Haijiang Jin
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Honglin Dong
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| |
Collapse
|
6
|
Li H, Xu J, Zhang Y, Hong L, He Z, Zeng Z, Zhang L. Astragaloside IV alleviates senescence of vascular smooth muscle cells through activating Parkin-mediated mitophagy. Hum Cell 2022; 35:1684-1696. [PMID: 35925474 PMCID: PMC9515037 DOI: 10.1007/s13577-022-00758-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
Astragaloside IV (AS-IV), as one of the main active components of Astragalus membranaceus, has been reported to have cardiovascular protective effects. However, the role and molecular mechanism of AS-IV in vascular senescence have not been clearly stated. The in vitro aging model was constructed using bleomycin (BLM) in vascular smooth muscle cells (VSMCs). Cell senescence were assessed through Western blotting analysis of aging markers, flow cytometry, and the β-galactosidase (SA-β-Gal) kit. Mitophagy was determined through transmission electron microscopy, TMRM staining, and Western blotting analysis of p62. A model of aging blood vessels was induced by D-gal. The vascular wall thickness of mice was also evaluated by H&E staining. Our data proved that AS-IV plays an anti-senescent role in vitro and in vivo. Results showed that AS-IV effectively improved mitochondrial injury, raised MMP, and mediated mitophagy in BLM-induced senescent VSMCs and D-gal induced aging mice. Parkin expression strengthened AS-IV's anti-senescent function. In conclusions, AS-IV attenuated BLM-induced VSMC senescence via Parkin to regulate mitophagy. Therefore, AS-IV-mediated Parkin might be a latent therapeutic agent and target for VSMC senescence.
Collapse
Affiliation(s)
- Huijun Li
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Jialin Xu
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Yanan Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Lei Hong
- Department of Cardiology, Long Gang Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Zhijian He
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Zhiheng Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
7
|
Kong P, Li CL, Dou YQ, Cao L, Zhang XY, Zhang WD, Bi ZQ, Peng ZY, Yan AQ, Han M. circ-Sirt1 Decelerates Senescence by Inhibiting p53 Activation in Vascular Smooth Muscle Cells, Ameliorating Neointima Formation. Front Cardiovasc Med 2022; 8:724592. [PMID: 34977164 PMCID: PMC8718546 DOI: 10.3389/fcvm.2021.724592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/29/2021] [Indexed: 01/10/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) senescence is a major driver of neointimal formation. We have demonstrated that circ-Sirt1 derived from the SIRT1 gene suppressed VSMC inflammation and neointimal formation. However, the effect of circ-Sirt1 inhibiting inflammation on VSMC senescence during neointimal hyperplasia remains to be elucidated. Here, we showed that circ-Sirt1 was highly expressed in young and healthy arteries, which was decreased in aged arteries and neointima of humans and mice. Overexpression of circ-Sirt1 delayed Ang II-induced VSMC senescence in vitro and ameliorated neointimal hyperplasia in vivo. Mechanically, circ-Sirt1 inhibited p53 activity at the levels of transcription and post-translation modulation. In detail, circ-Sirt1, on the one hand, interacted with and held p53 to block its nuclear translocation, and on the other hand, promoted SIRT1-mediated p53 deacetylation and inactivation. In conclusion, our data suggest that circ-Sirt1 is a novel p53 repressor in response senescence-inducing stimuli, and targeting circ-Sirt1 may be a promising approach to ameliorating aging-related vascular disease.
Collapse
Affiliation(s)
- Peng Kong
- Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chang-Lin Li
- Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yong-Qing Dou
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Cao
- Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Yun Zhang
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wen-Di Zhang
- Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ze-Qi Bi
- Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zu-Yi Peng
- Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - An-Qi Yan
- Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Mei Han
- Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Banerjee P, Kotla S, Reddy Velatooru L, Abe RJ, Davis EA, Cooke JP, Schadler K, Deswal A, Herrmann J, Lin SH, Abe JI, Le NT. Senescence-Associated Secretory Phenotype as a Hinge Between Cardiovascular Diseases and Cancer. Front Cardiovasc Med 2021; 8:763930. [PMID: 34746270 PMCID: PMC8563837 DOI: 10.3389/fcvm.2021.763930] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Overlapping risks for cancer and cardiovascular diseases (CVD), the two leading causes of mortality worldwide, suggest a shared biology between these diseases. The role of senescence in the development of cancer and CVD has been established. However, its role as the intersection between these diseases remains unclear. Senescence was originally characterized by an irreversible cell cycle arrest after a high number of divisions, namely replicative senescence (RS). However, it is becoming clear that senescence can also be instigated by cellular stress, so-called stress-induced premature senescence (SIPS). Telomere shortening is a hallmark of RS. The contribution of telomere DNA damage and subsequent DNA damage response/repair to SIPS has also been suggested. Although cellular senescence can mediate cell cycle arrest, senescent cells can also remain metabolically active and secrete cytokines, chemokines, growth factors, and reactive oxygen species (ROS), so-called senescence-associated secretory phenotype (SASP). The involvement of SASP in both cancer and CVD has been established. In patients with cancer or CVD, SASP is induced by various stressors including cancer treatments, pro-inflammatory cytokines, and ROS. Therefore, SASP can be the intersection between cancer and CVD. Importantly, the conventional concept of senescence as the mediator of cell cycle arrest has been challenged, as it was recently reported that chemotherapy-induced senescence can reprogram senescent cancer cells to acquire “stemness” (SAS: senescence-associated stemness). SAS allows senescent cancer cells to escape cell cycle arrest with strongly enhanced clonogenic growth capacity. SAS supports senescent cells to promote both cancer and CVD, particularly in highly stressful conditions such as cancer treatments, myocardial infarction, and heart failure. As therapeutic advances have increased overlapping risk factors for cancer and CVD, to further understand their interaction may provide better prevention, earlier detection, and safer treatment. Thus, it is critical to study the mechanisms by which these senescence pathways (SAS/SASP) are induced and regulated in both cancer and CVD.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Loka Reddy Velatooru
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Rei J Abe
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Elizabeth A Davis
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P Cooke
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Keri Schadler
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joerg Herrmann
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
9
|
Cimmino I, Prisco F, Orso S, Agognon AL, Liguoro P, De Biase D, Doti N, Ruvo M, Paciello O, Beguinot F, Formisano P, Oriente F. Interleukin 6 reduces vascular smooth muscle cell apoptosis via Prep1 and is associated with aging. FASEB J 2021; 35:e21989. [PMID: 34679197 DOI: 10.1096/fj.202100943r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 11/11/2022]
Abstract
Aging exacerbates neointimal formation by reducing apoptosis of vascular smooth muscle cells (VSMCs) and induces inflammation within vascular wall. Prep1 is a homeodomain transcription factor which stimulates the expression of proinflammatory cytokines in aortic endothelial cell models and plays a primary role in the regulation of apoptosis. In this study, we have investigated the role of Prep1 in aorta of Prep1 hypomorphic heterozygous mice (Prep1i/+ ) and in VSMCs, and its correlation with aging. Histological analysis from Prep1i/+ aortas revealed a 25% reduction in medial smooth muscle cell density compared to WT animals. This result paralleled higher apoptosis, caspase 3, caspase 9 and p53 levels in Prep1i/+ mice and lower Bcl-xL. Prep1 overexpression in VSMCs decreased apoptosis by 25% and caspase 3 and caspase 9 expression by 40% and 37%. In parallel, Bcl-xL inhibition by BH3I-1 and p53 induction by etoposide reverted the antiapoptotic effect of Prep1. Experiments performed in aorta from 18 months old WT mice showed a significant increase in Prep1, p16INK4 , p21Waf1 and interleukin 6 (IL-6) compared to youngest animals. Similar results have been observed in H2 O2 -induced senescent VSMCs. Interestingly, the synthetic Prep1 inhibitory peptide Prep1 (54-72) reduced the antiapoptotic effects mediated by IL-6, particularly in senescent VSMCs. These results indicate that IL-6-Prep1 signaling reduces apoptosis, by modulating Bcl-xL and p53 both in murine aorta and in VSMCs. In addition, age-dependent increase in IL-6 and Prep1 in senescent VSMCs and in old mice may be involved in the aging-related vascular dysfunction.
