1
|
Zhao J, Wang X, Wu Y, Zhao C. Krüppel-like factor 4 modulates the miR-101/COL10A1 axis to inhibit renal fibrosis after AKI by regulating epithelial-mesenchymal transition. Ren Fail 2024; 46:2316259. [PMID: 38345033 PMCID: PMC10863509 DOI: 10.1080/0886022x.2024.2316259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/03/2024] [Indexed: 02/15/2024] Open
Abstract
Acute kidney injury (AKI) can progress to renal fibrosis and chronic kidney disease (CKD), which reduces quality of life and increases the economic burden on patients. However, the molecular mechanisms underlying renal fibrosis following AKI remain unclear. This study tested the hypothesis that the Krüppel-like factor 4 (KLF4)/miR-101/Collagen alpha-1X (COL10A1) axis could inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis after AKI in a mouse model of ischemia-reperfusion (I/R)-induced renal fibrosis and HK-2 cells by gene silencing, overexpression, immunofluorescence, immunohistochemistry, real-time quantitative PCR, Western blotting, dual-luciferase reporter assay, fluorescence in situ hybridization (FISH) and ELISA. Compared with the Sham group, I/R induced renal tubular and glomerular injury and fibrosis, and increased the levels of BUN, serum Scr and neutrophil gelatinase-associated lipocalin (NGAL), Col10a1 and Vimentin expression, but decreased E-cadherin expression in the kidney tissues of mice at 42 days post-I/R. Similarly, hypoxia promoted fibroblastic morphological changes in HK-2 cells and enhanced NGAL, COL10A1, Vimentin, and α-SMA expression, but reduced E-cadherin expression in HK-2 cells. These pathological changes were significantly mitigated in COL10A1-silenced renal tissues and HK-2 cells. KLF4 induces miR-101 transcription. More importantly, hypoxia upregulated Vimentin and COL10A1 expression, but decreased miR-101, KLF4, and E-cadherin expression in HK-2 cells. These hypoxic effects were significantly mitigated or abrogated by KLF4 over-expression in the HK-2 cells. Our data indicate that KLF4 up-regulates miR-101 expression, leading to the downregulation of COL10A1 expression, inhibition of EMT and renal fibrosis during the pathogenic process of I/R-related renal fibrosis.
Collapse
Affiliation(s)
- Jingying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Xiuli Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yubin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Chengguang Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
2
|
Zhang Y, Li J, Tan L, Xue J, Shi YG. Understanding the role of ten-eleven translocation family proteins in kidney diseases. Biochem Soc Trans 2024; 52:2203-2214. [PMID: 39377353 DOI: 10.1042/bst20240291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Epigenetic mechanisms play a critical role in the pathogenesis of human diseases including kidney disorders. As the erasers of DNA methylation, Ten-eleven translocation (TET) family proteins can oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), thus leading to passive or active DNA demethylation. Similarly, TET family proteins can also catalyze the same reaction on RNA. In addition, TET family proteins can also regulate chromatin structure and gene expression in a catalytic activity-independent manner through recruiting the SIN3A/HDAC co-repressor complex. In 2012, we reported for the first time that the genomic 5-hydroxymethylcytosine level and the mRNA levels of Tet1 and Tet2 were significantly downregulated in murine kidneys upon ischemia and reperfusion injury. Since then, accumulating evidences have eventually established an indispensable role of TET family proteins in not only acute kidney injury but also chronic kidney disease. In this review, we summarize the upstream regulatory mechanisms and the pathophysiological role of TET family proteins in major types of kidney diseases and discuss their potential values in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yuelin Zhang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiahui Li
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Xue
- Department of Nephology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yujiang Geno Shi
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zhang Y, Yang Y, Hu X, Wei B, Shen Q, Shi C, Chen P. RAS protein activator-like 2 (RASAL2) initiates peritubular capillary rarefaction in hypoxic renal interstitial fibrosis. Transl Res 2024; 269:14-30. [PMID: 38453052 DOI: 10.1016/j.trsl.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
The progression of chronic kidney disease (CKD) often involves renal interstitial fibrosis (RIF) and subsequent loss of peritubular capillaries (PTCs), which enhances disease severity. Despite advancements in our understanding of fibrosis, effective interventions for reversing capillary loss remain elusive. Notably, RIF exhibits reduced capillary density, whereas renal cell carcinoma (RCC) shows robust angiogenesis under hypoxic conditions. Using RNA sequencing and bioinformatics, we identified differentially expressed genes (DEGs) in hypoxic human renal tubular epithelial cells (HK-2) and renal cancer cells (786-0). Analysis of altered Ras and PI3K/Akt pathways coupled with hub gene investigation revealed RAS protein activator-like 2 (RASAL2) as a key candidate. Subsequent in vitro and in vivo studies confirmed RASAL2's early-stage response in RIF, which reduced with fibrosis progression. RASAL2 suppression in HK-2 cells enhanced angiogenesis, as evidenced by increased proliferation, migration, and branching of human umbilical vein endothelial cells (HUVECs) co-cultured with HK-2 cells. In mice, RASAL2 knockdown improved Vascular endothelial growth factor A (VEGFA) and Proliferating cell nuclear antigen (PCNA) levels in unilateral ureteral occlusion (UUO)-induced fibrosis (compared to wild type). Hypoxia-inducible factor 1 alpha (HIF-1α) emerged as a pivotal mediator, substantiated by chromatin immunoprecipitation (ChIP) sequencing, with its induction linked to activation. Hypoxia increased the production of RASAL2-enriched extracellular vesicles (EVs) derived from tubular cells, which were internalized by endothelial cells, contributing to the exacerbation of PTC loss. These findings underscore RASAL2's role in mediating reduced angiogenesis in RIF and reveal a novel EV-mediated communication between hypoxic tubular- and endothelial cells, demonstrating a complex interplay between angiogenesis and fibrosis in CKD pathogenesis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Yiqiong Yang
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Xiuxiu Hu
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Bizhen Wei
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Qian Shen
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Chuanbing Shi
- Department of Pathology, Pukou Branch of Jiangsu People's Hospital, Nanjing, China
| | - Pingsheng Chen
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China; Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Jin J, Liu XM, Shao W, Meng XM. Nucleic acid and protein methylation modification in renal diseases. Acta Pharmacol Sin 2024; 45:661-673. [PMID: 38102221 PMCID: PMC10943093 DOI: 10.1038/s41401-023-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Although great efforts have been made to elucidate the pathological mechanisms of renal diseases and potential prevention and treatment targets that would allow us to retard kidney disease progression, we still lack specific and effective management methods. Epigenetic mechanisms are able to alter gene expression without requiring DNA mutations. Accumulating evidence suggests the critical roles of epigenetic events and processes in a variety of renal diseases, involving functionally relevant alterations in DNA methylation, histone methylation, RNA methylation, and expression of various non-coding RNAs. In this review, we highlight recent advances in the impact of methylation events (especially RNA m6A methylation, DNA methylation, and histone methylation) on renal disease progression, and their impact on treatments of renal diseases. We believe that a better understanding of methylation modification changes in kidneys may contribute to the development of novel strategies for the prevention and management of renal diseases.
Collapse
Affiliation(s)
- Juan Jin
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xue-Mei Liu
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
5
|
Liu D, Wang L, Ha W, Li K, Shen R, Wang D. HIF-1α: A potential therapeutic opportunity in renal fibrosis. Chem Biol Interact 2024; 387:110808. [PMID: 37980973 DOI: 10.1016/j.cbi.2023.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Renal fibrosis is a common outcome of various renal injuries, leading to structural destruction and functional decline of the kidney, and is also a critical prognostic indicator and determinant in renal diseases therapy. Hypoxia is induced in different stress and injuries in kidney, and the hypoxia inducible factors (HIFs) are activated in the context of hypoxia in response and regulation the hypoxia in time. Under stress and hypoxia conditions, HIF-1α increases rapidly and regulates intracellular energy metabolism, cell proliferation, apoptosis, and inflammation. Through reprogramming cellular metabolism, HIF-1α can directly or indirectly induce abnormal accumulation of metabolites, changes in cellular epigenetic modifications, and activation of fibrotic signals. HIF-1α protein expression and activity are regulated by various posttranslational modifications. The drugs targeting HIF-1α can regulate the downstream cascade signals by inhibiting HIF-1α activity or promoting its degradation. As the renal fibrosis is affected by renal diseases, different diseases may trigger different mechanisms which will affect the therapy effect. Therefore, comprehensive analysis of the role and contribution of HIF-1α in occurrence and progression of renal fibrosis, and determination the appropriate intervention time of HIF-1α in the process of renal fibrosis are important ideas to explore effective treatment strategies. This study reviews the regulation of HIF-1α and its mediated complex cascade reactions in renal fibrosis, and lists some drugs targeting HIF-1α that used in preclinical studies, to provide new insight for the study of the renal fibrosis mechanism.
Collapse
Affiliation(s)
- Disheng Liu
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Lu Wang
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Wuhua Ha
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Kan Li
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
6
|
André C, Bodeau S, Kamel S, Bennis Y, Caillard P. The AKI-to-CKD Transition: The Role of Uremic Toxins. Int J Mol Sci 2023; 24:16152. [PMID: 38003343 PMCID: PMC10671582 DOI: 10.3390/ijms242216152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
After acute kidney injury (AKI), renal function continues to deteriorate in some patients. In a pro-inflammatory and profibrotic environment, the proximal tubules are subject to maladaptive repair. In the AKI-to-CKD transition, impaired recovery from AKI reduces tubular and glomerular filtration and leads to chronic kidney disease (CKD). Reduced kidney secretion capacity is characterized by the plasma accumulation of biologically active molecules, referred to as uremic toxins (UTs). These toxins have a role in the development of neurological, cardiovascular, bone, and renal complications of CKD. However, UTs might also cause CKD as well as be the consequence. Recent studies have shown that these molecules accumulate early in AKI and contribute to the establishment of this pro-inflammatory and profibrotic environment in the kidney. The objective of the present work was to review the mechanisms of UT toxicity that potentially contribute to the AKI-to-CKD transition in each renal compartment.
Collapse
Affiliation(s)
- Camille André
- Department of Clinical Pharmacology, Amiens Medical Center, 80000 Amiens, France; (S.B.); (Y.B.)
- GRAP Laboratory, INSERM UMR 1247, University of Picardy Jules Verne, 80000 Amiens, France
| | - Sandra Bodeau
- Department of Clinical Pharmacology, Amiens Medical Center, 80000 Amiens, France; (S.B.); (Y.B.)
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
| | - Saïd Kamel
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
- Department of Clinical Biochemistry, Amiens Medical Center, 80000 Amiens, France
| | - Youssef Bennis
- Department of Clinical Pharmacology, Amiens Medical Center, 80000 Amiens, France; (S.B.); (Y.B.)
