1
|
Hua W, Peng L, Chen XM, Jiang X, Hu J, Jiang XH, Xiang X, Wan J, Long Y, Xiong J, Ma X, Du X. CD36-mediated podocyte lipotoxicity promotes foot process effacement. Open Med (Wars) 2024; 19:20240918. [PMID: 38584832 PMCID: PMC10996993 DOI: 10.1515/med-2024-0918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 04/09/2024] Open
Abstract
Background Lipid metabolism disorders lead to lipotoxicity. The hyperlipidemia-induced early stage of renal injury mainly manifests as podocyte damage. CD36 mediates fatty acid uptake and the subsequent accumulation of toxic lipid metabolites, resulting in podocyte lipotoxicity. Methods Male Sprague-Dawley rats were divided into two groups: the normal control group and the high-fat diet group (HFD). Podocytes were cultured and treated with palmitic acid (PA) and sulfo-N-succinimidyl oleate (SSO). Protein expression was measured by immunofluorescence and western blot analysis. Boron-dipyrromethene staining and Oil Red O staining was used to analyze fatty acid accumulation. Results Podocyte foot process (FP) effacement and marked proteinuria occurred in the HFD group. CD36 protein expression was upregulated in the HFD group and in PA-treated podocytes. PA-treated podocytes showed increased fatty acid accumulation, reactive oxygen species (ROS) production, and actin cytoskeleton rearrangement. However, pretreatment with the CD36 inhibitor SSO decreased lipid accumulation and ROS production and alleviated actin cytoskeleton rearrangement in podocytes. The antioxidant N-acetylcysteine suppressed PA-induced podocyte FP effacement and ROS generation. Conclusions CD36 participated in fatty acid-induced FP effacement in podocytes via oxidative stress, and CD36 inhibitors may be helpful for early treatment of kidney injury.
Collapse
Affiliation(s)
- Wei Hua
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing400000, China
| | - Lan Peng
- Basic Department, Chongqing Medical and Pharmaceutical College, Chongqing401331, China
| | - Xue-mei Chen
- Emergency Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing400042, China
| | - XuShun Jiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing400042, China
| | - JianGuo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xian-Hong Jiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing400000, China
| | - Xu Xiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing400000, China
| | - Jiangmin Wan
- Department of Nephrology, People’s Hospital of Qijiang District, Chongqing401420, China
| | - Yingfei Long
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | | | - Xueyi Ma
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing400000, China
| | - Xiaogang Du
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing 400042, China
| |
Collapse
|
2
|
Żołnierkiewicz O, Rogacka D. Hyperglycemia - A culprit of podocyte pathology in the context of glycogen metabolism. Arch Biochem Biophys 2024; 753:109927. [PMID: 38350532 DOI: 10.1016/j.abb.2024.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/15/2024]
Abstract
Prolonged disruption in the balance of glucose can result in metabolic disorders. The kidneys play a significant role in regulating blood glucose levels. However, when exposed to chronic hyperglycemia, the kidneys' ability to handle glucose metabolism may be impaired, leading to an accumulation of glycogen. Earlier studies have shown that there can be a significant increase in glucose storage in the form of glycogen in the kidneys in diabetes. Podocytes play a crucial role in maintaining the integrity of filtration barrier. In diabetes, exposure to elevated glucose levels can lead to significant metabolic and structural changes in podocytes, contributing to kidney damage and the development of diabetic kidney disease. The accumulation of glycogen in podocytes is not a well-established phenomenon. However, a recent study has demonstrated the presence of glycogen granules in podocytes. This review delves into the intricate connections between hyperglycemia and glycogen metabolism within the context of the kidney, with special emphasis on podocytes. The aberrant storage of glycogen has the potential to detrimentally impact podocyte functionality and perturb their structural integrity. This review provides a comprehensive analysis of the alterations in cellular signaling pathways that may potentially lead to glycogen overproduction in podocytes.