Collapse
Affiliation(s)
- Ilaria Cimmino
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, Naples, Italy
| | - Sonia Orso
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Ayewa L Agognon
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Pasquale Liguoro
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Davide De Biase
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, Naples, Italy
| | - Nunzianna Doti
- Institute of Biostructure and Bioimaging, National Research Council and Interuniversity Research Centre on Bioactive Peptides Naples, Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council and Interuniversity Research Centre on Bioactive Peptides Naples, Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| |
Collapse
|
10
|
Santhanam L, Liu G, Jandu S, Su W, Wodu BP, Savage W, Poe A, Liu X, Alexander LM, Cao X, Wan M. Skeleton-secreted PDGF-BB mediates arterial stiffening. J Clin Invest 2021; 131:e147116. [PMID: 34437300 PMCID: PMC8516464 DOI: 10.1172/jci147116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Evidence links osteoporosis and cardiovascular disease but the cellular and molecular mechanisms are unclear. Here we identify skeleton-secreted platelet-derived growth factor-BB (PDGF-BB) as a key mediator of arterial stiffening in response to aging and metabolic stress. Aged mice and those fed high-fat diet (HFD), relative to young mice and those fed normal chow food diet, respectively, had higher serum PDGF-BB and developed bone loss and arterial stiffening. Bone/bone marrow preosteoclasts in aged mice and HFD mice secrete an excessive amount of PDGF-BB, contributing to the elevated PDGF-BB in blood circulation. Conditioned medium prepared from preosteoclasts stimulated proliferation and migration of the vascular smooth muscle cells. Conditional transgenic mice, in which PDGF-BB is overexpressed in preosteoclasts, had 3-fold higher serum PDGF-BB concentration and developed simultaneous bone loss and arterial stiffening spontaneously at a young age. Conversely, in conditional knockout mice, in which PDGF-BB is deleted selectively in preosteoclasts, HFD did not affect serum PDGF-BB concentration; as a result, HFD-induced bone loss and arterial stiffening were attenuated. These studies confirm that preosteoclasts are a main source of excessive PDGF-BB in blood circulation during aging and metabolic stress and establish the role of skeleton-derived PDGF-BB as an important mediator of vascular stiffening.
Collapse
Affiliation(s)
- Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine and
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Guanqiao Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sandeep Jandu
- Department of Anesthesiology and Critical Care Medicine and
| | - Weiping Su
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedic Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bulouere P. Wodu
- Department of Biotechnology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - William Savage
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Alan Poe
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiaonan Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lacy M. Alexander
- Department of Kinesiology, Penn State University, University Park, Pennsylvania, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Song P, Zhao Q, Zou MH. Targeting senescent cells to attenuate cardiovascular disease progression. Ageing Res Rev 2020; 60:101072. [PMID: 32298812 DOI: 10.1016/j.arr.2020.101072] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is the most common disease to increase as life expectancy increases. Most high-profile pharmacological treatments for age-related CVD have led to inefficacious results, implying that novel approaches to treating these pathologies are needed. Emerging data have demonstrated that senescent cardiovascular cells, which are characterized by irreversible cell cycle arrest and a distinct senescence-associated secretory phenotype, accumulate in aged or diseased cardiovascular systems, suggesting that they may impair cardiovascular function. This review discusses the evidence implicating senescent cells in cardiovascular ageing, the onset and progression of CVD, and the molecular mechanisms underlying cardiovascular cell senescence. We also review eradication of senescent cardiovascular cells by small-molecule-drug-mediated apoptosis and immune cell-mediated efferocytosis and toxicity as promising and precisely targeted therapeutics for CVD prevention and treatment.
Collapse
|
12
|
Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases. Cells 2020; 9:cells9030671. [PMID: 32164335 PMCID: PMC7140645 DOI: 10.3390/cells9030671] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Senescent cells are generally characterized by permanent cell cycle arrest, metabolic alteration and activation, and apoptotic resistance in multiple organs due to various stressors. Excessive accumulation of senescent cells in numerous tissues leads to multiple chronic diseases, tissue dysfunction, age-related diseases and organ ageing. Immune cells can remove senescent cells. Immunaging or impaired innate and adaptive immune responses by senescent cells result in persistent accumulation of various senescent cells. Although senolytics-drugs that selectively remove senescent cells by inducing their apoptosis-are recent hot topics and are making significant research progress, senescence immunotherapies using immune cell-mediated clearance of senescent cells are emerging and promising strategies to fight ageing and multiple chronic diseases. This short review provides an overview of the research progress to date concerning senescent cell-caused chronic diseases and tissue ageing, as well as the regulation of senescence by small-molecule drugs in clinical trials and different roles and regulation of immune cells in the elimination of senescent cells. Mounting evidence indicates that immunotherapy targeting senescent cells combats ageing and chronic diseases and subsequently extends the healthy lifespan.
Collapse
|
13
|
Age-Dependent and -Independent Effects of Perivascular Adipose Tissue and Its Paracrine Activities during Neointima Formation. Int J Mol Sci 2019; 21:ijms21010282. [PMID: 31906225 PMCID: PMC6981748 DOI: 10.3390/ijms21010282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/15/2019] [Accepted: 12/29/2019] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular risk factors may act by modulating the composition and function of the adventitia. Here we examine how age affects perivascular adipose tissue (PVAT) and its paracrine activities during neointima formation. Aortic tissue and PVAT or primary aortic smooth muscle cells from male C57BL/6JRj mice aged 52 weeks (“middle-aged”) were compared to tissue or cells from mice aged 16 weeks (“adult”). Vascular injury was induced at the carotid artery using 10% ferric chloride. Carotid arteries from the middle-aged mice exhibited smooth muscle de-differentiation and elevated senescence marker expression, and vascular injury further aggravated media and adventitia thickening. Perivascular transplantation of PVAT had no effect on these parameters, but age-independently reduced neointima formation and lumen stenosis. Quantitative PCR analysis revealed a blunted increase in senescence-associated proinflammatory changes in perivascular tissue compared to visceral adipose tissue and higher expression of mediators attenuating neointima formation. Elevated levels of protein inhibitor of activated STAT1 (PIAS1) and lower expression of STAT1- or NFκB-regulated genes involved in adipocyte differentiation, inflammation, and apoptosis/senescence were present in mouse PVAT, whereas PIAS1 was reduced in the PVAT of patients with atherosclerotic vessel disease. Our findings suggest that age affects adipose tissue and its paracrine vascular activities in a depot-specific manner. PIAS1 may mediate the age-independent vasculoprotective effects of perivascular fat.
Collapse
|
14
|
Jia L, Wang L, Wei F, Li C, Wang Z, Yu H, Chen H, Wang B, Jiang A. Effects of Caveolin-1-ERK1/2 pathway on endothelial cells and smooth muscle cells under shear stress. Exp Biol Med (Maywood) 2019; 245:21-33. [PMID: 31810383 DOI: 10.1177/1535370219892574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hemodynamic forces have an important role in venous intimal hyperplasia, which is the main cause of arteriovenous fistula dysfunction. Endothelial cells (ECs) constantly exposed to the shear stress of blood flow, converted the mechanical stimuli into intracellular signals, and interacted with the underlying vascular smooth muscle cells (VSMCs). Caveolin-1 is one of the important mechanoreceptors on cytomembrane, which is related to vascular abnormalities. Extracellular signal-regulated kinase1/2 (ERK1/2) pathway is involved in the process of VSMCs proliferation and migration. In the present study, we explore the effects of Caveolin-1-ERK1/2 pathway and uremia toxins on the endothelial cells and VSMCs following shear stress application. Different shear stress was simulated with a ECs/VSMCs cocultured parallel-plate flow chamber system. Low shear stress and oscillating shear stress up-regulated the expression of fibroblast growth factor-4, platelet-derived growth factor-BB, vascular endothelial growth factor-A, ERK1/2 phosphorylation in endothelial cells, and proliferation and migration of VSMCs but down-regulated the Caveolin-1 expression in endothelial cells. Uremia toxin induces the proliferation and migration of VSMCs but not in a Caveolin-1-dependent manner in the static environment. Low shear stress-induced proliferation and migration of VSMCs is inhibited by Caveolin-1 overexpression and ERK1/2 suppression. Shear stress-regulated VSMC proliferation and migration is an endothelial cells-dependent process. Low shear stress and oscillating shear stress exert atherosclerotic influences on endothelial cells and VSMCs. Low shear stress modulated proliferation and migration of VSMCs through Caveolin-1-ERK1/2 pathway, which suggested that Caveolin-1 and ERK1/2 can be used as a new therapeutic target for the treatment of arteriovenous fistula dysfunction.Impact statementVenous intimal hyperplasia is the leading cause of arteriovenous fistula (AVF) dysfunction. This article reports that shear stress-regulated vascular smooth muscle cells (VSMCs) proliferation and migration is an endothelial cell (EC)-dependent process. Low shear stress (LSS) and oscillating shear stress (OSS) exert atherosclerotic influences on the ECs and VSMCs. LSS-induced proliferation and migration of VSMCs is inhibited by Caveolin-1 overexpression and extracellular signal-regulated kinase1/2 (ERK1/2) suppression, which suggested that Caveolin-1 and ERK1/2 can be used as a new therapeutic target for the treatment of AVF dysfunction.