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
| | - Pauline Caillard
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
- Department of Nephrology, Dialysis and Transplantation, Amiens Medical Center, 80000 Amiens, France
| |
Collapse
|
7
|
Kumar P, Brooks HL. Sex-specific epigenetic programming in renal fibrosis and inflammation. Am J Physiol Renal Physiol 2023; 325:F578-F594. [PMID: 37560775 DOI: 10.1152/ajprenal.00091.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The growing prevalence of hypertension, heart disease, diabetes, and obesity along with an aging population is leading to a higher incidence of renal diseases in society. Chronic kidney disease (CKD) is characterized mainly by persistent inflammation, fibrosis, and gradual loss of renal function leading to renal failure. Sex is a known contributor to the differences in incidence and progression of CKD. Epigenetic programming is an essential regulator of renal physiology and is critically involved in the pathophysiology of renal injury and fibrosis. Epigenetic signaling integrates intrinsic and extrinsic signals onto the genome, and various environmental and hormonal stimuli, including sex hormones, which regulate gene expression and downstream cellular responses. The most extensively studied epigenetic alterations that play a critical role in renal damage include histone modifications and DNA methylation. Notably, these epigenetic alterations are reversible, making them candidates for potential therapeutic targets for the treatment of renal diseases. Here, we will summarize the current knowledge on sex differences in epigenetic modulation of renal fibrosis and inflammation and highlight some possible epigenetic therapeutic strategies for CKD treatment.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Heddwen L Brooks
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
8
|
Kanwischer L, Xu X, Saifuddin AB, Maamari S, Tan X, Alnour F, Tampe B, Meyer T, Zeisberg M, Hasenfuss G, Puls M, Zeisberg EM. Low levels of circulating methylated IRX3 are related to worse outcome after transcatheter aortic valve implantation in patients with severe aortic stenosis. Clin Epigenetics 2023; 15:149. [PMID: 37697352 PMCID: PMC10496273 DOI: 10.1186/s13148-023-01561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Aortic stenosis (AS) is one of the most common cardiac diseases and major cause of morbidity and mortality in the elderly. Transcatheter aortic valve implantation (TAVI) is performed in such patients with symptomatic severe AS and reduces mortality for the majority of these patients. However, a significant percentage dies within the first two years after TAVI, such that there is an interest to identify parameters, which predict outcome and could guide pre-TAVI patient selection. High levels of cardiac fibrosis have been identified as such independent predictor of cardiovascular mortality after TAVI. Promoter hypermethylation commonly leads to gene downregulation, and the Iroquois homeobox 3 (IRX3) gene was identified in a genome-wide transcriptome and methylome to be hypermethylated and downregulated in AS patients. In a well-described cohort of 100 TAVI patients in which cardiac fibrosis levels were quantified histologically in cardiac biopsies, and which had a follow-up of up to two years, we investigated if circulating methylated DNA of IRX3 in the peripheral blood is associated with cardiac fibrosis and/or mortality in AS patients undergoing TAVI and thus could serve as a biomarker to add information on outcome after TAVI. RESULTS Patients with high levels of methylation in circulating IRX3 show a significantly increased survival as compared to patients with low levels of IRX3 methylation indicating that high peripheral IRX3 methylation is associated with an improved outcome. In the multivariable setting, peripheral IRX3 methylation acts as an independent predictor of all-cause mortality. While there is no significant correlation of levels of IRX3 methylation with cardiac death, there is a significant but very weak inverse correlation between circulating IRX3 promoter methylation level and the amount of cardiac fibrosis. Higher levels of peripheral IRX3 methylation further correlated with decreased cardiac IRX3 expression and vice versa. CONCLUSIONS High levels of IRX3 methylation in the blood of AS patients at the time of TAVI are associated with better overall survival after TAVI and at least partially reflect myocardial IRX3 expression. Circulating methylated IRX3 might aid as a potential biomarker to help guide both pre-TAVI patient selection and post-TAVI monitoring.
Collapse
Affiliation(s)
- Leon Kanwischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Afifa Binta Saifuddin
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Sabine Maamari
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Xiaoying Tan
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Fouzi Alnour
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Miriam Puls
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
9
|
Chiang CH, Chen C, Fang SY, Lin SC, Chen JW, Chang TT. Xanthine oxidase/NADPH oxidase inhibition by hydralazine attenuates acute kidney injury and prevents the transition of acute kidney injury to chronic kidney disease. Life Sci 2023:121863. [PMID: 37331504 DOI: 10.1016/j.lfs.2023.121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
AIMS The enhancement of inflammation and reactive oxygen species leads to the damage of renal tubular cells in acute kidney injury (AKI), and the upregulation of inflammation increases the risk of AKI being converted into chronic kidney disease (CKD). Hydralazine has shown renoprotective effects in multiple kidney diseases and was shown to be a potent xanthine oxidase (XO) inhibitor. This study aimed to investigate the mechanisms of hydralazine in ischemia-reperfusion (I/R)-stimulated renal proximal tubular epithelial cells in vitro and in AKI animals in vivo. MAIN METHODS The effects of hydralazine in AKI-to-CKD transition were also evaluated. Human renal proximal tubular epithelial cells were stimulated by I/R conditions in vitro. To generate a mouse model of AKI, a right nephrectomy was performed, followed by left renal pedicle I/R using a small atraumatic clamp. KEY FINDINGS In the in vitro part, hydralazine could protect renal proximal tubular epithelial cells against insults from the I/R injury through XO/NADPH oxidase inhibition. In the in vivo part, hydralazine preserved renal function in AKI mice and improved the AKI-to-CKD transition by decreasing renal glomerulosclerosis and fibrosis independently of blood pressure lowering. Furthermore, hydralazine exerted antioxidant, anti-inflammatory, and anti-fibrotic effects both in vitro and in vivo. SIGNIFICANCE Hydralazine, as a XO/NADPH oxidase inhibitor, could protect renal proximal tubular epithelial cells from the insults of I/R and prevent kidney damage in AKI and AKI-to-CKD. The above experimental studies strengthen the possibility of repurposing hydralazine as a potential renoprotective agent through its antioxidative mechanisms.
Collapse
Affiliation(s)
- Chih-Hung Chiang
- Department of Urology/Medical Research and Education, Taipei Veterans General Hospital, Yuan-Shan, Yilan, Taiwan; Department of Urology, National Taiwan University Hospital, Taipei, Taiwan; Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, New Taipei, Taiwan
| | - Ching Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Ying Fang
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Su-Chu Lin
- Department of Urology/Medical Research and Education, Taipei Veterans General Hospital, Yuan-Shan, Yilan, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Ting Chang
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
10
|
Wang P, Ouyang J, Jia Z, Zhang A, Yang Y. Roles of DNA damage in renal tubular epithelial cells injury. Front Physiol 2023; 14:1162546. [PMID: 37089416 PMCID: PMC10117683 DOI: 10.3389/fphys.2023.1162546] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
The prevalence of renal diseases including acute kidney injury (AKI) and chronic kidney disease (CKD) is increasing worldwide. However, the pathogenesis of most renal diseases is still unclear and effective treatments are still lacking. DNA damage and the related DNA damage response (DDR) have been confirmed as common pathogenesis of acute kidney injury and chronic kidney disease. Reactive oxygen species (ROS) induced DNA damage is one of the most common types of DNA damage involved in the pathogenesis of acute kidney injury and chronic kidney disease. In recent years, several developments have been made in the field of DNA damage. Herein, we review the roles and developments of DNA damage and DNA damage response in renal tubular epithelial cell injury in acute kidney injury and chronic kidney disease. In this review, we conclude that focusing on DNA damage and DNA damage response may provide valuable diagnostic biomarkers and treatment strategies for renal diseases including acute kidney injury and chronic kidney disease.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jing Ouyang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yunwen Yang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Veloso Pereira BM, Charleaux de Ponte M, Malavolta Luz AP, Thieme K. DNA methylation enzymes in the kidneys of male and female BTBR ob/ob mice. Front Endocrinol (Lausanne) 2023; 14:1167546. [PMID: 37091852 PMCID: PMC10113614 DOI: 10.3389/fendo.2023.1167546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of the end-stage renal disease. Recent studies have shown that epigenetic modifications contribute to alterations in gene expression and the development of DKD. This study aimed to show an expression profile of key DNA (de)methylation enzymes (DNMT, TET proteins) and their differences between sexes under obesity and diabetic condition. Male and female black and tan brachyury (BTBR) ob/ob mice and their corresponding wild-type littermates (BTBR WT) were studied until 16 weeks of age. Metabolic parameters, kidney morphophysiology and the expression of fibrotic markers and epigenetic enzymes were studied in whole kidney tissue or specifically in the glomerulus. The results showed sexual dimorphism in the development of metabolic disease and in kidney morphophysiology. Female mice have a different profile of DNMTs expression in both WT and obese/diabetic condition. Furthermore, metabolic condition negatively modulated the glomerular expression of TET1 and TET3 only in females. To our knowledge, this is the first study that shows a kidney profile of the expression of key (de)methylation enzymes, DNMTs and TETs, in the BTBR ob/ob experimental model of DKD and its association with sex. The knowledge of this epigenetic profile may help future research to understand the pathophysiology of DKD in males and females.
Collapse
Affiliation(s)
- Beatriz Maria Veloso Pereira
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Mariana Charleaux de Ponte
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana Paula Malavolta Luz
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Karina Thieme
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
12
|
Akt1 is involved in renal fibrosis and tubular apoptosis in a murine model of acute kidney injury-to-chronic kidney disease transition. Exp Cell Res 2023; 424:113509. [PMID: 36773738 DOI: 10.1016/j.yexcr.2023.113509] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Maladaptive repair after acute kidney injury (AKI) can predispose patients to chronic kidney disease (CKD). However, the molecular mechanism underlying the AKI-to-CKD transition remains unclear. The Akt signaling pathway has been reported to be involved in the pathological processes of both AKI and CKD. In this study, we investigated the role of Akt1 in a murine model of the AKI-to-CKD transition. Wild-type (WT) and Akt1-/- mice were subjected to unilateral ischemia-reperfusion injury (UIRI), with their kidneys harvested after two days and two, four, and six weeks after UIRI. The dynamic changes in tubulointerstitial fibrosis, markers of tubular epithelial-mesenchymal transition (EMT), and tubular apoptosis were investigated. Akt1 of the three Akt isoforms was activated during the AKI-to-CKD transition. After UIRI, tubulointerstitial fibrosis and tubular EMT were significantly increased in WT mice, but were attenuated in Akt1-/- mice. The expression of the transforming growth factor (TGF)-β1/Smad was increased in both WT and Akt1-/- mice, but was not different between the two groups. The levels of phosphorylated glycogen synthase kinase (GSK)-3β, Snail, and β-catenin in the Akt1-/- mice were lower than those in the WT mice. The number of apoptotic tubular cells and the expression of cleaved caspase-3/Bax were both lower in Akt1-/- mice than in WT mice. Genetic deletion of Akt1 was associated with attenuation of tubulointerstitial fibrosis, tubular EMT, and tubular apoptosis during the AKI-to-CKD transition. These findings were associated with TGF-β1/Akt1/GSK-3β/(Snail and β-catenin) signaling independent of TGF-β1/Smad signaling. Thus, Akt1 signaling could serve as a potential therapeutic target for inhibiting the AKI-to-CKD transition.
Collapse
|
13
|
Inhibition of ALKBH5 attenuates I/R-induced renal injury in male mice by promoting Ccl28 m6A modification and increasing Treg recruitment. Nat Commun 2023; 14:1161. [PMID: 36859428 PMCID: PMC9977869 DOI: 10.1038/s41467-023-36747-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is a common cause of acute kidney injury (AKI). The role of N6-methyladenosine (m6A) modification in AKI remains unclear. Here, we characterize the role of AlkB homolog 5 (ALKBH5) and m6A modification in an I/R-induced renal injury model in male mice. Alkbh5-knockout mice exhibit milder pathological damage and better renal function than wild-type mice post-IRI, whereas Alkbh5-knockin mice show contrary results. Also conditional knockout of Alkbh5 in the tubular epithelial cells alleviates I/R-induced AKI and fibrosis. CCL28 is identified as a target of ALKBH5. Furthermore, Ccl28 mRNA stability increases with Alkbh5 deficiency, mediating by the binding of insulin-like growth factor 2 binding protein 2. Treg recruitment is upregulated and inflammatory cells are inhibited by the increased CCL28 level in IRI-Alkbh5fl/flKspCre mice. The ALKBH5 inhibitor IOX1 exhibits protective effects against I/R-induced AKI. In summary, inhibition of ALKBH5 promotes the m6A modifications of Ccl28 mRNA, enhancing its stability, and regulating the Treg/inflammatory cell axis. ALKBH5 and this axis is a potential AKI treatment target.
