1
|
Ganguly R, Wen AM, Myer AB, Czech T, Sahu S, Steinmetz NF, Raman P. Anti-atherogenic effect of trivalent chromium-loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro. NANOSCALE 2016; 8:6542-6554. [PMID: 26935414 PMCID: PMC5136293 DOI: 10.1039/c6nr00398b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Atherosclerosis, a major macrovascular complication associated with diabetes, poses a tremendous burden on national health care expenditure. Despite extensive efforts, cost-effective remedies are unknown. Therapies for atherosclerosis are challenged by a lack of targeted drug delivery approaches. Toward this goal, we turn to a biology-derived drug delivery system utilizing nanoparticles formed by the plant virus, Cowpea mosaic virus (CPMV). The aim herein is to investigate the anti-atherogenic potential of the beneficial mineral nutrient, trivalent chromium, loaded CPMV nanoparticles in human aortic smooth muscle cells (HASMC) under hyperglycemic conditions. A non-covalent loading protocol is established yielding CrCl3-loaded CPMV (CPMV-Cr) carrying 2000 drug molecules per particle. Using immunofluorescence microscopy, we show that CPMV-Cr is readily taken up by HASMC in vitro. In glucose (25 mM)-stimulated cells, 100 nM CPMV-Cr inhibits HASMC proliferation concomitant to attenuated proliferating cell nuclear antigen (PCNA, proliferation marker) expression. This is accompanied by attenuation in high glucose-induced phospho-p38 and pAkt expression. Moreover, CPMV-Cr inhibits the expression of pro-inflammatory cytokines, transforming growth factor-β (TGF-β) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), in glucose-stimulated HASMCs. Finally glucose-stimulated lipid uptake is remarkably abrogated by CPMV-Cr, revealed by Oil Red O staining. Together, these data provide key cellular evidence for an atheroprotective effect of CPMV-Cr in vascular smooth muscle cells (VSMC) under hyperglycemic conditions that may promote novel therapeutic ventures for diabetic atherosclerosis.
Collapse
Affiliation(s)
- Rituparna Ganguly
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272-0095, USA. and School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Amy M Wen
- Department of Biomedical Engineering, 10990 Euclid Avenue and Case Western Reserve University, Cleveland, OH, USA
| | - Ashley B Myer
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272-0095, USA.
| | - Tori Czech
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272-0095, USA.
| | - Soumyadip Sahu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272-0095, USA. and School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, 10990 Euclid Avenue and Case Western Reserve University, Cleveland, OH, USA and Department of Radiology, 10990 Euclid Avenue and Case Western Reserve University, Cleveland, OH, USA and Department of Materials Science and Engineering, 10990 Euclid Avenue and Case Western Reserve University, Cleveland, OH, USA and Department of Macromolecular Science and Engineering, 10990 Euclid Avenue and Case Western Reserve University, Cleveland, OH, USA and Case Comprehensive Cancer Center, 10990 Euclid Avenue and Case Western Reserve University, Cleveland, OH, USA
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272-0095, USA. and School of Biomedical Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
2
|
Wu Q, Wang W, Li S, Nagarkatti P, Nagarkatti M, Windust A, Wang XL, Tang D, Cui T. American ginseng inhibits vascular smooth muscle cell proliferation via suppressing Jak/Stat pathway. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:782-785. [PMID: 23041701 PMCID: PMC4109065 DOI: 10.1016/j.jep.2012.09.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/10/2012] [Accepted: 09/06/2012] [Indexed: 06/01/2023]
Abstract
UNLABELLED ETHNOPHARMCOLOGICAL RELEVANCE: Ginseng, a folk medicine which has been used for thousands of years in Asia, has been promoted for the treatment or prevention of health problems including cardiovascular disease. However, the molecular mechanism of ginseng-induced cardiovascular protection is unclear. Thus, we investigated signaling mechanism by which American ginseng inhibits vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular disease. MATERIALS AND METHODS A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. Rat aortic smooth muscle cells (RASMCs) were exposed to fetal bovine serum (FBS), platelet derived growth factor (PDGF), insulin, or angiotensin II (Ang II) to induce proliferation that was examined by measuring DNA synthesis and cell numbers. Western blot was applied to determine the activations of Jak, Stat, Akt, and ERK. RESULTS American ginseng inhibited RASMC proliferation induced by FBS, PDGF, insulin or Ang II. American ginseng slightly increased both basal and FBS-, PDGF- or Ang II-induced activities of Akt and ERK in RASMCs; however, it dramatically inhibited the activation of Jak2 and Stat3. CONCLUSION These results demonstrate that American ginseng inhibits VSMC proliferation through suppressing the Jak/Stat pathway.
Collapse
Affiliation(s)
- Qi Wu
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, China
- Department of Anatomy, Shandong University School of Medicine, Jinan 2500012, China
| | - Wenjuan Wang
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC 29208, USA
| | - Siying Li
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC 29208, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208, USA
| | | | - Xing Li Wang
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Dongqi Tang
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, China
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610-0275, USA
| | - Taixing Cui
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, China
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|