Collapse
Affiliation(s)
- Lan Jia
- Department of Kidney Disease and Blood Purification, Institute of Urology & Key Laboratory of Tianjin, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Lihua Wang
- Department of Kidney Disease and Blood Purification, Institute of Urology & Key Laboratory of Tianjin, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Fang Wei
- Department of Kidney Disease and Blood Purification, Institute of Urology & Key Laboratory of Tianjin, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Chen Li
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, China
| | - Zhe Wang
- Department of Kidney Disease and Blood Purification, Institute of Urology & Key Laboratory of Tianjin, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Haibo Yu
- Department of Kidney Disease and Blood Purification, Institute of Urology & Key Laboratory of Tianjin, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Haiyan Chen
- Department of Kidney Disease and Blood Purification, Institute of Urology & Key Laboratory of Tianjin, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Bo Wang
- Department of Kidney Disease and Blood Purification, Institute of Urology & Key Laboratory of Tianjin, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Aili Jiang
- Department of Kidney Disease and Blood Purification, Institute of Urology & Key Laboratory of Tianjin, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
15
|
Wang M, Zhang L, Zhu W, Zhang J, Kim SH, Wang Y, Ni L, Telljohann R, Monticone RE, McGraw K, Liu L, de Cabo R, Lakatta EG. Calorie Restriction Curbs Proinflammation That Accompanies Arterial Aging, Preserving a Youthful Phenotype. J Am Heart Assoc 2019; 7:e009112. [PMID: 30371211 PMCID: PMC6222931 DOI: 10.1161/jaha.118.009112] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Aging exponentially increases the incidence of morbidity and mortality of quintessential cardiovascular disease mainly due to arterial proinflammatory shifts at the molecular, cellular, and tissue levels within the arterial wall. Calorie restriction (CR) in rats improves arterial function and extends both health span and life span. How CR affects the proinflammatory landscape of molecular, cellular, and tissue phenotypic shifts within the arterial wall in rats, however, remains to be elucidated. Methods and Results Aortae were harvested from young (6‐month‐old) and old (24‐month‐old) Fischer 344 rats, fed ad libitum and a second group maintained on a 40% CR beginning at 1 month of age. Histopathologic and morphometric analysis of the arterial wall demonstrated that CR markedly reduced age‐associated intimal medial thickening, collagen deposition, and elastin fractionation/degradation within the arterial walls. Immunostaining/blotting showed that CR effectively prevented an age‐associated increase in the density of platelet‐derived growth factor, matrix metalloproteinase type II activity, and transforming growth factor beta 1 and its downstream signaling molecules, phospho‐mothers against decapentaplegic homolog‐2/3 (p‐SMAD‐2/3) in the arterial wall. In early passage cultured vascular smooth muscle cells isolated from AL and CR rat aortae, CR alleviated the age‐associated vascular smooth muscle cell phenotypic shifts, profibrogenic signaling, and migration/proliferation in response to platelet‐derived growth factor. Conclusions CR reduces matrix and cellular proinflammation associated with aging that occurs within the aortic wall and that are attributable to platelet‐derived growth factor signaling. Thus, CR reduces the platelet‐derived growth factor–associated signaling cascade, contributing to the postponement of biological aging and preservation of a more youthful aortic wall phenotype.
Collapse
Affiliation(s)
- Mingyi Wang
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Li Zhang
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD.,3 Department of Cardiology Nanfang Hospital Southern Medical University Guangzhou China
| | - Wanqu Zhu
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Jing Zhang
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Soo Hyuk Kim
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Yushi Wang
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD.,4 Department of Cardiology The First Hospital of Jilin University Changchun China
| | - Leng Ni
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD.,5 Department of Vascular Surgery Peking Union Medical College Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Richard Telljohann
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Robert E Monticone
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Kimberly McGraw
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Lijuan Liu
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Rafael de Cabo
- 2 Experimental Gerontology Section, Translational Gerontology Branch National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| | - Edward G Lakatta
- 1 Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Biomedical Research Center (BRC) Baltimore MD
| |
Collapse
|
16
|
Pan CH, Chen CJ, Shih CM, Wang MF, Wang JY, Wu CH. Oxidative stress-induced cellular senescence desensitizes cell growth and migration of vascular smooth muscle cells through down-regulation of platelet-derived growth factor receptor-beta. Aging (Albany NY) 2019; 11:8085-8102. [PMID: 31584878 PMCID: PMC6814625 DOI: 10.18632/aging.102270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023]
Abstract
The relationship between aging and restenosis are unclear. The purposes of this study were to investigate the possible pathological role and mechanism of aging on formation of restenosis. Our data indicated that cell proliferation and migration of the oxidative stress-induced senescent vascular smooth muscle cells were obviously desensitized to stimulation by platelet-derived growth factor (PDGF)-BB, which may have been caused by suppression of promoter activity, transcription, translation, and activation levels of PDGF receptor (PDGFR)-β. The analyzed data obtained from the binding array of transcription factors (TFs) showed that binding levels of eighteen TFs on the PDGFR-β promoter region (-523 to -1) were significantly lower in senescent cells compared to those of non-senescent cells. Among these TFs, the bioinformatics prediction suggested that the putative binding sites of ten TFs were found in this promoter region. Of these, transcriptional levels of seven TFs were markedly reduced in senescent cells. The clinical data showed that the proportion of restenosis was relatively lower in the older group than that in the younger group. Our study results suggested that a PDGFR-β-mediated pathway was suppressed in aging cells, and our clinical data showed that age and the vascular status were slightly negatively correlated in overall participants.
Collapse
Affiliation(s)
- Chun-Hsu Pan
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chang-Jui Chen
- Department of Pharmacy, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chun-Ming Shih
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 433, Taiwan
| | - Jie-Yu Wang
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chieh-Hsi Wu
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
17
|
Chiang HY, Chu PH, Lee TH. MFG-E8 mediates arterial aging by promoting the proinflammatory phenotype of vascular smooth muscle cells. J Biomed Sci 2019; 26:61. [PMID: 31470852 PMCID: PMC6716880 DOI: 10.1186/s12929-019-0559-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Among older adults, arterial aging is the major factor contributing to increased risk for cardiovascular disease-related morbidity and mortality. The chronic vascular inflammation that accompanies aging causes diffuse intimal-medial thickening of the arterial wall, thus increasing the vulnerability of aged vessels to vascular insults. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a biomarker for aging arteries. This integrin-binding glycoprotein, induced by angiotensin II, facilitates vascular smooth muscle cell (VSMC) proliferation and invasion in aging vasculatures. This study investigated whether MFG-E8 directly mediates the initial inflammatory responses in aged arteries or VSMCs. METHODS A model of neointimal hyperplasia was induced in the common carotid artery (CCA) of aged mice to exacerbate age-associated vascular remodeling. Recombinant MFG-E8 (rMFG-E8) was administered to the injured artery using Pluronic gel to accentuate the effect on age-related vascular pathophysiology. The MFG-E8 level, leukocyte infiltration, and proinflammatory cell adhesion molecule (CAM) expression in the arterial wall were evaluated through immunohistochemistry. By using immunofluorescence and immunoblotting, the activation of the critical proinflammatory transcription factor nuclear factor (NF)-κB in the injured CCAs was analyzed. Immunofluorescence, immunoblotting, and quantitative real-time polymerase chain reaction were conducted using VSMCs isolated from the aortas of young and aged mice to assess NF-κB nuclear translocation, NF-κB-dependent gene expression, and cell proliferation. The extent of intimal-medial thickening in the injured vessels was analyzed morphometrically. Finally, Transwell migration assay was used to examine VSMC migration. RESULTS Endogenous MFG-E8 expression in aged CCAs was significantly induced by ligation injury. Aged CCAs treated with rMFG-E8 exhibited increased leukocyte extravasation, CAM expression, and considerably increased NF-κB activation induced by rMFG-E8 in the ligated vessels. Exposure of early passage VSMCs from aged aortas to rMFG-E8 substantially increased NF-κB activation, proinflammatory gene expression, and cell proliferation. However, rMFG-E8 attenuated VSMC migration. CONCLUSIONS MFG-E8 promoted the proinflammatory phenotypic shift of aged VSMCs and arteries, rendering the vasculature prone to vascular diseases. MFG-E8 may constitute a novel therapeutic target for retarding the aging processes in such vessels.
Collapse
Affiliation(s)
- Hou-Yu Chiang
- Department of Anatomy, College of Medicine, Chang Gung University, 259 Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Hein Lee
- Department of Anatomy, College of Medicine, Chang Gung University, 259 Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
18
|
Walker AE, Breevoort SR, Durrant JR, Liu Y, Machin DR, Dobson PS, Nielson EI, Meza AJ, Islam MT, Donato AJ, Lesniewski LA. The pro-atherogenic response to disturbed blood flow is increased by a western diet, but not by old age. Sci Rep 2019; 9:2925. [PMID: 30814657 PMCID: PMC6393500 DOI: 10.1038/s41598-019-39466-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022] Open
Abstract
Atherogenic remodeling often occurs at arterial locations with disturbed blood flow (i.e., low or oscillatory) and both aging and western diet (WD) increase the likelihood for pro-atherogenic remodeling. However, it is unknown if old age and/or a WD modify the pro-atherogenic response to disturbed blood flow. We induced disturbed blood flow by partial carotid ligation (PCL) of the left carotid artery in young and old, normal chow (NC) or WD fed male B6D2F1 mice. Three weeks post-PCL, ligated carotid arteries had greater intima media thickness, neointima formation, and macrophage content compared with un-ligated arteries. WD led to greater remodeling and macrophage content in the ligated artery compared with NC mice, but these outcomes were similar between young and old mice. In contrast, nitrotyrosine content, a marker of oxidative stress, did not differ between WD and NC fed mice, but was greater in old compared with young mice in both ligated and un-ligated carotid arteries. In primary vascular smooth muscle cells, aging reduced proliferation, whereas conditioned media from fatty acid treated endothelial cells increased proliferation. Taken together, these findings suggest that the remodeling and pro-inflammatory response to disturbed blood flow is increased by WD, but is not increased by aging.