Collapse
|
14
|
Sultan LR, Karmacharya MB, Al-Hasani M, Cary TW, Sehgal CM. Hydralazine-augmented contrast ultrasound imaging improves the detection of hepatocellular carcinoma. Med Phys 2023; 50:1728-1735. [PMID: 36680519 PMCID: PMC10128060 DOI: 10.1002/mp.16232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) detection with B-mode and contrast-enhanced ultrasound (CUS) imaging often varies between subjects, especially in patients with background cirrhosis. Various factors contribute to this variability, including the tumor blood flow, tumor size, internal echoes, and its location in livers with diffuse fibro-cirrhotic changes. OBJECTIVE Towards improving lesion detection, this study evaluates a vasodilator, hydralazine, to enhance the visibility of HCC by reducing its blood flow relative to the surrounding liver tissue. METHODS HCC were analyzed for tumor visibility measured for B-mode, CUS, and hydralazine-augmented-contrast ultrasound (HyCUS) in an autochthonous HCC rat model. 21 tumors from 12 rats were studied. B-mode and CUS images were acquired before hydralazine injection. Rats received an intravenous hydralazine injection of 5 mg/kg, then images were acquired 20 min later. Four rats were used as controls. The difference in echo intensity of the lesion and the surrounding tissue was used to determine the visibility index (VI). RESULTS The visibility index for HCC was found to be significantly improved with the use of HyCUS imaging compared to traditional B-mode and CUS imaging. The visibility index for HCC was 16.5 ± 2.8 for HyCUS, compared to 5.3 ± 4.8 for B-mode and 4.1 ± 3.8 for CUS. The differences between HyCUS and the other imaging modalities were statistically significant, with p-values of 0.001 and 0.02, respectively. Additionally, when compared to control cases, HyCUS showed higher discrimination of HCC (VI = 6.4 ± 1.2) with a p-value of 0.003, while B-mode (VI = 6.7 ± 1.4, p = 0.5) and CUS (VI = 6.4 ± 1.2, p = 0.3) showed lower discrimination. CONCLUSION Vascular blood flow modulation by hydralazine enhances the visibility of HCC. HyCUS offers a potential problem-solving method for detecting HCC when B-mode and CUS are unsuccessful, especially with background fibro-cirrhotic liver disease. Future evaluation of the approach in humans will determine its translatability for clinical applications.
Collapse
Affiliation(s)
- Laith R Sultan
- Ultrasound Research Lab, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, Children's hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mrigendra B Karmacharya
- Department of Radiology, Children's hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Maryam Al-Hasani
- Ultrasound Research Lab, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Theodore W Cary
- Department of Radiology, Children's hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Chandra M Sehgal
- Ultrasound Research Lab, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Meng L, Feng J, Gao J, Zhang Y, Mo W, Zhao X, Wei H, Guo H. Reactive Oxygen Species- and Cell-Free DNA-Scavenging Mn 3O 4 Nanozymes for Acute Kidney Injury Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50649-50663. [PMID: 36334088 DOI: 10.1021/acsami.2c16305] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reactive oxygen species (ROS) scavenging therapy toward acute kidney injury (AKI) is promising, but no effective ROS scavenging drug has been developed yet. Moreover, cell-free DNA (cfDNA) is also involved in AKI, but the corresponding therapies have not been well developed. To tackle these challenges, Mn3O4 nanoflowers (Nfs) possessing both ROS and cfDNA scavenging activities were developed for better AKI protection as follows. First, Mn3O4 Nfs could protect HK2 cells through cascade ROS scavenging (dismutating ·O2- into H2O2 by superoxide dismutase-like activity and then decomposing H2O2 by catalase-like activity). Second, Mn3O4 Nfs could efficiently adsorb cfDNA and then decrease the inflammation caused by cfDNA. Combined, remarkable therapeutic efficacy was achieved in both cisplatin-induced and ischemia-reperfusion AKI murine models. Furthermore, Mn3O4 Nfs could be used for the T1-MRI real-time imaging of AKI. This study not only offered a promising treatment for AKI but also showed the translational potential of nanozymes.
Collapse
Affiliation(s)
- Longxiyu Meng
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jiayuan Feng
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jie Gao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yihong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Wenjing Mo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Xiaozhi Zhao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023 China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
16
|
Chang TT, Chen JW. Potential Impacts of Hydralazine as a Novel Antioxidant on Cardiovascular and Renal Disease-Beyond Vasodilation and Blood Pressure Lowering. Antioxidants (Basel) 2022; 11:2224. [PMID: 36421409 PMCID: PMC9686999 DOI: 10.3390/antiox11112224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 10/04/2023] Open
Abstract
Hydralazine is a traditional antihypertensive drug that was developed several decades ago. Its most well-known effect is blood pressure lowering by arterial vasodilation. While mainly used an adjunct treatment for clinical hypertension or chronic heart failure, this old drug has also shown potential as a repurposing drug for the atherosclerosis vascular disease and various kidney diseases. Recent experimental studies suggest that hydralazine exerts antioxidative, anti-apoptotic, and HIF-1α stabilization effects for angiogenesis and vascular protection. Hydralazine also exerts reno-protective effects via its antioxidation, DNA demethylation, and anti-inflammation abilities. The above evidence provides advanced rationales for new applications of this drug beyond blood pressure lowering and arterial vasodilation. Here, we summarized the recent experimental advances in the use of hydralazine for either a vascular disease or kidney diseases, or both. Given the wide populations of people with cardiovascular and/or kidney diseases, future studies are worth validating the potential impacts of hydralazine on the clinical outcomes in selected patients.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Healthcare and Services Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
17
|
Zhao Y, Zeng X, Xu X, Wang W, Xu L, Wu Y, Li H. Low-dose 5-aza-2'-deoxycytidine protects against early renal injury by increasing klotho expression. Epigenomics 2022; 14:1411-1425. [PMID: 36695107 DOI: 10.2217/epi-2022-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aim: To explore the effect of the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (Aza) on early renal injury. Materials & methods: Cell damage and inflammation are features of early renal injury. The apoptosis and inflammation in hypoxia/reoxygenation (H/R)-induced human proximal tubular epithelial cells (HK-2) and ischemia-reperfusion kidney were studied, and expression of the protein klotho was investigated. Results: Aza induced HK-2 apoptosis in a dose-dependent manner, but low-dose Aza attenuated the apoptosis and inflammation in H/R-induced HK-2 cells and ischemia-reperfusion kidney. Low-dose Aza ameliorated renal function in mice with renal ischemia-reperfusion injury. Meanwhile, low-dose Aza upregulated klotho expression in H/R-induced HK-2 cells and ischemia-reperfusion kidney. Klotho knockdown abrogated the effects of low-dose Aza on apoptosis and inflammation. Conclusion: Low-dose Aza protects against renal early injury by increasing klotho expression.
Collapse
Affiliation(s)
- Yanlong Zhao
- Dialysis Department of Nephrology Hospital, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Xiaorong Zeng
- Dialysis Department of Nephrology Hospital, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Xinli Xu
- Dialysis Department of Nephrology Hospital, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Wenjing Wang
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Lei Xu
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Yiying Wu
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Hang Li
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| |
Collapse
|
18
|
Larkin BP, Nguyen LT, Hou M, Glastras SJ, Chen H, Faiz A, Chen J, Wang R, Pollock CA, Saad S. Low-dose hydralazine reduces albuminuria and glomerulosclerosis in a mouse model of obesity-related chronic kidney disease. Diabetes Obes Metab 2022; 24:1939-1949. [PMID: 35635331 PMCID: PMC9544807 DOI: 10.1111/dom.14778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
AIM To determine, using a mouse model of obesity, whether low-dose hydralazine prevents obesity-related chronic kidney disease (CKD). METHODS From 8 weeks of age, male C57BL/6 mice received a high-fat diet (HFD) or chow, with or without low-dose hydralazine (25 mg/L) in drinking water, for 24 weeks. Biometric and metabolic variables, renal function and structural changes, renal global DNA methylation, DNA methylation profile and markers of renal fibrosis, injury, inflammation and oxidative stress were assessed. RESULTS The HFD-fed mice developed obesity, with glucose intolerance, hyperinsulinaemia and dyslipidaemia. Obesity increased albuminuria and glomerulosclerosis, which were significantly ameliorated by low-dose hydralazine in the absence of a blood pressure-lowering effect. Obesity increased renal global DNA methylation and this was attenuated by low-dose hydralazine. HFD-induced changes in methylation of individual loci were also significantly reversed by low-dose hydralazine. Obese mice demonstrated increased markers of kidney fibrosis, inflammation and oxidative stress, but these markers were not significantly improved by hydralazine. CONCLUSION Low-dose hydralazine ameliorated HFD-induced albuminuria and glomerulosclerosis, independent of alterations in biometric and metabolic variables or blood pressure regulation. Although the precise mechanism of renoprotection in obesity is unclear, an epigenetic basis may be implicated. These data support repurposing hydralazine as a novel therapy to prevent CKD progression in obese patients.
Collapse
Affiliation(s)
- Benjamin P. Larkin
- Renal Research Laboratory, Kolling Institute of Medical ResearchUniversity of SydneySydneyAustralia
| | - Long T. Nguyen
- Renal Research Laboratory, Kolling Institute of Medical ResearchUniversity of SydneySydneyAustralia
| | - Miao Hou
- Department of CardiologyChildren′s Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Sarah J. Glastras
- Renal Research Laboratory, Kolling Institute of Medical ResearchUniversity of SydneySydneyAustralia
- Department of DiabetesEndocrinology and Metabolism, Royal North Shore HospitalSydneyAustralia
| | - Hui Chen
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneySydneyAustralia
| | - Alen Faiz
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneySydneyAustralia
| | - Jason Chen
- Department of Anatomical PathologyRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Rosy Wang
- Renal Research Laboratory, Kolling Institute of Medical ResearchUniversity of SydneySydneyAustralia
| | - Carol A. Pollock
- Renal Research Laboratory, Kolling Institute of Medical ResearchUniversity of SydneySydneyAustralia
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical ResearchUniversity of SydneySydneyAustralia
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneySydneyAustralia
| |
Collapse
|
19
|
Chen Y, Yang S, Tavormina J, Tampe D, Zeisberg M, Wang H, Mahadevan KK, Wu CJ, Sugimoto H, Chang CC, Jenq RR, McAndrews KM, Kalluri R. Oncogenic collagen I homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell 2022; 40:818-834.e9. [PMID: 35868307 PMCID: PMC9831277 DOI: 10.1016/j.ccell.2022.06.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/14/2022] [Accepted: 06/27/2022] [Indexed: 01/12/2023]
Abstract
In contrast to normal type I collagen (Col1) heterotrimer (α1/α2/α1) produced by fibroblasts, pancreatic cancer cells specifically produce unique Col1 homotrimer (α1/α1/α1). Col1 homotrimer results from epigenetic suppression of the Col1a2 gene and promotes oncogenic signaling, cancer cell proliferation, tumor organoid formation, and growth via α3β1 integrin on cancer cells, associated with tumor microbiome enriched in anaerobic Bacteroidales in hypoxic and immunosuppressive tumors. Deletion of Col1 homotrimers increases overall survival of mice with pancreatic ductal adenocarcinoma (PDAC), associated with reprograming of the tumor microbiome with increased microaerophilic Campylobacterales, which can be reversed with broad-spectrum antibiotics. Deletion of Col1 homotrimers enhances T cell infiltration and enables efficacy of anti-PD-1 immunotherapy. This study identifies the functional impact of Col1 homotrimers on tumor microbiome and tumor immunity, implicating Col1 homotrimer-α3β1 integrin signaling axis as a cancer-specific therapeutic target.
Collapse
Affiliation(s)
- Yang Chen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sujuan Yang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jena Tavormina
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Desiree Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Huamin Wang
- Department of Anatomical Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Krishnan K Mahadevan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chia-Chi Chang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Robert R Jenq
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; James P. Allison Institute, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Sharma N, Sircar A, Anders HJ, Gaikwad AB. Crosstalk between kidney and liver in non-alcoholic fatty liver disease: mechanisms and therapeutic approaches. Arch Physiol Biochem 2022; 128:1024-1038. [PMID: 32223569 DOI: 10.1080/13813455.2020.1745851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver and kidney are vital organs that maintain homeostasis and injury to either of them triggers pathogenic pathways affecting the other. For example, non-alcoholic fatty liver disease (NAFLD) promotes the progression of chronic kidney disease (CKD), vice versa acute kidney injury (AKI) endorses the induction and progression of liver dysfunction. Progress in clinical and basic research suggest a role of excessive fructose intake, insulin resistance, inflammatory cytokines production, activation of the renin-angiotensin system, redox imbalance, and their impact on epigenetic regulation of gene expression in this context. Recent developments in experimental and clinical research have identified several biochemical and molecular pathways for AKI-liver interaction, including altered liver enzymes profile, metabolic acidosis, oxidative stress, activation of inflammatory and regulated cell death pathways. This review focuses on the current preclinical and clinical findings on kidney-liver crosstalk in NAFLD-CKD and AKI-liver dysfunction settings and highlights potential molecular mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Anannya Sircar
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
21
|
Du B, Zhao M, Wang Y, Yu L, Jiao Q, Bai Y, Cheng G. Folic acid-targeted pluronic F127 micelles improve oxidative stress and inhibit fibrosis for increasing AKI efficacy. Eur J Pharmacol 2022; 930:175131. [PMID: 35872158 DOI: 10.1016/j.ejphar.2022.175131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/03/2022]
Abstract
The oxidative stress and activation of the fibrosis pathway are essential pathological mechanisms of acute kidney injury (AKI). In this article, we designed a drug delivery system that could effectively improve oxidative stress and relieve fibrosis by the combination of precise targeting, solubilization, and reducing the toxicity of nano-transport system to strengthen the efficacy of AKI. Folic acid (FA) was used as the targeting molecule, and curcumin (Cur) and resveratrol (Res), which are Chinese medicine monomers with anti-inflammatory and antioxidant effects, were used as model drugs. Here, the targeting nanosystem (Cur/Res@FA-F127/TPGS) co-loaded with Cur and Res was successfully synthesized. Finally, the comprehensive therapeutic effect of the nanosystem was evaluated through the targeted and pharmacodynamic researches on the AKI models induced by cisplatin (CDDP) in vitro and in vivo. The studies in vitro proved that the nanosystem could not only specifically target HK-2 cells and promote the effective accumulation of Cur and Res in the kidney, but also effectively improve oxidative stress by eliminating reactive oxygen species (ROS), stabilizing mitochondrial membrane potential (MMP), and reducing the expression of apoptosis-related proteins. The studies in vivo showed that the nanosystem could effectively play the role of anti-oxidation, anti-inflammatory and alleviate fibrosis to reduce the apoptosis and necrosis of renal tubular cells. The nanosystem could coordinately repair damaged HK-2 cells by improving oxidative stress, inhibiting inflammation and tissue fibrosis, which provided a new idea for the treatment of AKI.