Collapse
Affiliation(s)
- Ashley E Walker
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA. .,Department of Human Physiology, University of Oregon, Eugene, Oregon, USA.
| | - Sarah R Breevoort
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | | | - Yu Liu
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Daniel R Machin
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center, Salt Lake City, Utah, USA
| | - Parker S Dobson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Elizabeth I Nielson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Antonio J Meza
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Md Torikul Islam
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Lisa A Lesniewski
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
19
|
Teo YV, Capri M, Morsiani C, Pizza G, Faria AMC, Franceschi C, Neretti N. Cell-free DNA as a biomarker of aging. Aging Cell 2019; 18:e12890. [PMID: 30575273 PMCID: PMC6351822 DOI: 10.1111/acel.12890] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/12/2018] [Accepted: 11/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cell-free DNA (cfDNA) is present in the circulating plasma and other body fluids and is known to originate mainly from apoptotic cells. Here, we provide the first in vivo evidence of global and local chromatin changes in human aging by analyzing cfDNA from the blood of individuals of different age groups. Our results show that nucleosome signals inferred from cfDNA are consistent with the redistribution of heterochromatin observed in cellular senescence and aging in other model systems. In addition, we detected a relative cfDNA loss at several genomic locations, such as transcription start and termination sites, 5'UTR of L1HS retrotransposons and dimeric AluY elements with age. Our results also revealed age and deteriorating health status correlate with increased enrichment of signals from cells in different tissues. In conclusion, our results show that the sequencing of circulating cfDNA from human blood plasma can be used as a noninvasive methodology to study age-associated changes to the epigenome in vivo.
Collapse
Affiliation(s)
- Yee Voan Teo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Miriam Capri
- CIG Interdepartmental Centre "Galvani", University of Bologna, Bologna, Italy
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cristina Morsiani
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Grazia Pizza
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
| |
Collapse
|
20
|
Salmina AB, Komleva YK, Lopatina OL, Birbrair A. Pericytes in Alzheimer's Disease: Novel Clues to Cerebral Amyloid Angiopathy Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:147-166. [PMID: 31147877 DOI: 10.1007/978-3-030-16908-4_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pericytes in the central nervous system attract growing attention of neurobiologists because of obvious opportunities to use them as target cells in numerous brain diseases. Functional activity of pericytes includes control of integrity of the endothelial cell layer, regeneration of vascular cells, and regulation of microcirculation. Pericytes are well integrated in the so-called neurovascular unit (NVU) serving as a platform for effective communications of neurons, astrocytes, endothelial cells, and pericytes. Contribution of pericytes to the establishment and maintaining the structural and functional integrity of blood-brain barrier is confirmed in numerous experimental and clinical studies. The review covers current understandings on the role of pericytes in molecular pathogenesis of NVU/BBB dysfunction in Alzheimer's disease with the special focus on the development of cerebral amyloid angiopathy, deregulation of cerebral angiogenesis, and progression of BBB breakdown seen in Alzheimer's type neurodegeneration.
Collapse
Affiliation(s)
- Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia. .,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.
| | - Yulia K Komleva
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.,Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
21
|
Brown BA, Williams H, Bond AR, Angelini GD, Johnson JL, George SJ. Carotid artery ligation induced intimal thickening and proliferation is unaffected by ageing. J Cell Commun Signal 2018; 12:529-537. [PMID: 29185213 PMCID: PMC6039339 DOI: 10.1007/s12079-017-0431-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/27/2017] [Indexed: 01/20/2023] Open
Abstract
Following interventions to treat atherosclerosis, such as coronary artery bypass graft surgery, restenosis occurs in approximately 40% of patients. Identification of proteins regulating intimal thickening could represent targets to prevent restenosis. Our group previously demonstrated that in a murine model of vascular occlusion, Wnt4 protein expression and β-catenin signalling was upregulated which promoted vascular smooth muscle cell (VSMC) proliferation and intimal thickening. In this study, the effect of age on VSMC proliferation, intimal hyperplasia and Wnt4 expression was investigated. In vitro proliferation of VSMCs isolated from young (2 month) or old (18-20 month) C57BL6/J mice was assessed by immunocytochemistry for EdU incorporation. As previously reported, 400 ng/mL recombinant Wnt4 protein increased proliferation of VSMCs from young mice. However, this response was absent in VSMCs from old mice. As our group previously reported reduced intimal hyperplasia in Wnt4+/- mice compared to wildtype controls, we hypothesised that impaired Wnt4 signalling with age may result in reduced neointimal formation. To investigate this, carotid artery ligation was performed in young and old mice and neointimal area was assessed 21 days later. Surprisingly, neointimal area and percentage lumen occlusion were not significantly affected by age. Furthermore, neointimal cell density and proliferation were also unchanged. These data suggest that although Wnt4-mediated proliferation was impaired with age in primary VSMCs, carotid artery ligation induced neointimal formation and proliferation were unchanged in old mice. These results imply that Wnt4-mediated proliferation is unaffected by age in vivo, suggesting that therapeutic Wnt4 inhibition could inhibit restenosis in patients of all ages.
Collapse
Affiliation(s)
- B A Brown
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - H Williams
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - A R Bond
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - G D Angelini
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - J L Johnson
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - S J George
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Although the roles of oxidant stress and redox perturbations in hypertension have been the subject of several reviews, role of thioredoxin (Trx), a major cellular redox protein in age-related hypertension remains inadequately reviewed. The purpose of this review is to bring readers up-to-date with current understanding of the role of thioredoxin in age-related hypertension. RECENT FINDINGS Age-related hypertension is a major underlying cause of several cardiovascular disorders, and therefore, intensive management of blood pressure is indicated in most patients with cardiovascular complications. Recent studies have shown that age-related hypertension was reversed and remained lowered for a prolonged period in mice with higher levels of human Trx (Trx-Tg). Additionally, injection of human recombinant Trx (rhTrx) decreased hypertension in aged wild-type mice that lasted for several days. Both Trx-Tg and aged wild-type mice injected with rhTrx were normotensive, showed increased NO production, decreased arterial stiffness, and increased vascular relaxation. These studies suggest that rhTrx could potentially be a therapeutic molecule to reverse age-related hypertension in humans. The reversal of age-related hypertension by restoring proteins that have undergone age-related modification is conceptually novel in the treatment of hypertension. Trx reverses age-related hypertension via maintaining vascular redox homeostasis, regenerating critical vasoregulatory proteins oxidized due to advancing age, and restoring native function of proteins that have undergone age-related modifications with loss-of function. Recent studies demonstrate that Trx is a promising molecule that may ameliorate or reverse age-related hypertension in older adults.
Collapse
Affiliation(s)
- Kumuda C Das
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA.
| | - Venkatesh Kundumani-Sridharan
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA
| | - Jaganathan Subramani
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA
| |
Collapse
|
23
|
Li Y, Zhu Y, Li G, Xiao J. Noncoding RNAs in Cardiovascular Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:37-53. [PMID: 30232751 DOI: 10.1007/978-981-13-1117-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
With a progressively growing elderly population, aging-associated cardiovascular diseases and other pathologies have brought great burden to the economy, society, and individuals. Therefore, identifying therapeutic targets and developing effective strategies to prevent from cardiovascular aging are highly needed. Accumulating evidences suggest that noncoding RNAs (ncRNAs) such as microRNAs and long noncoding RNAs (lncRNAs) play important roles in regulating gene expression, which contributes to many pathophysiological processes of cellular senescence, aging, and aging-related diseases in cardiovascular systems. Here we provided a general overview of ncRNAs as well as the underlying mechanisms involved in cardiovascular aging. Although the importance of ncRNAs in cardiovascular aging has been reported and commonly acknowledged, further studies are still necessary to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yongqin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
24
|
Cepeda SB, Sandoval MJ, Rauschemberger MB, Massheimer VL. Beneficial role of the phytoestrogen genistein on vascular calcification. J Nutr Biochem 2017; 50:26-37. [DOI: 10.1016/j.jnutbio.2017.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/06/2017] [Accepted: 08/19/2017] [Indexed: 10/19/2022]
|
25
|
Muller-Delp JM, Hotta K, Chen B, Behnke BJ, Maraj JJ, Delp MD, Lucero TR, Bramy JA, Alarcon DB, Morgan HE, Cowan MR, Haynes AD. Effects of age and exercise training on coronary microvascular smooth muscle phenotype and function. J Appl Physiol (1985) 2017; 124:140-149. [PMID: 29025901 DOI: 10.1152/japplphysiol.00459.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Coronary microvascular function and blood flow responses during acute exercise are impaired in the aged heart but can be restored by exercise training. Coronary microvascular resistance is directly dependent on vascular smooth muscle function in coronary resistance arterioles; therefore, we hypothesized that age impairs contractile function and alters the phenotype of vascular smooth muscle in coronary arterioles. We further hypothesized that exercise training restores contractile function and reverses age-induced phenotypic alterations of arteriolar smooth muscle. Young and old Fischer 344 rats underwent 10 wk of treadmill exercise training or remained sedentary. At the end of training or cage confinement, contractile responses, vascular smooth muscle proliferation, and expression of contractile proteins were assessed in isolated coronary arterioles. Both receptor- and non-receptor-mediated contractile function were impaired in coronary arterioles from aged rats. Vascular smooth muscle shifted from a differentiated, contractile phenotype to a secretory phenotype with associated proliferation of smooth muscle in the arteriolar wall. Expression of smooth muscle myosin heavy chain 1 (SM1) was decreased in arterioles from aged rats, whereas expression of phospho-histone H3 and of the synthetic protein ribosomal protein S6 (rpS6) were increased. Exercise training improved contractile responses, reduced smooth muscle proliferation and expression of rpS6, and increased expression of SM1 in arterioles from old rats. Thus age-induced contractile dysfunction of coronary arterioles and emergence of a secretory smooth muscle phenotype may contribute to impaired coronary blood flow responses, but arteriolar contractile responsiveness and a younger smooth muscle phenotype can be restored with late-life exercise training. NEW & NOTEWORTHY Aging impairs contractile function of coronary arterioles and induces a shift of the vascular smooth muscle toward a proliferative, noncontractile phenotype. Late-life exercise training reverses contractile dysfunction of coronary arterioles and restores a young phenotype to the vascular smooth muscle.
Collapse
Affiliation(s)
- Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University , Tallahassee, Florida
| | - Kazuki Hotta
- Department of Biomedical Sciences, Florida State University , Tallahassee, Florida
| | - Bei Chen
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| | - Bradley J Behnke
- Department of Kinesiology and Johnson Cancer Research Center, Kansas State University , Manhattan, Kansas
| | - Joshua J Maraj
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| | - Michael D Delp
- Department of Nutrition, Food & Exercise Sciences, Florida State University , Tallahassee, Florida
| | - Tiffani R Lucero
- Department of Biomedical Sciences, Florida State University , Tallahassee, Florida
| | - Jeremy A Bramy
- Department of Biomedical Sciences, Florida State University , Tallahassee, Florida
| | - David B Alarcon
- Department of Biomedical Sciences, Florida State University , Tallahassee, Florida
| | - Hannah E Morgan
- Department of Biomedical Sciences, Florida State University , Tallahassee, Florida
| | - Morgan R Cowan
- Department of Biomedical Sciences, Florida State University , Tallahassee, Florida
| | - Anthony D Haynes
- Department of Biomedical Sciences, Florida State University , Tallahassee, Florida
| |
Collapse
|
26
|
Tower J. Programmed cell death in aging. Ageing Res Rev 2015; 23:90-100. [PMID: 25862945 DOI: 10.1016/j.arr.2015.04.002] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/15/2015] [Accepted: 04/01/2015] [Indexed: 02/08/2023]
Abstract
Programmed cell death (PCD) pathways, including apoptosis and regulated necrosis, are required for normal cell turnover and tissue homeostasis. Mis-regulation of PCD is increasingly implicated in aging and aging-related disease. During aging the cell turnover rate declines for several highly-mitotic tissues. Aging-associated disruptions in systemic and inter-cell signaling combined with cell-autonomous damage and mitochondrial malfunction result in increased PCD in some cell types, and decreased PCD in other cell types. Increased PCD during aging is implicated in immune system decline, skeletal muscle wasting (sarcopenia), loss of cells in the heart, and neurodegenerative disease. In contrast, cancer cells and senescent cells are resistant to PCD, enabling them to increase in abundance during aging. PCD pathways limit life span in fungi, but whether PCD pathways normally limit adult metazoan life span is not yet clear. PCD is regulated by a balance of negative and positive factors, including the mitochondria, which are particularly subject to aging-associated malfunction.
Collapse
|
27
|
Down-regulation of mir-542-3p promotes neointimal formation in the aging rat. Vascul Pharmacol 2015; 72:118-29. [DOI: 10.1016/j.vph.2015.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/22/2015] [Accepted: 05/19/2015] [Indexed: 11/23/2022]
|
28
|
Vascular biology of ageing-Implications in hypertension. J Mol Cell Cardiol 2015; 83:112-21. [PMID: 25896391 PMCID: PMC4534766 DOI: 10.1016/j.yjmcc.2015.04.011] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/30/2015] [Accepted: 04/09/2015] [Indexed: 01/11/2023]
Abstract
Ageing is associated with functional, structural and mechanical changes in arteries that closely resemble the vascular alterations in hypertension. Characteristic features of large and small arteries that occur with ageing and during the development of hypertension include endothelial dysfunction, vascular remodelling, inflammation, calcification and increased stiffness. Arterial changes in young hypertensive patients mimic those in old normotensive individuals. Hypertension accelerates and augments age-related vascular remodelling and dysfunction, and ageing may impact on the severity of vascular damage in hypertension, indicating close interactions between biological ageing and blood pressure elevation. Molecular and cellular mechanisms underlying vascular alterations in ageing and hypertension are common and include aberrant signal transduction, oxidative stress and activation of pro-inflammatory and pro-fibrotic transcription factors. Strategies to suppress age-associated vascular changes could ameliorate vascular damage associated with hypertension. An overview on the vascular biology of ageing and hypertension is presented and novel molecular mechanisms contributing to these processes are discussed. The complex interaction between biological ageing and blood pressure elevation on the vasculature is highlighted. This article is part of a Special Issue entitled: CV Ageing.
Collapse
|
29
|
Monk BA, George SJ. The Effect of Ageing on Vascular Smooth Muscle Cell Behaviour--A Mini-Review. Gerontology 2014; 61:416-26. [PMID: 25471382 DOI: 10.1159/000368576] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022] Open
Abstract
Ageing is a prominent risk factor for atherosclerosis and cardiovascular disease. Vascular smooth muscle cells (VSMCs) are an integral part of atherosclerotic plaque formation, progression and subsequent rupture. Emerging evidence suggests that VSMC behaviour is modified by age, which in turn may affect disease outcome in the elderly. In this review, we discuss the effect of age on VSMC behaviour, proliferation, migration, apoptosis, inflammation, extracellular matrix synthesis and calcification. In addition, we discuss the multiple signalling factors underlying these behavioural changes including angiotensin-II, matrix metalloproteinases, monocyte chemotactic protein-1, and transforming growth factor-β1. Understanding the molecular processes underpinning altered VSMC behaviour with age, may lead to the identification of novel therapeutic targets for suppressing atherosclerosis in the elderly population.
Collapse
|
30
|
Transcription factor cAMP response element modulator (Crem) restrains Pdgf-dependent proliferation of vascular smooth muscle cells in mice. Pflugers Arch 2014; 467:2165-77. [PMID: 25425331 PMCID: PMC4564437 DOI: 10.1007/s00424-014-1652-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 12/26/2022]
Abstract
Transcription factors of the cAMP response element-binding protein (Creb)/cAMP response element modulator (Crem) family were linked to the switch from a contractile to a proliferating phenotype in vascular smooth muscle cells (VSMCs). Here, we analyzed the vascular function of Crem in mice with a global inactivation of Crem (Crem(-/-)). CRE-mediated transcriptional activity was enhanced in primary Crem(-/-) VSMCs under nonstimulated conditions and under stimulation with Forskolin and platelet-derived growth factor (Pdgf) whereas stimulation with nitric oxide or cGMP showed no effect. This elevated CRE-mediated transcriptional activity as a result of Crem inactivation did not alter aortic contractility or fractions of proliferating or apoptotic aortic VSMCs in situ, and no impact of Crem inactivation on the development of atherosclerotic plaques was observed. Crem(-/-) mice exhibited an increased neointima formation after carotid ligation associated with an increased proliferation of VSMCs in the carotid media. Pdgf-stimulated proliferation of primary aortic Crem(-/-) VSMCs was increased along with an upregulation of messenger RNA (mRNA) levels of Pdgf receptor, alpha polypeptide (Pdgfra), cyclophilin A (Ppia), the regulator of G-protein signaling 5 (Rgs5), and Rho GTPase-activating protein 12 (Arhgap12). Taken together, our data reveal the inhibition of Pdgf-stimulated proliferation of VSMCs by repressing the Pdgf-stimulated CRE-mediated transcriptional activation as the predominant function of Crem in mouse vasculature suggesting an important role of Crem in vasculoproliferative diseases.