Collapse
Affiliation(s)
- Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, 100 Science Road, Zhengzhou, 450001, China
| | - Mengmeng Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Yuehua Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Lili Yu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Qingqing Jiao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Yimeng Bai
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Genyang Cheng
- The First Affiliated Hospital of Zhengzhou University, Jianshe East Road, Zhengzhou, 450052, China.
| |
Collapse
|
22
|
Chang TT, Chiang CH, Chen C, Lin SC, Lee HJ, Chen JW. Antioxidation and Nrf2-mediated heme oxygenase-1 activation contribute to renal protective effects of hydralazine in diabetic nephropathy. Biomed Pharmacother 2022; 151:113139. [PMID: 35623171 DOI: 10.1016/j.biopha.2022.113139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and oxidative stress are associated with the progression of diabetic nephropathy (DN). Hydralazine is an antihypertensive agent and may act as a xanthine oxidase (XO) inhibitor to reduce uric acid levels in a mouse renal injury model. This study aimed to investigate the potential mechanisms of hydralazine in experimental DN. Streptozotocin-induced diabetic mice were fed a high-fat diet to generate DN. Human renal proximal tubular epithelial cells were used in vitro. Nitrendipine and allopurinol which can reduce blood pressure or XO activity levels, were used as two positive controls. Hydralazine downregulated NF-κB/p38 signaling pathways and reduced TNF-α/IL-6 expressions in high glucose-stimulated renal proximal tubular epithelial cells. Hydralazine reduced in vitro ROS production via XO inhibition and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated heme oxygenase (HO)-1 activation. Furthermore, hydralazine reduced high glucose-induced apoptosis by downregulating PARP/caspase-3 signaling. Hydralazine and allopurinol but not nitrendipine reduced serum uric acid levels and systemic inflammation. Hydralazine and allopurinol treatment improved renal function with decreased urinary albumin-to-creatinine ratios, glomerular hypertrophy, glomerulosclerosis, and fibrosis in the kidney of DN mice. While both hydralazine and allopurinol downregulated XO and NADPH oxidase expression, only hydralazine upregulated Nrf2/HO-1 renal expression, suggesting the additional effects of hydralazine independent of XO/ NADPH oxidase inhibition. In conclusion, hydralazine protected renal proximal tubular epithelial cells against the insults of high glucose and prevented renal damage via XO/NADPH oxidase inhibition and Nrf-2/HO-1 activation, suggesting the comprehensive antioxidation and anti-inflammation mechanisms for the management of DN.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chih-Hung Chiang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan; Department of Urology/Medical Research and Education, Taipei Veterans General Hospital, Yuan-Shan/Su-Ao Branch, Yi-Lan, Taiwan
| | - Ching Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Su-Chu Lin
- Department of Urology/Medical Research and Education, Taipei Veterans General Hospital, Yuan-Shan/Su-Ao Branch, Yi-Lan, Taiwan
| | - Hsin-Jou Lee
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Healthcare and Services Center, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
23
|
Rysz J, Franczyk B, Rysz-Górzyńska M, Gluba-Brzózka A. Are Alterations in DNA Methylation Related to CKD Development? Int J Mol Sci 2022; 23:7108. [PMID: 35806113 PMCID: PMC9267048 DOI: 10.3390/ijms23137108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/29/2022] Open
Abstract
The modifications in genomic DNA methylation are involved in the regulation of normal and pathological cellular processes. The epigenetic regulation stimulates biological plasticity as an adaptive response to variations in environmental factors. The role of epigenetic changes is vital for the development of some diseases, including atherogenesis, cancers, and chronic kidney disease (CKD). The results of studies presented in this review have suggested that altered DNA methylation can modulate the expression of pro-inflammatory and pro-fibrotic genes, as well those essential for kidney development and function, thus stimulating renal disease progression. Abnormally increased homocysteine, hypoxia, and inflammation have been suggested to alter epigenetic regulation of gene expression in CKD. Studies of renal samples have demonstrated the relationship between variations in DNA methylation and fibrosis and variations in estimated glomerular filtration rate (eGFR) in human CKD. The unravelling of the genetic-epigenetic profile would enhance our understanding of processes underlying the development of CKD. The understanding of multifaceted relationship between DNA methylation, genes expression, and disease development and progression could improve the ability to identify individuals at risk of CKD and enable the choice of appropriate disease management.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Magdalena Rysz-Górzyńska
- Department of Otolaryngology, Laryngological Oncology, Audiology and Phoniatrics, Medical Univesity of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| |
Collapse
|
24
|
Zhu XH, Han LX, Zhang RJ, Zhang P, Chen FG, Yu J, Luo H, Han XW. The functional activity of donor kidneys is negatively regulated by microribonucleic acid-451 in different perfusion methods to inhibit adenosine triphosphate metabolism and the proliferation of HK2 cells. Bioengineered 2022; 13:12706-12717. [PMID: 35603466 PMCID: PMC9275911 DOI: 10.1080/21655979.2022.2068739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
This study explored the regulation of different perfusion methods on ischemia-reperfusion injury in donor kidneys. In this study, renal cortical/medullary tissue specimens were collected from porcine kidneys donors using different perfusion methods at various time points. Hematoxylin and eosin (H&E) staining was used to test the histological differences. Differentially expressed micro-ribonucleic acids (miRNAs) were identified by miRNA transcriptome sequencing. Reverse transcription-polymerase chain reaction (RT-PCR) tests were used to verify the changes in miRNAs in the kidney tissue taken from different perfusion groups. The related signaling pathways and the changes in the cell functions of different perfusion groups were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) /Gene Ontology (GO) bioinformatics analyses. The effects of miRNA overexpression on the metabolism and proliferation of HK2 cells were detected by ATP kit and MTT assay. The H&E staining results showed that there were essentially no differences in the tissue samples among different perfusion groups at and before 12 h compared with a control group. The quantitative PCR results revealed that there was essentially no change in the expression of ssc-miR-451, ssc-miR-1285, and ssc-miR-486 in the cis infusion or joint infusion kidney groups, and their expression was significantly down-regulated over time in the trans-infusion kidney group. The bioinformatics analysis showed that the cellular component, molecular function, and biological processes of the kidney tissue, which had been perfused using three methods, had been consistently affected. The most significant changes after perfusion occurred in the intracellular metabolism signaling pathways. Furthermore, the energy metabolism and proliferation of the HK2 cells were significantly inhibited after the overexpression of miR-451. Specific miRNA markers, such as miR-451, may play a negative regulatory role in cell metabolism following the perfusion of kidney transplants using different methods.
Collapse
Affiliation(s)
- Xu-Hui Zhu
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, PR China
| | - Long-Xi Han
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, PR China
| | - Rong-Jie Zhang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, PR China
| | - Peng Zhang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, PR China
| | - Fu-Gang Chen
- Department of General Surgery, Guizhou Provincial Staff Hospital, Guiyang PR China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang PR China
- The Key Laboratory of Chemistry for Natural Products, Guizhou Province and Chinese Academy of Science, Guiyang PR China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang PR China
- The Key Laboratory of Chemistry for Natural Products, Guizhou Province and Chinese Academy of Science, Guiyang PR China
| | - Xiu-Wu Han
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
25
|
Sosnowski P, Sass P, Słonimska P, Płatek R, Kamińska J, Baczyński Keller J, Mucha P, Peszyńska-Sularz G, Czupryn A, Pikuła M, Piotrowski A, Janus Ł, Rodziewicz-Motowidło S, Skowron P, Sachadyn P. Regenerative Drug Discovery Using Ear Pinna Punch Wound Model in Mice. Pharmaceuticals (Basel) 2022; 15:ph15050610. [PMID: 35631437 PMCID: PMC9145447 DOI: 10.3390/ph15050610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
The ear pinna is a complex tissue consisting of the dermis, cartilage, muscles, vessels, and nerves. Ear pinna healing is a model of regeneration in mammals. In some mammals, including rabbits, punch wounds in the ear pinna close spontaneously; in common-use laboratory mice, they remain for life. Agents inducing ear pinna healing are potential regenerative drugs. We tested the effects of selected bioactive agents on 2 mm ear pinna wound closure in BALB/c mice. Our previous research demonstrated that a DNA methyltransferase inhibitor, zebularine, remarkably induced ear pinna regeneration. Although experiments with two other demethylating agents, RG108 and hydralazine, were unsuccessful, a histone deacetylase inhibitor, valproic acid, was another epigenetic agent found to increase ear hole closure. In addition, we identified a pro-regenerative activity of 4-ketoretinoic acid, a retinoic acid metabolite. Attempts to counteract the regenerative effects of the demethylating agent zebularine, with folates as methyl donors, failed. Surprisingly, a high dose of methionine, another methyl donor, promoted ear hole closure. Moreover, we showed that the regenerated areas of ear pinna were supplied with nerve fibre networks and blood vessels. The ear punch model proved helpful in testing the pro-regenerative activities of small-molecule compounds and observations of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Paulina Słonimska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Rafał Płatek
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Jolanta Kamińska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Jakub Baczyński Keller
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Piotr Mucha
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Grażyna Peszyńska-Sularz
- Tri-City University Animal House—Research Service Centre, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland;
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Arkadiusz Piotrowski
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | | | | | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
- Correspondence:
| |
Collapse
|
26
|
Kaul A, Singampalli KL, Parikh UM, Yu L, Keswani SG, Wang X. Hyaluronan, a double-edged sword in kidney diseases. Pediatr Nephrol 2022; 37:735-744. [PMID: 34009465 PMCID: PMC8960635 DOI: 10.1007/s00467-021-05113-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Over the years, hyaluronic acid (HA) has emerged as an important molecule in nephrological and urological studies involving extracellular matrix (ECM) organization, inflammation, tissue regeneration, and viral sensing. During this time, many have noted the perplexing double-edged nature of the molecule, at times promoting pro-fibrotic events and at other times promoting anti-fibrotic events. Different molecular weights of HA can be attributed to these disparities, though most studies have yet to focus on this subtlety. With regard to the kidney, HA is induced in the initial response phase of injury and is subsequently decreased during disease progression of AKI, CKD, and diabetic nephropathy. These and other kidney diseases force patients, particularly pediatric patients, to face dialysis, surgical procedures, and ultimately, transplant. To summarize the current literature for researchers and pediatric nephrologists, this review aims to expound HA and elucidate its paradoxical effects in multiple kidney diseases using studies that emphasize HA molecular weight when available.