Collapse
|
31
|
Reduction of endoplasmic reticulum stress inhibits neointima formation after vascular injury. Sci Rep 2014; 4:6943. [PMID: 25373918 PMCID: PMC4221790 DOI: 10.1038/srep06943] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/20/2014] [Indexed: 11/08/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and inappropriate adaptation through the unfolded protein response (UPR) are predominant features of pathological processes. However, little is known about the link between ER stress and endovascular injury. We investigated the involvement of ER stress in neointima hyperplasia after vascular injury. The femoral arteries of 7-8-week-old male mice were subjected to wire-induced vascular injury. After 4 weeks, immunohistological analysis showed that ER stress markers were upregulated in the hyperplastic neointima. Neointima formation was increased by 54.8% in X-box binding protein-1 (XBP1) heterozygous mice, a model of compromised UPR. Knockdown of Xbp1 in human coronary artery smooth muscle cells (CASMC) in vitro promoted cell proliferation and migration. Furthermore, treatment with ER stress reducers, 4-phenylbutyrate (4-PBA) and tauroursodeoxycholic acid (TUDCA), decreased the intima-to-media ratio after wire injury by 50.0% and 72.8%, respectively. Chronic stimulation of CASMC with PDGF-BB activated the UPR, and treatment with 4-PBA and TUDCA significantly suppressed the PDGF-BB-induced ER stress markers in CASMC and the proliferation and migration of CASMC. In conclusion, increased ER stress contributes to neointima formation after vascular injury, while UPR signaling downstream of XBP1 plays a suppressive role. Suppression of ER stress would be a novel strategy against post-angioplasty vascular restenosis.
Collapse
|
32
|
Wang M, Monticone RE, Lakatta EG. Proinflammation of aging central arteries: a mini-review. Gerontology 2014; 60:519-29. [PMID: 25171100 DOI: 10.1159/000362548] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/31/2014] [Indexed: 12/16/2022] Open
Abstract
Arterial aging is a cornerstone of organismal aging. The central arterial wall structurally and functionally remodels under chronic proinflammatory stress over a lifetime. The low-grade proinflammation that accompanies advancing age causes arterial wall thickening and stiffening. These structural and functional alterations are consequences of adverse molecular and cellular events, e.g. an increase in local angiotensin II signaling that induces an inflammatory phenotypic shift of endothelial and smooth muscle cells. Thus, interventions to restrict proinflammatory signaling are a rational approach to delay or prevent age-associated adverse arterial remodeling.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, Md., USA
| | | | | |
Collapse
|
33
|
Roca F, Grossin N, Chassagne P, Puisieux F, Boulanger E. Glycation: the angiogenic paradox in aging and age-related disorders and diseases. Ageing Res Rev 2014; 15:146-60. [PMID: 24742501 DOI: 10.1016/j.arr.2014.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 01/09/2023]
Abstract
Angiogenesis is generally a quiescent process which, however, may be modified by different physiological and pathological conditions. The "angiogenic paradox" has been described in diabetes because this disease impairs the angiogenic response in a manner that differs depending on the organs involved and disease evolution. Aging is also associated with pro- and antiangiogenic processes. Glycation, the post-translational modification of proteins, increases with aging and the progression of diabetes. The effect of glycation on angiogenesis depends on the type of glycated proteins and cells involved. This complex link could be responsible for the "angiogenic paradox" in aging and age-related disorders and diseases. Using diabetes as a model, the present work has attempted to review the age-related angiogenic paradox, in particular the effects of glycation on angiogenesis during aging.
Collapse
Affiliation(s)
- F Roca
- Vascular Aging Biology, Blood-Vessel Interface and Vascular Repair Unit, Lille School of Medicine, Lille2 University, Lille, France; Geriatrics Department, Rouen University Hospital, Rouen, France.
| | - N Grossin
- Vascular Aging Biology, Blood-Vessel Interface and Vascular Repair Unit, Lille School of Medicine, Lille2 University, Lille, France
| | - P Chassagne
- Geriatrics Department, Rouen University Hospital, Rouen, France
| | - F Puisieux
- Vascular Aging Biology, Blood-Vessel Interface and Vascular Repair Unit, Lille School of Medicine, Lille2 University, Lille, France; Gerontology Clinic, Les Bateliers Geriatric Hospital, Lille University Hospital, Lille, France
| | - E Boulanger
- Vascular Aging Biology, Blood-Vessel Interface and Vascular Repair Unit, Lille School of Medicine, Lille2 University, Lille, France; Gerontology Clinic, Les Bateliers Geriatric Hospital, Lille University Hospital, Lille, France
| |
Collapse
|
34
|
Rodriguez-Menocal L, Faridi MH, Martinez L, Shehadeh LA, Duque JC, Wei Y, Mesa A, Pena A, Gupta V, Pham SM, Vazquez-Padron RI. Macrophage-derived IL-18 and increased fibrinogen deposition are age-related inflammatory signatures of vascular remodeling. Am J Physiol Heart Circ Physiol 2014; 306:H641-53. [PMID: 24414074 DOI: 10.1152/ajpheart.00641.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging has been associated with pathological vascular remodeling and increased neointimal hyperplasia. The understanding of how aging exacerbates this process is fundamental to prevent cardiovascular complications in the elderly. This study proposes a mechanism by which aging sustains leukocyte adhesion, vascular inflammation, and increased neointimal thickness after injury. The effect of aging on vascular remodeling was assessed in the rat balloon injury model using microarray analysis, immunohistochemistry, and LINCOplex assays. The injured arteries in aging rats developed thicker neointimas than those in younger animals, and this significantly correlated with a higher number of tissue macrophages and increased vascular IL-18. Indeed, IL-18 was 23-fold more abundant in the injured vasculature of aged animals compared with young rats, while circulating levels were similar in both groups of animals. The depletion of macrophages in aged rats with clodronate liposomes ameliorated vascular accumulation of IL-18 and significantly decreased neointimal formation. IL-18 was found to inhibit apoptosis of vascular smooth muscle cells (VSMC) and macrophages, thus favoring both the formation and inflammation of the neointima. In addition, injured arteries of aged rats accumulated 18-fold more fibrinogen-γ than those of young animals. Incubation of rat peritoneal macrophages with immobilized IL-18 increased leukocyte adhesion to fibrinogen and suggested a proinflammatory positive feedback loop among macrophages, VSMC, and the deposition of fibrinogen during neointimal hyperplasia. In conclusion, our data reveal that concentration changes in vascular cytokine and fibrinogen following injury in aging rats contribute to local inflammation and postinjury neointima formation.
Collapse
Affiliation(s)
- Luis Rodriguez-Menocal
- Department of Surgery and Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Niccoli G, Stuteville M, Sudhir K, Li D, Montone RA, Bolognese L, Grube E. Incidence, time course and predictors of early vs. late target lesion revascularisation after everolimus-eluting stent implantation: a SPIRIT V substudy. EUROINTERVENTION 2013; 9:353-9. [PMID: 23482242 DOI: 10.4244/eijv9i3a57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS To evaluate the incidence, time course and predictors of late target lesion revascularisation (TLR) (between one and two years) as compared to early TLR (<1 year) following everolimus-eluting stent implantation in patients enrolled in the SPIRIT V study. METHODS AND RESULTS The SPIRIT V single-arm study enrolled a total of 2,700 patients (n=2,663 intent-to-treat) with de novo coronary artery lesions undergoing EES implantation. Patients were evaluated at 30 days, one year and two years following the index procedure. All patients who had a clinically driven TLR (not associated with stent thrombosis) were allocated to either the early or the late group. Clinical, angiographic and procedural data were recorded and predictors of early vs. late TLR were assessed by logistic regression analysis. There were no significant differences in baseline demographics and risk factors between the two groups with the exception that patients in the late TLR group were significantly older (68.5 ± 8.5 years vs. 63.5 ± 8.9 years, p=0.022). At two years, only 2.7% (70/2,562) experienced a TLR unrelated to a stent thrombosis event with 1.6% (43/2,627) occurring within one year of the index procedure and 1.1% (27/2,562) occurring between one and two years. There were no differences between the groups in terms of clinical outcomes. Age ≥70 years was the only variable which independently predicted late TLR (OR=4.80 [1.69-13.63], p=0.0032). CONCLUSIONS In this large registry without angiographic follow-up, early (<1 year) and late (>1 year) TLR rates were exceedingly low and thereby confirm the previous findings of randomised controlled studies. Age (>70 years) emerged as the only predictor of late TLR.