Collapse
Affiliation(s)
- Aditya Kaul
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kavya L Singampalli
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, 77030, TX, USA
- Department of Bioengineering, Rice University, Houston, 77030, TX, USA
| | - Umang M Parikh
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ling Yu
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Tanemoto F, Mimura I. Therapies Targeting Epigenetic Alterations in Acute Kidney Injury-to-Chronic Kidney Disease Transition. Pharmaceuticals (Basel) 2022; 15:ph15020123. [PMID: 35215236 PMCID: PMC8877070 DOI: 10.3390/ph15020123] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Acute kidney injury (AKI) was previously thought to be a merely transient event; however, recent epidemiological evidence supports the existence of a causal relationship between AKI episodes and subsequent progression to chronic kidney disease (CKD). Although the pathophysiology of this AKI-to-CKD transition is not fully understood, it is mediated by the interplay among multiple components of the kidney including tubular epithelial cells, endothelial cells, pericytes, inflammatory cells, and myofibroblasts. Epigenetic alterations including histone modification, DNA methylation, non-coding RNAs, and chromatin conformational changes, are also expected to be largely involved in the pathophysiology as a “memory” of the initial injury that can persist and predispose to chronic progression of fibrosis. Each epigenetic modification has a great potential as a therapeutic target of AKI-to-CKD transition; timely and target-specific epigenetic interventions to the various temporal stages of AKI-to-CKD transition will be the key to future therapeutic applications in clinical practice. This review elaborates on the latest knowledge of each mechanism and the currently available therapeutic agents that target epigenetic modification in the context of AKI-to-CKD transition. Further studies will elucidate more detailed mechanisms and novel therapeutic targets of AKI-to-CKD transition.
Collapse
|
28
|
Kalkhoran SB, Kriston-Vizi J, Hernandez-Resendiz S, Crespo-Avilan GE, Rosdah AA, Lees JG, Costa JRSD, Ling NXY, Holien JK, Samangouei P, Chinda K, Yap EP, Riquelme JA, Ketteler R, Yellon DM, Lim SY, Hausenloy DJ. Hydralazine protects the heart against acute ischaemia/reperfusion injury by inhibiting Drp1-mediated mitochondrial fission. Cardiovasc Res 2022; 118:282-294. [PMID: 33386841 PMCID: PMC8752357 DOI: 10.1093/cvr/cvaa343] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023] Open
Abstract
AIMS Genetic and pharmacological inhibition of mitochondrial fission induced by acute myocardial ischaemia/reperfusion injury (IRI) has been shown to reduce myocardial infarct size. The clinically used anti-hypertensive and heart failure medication, hydralazine, is known to have anti-oxidant and anti-apoptotic effects. Here, we investigated whether hydralazine confers acute cardioprotection by inhibiting Drp1-mediated mitochondrial fission. METHODS AND RESULTS Pre-treatment with hydralazine was shown to inhibit both mitochondrial fission and mitochondrial membrane depolarisation induced by oxidative stress in HeLa cells. In mouse embryonic fibroblasts (MEFs), pre-treatment with hydralazine attenuated mitochondrial fission and cell death induced by oxidative stress, but this effect was absent in MEFs deficient in the mitochondrial fission protein, Drp1. Molecular docking and surface plasmon resonance studies demonstrated binding of hydralazine to the GTPase domain of the mitochondrial fission protein, Drp1 (KD 8.6±1.0 µM), and inhibition of Drp1 GTPase activity in a dose-dependent manner. In isolated adult murine cardiomyocytes subjected to simulated IRI, hydralazine inhibited mitochondrial fission, preserved mitochondrial fusion events, and reduced cardiomyocyte death (hydralazine 24.7±2.5% vs. control 34.1±1.5%, P=0.0012). In ex vivo perfused murine hearts subjected to acute IRI, pre-treatment with hydralazine reduced myocardial infarct size (as % left ventricle: hydralazine 29.6±6.5% vs. vehicle control 54.1±4.9%, P=0.0083), and in the murine heart subjected to in vivo IRI, the administration of hydralazine at reperfusion, decreased myocardial infarct size (as % area-at-risk: hydralazine 28.9±3.0% vs. vehicle control 58.2±3.8%, P<0.001). CONCLUSION We show that, in addition to its antioxidant and anti-apoptotic effects, hydralazine, confers acute cardioprotection by inhibiting IRI-induced mitochondrial fission, raising the possibility of repurposing hydralazine as a novel cardioprotective therapy for improving post-infarction outcomes.
Collapse
Affiliation(s)
- Siavash Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College, Gower St, Kings Cross, WC1E 6BT London, UK
| | - Sauri Hernandez-Resendiz
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
| | - Gustavo E Crespo-Avilan
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
- Department of Biochemistry, Medical Faculty, Justus Liebig-University, Ludwigstraße 23, 35390 Giessen, Germany
| | - Ayeshah A Rosdah
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, 9 Princes Street Fitzroy Victoria, 3065, Australia
- Faculty of Medicine, Universitas Sriwijaya, Palembang, Bukit Lama, Kec. Ilir Bar. I, Kota Palembang, 30139 Sumatera Selatan, Indonesia
- Department of Surgery and Medicine, University of Melbourne, Medical Building, Cnr Grattan Street & Royal Parade, 3010 Victoria, Australia
| | - Jarmon G Lees
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, 9 Princes Street Fitzroy Victoria, 3065, Australia
- Department of Surgery and Medicine, University of Melbourne, Medical Building, Cnr Grattan Street & Royal Parade, 3010 Victoria, Australia
| | | | - Naomi X Y Ling
- Metabolic Signalling Laboratory, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica K Holien
- Department of Surgery and Medicine, University of Melbourne, Medical Building, Cnr Grattan Street & Royal Parade, 3010 Victoria, Australia
- St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy Victoria, 3065, Australia
- ACRF Rational Drug Discovery Centre, St Vincent’s Institute of Medical Research, 9 Princes Street Fitzroy Victoria, 3065, Australia
| | - Parisa Samangouei
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
| | - Kroekkiat Chinda
- Department of Physiology, Faculty of Medical Science, Naresuan University, Tha Pho, Mueang Phitsanulok, 65000, Thailand
| | - En Ping Yap
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
| | - Jaime A Riquelme
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College, Gower St, Kings Cross, WC1E 6BT London, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
| | - Shiang Y Lim
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, 9 Princes Street Fitzroy Victoria, 3065, Australia
- Department of Surgery and Medicine, University of Melbourne, Medical Building, Cnr Grattan Street & Royal Parade, 3010 Victoria, Australia
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, 119228, Singapore
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Lioufeng Rd., Wufeng, 41354 Taichung, Taiwan
| |
Collapse
|
29
|
Franco ML, Beyerstedt S, Rangel ÉB. Klotho and Mesenchymal Stem Cells: A Review on Cell and Gene Therapy for Chronic Kidney Disease and Acute Kidney Disease. Pharmaceutics 2021; 14:pharmaceutics14010011. [PMID: 35056905 PMCID: PMC8778857 DOI: 10.3390/pharmaceutics14010011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) and acute kidney injury (AKI) are public health problems, and their prevalence rates have increased with the aging of the population. They are associated with the presence of comorbidities, in particular diabetes mellitus and hypertension, resulting in a high financial burden for the health system. Studies have indicated Klotho as a promising therapeutic approach for these conditions. Klotho reduces inflammation, oxidative stress and fibrosis and counter-regulates the renin-angiotensin-aldosterone system. In CKD and AKI, Klotho expression is downregulated from early stages and correlates with disease progression. Therefore, the restoration of its levels, through exogenous or endogenous pathways, has renoprotective effects. An important strategy for administering Klotho is through mesenchymal stem cells (MSCs). In summary, this review comprises in vitro and in vivo studies on the therapeutic potential of Klotho for the treatment of CKD and AKI through the administration of MSCs.
Collapse
Affiliation(s)
- Marcella Liciani Franco
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
| | - Stephany Beyerstedt
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
| | - Érika Bevilaqua Rangel
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
- Nephrology Division, Federal University of São Paulo, Sao Paulo 04038-901, Brazil
- Correspondence: ; Tel.: +55-11-2151-2148
| |
Collapse
|
30
|
Dong X, Cao R, Li Q, Yin L. The Long Noncoding RNA-H19 Mediates the Progression of Fibrosis from Acute Kidney Injury to Chronic Kidney Disease by Regulating the miR-196a/Wnt/β-Catenin Signaling. Nephron Clin Pract 2021; 146:209-219. [PMID: 34818249 DOI: 10.1159/000518756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Long noncoding RNAs (lncRNAs) have been reported to be involved in the occurrence and development of various diseases. This study was to investigate the role of lncRNA-H19 in the transition from acute kidney injury (AKI) to chronic kidney disease (CKD) and its underlying mechanism. METHODS Bilateral renal pedicle ischemia-reperfusion injury (IRI) was used to establish the IRI-AKI model in C57BL/6 mice. The expression levels of lncRNA-H19, miR-196a-5p, α-SMA, collagen I, Wnt1, and β-catenin in mouse kidney tissues and fibroblasts were determined by quantitative real-time PCR and Western blotting. The degree of renal fibrosis was evaluated by hematoxylin and eosin staining. The interaction between lncRNA-H19 and miR-196a-5p was verified by bioinformatics analysis and luciferase reporter assay. Immunohistochemistry and immunofluorescence were used to evaluate the expression of α-SMA and collagen I in kidney tissues and fibroblasts of mice. RESULTS lncRNA-H19 is upregulated, and miR-196a-5p is downregulated in kidney tissues of IRI mice. Moreover, miR-196a-5p is a direct target of lncRNA-H19. lncRNA-H19 overexpression promotes kidney fibrosis and activates fibroblasts during AKI-CKD development, while miR-196a-5p overexpression reversed these effects in vitro. Furthermore, lncRNA-H19 overexpression significantly upregulates Wnt1 and β-catenin expression in kidney tissues and fibroblasts of IRI mice, while miR-196a-5p overexpression downregulates Wnt1 and β-catenin expression in kidney tissues and fibroblasts of IRI mice. CONCLUSION lncRNA-H19 induces kidney fibrosis during AKI-CKD by regulating the miR-196a-5p/Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiangnan Dong
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangdong, China
| | - Rui Cao
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangdong, China
| | - Qiang Li
- Dongguan Hospital of Tradition Chinese Medicine, Affiliated to Guangzhou University of Chinese Medicine, Dongguan, China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangdong, China
| |
Collapse
|
31
|
Leu JG, Su WH, Chen YC, Liang YJ. Hydralazine attenuates renal inflammation in diabetic rats with ischemia/reperfusion acute kidney injury. Eur J Pharmacol 2021; 910:174468. [PMID: 34478692 DOI: 10.1016/j.ejphar.2021.174468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023]
Abstract
Acute kidney injury (AKI) is one of the major complications with increased oxidative stress and inflammation in diabetic patients. Hyperglycemia stimulates the formation of advanced glycation end products (AGEs). However, hyperglycemia directly triggers the interaction between AGEs and transmembrane AGEs receptors (RAGE), which enhances oxidative stress and increases the production of inflammatory substances. Therefore, diabetes plays a pivotal role in kidney injury. Hydralazine, a vasodilator and antihypertensive drug, was found to have the ability to reduce ROS, oxidative stress, and inflammation. We applied Hydralazine co-culture with AGEs in rat mesangial cells (RMC) and to renal ischemia/reperfusion(I/R) injury models in streptozotocin-induced diabetic rats. Hydralazine significantly decreased AGEs-induced RAGE, iNOS, and COX-2 expressions in RMC. Compared to the diabetic with AKI group, hydralazine decreased inflammation-related protein, and JAK2, STAT3 signaling in rat kidney tissue. Our studies indicate that Hydralazine has the potential to become a beneficial drug in the treatment of diabetic acute kidney injury.
Collapse
Affiliation(s)
- Jyh-Gang Leu
- Fu-Jen Catholic University School of Medicine, New Taipei City, Taiwan, ROC; Division of Nephrology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC; Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Hsiang Su
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Yu-Cheng Chen
- Division of Nephrology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC; Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yao-Jen Liang
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan, ROC.
| |
Collapse
|
32
|
Yan MT, Chao CT, Lin SH. Chronic Kidney Disease: Strategies to Retard Progression. Int J Mol Sci 2021; 22:ijms221810084. [PMID: 34576247 PMCID: PMC8470895 DOI: 10.3390/ijms221810084] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD), defined as the presence of irreversible structural or functional kidney damages, increases the risk of poor outcomes due to its association with multiple complications, including altered mineral metabolism, anemia, metabolic acidosis, and increased cardiovascular events. The mainstay of treatments for CKD lies in the prevention of the development and progression of CKD as well as its complications. Due to the heterogeneous origins and the uncertainty in the pathogenesis of CKD, efficacious therapies for CKD remain challenging. In this review, we focus on the following four themes: first, a summary of the known factors that contribute to CKD development and progression, with an emphasis on avoiding acute kidney injury (AKI); second, an etiology-based treatment strategy for retarding CKD, including the approaches for the common and under-recognized ones; and third, the recommended approaches for ameliorating CKD complications, and the final section discusses the novel agents for counteracting CKD progression.
Collapse
Affiliation(s)
- Ming-Tso Yan
- Department of Medicine, Division of Nephrology, Cathay General Hospital, School of Medicine, Fu-Jen Catholic University, Taipei 106, Taiwan;
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 114, Taiwan
| | - Chia-Ter Chao
- Department of Internal Medicine, Nephrology Division, National Taiwan University Hospital, Taipei 104, Taiwan;
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 104, Taiwan
- Department of Internal Medicine, Nephrology Division, National Taiwan University College of Medicine, Taipei 104, Taiwan
| | - Shih-Hua Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 114, Taiwan
- Department of Internal Medicine, Nephrology Division, National Defense Medical Center, Taipei 104, Taiwan
- Correspondence: or
| |
Collapse
|
33
|
Abstract
Epigenetics examines heritable changes in DNA and its associated proteins except mutations in gene sequence. Epigenetic regulation plays fundamental roles in kidney cell biology through the action of DNA methylation, chromatin modification via epigenetic regulators and non-coding RNA species. Kidney diseases, including acute kidney injury, chronic kidney disease, diabetic kidney disease and renal fibrosis are multistep processes associated with numerous molecular alterations even in individual kidney cells. Epigenetic alterations, including anomalous DNA methylation, aberrant histone alterations and changes of microRNA expression all contribute to kidney pathogenesis. These changes alter the genome-wide epigenetic signatures and disrupt essential pathways that protect renal cells from uncontrolled growth, apoptosis and development of other renal associated syndromes. Molecular changes impact cellular function within kidney cells and its microenvironment to drive and maintain disease phenotype. In this chapter, we briefly summarize epigenetic mechanisms in four kidney diseases including acute kidney injury, chronic kidney disease, diabetic kidney disease and renal fibrosis. We primarily focus on current knowledge about the genome-wide profiling of DNA methylation and histone modification, and epigenetic regulation on specific gene(s) in the pathophysiology of these diseases and the translational potential of identifying new biomarkers and treatment for prevention and therapy. Incorporating epigenomic testing into clinical research is essential to elucidate novel epigenetic biomarkers and develop precision medicine using emerging therapies.
Collapse
|
34
|
Li Z, Li N. Epigenetic Modification Drives Acute Kidney Injury-to-Chronic Kidney Disease Progression. Nephron Clin Pract 2021; 145:737-747. [PMID: 34419948 DOI: 10.1159/000517073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical critical disease. Due to its high morbidity, increasing risk of complications, high mortality rate, and high medical costs, it has become a global concern for human health problems. Initially, researchers believed that kidneys have a strong ability to regenerate and repair, but studies over the past 20 years have found that kidneys damaged by AKI are often incomplete or even unable to repair. Even when serum creatinine returns to baseline levels, renal structural damage persists for a long time, leading to the development of chronic kidney disease (CKD). The mechanism of AKI-to-CKD transition has not been fully elucidated. As an important regulator of gene expression, epigenetic modifications, such as histone modification, DNA methylation, and noncoding RNAs, may play an important role in this process. Alterations in epigenetic modification are induced by hypoxia, thus promoting the expression of inflammatory factor-related genes and collagen secretion. This review elaborated the role of epigenetic modifications in AKI-to-CKD progression, the diagnostic value of epigenetic modifications biomarkers in AKI chronic outcome, and the potential role of targeting epigenetic modifications in the prevention and treatment of AKI to CKD, in order to provide ideas for the subsequent establishment of targeted therapeutic strategies to prevent the progression of renal tubular-interstitial fibrosis.
Collapse
Affiliation(s)
- Zhenzhen Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, China
| |
Collapse
|
35
|
Larkin BP, Nguyen LT, Hou M, Glastras SJ, Chen H, Wang R, Pollock CA, Saad S. Novel Role of Gestational Hydralazine in Limiting Maternal and Dietary Obesity-Related Chronic Kidney Disease. Front Cell Dev Biol 2021; 9:705263. [PMID: 34485290 PMCID: PMC8416283 DOI: 10.3389/fcell.2021.705263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/30/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Maternal obesity is a risk factor for chronic kidney disease (CKD) in offspring, underpinning the theory of the developmental origins of health and disease. DNA methylation has been implicated in the programming of adult chronic disease by maternal obesity, therefore, DNA demethylating agents may mitigate offspring risk of disease. In rodent models, low-dose hydralazine has previously been shown to reduce renal fibrosis via DNA demethylation. We used mouse models of maternal obesity and offspring obesity to determine whether administration of low-dose hydralazine during gestation can prevent fetal programming of CKD in offspring. METHODS Female C57BL/6 mice received high fat diet (HFD) or chow prior to mating, during gestation and lactation. During gestation, dams received subcutaneous hydralazine (5 mg/kg) or saline thrice-weekly. Male offspring weaned to HFD or chow, which continued until endpoint at 32 weeks. Biometric and metabolic parameters, renal global DNA methylation, renal functional and structural changes, and renal markers of fibrosis, inflammation and oxidative stress were assessed at endpoint. RESULTS Offspring exposed to maternal obesity or diet-induced obesity had significantly increased renal global DNA methylation, together with other adverse renal effects including albuminuria, glomerulosclerosis, renal fibrosis, and oxidative stress. Offspring exposed to gestational hydralazine had significantly reduced renal global DNA methylation. In obese offspring of obese mothers, gestational hydralazine significantly decreased albuminuria, glomerulosclerosis, and serum creatinine. Obese offspring of hydralazine-treated lean mothers displayed reduced markers of renal fibrosis and oxidative stress. CONCLUSION Gestational hydralazine decreased renal global DNA methylation and exerted renoprotective effects in offspring. This supports a potential therapeutic effect of hydralazine in preventing maternal obesity or dietary obesity-related CKD, through an epigenetic mechanism.
Collapse
Affiliation(s)
- Benjamin P. Larkin
- Renal Research Laboratory, Royal North Shore Hospital, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Long T. Nguyen
- Renal Research Laboratory, Royal North Shore Hospital, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Miao Hou
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, China
| | - Sarah J. Glastras
- Renal Research Laboratory, Royal North Shore Hospital, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Hui Chen
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Rosy Wang
- Renal Research Laboratory, Royal North Shore Hospital, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Carol A. Pollock
- Renal Research Laboratory, Royal North Shore Hospital, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Sonia Saad
- Renal Research Laboratory, Royal North Shore Hospital, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
36
|
Hydralazine augmented ultrasound hyperthermia for the treatment of hepatocellular carcinoma. Sci Rep 2021; 11:15553. [PMID: 34330960 PMCID: PMC8324788 DOI: 10.1038/s41598-021-94323-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
This study investigates the use of hydralazine to enhance ultrasound hyperthermia for the treatment of hepatocellular carcinoma (HCC) by minimizing flow-mediated heat loss from the tumor. Murine HCC tumors were treated with a continuous mode ultrasound with or without an intravenous administration of hydralazine (5 mg/kg). Tumor blood flow and blood vessels were evaluated by contrast-enhanced ultrasound (CEUS) imaging and histology, respectively. Hydralazine markedly enhanced ultrasound hyperthermia through the disruption of tumor blood flow in HCC. Ultrasound treatment with hydralazine significantly reduced peak enhancement (PE), perfusion index (PI), and area under the curve (AUC) of the CEUS time-intensity curves by 91.9 ± 0.9%, 95.7 ± 0.7%, and 96.6 ± 0.5%, compared to 71.4 ± 1.9%, 84.7 ± 1.1%, and 85.6 ± 0.7% respectively without hydralazine. Tumor temperature measurements showed that the cumulative thermal dose delivered by ultrasound treatment with hydralazine (170.8 ± 11.8 min) was significantly higher than that without hydralazine (137.7 ± 10.7 min). Histological assessment of the ultrasound-treated tumors showed that hydralazine injection formed larger hemorrhagic pools and increased tumor vessel dilation consistent with CEUS observations illustrating the augmentation of hyperthermic effects by hydralazine. In conclusion, we demonstrated that ultrasound hyperthermia can be enhanced significantly by hydralazine in murine HCC tumors by modulating tumor blood flow. Future studies demonstrating the safety of the combined use of ultrasound and hydralazine would enable the clinical translation of the proposed technique.
Collapse
|
37
|
Kim IY, Park YK, Song SH, Seong EY, Lee DW, Bae SS, Lee SB. Role of Akt1 in renal fibrosis and tubular dedifferentiation during the progression of acute kidney injury to chronic kidney disease. Korean J Intern Med 2021; 36:962-974. [PMID: 33322851 PMCID: PMC8273823 DOI: 10.3904/kjim.2020.198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/16/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND/AIMS Acute kidney injury (AKI) is an underestimated yet important risk factor for the development of chronic kidney disease (CKD), characterized by tubulointerstitial fibrosis and tubular dedifferentiation. Tubular dedifferentiation, which is associated with the loss of epithelial markers and the gain of mesenchymal features, is thought to be involved in tubulointerstitial fibrosis. As protein kinase B/Akt is involved in the development of CKD, we investigated the role of Akt1, one of the three Akt isoforms, in a murine model of AKI-to-CKD progression. METHODS We subjected C57BL/6 male mice to unilateral ischemia-reperfusion injury (UIRI) and harvested their kidneys after 6 weeks. Mice were divided into four groups, namely, wild-type (WT) UIRI, Akt1-/- UIRI, WT sham, and Akt1-/- sham. RESULTS Akt1 (but not Akt2 or Akt3) was markedly activated in WT UIRI mice than in WT sham mice. Tubulointerstitial fibrosis and tubular dedifferentiation significantly increased in WT UIRI mice, but were attenuated in Akt1-/- UIRI mice. Both WT UIRI and Akt1-/- UIRI mice showed markedly upregulated transforming growth factor-β1 (TGF-β1)/Smad signaling compared with WT sham mice. However, TGF-β1/Smad expression did not differ between the two groups. The levels of phosphorylated GSK-3β, β-catenin, and Snail were attenuated in Akt1-/- UIRI mice compared with those in WT UIRI mice. CONCLUSION Deletion of Akt1 results in the attenuation of renal fibrosis and tubular dedifferentiation, independent of TGF-β1/Smad signaling, during AKI-to-CKD progression in a UIRI without contralateral nephrectomy model. Thus, Akt1 may serve as a therapeutic target in AKI-to-CKD progression.
Collapse
Affiliation(s)
- Il Young Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan,
Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan,
Korea
| | - Yeon Kyeong Park
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan,
Korea
| | - Sang Heon Song
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan,
Korea
- Medical Research Institute, Pusan National University Hospital, Busan,
Korea
| | - Eun Young Seong
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan,
Korea
- Medical Research Institute, Pusan National University Hospital, Busan,
Korea
| | - Dong Won Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan,
Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan,
Korea
| | - Sun Sik Bae
- Medical Research Center (MRC) for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan,
Korea
| | - Soo Bong Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan,
Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan,
Korea
| |
Collapse
|
38
|
Larkin BP, Saad S, Glastras SJ, Nguyen LT, Hou M, Chen H, Wang R, Pollock CA. Low-dose hydralazine during gestation reduces renal fibrosis in rodent offspring exposed to maternal high fat diet. PLoS One 2021; 16:e0248854. [PMID: 33735324 PMCID: PMC7971884 DOI: 10.1371/journal.pone.0248854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/08/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Maternal high fat diet (HFD) promotes chronic kidney disease (CKD) in offspring. This is in accordance with the theory of fetal programming, which suggests adverse conditions occurring in utero predispose offspring to chronic conditions later in life. DNA methylation has been proposed as a key mechanism by which fetal programming occurs and is implicated in CKD progression. DNA demethylating drugs may interrupt the fetal programming of CKD by maternal obesity. Hydralazine, an antihypertensive agent, demethylates DNA at low doses which do not reduce blood pressure. We used a mouse model of maternal obesity to determine whether gestational administration of low-dose hydralazine to mothers can prevent CKD in offspring. METHODS C57BL/6 dams received HFD or chow from 6 weeks prior to mating and were administered subcutaneous hydralazine (5mg/kg) or saline thrice weekly during gestation. Male offspring were weaned to chow and were sacrificed at either postnatal week 9 or week 32. Biometric and metabolic parameters, renal global DNA methylation, renal structural and functional changes and markers of fibrosis, oxidative stress and inflammation were measured in offspring at weeks 9 and 32. RESULTS In week 9 offspring, maternal HFD consumption did not significantly alter anthropometric or metabolic parameters, or renal global DNA methylation. Week 32 offspring had increased renal global DNA methylation, together with albuminuria, glomerulosclerosis, renal fibrosis and oxidative stress. Administration of low-dose hydralazine to obese mothers during gestation reduced renal global DNA methylation and renal fibrotic markers in week 32 offspring. CONCLUSION Gestational hydralazine reduced renal global DNA methylation in offspring of obese mothers and attenuated maternal obesity-induced renal fibrosis. These data support the use of low-dose hydralazine as a demethylating agent to prevent CKD arising in offspring due to maternal HFD consumption.