Collapse
Affiliation(s)
- Giampaolo Niccoli
- Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Wang CH, Lee MF, Yang NI, Mei HF, Lin SY, Cherng WC. Bone Marrow Rejuvenation Accelerates Re-Endothelialization and Attenuates Intimal Hyperplasia After Vascular Injury in Aging Mice. Circ J 2013; 77:3045-53. [DOI: 10.1253/circj.cj-13-0267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chao-Hung Wang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital
- Chang Gung University College of Medicine
| | - Ming-Feng Lee
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital
- Chang Gung University College of Medicine
| | - Ning-I Yang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital
- Chang Gung University College of Medicine
| | - Hsiu-Fu Mei
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital
- Chang Gung University College of Medicine
| | - Sheng-Yuan Lin
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital
- Chang Gung University College of Medicine
| | - Wen-Chin Cherng
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital
- Chang Gung University College of Medicine
| |
Collapse
|
37
|
Korybalska K, Kawka E, Kusch A, Aregger F, Dragun D, Jorres A, Breborowicz A, Witowski J. Recovery of Senescent Endothelial Cells From Injury. J Gerontol A Biol Sci Med Sci 2012; 68:250-7. [DOI: 10.1093/gerona/gls169] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
38
|
Dekker P, Gunn D, McBryan T, Dirks RW, van Heemst D, Lim FL, Jochemsen AG, Verlaan-de Vries M, Nagel J, Adams PD, Tanke HJ, Westendorp RG, Maier AB. Microarray-based identification of age-dependent differences in gene expression of human dermal fibroblasts. Mech Ageing Dev 2012; 133:498-507. [DOI: 10.1016/j.mad.2012.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 02/07/2012] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
|
39
|
Eghbalieh SDD, Chowdhary P, Muto A, Ziegler KR, Kudo FA, Pimiento JM, Mirmehdi I, Model LS, Kondo Y, Nishibe T, Dardik A. Age-related neointimal hyperplasia is associated with monocyte infiltration after balloon angioplasty. J Gerontol A Biol Sci Med Sci 2011; 67:109-17. [PMID: 22016364 DOI: 10.1093/gerona/glr190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Carotid angioplasty is associated with adverse events in elderly patients; it is unclear whether this is related to an altered inflammatory axis. The carotid arteries of young (6 months) or aged (22-24 months) Fischer 344 rats were balloon injured. Aged rats had reduced lumen area (0.18 ± 0.03 vs 0.24 ± 0.01 mm(2), p = .02) and increased neointimal thickening (0.15 ± 0.04 vs 0.08 ± 0.03 mm(2), p = .006). Aged rats had increased circulating monocytes (96 ± 21 vs. 54 ± 7; p = .002) as well as increased numbers of monocytes at the post-angioplasty site. Aged rats had sustained monocyte chemotactic protein-1 expression after angioplasty but young rats did not. Aged arteries also exhibited defective vasorelaxation and abnormal eNOS localization. Aged (≥80 years) human patients with high-grade carotid stenosis had increased number of monocytes (9.1% ± 0.4%) compared with younger (65-80 years) patients (8.1% ± 0.3%, p = .013). Aged rats develop neointimal hyperplasia after carotid angioplasty with increased numbers of monocytes, and elderly humans with carotid stenosis have increased numbers of circulating monocytes. These preliminary results may suggest a role for monocytes in the response to carotid angioplasty.
Collapse
Affiliation(s)
- Sammy D D Eghbalieh
- The Stanley J. Dudrick Department of Surgery, Saint Mary’s Hospital, Waterbury, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shehadeh LA, Webster KA, Hare JM, Vazquez-Padron RI. Dynamic regulation of vascular myosin light chain (MYL9) with injury and aging. PLoS One 2011; 6:e25855. [PMID: 22003410 PMCID: PMC3189218 DOI: 10.1371/journal.pone.0025855] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/12/2011] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Aging-associated changes in the cardiovascular system increase the risk for disease development and lead to profound alterations in vascular reactivity and stiffness. Elucidating the molecular response of arteries to injury and age will help understand the exaggerated remodeling of aging vessels. METHODOLOGY/PRINCIPAL FINDINGS We studied the gene expression profile in a model of mechanical vascular injury in the iliac artery of aging (22 months old) and young rats (4 months old). We investigated aging-related variations in gene expression at 30 min, 3 d and 7 d post injury. We found that the Myosin Light Chain gene (MYL9) was the only gene differentially expressed in the aged versus young injured arteries at all time points studied, peaking at day 3 after injury (4.6 fold upregulation (p<0.05) in the smooth muscle cell layers. We confirmed this finding on an aging aortic microarray experiment available through NCBI's GEO database. We found that Myl9 was consistently upregulated with age in healthy rat aortas. To determine the arterial localization of Myl9 with age and injury, we performed immunohistochemistry for Myl9 in rat iliac arteries and found that in healthy and injured (30 days post injury) arteries, Myl9 expression increased with age in the endothelial layers. CONCLUSIONS/SIGNIFICANCE The consistent upregulation of the myosin light chain protein (Myl9) with age and injury in arterial tissue draws attention to the increased vascular permeability and to the age-caused predisposition to arterial constriction after balloon angioplasty.
Collapse
Affiliation(s)
- Lina A. Shehadeh
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- * E-mail: (LAS); (RIV-P)
| | - Keith A. Webster
- Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Joshua M. Hare
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Roberto I. Vazquez-Padron
- Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- * E-mail: (LAS); (RIV-P)
| |
Collapse
|
41
|
Abstract
The aging process affects all organs, including the kidneys. As part of this process, progressive scarring and a measurable decline in renal function occur in most people over time. The improved understanding of the processes that can lead to and/or hasten scarring and loss of renal function over time parallels advances in our understanding of the aging process. Clinical factors, including hypertension, diabetes mellitus, obesity, abnormal lipid levels and vitamin D deficiency, have been associated with increasing renal sclerosis with age. In addition, tissue factors such as angiotensin II, advanced glycation end products, oxidative stress and Klotho are associated with renal aging. These associations and possible interventions, including the control of blood pressure, blood sugar, weight, diet and calorie restriction might make renal aging more preventable than inevitable.
Collapse
|
42
|
Abstract
Epidemiological studies have shown that advancing age is associated with an increased prevalence of cardiovascular disease (CVD). Vascular smooth muscle cells (VSMC) comprise the major arterial cell population, and changes in VSMC behavior, function, and redox status with age contribute to alterations in vascular remodeling and cell signaling. Over two decades of work on aged animal models provide support for age-related changes in VSMC and/or arterial tissues. Enhanced production of reactive oxygen species (ROS) and insufficient removal by scavenging systems are hallmarks of vascular aging. VSMC proliferation and migration are core processes in vascular remodeling and influenced by growth factors and signaling networks. The intrinsic link between gene regulation and aging often relates directly to transcription factors and their regulatory actions. Modulation of growth factor signaling leads to up- or downregulation of transcription factors that control expression of genes associated with VSMC proliferation, inflammation, and ROS production. Four major signaling pathways related to the transcription factors, AP-1, NF-kappaB, FoxO, and Nrf2, will be reviewed. Knowledge of age-related changes in signaling pathways in VSMC that lead to alterations in cell behavior and function consistent with disease progression may help in efforts to attenuate age-related CVD, such as atherosclerosis.
Collapse
Affiliation(s)
- Muyao Li
- Department of Medicine, University of Vermont College of Medicine, Burlington, 05405, USA
| | | |
Collapse
|
43
|
MASUOKA T, HAYASHI N, HORI E, KUWAYAMA N, OHTANI O, ENDO S. Distribution of Internal Elastic Lamina and External Elastic Lamina in the Internal Carotid Artery: Possible Relationship With Atherosclerosis. Neurol Med Chir (Tokyo) 2010; 50:179-82. [PMID: 20339265 DOI: 10.2176/nmc.50.179] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Toru MASUOKA
- Department of Neurosurgery, Faculty of Medicine, University of Toyama
| | - Nakamasa HAYASHI
- Department of Neurosurgery, Faculty of Medicine, University of Toyama
| | - Emiko HORI
- Department of Neurosurgery, Faculty of Medicine, University of Toyama
| | - Naoya KUWAYAMA
- Department of Neurosurgery, Faculty of Medicine, University of Toyama
| | - Osamu OHTANI
- Department of Anatomy, Faculty of Medicine, University of Toyama
| | - Shunro ENDO
- Department of Neurosurgery, Faculty of Medicine, University of Toyama
| |
Collapse
|
44
|
Khan SJ, Pham S, Wei Y, Mateo D, St-Pierre M, Fletcher TM, Vazquez-Padron RI. Stress-induced senescence exaggerates postinjury neointimal formation in the old vasculature. Am J Physiol Heart Circ Physiol 2010; 298:H66-74. [DOI: 10.1152/ajpheart.00501.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aims to demonstrate the role of stress-induced senescence in aged-related neointimal formation. We demonstrated that aging increases senescence-associated β-galactosidase activity (SA-β-Gal) after vascular injury and the subsequent neointimal formation (neointima-to-media ratio: 0.8 ± 0.2 vs. 0.54 ± 0.15) in rats. We found that senescent cells (SA-β-Gal+ p21+) were scattered throughout the media and adventitia of the vascular wall at day 7 after injury and reached their maximum number at day 14. However, senescent cells only persisted in the injured arteries of aged animals until day 30. No senescent cells were observed in the noninjured, contralateral artery. Interestingly, vascular senescent cells accumulated genomic 8-oxo-7,8-dihydrodeoxyguanine, indicating that these cells were under intense oxidative stress. To demonstrate whether senescence worsens intimal hyperplasia after injury, we seeded matrigel-embedded senescent and nonsenescent vascular smooth muscle cells around injured vessels. The neointima was thicker in arteries treated with senescent cells with respect to those that received normal cells (neointima-to-media ratio: 0.41 ± 0.105 vs. 0.26 ± 0.04). In conclusion, these results demonstrate that vascular senescence is not only a consequence of postinjury oxidative stress but is also a worsening factor for neointimal development in the aging vasculature.