Collapse
Affiliation(s)
- Benjamin P. Larkin
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Sarah J. Glastras
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney, Australia
| | - Long T. Nguyen
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Miao Hou
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Rosy Wang
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Carol A. Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| |
Collapse
|
39
|
Chen XJ, Zhang H, Yang F, Liu Y, Chen G. DNA Methylation Sustains "Inflamed" Memory of Peripheral Immune Cells Aggravating Kidney Inflammatory Response in Chronic Kidney Disease. Front Physiol 2021; 12:637480. [PMID: 33737884 PMCID: PMC7962671 DOI: 10.3389/fphys.2021.637480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 01/19/2023] Open
Abstract
The incidence of chronic kidney disease (CKD) has rapidly increased in the past decades. A progressive loss of kidney function characterizes a part of CKD even with intensive supportive treatment. Irrespective of its etiology, CKD progression is generally accompanied with the development of chronic kidney inflammation that is pathologically featured by the low-grade but chronic activation of recruited immune cells. Cumulative evidence support that aberrant DNA methylation pattern of diverse peripheral immune cells, including T cells and monocytes, is closely associated with CKD development in many chronic disease settings. The change of DNA methylation profile can sustain for a long time and affect the future genes expression in the circulating immune cells even after they migrate from the circulation into the involved kidney. It is of clinical interest to reveal the underlying mechanism of how altered DNA methylation regulates the intensity and the time length of the inflammatory response in the recruited effector cells. We and others recently demonstrated that altered DNA methylation occurs in peripheral immune cells and profoundly contributes to CKD development in systemic chronic diseases, such as diabetes and hypertension. This review will summarize the current findings about the influence of aberrant DNA methylation on circulating immune cells and how it potentially determines the outcome of CKD.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Hong Zhang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
40
|
Li X, Yang Y, Chen S, Zhou J, Li J, Cheng Y. Epigenetics-based therapeutics for myocardial fibrosis. Life Sci 2021; 271:119186. [PMID: 33577852 DOI: 10.1016/j.lfs.2021.119186] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Myocardial fibrosis (MF) is a reactive remodeling process in response to myocardial injury. It is mainly manifested by the proliferation of cardiac muscle fibroblasts and secreting extracellular matrix (ECM) proteins to replace damaged tissue. However, the excessive production and deposition of extracellular matrix, and the rising proportion of type I and type III collagen lead to pathological fibrotic remodeling, thereby facilitating the development of cardiac dysfunction and eventually causing heart failure with heightened mortality. Currently, the molecular mechanisms of MF are still not fully understood. With the development of epigenetics, it is found that epigenetics controls the transcription of pro-fibrotic genes in MF by DNA methylation, histone modification and noncoding RNAs. In this review, we summarize and discuss the research progress of the mechanisms underlying MF from the perspective of epigenetics, including the newest m6A modification and crosstalk between different epigenetics in MF. We also offer a succinct overview of promising molecules targeting epigenetic regulators, which may provide novel therapeutic strategies against MF.
Collapse
Affiliation(s)
- Xuping Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ying Yang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Sixuan Chen
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jiuyao Zhou
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jingyan Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yuanyuan Cheng
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
41
|
Angiotensin II type 1a receptor loss ameliorates chronic tubulointerstitial damage after renal ischemia reperfusion. Sci Rep 2021; 11:982. [PMID: 33441837 PMCID: PMC7806698 DOI: 10.1038/s41598-020-80209-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
We investigate whether suppressing the activation of the angiotensin II type 1a receptor (AT1a) can ameliorate severe chronic tubulointerstitial damage (TID) after renal ischemia reperfusion (IR) using AT1a knockout homozygous (AT1a−/−) male mice. To induce severe chronic TID after renal IR, unilateral renal ischemia was performed via clamping of the right renal pedicle in both AT1a−/− and wild-type (AT1a+/+) mice for 45 min. While marked renal atrophy and severe TID at 70 days postischemia was induced in the AT1a+/+ mice, such a development was not provoked in the AT1a−/− mice. Although the AT1a+/+ mice were administered hydralazine to maintain the same systolic blood pressure (SBP) levels as the AT1a−/− mice with lower SBP levels, hydralazine did not reproduce the renoprotective effects observed in the AT1a−/− mice. Acute tubular injury at 3 days postischemia was similar between the AT1a−/− mice and the AT1a+/+ mice. From our investigations using IR kidneys at 3, 14, and 28 days postischemia, the multiple molecular mechanisms may be related to prevention of severe chronic TID postischemia in the AT1a−/− mice. In conclusion, inactivation of the AT1 receptor may be useful in preventing the transition of acute kidney injury to chronic kidney disease.
Collapse
|
42
|
Charytan DM, Hsu JY, Mc Causland FR, Waikar SS, Ikizler TA, Raj DS, Landis JR, Mehrotra R, Williams M, DiCarli M, Skali H, Kimmel PL, Kliger AS, Dember LM. Combination Hydralazine and Isosorbide Dinitrate in Dialysis-Dependent ESRD (HIDE): A Randomized, Placebo-Controlled, Pilot Trial. KIDNEY360 2020; 1:1380-1389. [PMID: 35372900 DOI: 10.34067/kid.0004342020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/05/2020] [Indexed: 11/27/2022]
Abstract
Background Combination therapy with isosorbide dinitrate (ISD) and hydralazine (HY) reduces heart failure mortality. The safety and tolerability in individuals requiring maintenance hemodialysis (HD) is unknown. Methods Single-center, randomized, placebo-controlled, double-blind pilot trial to explore safety and tolerability of ISD/HY in maintenance HD. Participants were randomized to placebo or combination ISD/HY. Dose was escalated over 3 weeks from ISD 10 mg/HY 10 mg to ISD 40 mg/HY 75 mg three times per day with the maximum tolerated dose maintained for the subsequent 21 weeks. Primary endpoints included adverse events, adverse events precluding further treatment with study medication, serious hypotension (i.e., requiring hospitalization or emergency room visit), and recurrent intra-dialytic hypotension. Efficacy signals included change in mitral annular E' velocity by tissue Doppler echocardiography and change in left ventricular coronary flow reserve on positron emission tomography. Results A total of 17 individuals were randomized to ISD/HY (N=7) or placebo (N=10). All participants assigned to ISD/HY completed dose escalation to 40/75 mg, but dose reductions were required in two participants. No participants discontinued therapy. There were no serious hypotension events. Recurrent intradialytic hypotension was less frequent with ISD/HY (0.47 events/patient-year) than placebo (1.83 events/patient-year, P=0.04). In contrast, nausea (ISD/HY, 1.90 events/patient-year; placebo, 0.50 events/patient-year, P=0.03) was significantly more frequent, and headache and diarrhea were numerically but not significantly more frequent with ISD/HY. Adverse events were more frequent with ISD/HY (11.4 events/patient-year) than placebo (6.31 events/patient-year). We did not detect between-group differences in the change in E' (P=0.34); ISD/HY showed a mean increase of 0.6 cm/s (SD 1.1), and placebo showed a mean decrease of 0.04 cm/s (SD 0.9). Changes in coronary flow reserve were minimal, -0.3 (0.2) with ISD/HY and -0.03 (0.5) in the placebo group, P=0.19. Conclusions ISD/HY appears to be well tolerated in patients being treated with maintenance HD, but headache and gastrointestinal side effects occur more frequently with ISD/HY compared with placebo.
Collapse
Affiliation(s)
- David M Charytan
- Division of Nephrology, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Jesse Y Hsu
- Department of Biostatistics, Epidemiology and Informatics, and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Finnian R Mc Causland
- Renal Division, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Sushrut S Waikar
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - T Alp Ikizler
- Division of Nephrology and Hypertension, Department of Medicine, and Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dominic S Raj
- Division of Renal Diseases and Hypertension, George Washington University School of Medicine, Washington, DC
| | - J Richard Landis
- Department of Biostatistics, Epidemiology and Informatics, and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rajnish Mehrotra
- Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington, Seattle, Washington
| | - Mark Williams
- Renal Division, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Marcelo DiCarli
- Departments of Radiology and Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Hicham Skali
- Cardiovascular Division, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Paul L Kimmel
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alan S Kliger
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Laura M Dember
- Renal, Electrolyte and Hypertension Division, and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
43
|
Gu Y, Chen J, Zhang H, Shen Z, Liu H, Lv S, Yu X, Zhang D, Ding X, Zhang X. Hydrogen sulfide attenuates renal fibrosis by inducing TET-dependent DNA demethylation on Klotho promoter. FASEB J 2020; 34:11474-11487. [PMID: 32729950 DOI: 10.1096/fj.201902957rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
Hypoxia is a key pathogenetic characteristic of chronic kidney disease (CKD). Klotho has renoprotective effect and its expression is commonly suppressed in CKD patients. We showed that chronic hypoxia in unilateral ureteral obstruction model mice is associated with renal Klotho promoter methylation and expression silencing. Administration of low-dose of sodium hydrosulfide (NaHS) effectively ameliorated renal tubulointerstitial fibrosis in the mouse model by demethylating Klotho promoter and restoring its expression. Mechanistically, hypoxia microenvironment in CKD reduced cellular oxygen availability and Fe2+ concentration, and led to impaired activity of ten-eleven translocation (TET), which is critical in maintaining Klotho promoter demethylation status. NaHS treatment greatly improved hypoxia condition, restored TET activity, reversed DNA methylation, and thus, increased Klotho expression. Our results strongly suggested that correcting hypoxia condition to restore TET activity could be a promising therapeutic strategy against CKD.
Collapse
Affiliation(s)
- Yulu Gu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Han Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Ziyan Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Hong Liu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Shiqi Lv
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xixi Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Di Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Shanghai Medical Center of Kidney Disease, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China
| |
Collapse
|
44
|
Gao J, Liu Y, Jiang B, Cao W, Kan Y, Chen W, Ding M, Zhang G, Zhang B, Xi K, Jia X, Zhao X, Guo H. Phenylenediamine-Based Carbon Nanodots Alleviate Acute Kidney Injury via Preferential Renal Accumulation and Antioxidant Capacity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31745-31756. [PMID: 32571010 DOI: 10.1021/acsami.0c05041] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a reactive oxygen species (ROS)-promoted disease, acute kidney injury (AKI) is associated with high mortality and morbidity, but no effective pharmacological treatment is available. Kidney-targeted and ROS-reactive antioxidants are in urgent demand for AKI treatment. A promising nanotechnology-based strategy for targeting renal tubules offers new perspectives for AKI treatment but remains challenging because of the glomerular filtration barrier, which requires ultrasmall-sized therapeutics for penetration and filtration. Here, we fabricated four potential antioxidative carbon nanodots (CNDs) with ultrasmall size. After balancing the antioxidant properties and biocompatibility, m-phenylenediamine-based CNDs (PDA-CNDs) were chosen for further research. PDA-CNDs demonstrated remarkable antioxidant properties for scavenging multiple toxic free radicals, enabling efficient protection of cells under various oxidative stresses in vitro. Moreover, fluorescence imaging revealed that PDA-CNDs preferentially accumulated in the injured kidney of mice with ischemia-reperfusion (IR)-induced AKI. Blood renal function tests and kidney tissue staining revealed the therapeutic efficacy of PDA-CNDs for AKI in both the murine IR-induced AKI model and cisplatin-induced AKI model. Collectively, this is the first study revealing that specific rationally designed CNDs could be a promising pharmacological treatment for AKI induced by ROS.
Collapse
Affiliation(s)
- Jie Gao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Yanfeng Liu
- School of Chemistry & Chemical Engineering, Nanjing University, No. 163 Xianlin Road, Nanjing 210008, Jiangsu, China
| | - Bo Jiang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Yansheng Kan
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Meng Ding
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Guiyang Zhang
- School of Chemistry & Chemical Engineering, Nanjing University, No. 163 Xianlin Road, Nanjing 210008, Jiangsu, China
| | - Bowen Zhang
- School of Chemistry & Chemical Engineering, Nanjing University, No. 163 Xianlin Road, Nanjing 210008, Jiangsu, China
| | - Kai Xi
- School of Chemistry & Chemical Engineering, Nanjing University, No. 163 Xianlin Road, Nanjing 210008, Jiangsu, China
| | - Xudong Jia
- School of Chemistry & Chemical Engineering, Nanjing University, No. 163 Xianlin Road, Nanjing 210008, Jiangsu, China
| | - Xiaozhi Zhao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| |
Collapse
|
45
|
Zhao JY, Wang XL, Yang YC, Zhang B, Wu YB. Upregulated miR-101 inhibits acute kidney injury-chronic kidney disease transition by regulating epithelial-mesenchymal transition. Hum Exp Toxicol 2020; 39:1628-1638. [PMID: 32633566 DOI: 10.1177/0960327120937334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute kidney injury (AKI) is an independent risk factor for chronic kidney disease (CKD). However, the role and mechanism of microRNA (miRNA, miR) in AKI-CKD transition are elusive. In this study, a murine model of renal ischemia/reperfusion was established to investigate the repairing effect and mechanism of miR-101a-3p on renal injury. The pathological damage of renal tissue was observed by hematoxylin and eosin and Masson staining. The levels of miR-101, profibrotic cytokines, and epithelial-mesenchymal transition (EMT) markers were analyzed using Western blotting, real-time polymerase chain reaction, and/or immunofluorescence. MiR-101 overexpression caused the downregulation of α-smooth muscle actin, collagen-1, and vimentin, as well as upregulation of E-cadherin, thereby alleviating the degree of renal tissue damage. MiR-101 overexpression mitigated hypoxic HK-2 cell damage. Collagen, type X, alpha 1 and transforming growth factor β receptor 1 levels were downregulated in hypoxic cells transfected with miR-101 mimic. Our study indicates that miR-101 is an anti-EMT miRNA, which provides a novel therapeutic strategy for AKI-CKD transition.
Collapse
Affiliation(s)
- J-Y Zhao
- Department of Pediatrics, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - X-L Wang
- Department of Pediatrics, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Y-C Yang
- Department of Pediatrics, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - B Zhang
- Department of Pediatrics, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Y-B Wu
- Department of Pediatrics, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
46
|
Yan H, Tan L, Liu Y, Huang N, Cang J, Wang H. Ten-eleven translocation methyl-cytosine dioxygenase 2 deficiency exacerbates renal ischemia-reperfusion injury. Clin Epigenetics 2020; 12:98. [PMID: 32616016 PMCID: PMC7331250 DOI: 10.1186/s13148-020-00892-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ten-eleven translocation (Tet) methyl-cytosine dioxygenases (including Tet1/2/3)-mediated 5mC oxidation and DNA demethylation play important roles in embryonic development and adult tissue homeostasis. The expression of Tet2 and Tet3 genes are relatively abundant in the adult murine kidneys while Tet1 gene is expressed at a low level. Although Tet3 has been shown to suppress kidney fibrosis, the role of Tet2 in kidney physiology as well as renal ischemia-reperfusion (IR) injury is still largely unknown. RESULTS Tet2-/- mice displayed normal kidney morphology and renal function as WT mice while the expression of genes associated with tight junction and adherens junction was impaired. At 24 h post-renal IR, Tet2-/- mice showed higher SCr and BUN levels, more severe tubular damage, and elevated expression of Kim1 and Ngal genes in the kidney in comparison with WT mice. Moreover, the transcriptomic analysis revealed augmented inflammatory response in the kidneys of Tet2-/- mice. CONCLUSIONS Tet2 is dispensable for kidney development and function at baseline condition while protects against renal IR injury possibly through repressing inflammatory response. Our findings suggest that Tet2 may be a potential target for the intervention of IR-induced acute kidney injury (AKI).
Collapse
Affiliation(s)
- Huan Yan
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Li Tan
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yuqi Liu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Anesthesiology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China
| | - Ning Huang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jing Cang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
47
|
Yao W, Han X, Ge M, Chen C, Xiao X, Li H, Hei Z. N 6-methyladenosine (m 6A) methylation in ischemia-reperfusion injury. Cell Death Dis 2020; 11:478. [PMID: 32581252 PMCID: PMC7314846 DOI: 10.1038/s41419-020-2686-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/30/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022]
Abstract
Ischemia-reperfusion (I/R) injury is common during surgery and often results in organ dysfunction. The mechanisms of I/R injury are complex, diverse, and not well understood. RNA methylation is a novel epigenetic modification that is involved in the regulation of various biological processes, such as immunity, response to DNA damage, tumorigenesis, metastasis, stem cell renewal, fat differentiation, circadian rhythms, cell development and differentiation, and cell division. Research on RNA modifications, specifically N6-methyladenosine (m6A), have confirmed that they are involved in the regulation of organ I/R injury. In this review, we summarized current understanding of the regulatory roles and significance of m6A RNA methylation in I/R injury in different organs.
Collapse
Affiliation(s)
- Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xue Han
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Mian Ge
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xue Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Haobo Li
- Department of Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
48
|
Wang X, Balaji S, Steen EH, Blum AJ, Li H, Chan CK, Manson SR, Lu TC, Rae MM, Austin PF, Wight TN, Bollyky PL, Cheng J, Keswani SG. High-molecular weight hyaluronan attenuates tubulointerstitial scarring in kidney injury. JCI Insight 2020; 5:136345. [PMID: 32396531 DOI: 10.1172/jci.insight.136345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/07/2020] [Indexed: 01/13/2023] Open
Abstract
Renal fibrosis features exaggerated inflammation, extracellular matrix (ECM) deposition, and peritubular capillary loss. We previously showed that IL-10 stimulates high-molecular weight hyaluronan (HMW-HA) expression by fibroblasts, and we hypothesize that HMW-HA attenuates renal fibrosis by reducing inflammation and ECM remodeling. We studied the effects of IL-10 overexpression on HA production and scarring in mouse models of unilateral ureteral obstruction (UUO) and ischemia/reperfusion (I/R) to investigate whether IL-10 antifibrotic effects are HA dependent. C57BL/6J mice were fed with the HA synthesis inhibitor, 4-methylumbelliferone (4-MU), before UUO. We observed that in vivo injury increased intratubular spaces, ECM deposition, and HA expression at day 7 and onward. IL-10 overexpression reduced renal fibrosis in both models, promoted HMW-HA synthesis and stability in UUO, and regulated cell proliferation in I/R. 4-MU inhibited IL-10-driven antifibrotic effects, indicating that HMW-HA is necessary for cytokine-mediated reduction of fibrosis. We also found that IL-10 induces in vitro HMW-HA production by renal fibroblasts via STAT3-dependent upregulation of HA synthase 2. We propose that IL-10-induced HMW-HA synthesis plays cytoprotective and antifibrotic roles in kidney injury, thereby revealing an effective strategy to attenuate renal fibrosis in obstructive and ischemic pathologies.
Collapse
Affiliation(s)
- Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Swathi Balaji
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Emily H Steen
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Alexander J Blum
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Hui Li
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Christina K Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Scott R Manson
- Division of Pediatric Urology, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Thomas C Lu
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Meredith M Rae
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Paul F Austin
- Division of Pediatric Urology, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jizhong Cheng
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
49
|
Hydralazine Sensitizes to the Antifibrotic Effect of 5-Aza-2'-deoxycytidine in Hepatic Stellate Cells. BIOLOGY 2020; 9:biology9060117. [PMID: 32503264 PMCID: PMC7345531 DOI: 10.3390/biology9060117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hepatic stellate cell (HSC) activation is essential for the development of liver fibrosis. Epigenetic machinery, such as DNA methylation, is largely involved in the regulation of gene expression during HSC activation. Although the pharmacological DNA demethylation of HSC using 5-aza-2'-deoxycytidine (5-aza-dC) yielded an antifibrotic effect, this drug has been reported to induce excessive cytotoxicity at a high dose. Hydralazine (HDZ), an antihypertensive agent, also exhibits non-nucleoside demethylating activity. However, the effect of HDZ on HSC activation remains unclear. In this study, we performed a combined treatment with 5-aza-dC and HDZ to obtain an enhanced antifibrotic effect with lower cytotoxicity. METHODS HSC-T6 cells were used as a rat HSC cell line in this study. The cells were cultivated together with 1 µM 5-Aza-dC and/or 10 µg/mL of HDZ, which were refreshed every 24 h until the 96 h treatment ended. Cell proliferation was measured using the WST-1 assay. The mRNA expression levels of peptidylprolyl isomerase A (Ppia), an internal control gene, collagen type I alpha 1 (Cola1), RAS protein activator like 1 (Rasal1), and phosphatase and tensin homolog deleted from chromosome 10 (Pten) were analyzed using quantitative reverse transcription polymerase chain reaction. RESULTS The percentage cell viability with 5-aza-dC, HDZ, and combined treatment vs. the vehicle-only control was 101.4 ± 2.5, 95.2 ± 5.7, and 79.2 ± 0.7 (p < 0.01 for 5-aza-dC and p < 0.01 for HDZ), respectively, in the 48 h treatment, and 52.4 ± 5.6, 65.9 ± 3.4, and 29.9 ± 1.3 (p < 0.01 for 5-aza-dC and p < 0.01 for HDZ), respectively, in the 96 h treatment. 5-Aza-dC and the combined treatment markedly decreased Cola1 mRNA levels. Accordingly, the expression levels of Rasal1 and Pten, which are antifibrotic genes, were increased by treatment after the 5-aza-dC and combined treatments. Moreover, single treatment with HDZ did not affect the expression levels of Cola1, Rasal1, or Pten. These results suggest that HDZ sensitizes to the antifibrotic effect of 5-aza-dC in HSC-T6 cells. The molecular mechanism underlying the sensitization to the antifibrotic effect of 5-aza-dC by HDZ remains to be elucidated. The expression levels of rat equilibrative nucleoside transporter genes (rEnt1, rEnt2, and rEnt3) were not affected by HDZ in this study. CONCLUSIONS Further confirmation using primary HSCs and in vivo animal models is desirable, but combined treatment with 5-aza-dC and HDZ may be an effective therapy for liver fibrosis without severe adverse effects.
Collapse
|
50
|
Vitamin B Supplementation and Nutritional Intake of Methyl Donors in Patients with Chronic Kidney Disease: A Critical Review of the Impact on Epigenetic Machinery. Nutrients 2020; 12:nu12051234. [PMID: 32349312 PMCID: PMC7281987 DOI: 10.3390/nu12051234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular morbidity and mortality are several-fold higher in patients with advanced chronic kidney disease (CKD) and end-stage renal disease (ESRD) than in the general population. Hyperhomocysteinemia has undoubtedly a central role in such a prominent cardiovascular burden. The levels of homocysteine are regulated by methyl donors (folate, methionine, choline, betaine), and cofactors (vitamin B6, vitamin B12,). Uremia-induced hyperhomocysteinemia has as its main targets DNA methyltransferases, and this leads to an altered epigenetic control of genes regulated through methylation. In renal patients, the epigenetic landscape is strictly correlated with the uremic phenotype and dependent on dietary intake of micronutrients, inflammation, gut microbiome, inflammatory status, oxidative stress, and lifestyle habits. All these factors are key contributors in methylome maintenance and in the modulation of gene transcription through DNA hypo- or hypermethylation in CKD. This is an overview of the epigenetic changes related to DNA methylation in patients with advanced CKD and ESRD. We explored the currently available data on the molecular dysregulations resulting from altered gene expression in uremia. Special attention was paid to the efficacy of B-vitamins supplementation and dietary intake of methyl donors on homocysteine lowering and cardiovascular protection.
Collapse
|