Collapse
Affiliation(s)
- Sheik J. Khan
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Si Pham
- Department of Surgery and Vascular Biology Institute and
| | - Yunteo Wei
- Department of Surgery and Vascular Biology Institute and
| | - Dania Mateo
- Department of Surgery and Vascular Biology Institute and
| | | | - Terace M. Fletcher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | | |
Collapse
|
45
|
Abstract
Alteration of VSMC (vascular smooth-muscle cell) physiology is associated with the development of atherosclerosis and restenosis. We hypothesize that aging up-regulates the expression of p16INK4a in VSMCs, which may increase the susceptibility of blood vessels to vascular occlusive diseases. Aortic VSMCs were obtained from young and aged mice. Cells from aged mice grew more slowly than those from their younger counterparts. Progression of cell cycle in response to serum stimulation was significantly inhibited in those cells with aging, as determined by FACS after propidium iodide staining. A significant up-regulation of p16INK4a (2.5-fold, P=0.0012) was found in VSMC from aged animals using gene arrays. The up-regulation of this gene was further confirmed by quantitative RT–PCR (reverse transcription–PCR) and Western-blot experiments. Immunostaining for p16INK4a confirmed that aortas from aged mice contained more p16INK4a+ SMA (smooth-muscle cell actin)+ cells than aortas from young animals (26.79±2.45 versus 7.06±1.44, P=0.00027, n=4). In conclusion, we have shown that aging up-regulates the expression of p16INK4a in VSMC in both cultures and arteries. The increase in p16INK4a in the vasculature with aging may modify VSMC's response to post-injury stress and therefore accelerate the development of age-related cardiovascular diseases.
Collapse
|
46
|
Yang XP, Pei ZH, Ren J. MAKING UP OR BREAKING UP: THE TORTUOUS ROLE OF PLATELET-DERIVED GROWTH FACTOR IN VASCULAR AGEING. Clin Exp Pharmacol Physiol 2009; 36:739-47. [DOI: 10.1111/j.1440-1681.2009.05182.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Choi YS, Youn HJ, Youn JS, Park CS, Oh YS, Chung WS. Measurement of the intimal thickness of the carotid artery: comparison between 40 MHz ultrasound and histology in rats. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:962-966. [PMID: 19285785 DOI: 10.1016/j.ultrasmedbio.2008.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 11/19/2008] [Accepted: 12/03/2008] [Indexed: 05/27/2023]
Abstract
Common carotid artery intimal thickness (IT) has been shown to be as useful as a measurement of the whole layer of intima-media thickness (IMT) for evaluating the early phase of atherosclerosis. The aim of this study was to elucidate the relationship between high echogenic intimal thickening (HEIT), which was measured using a 40 MHz ultrasound biomicroscope (UBM), and the histologically determined IT in rat carotid arteries. HEIT was estimated in 10 Wistar-Kyoto rats (group I), 15 spontaneous hypertensive rats (SHR) fed a standard diet (group II) and 10 SHR fed a high-fat diet (group III). IT and IMT measurements were determined in Masson trichrome-stained tissues and were compared with the HEIT and IMT evaluated using the UBM. In group I, the HEIT and the IT were 33 +/- 4 microm and 12 +/- 1 mirom, respectively. In group II, the HEIT and the IT were 68 +/- 8 microm and 16 +/- 2 microm, respectively. In group III, the HEIT and the IT were 65 +/- 26 microm and 33 +/- 14 microm, respectively. In SHR, the HEIT and the mean IMT measured with echography were significantly correlated with the IT and the IMT that were determined by histologic measurement (r = 0.60, p = 0.003 and r = 0.53, p = 0.01, respectively). Moreover, HEIT may be associated with the intimal pathology and atherosclerotic burden. The HEIT measurement is a noninvasive method that may be used to assess atherosclerosis in humans.
Collapse
Affiliation(s)
- Yun-Seok Choi
- Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
48
|
The effect of menopause on carotid artery remodeling, insulin sensitivity, and plasma adiponectin in healthy women. Am J Hypertens 2009; 22:364-70. [PMID: 19214164 DOI: 10.1038/ajh.2009.16] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The mechanisms by which menopause may influence the systemic subclinical atherosclerosis are unexplained. The aim of this cross-sectional study was to evaluate the associations between early menopause, established cardiovascular (c-v) risk factors, metabolic parameters (insulin secretion and sensitivity, plasma adiponectin), and carotid intima-media thickness (IMT) in healthy women. METHODS In 74 menopausal women (mean age = 51 +/- 3 years, mean duration of menopause = 2.9 +/- 1.2 years) and in 74 nonmenopausal women comparable for age and body mass index (BMI), common carotid artery (CCA) luminal diameter, and IMT in different carotid segments were measured in digitized ultrasound images. Insulin sensitivity and secretion were assessed using the euglycemic hyperinsulinemic clamp technique and oral glucose tolerance test (OGTT). Insulin secretion was reconstructed by mathematical modeling. RESULTS CCA diameter (5.55 +/- 0.46 vs. 5.21+/- 0.51 mm, P < 0.001), CCA IMT (608 +/- 78 vs. 576 +/- 74 microm, P < 0.01) and systolic blood pressure (BP) (117 +/- 12 vs. 113 +/- 11 mm Hg, P < 0.05) were higher in menopausal women, whereas CCA IMT/diameter ratio and IMT in other carotid segments did not differ between the groups. By multivariate models, independent predictors of CCA diameter were menopause and body weight (cumulative R2 = 0.37) and independent correlates of CCA IMT were luminal diameter, systolic BP and low-density lipoprotein (LDL) cholesterol (cumulative R2 = 0.48). Fasting insulin, insulin secretion, and sensitivity and plasma adiponectin were similar in the two groups and were not related to carotid IMT. CONCLUSIONS Early menopause is associated with CCA remodeling, characterized by a proportional increase in luminal diameter and wall thickness, independent of atherosclerotic risk factors and metabolic variables.
Collapse
|
49
|
Fleenor BS, Bowles DK. Negligible contribution of coronary adventitial fibroblasts to neointimal formation following balloon angioplasty in swine. Am J Physiol Heart Circ Physiol 2009; 296:H1532-9. [PMID: 19252097 DOI: 10.1152/ajpheart.00566.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adventitial fibroblasts have previously been proposed to be a major constituent of the neointima following coronary balloon angioplasty. The present study utilized the bromodeoxyuridine (BrdU) pulse-chase technique to track adventitial fibroblast migration early after balloon injury in swine. BrdU (30 mg/kg), a marker of proliferating cells, was given intravenously 1 or 2 days after balloon angioplasty. For each time point, one animal was euthanized 24 h after injection to identify the location of the proliferating cells, while a second animal was euthanized 25 days after angioplasty to determine whether the proliferating cells migrated to form the neointima. Our results demonstrate that BrdU-positive cells were located primarily in the adventitia with all three time points 24 h after balloon angioplasty. Furthermore, when BrdU was injected on day 1 or 2 only 0.65 +/- 0.17% and 1.7 +/- 0.64%, respectively, of neointimal cells were BrdU positive on day 25. In conclusion, these results demonstrate a negligible contribution of coronary adventitial fibroblasts to neointima formation following coronary balloon angioplasty, supporting the concept that the neointima is primarily of smooth muscle cell origin.
Collapse
Affiliation(s)
- Bradley S Fleenor
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
50
|
Li M, Chiu JF, Gagne J, Fukagawa NK. Age-related differences in insulin-like growth factor-1 receptor signaling regulates Akt/FOXO3a and ERK/Fos pathways in vascular smooth muscle cells. J Cell Physiol 2008; 217:377-87. [PMID: 18615585 DOI: 10.1002/jcp.21507] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advanced age is a major risk factor for atherosclerosis, but how aging per se influences pathogenesis is not clear. Insulin-like growth factor-1 receptor (IGF-1R) promotes aortic vascular smooth muscle cell (VSMC) growth, migration, and extracellular matrix formation, but how IGF-1R signaling changes with age in VSMC is not known. We previously found age-related differences in the activation of Akt/FOXO3a and ERK1/2 pathways in VSMC, but the upstream signaling remains unclear. Using explanted VSMC from Fischer 344/Brown Norway F1 hybrid rats shown to display age-related vascular pathology similar to humans, we compared IGF-1R expression in early passages of VSMC and found a constitutive activation of IGF-1R in VSMC from old compared to young rats, including IGF-1R expression and its tyrosine kinase activity. The link between IGF-1R activation and the Akt/FOXO3a and ERK pathways was confirmed through the induction of IGF-1R with IGF-1 in young cells and attenuation of IGF-1R with an inhibitor in old cells. The effects of three kinase inhibitors: AG1024, LY294002, and TCN, were compared in VSMC from old rats to differentiate IGF-1R from other upstream signaling that could also regulate the Akt/FOXO and ERK pathways. Genes for p27kip-1, catalase and MnSOD, which play important roles in the control of cell cycle arrest and stress resistance, were found to be FOXO3a-targets based on FOXO3a-siRNA treatment. Furthermore, IGF-1R signaling modulated these genes through activation of the Akt/FOXO3a pathway. Therefore, activation of IGF-1R signaling influences VSMC function in old rats and may contribute to the increased risk for atherosclerosis.
Collapse
Affiliation(s)
- Muyao Li
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | | | | | | |
Collapse
|