Collapse
Affiliation(s)
- Olga Żołnierkiewicz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
3
|
Qu H, Liu X, Zhu J, Xiong X, Li L, He Q, Wang Y, Yang G, Zhang L, Yang Q, Luo G, Zheng Y, Zheng H. Dock5 Deficiency Promotes Proteinuric Kidney Diseases via Modulating Podocyte Lipid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306365. [PMID: 38161229 PMCID: PMC10953540 DOI: 10.1002/advs.202306365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Podocytes are particularly sensitive to lipid accumulation, which has recently emerged as a crucial pathological process in the progression of proteinuric kidney diseases like diabetic kidney disease and focal segmental glomerulosclerosis. However, the underlying mechanism remains unclear. Here, podocytes predominantly expressed protein dedicator of cytokinesis 5 (Dock5) is screened to be critically related to podocyte lipid lipotoxicity. Its expression is reduced in both proteinuric kidney disease patients and mouse models. Podocyte-specific deficiency of Dock5 exacerbated podocyte injury and glomeruli pathology in proteinuric kidney disease, which is mainly through modulating fatty acid uptake by the liver X receptor α (LXRα)/scavenger receptor class B (CD36) signaling pathway. Specifically, Dock5 deficiency enhanced CD36-mediated fatty acid uptake of podocytes via upregulating LXRα in an m6 A-dependent way. Moreover, the rescue of Dock5 expression ameliorated podocyte injury and proteinuric kidney disease. Thus, the findings suggest that Dock5 deficiency is a critical contributor to podocyte lipotoxicity and may serve as a promising therapeutic target in proteinuric kidney diseases.
Collapse
Affiliation(s)
- Hua Qu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xiufei Liu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Jiaran Zhu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xin Xiong
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Lu Li
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Qingshan He
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yuren Wang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Guojun Yang
- Department of Clinical Laboratorythe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Linlin Zhang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Qingwu Yang
- Department of Neurologythe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Gang Luo
- Department of Orthopedicsthe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yi Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Hongting Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| |
Collapse
|
4
|
Sun J, Zhang X, Wang S, Chen D, Shu J, Chong N, Wang Q, Xu Y. Dapagliflozin improves podocytes injury in diabetic nephropathy via regulating cholesterol balance through KLF5 targeting the ABCA1 signalling pathway. Diabetol Metab Syndr 2024; 16:38. [PMID: 38326870 PMCID: PMC10851504 DOI: 10.1186/s13098-024-01271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Diabetic nephropathy (DN), one of the more prevalent microvascular complications in patients diagnosed with diabetes mellitus, is attributed as the main cause of end-stage renal disease (ESRD). Lipotoxicity in podocytes caused by hyperglycemia has been recognised as a significant pathology change, resulting in the deterioration of the glomerular filtration barrier. Research has demonstrated how dapagliflozin, a kind of SGLT2i, exhibits a multifaceted and powerful protective effect in DN, entirely independent of the hypoglycemic effect, with the specific mechanism verified. In this present study, we found that dapagliflozin has the potential to alleviate apoptosis and restore cytoskeleton triggered by high glucose (HG) in vivo and in vitro. We also discovered that dapagliflozin could mitigate podocyte cholesterol accumulation by restoring the expression of ABCA1, which is the key pathway for cholesterol outflows. This research also mechanistically demonstrates that the protective effect of dapagliflozin can be mediated by KLF-5, which is the upstream transcription factor of ABCA1. Taken together, our data suggest that dapagliflozin offers significant potential in alleviating podocyte injury and cholesterol accumulation triggered by high glucose. In terms of the mechanism, we herein reveal that dapagliflozin could accelerate cholesterol efflux by restoring the expression of ABCA1, which is directly regulated by KLF-5.
Collapse
Affiliation(s)
- Jingshu Sun
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong, China
| | - Xinyu Zhang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Simeng Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Dandan Chen
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jianqiang Shu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Nannan Chong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qinglian Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Ying Xu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Luo Z, Chen Z, Hu J, Ding G. Interplay of lipid metabolism and inflammation in podocyte injury. Metabolism 2024; 150:155718. [PMID: 37925142 DOI: 10.1016/j.metabol.2023.155718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Podocytes are critical for maintaining permselectivity of the glomerular filtration barrier, and podocyte injury is a major cause of proteinuria in various primary and secondary glomerulopathies. Lipid dysmetabolism and inflammatory activation are the distinctive hallmarks of podocyte injury. Lipid accumulation and lipotoxicity trigger cytoskeletal rearrangement, insulin resistance, mitochondrial oxidative stress, and inflammation. Subsequently, inflammation promotes the progression of glomerulosclerosis and renal fibrosis via multiple pathways. These data suggest that lipid dysmetabolism positively or negatively regulates inflammation during podocyte injury. In this review, we summarize recent advances in the understanding of lipid metabolism and inflammation, and highlight the potential association between lipid metabolism and podocyte inflammation.
Collapse
Affiliation(s)
- Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
6
|
Zuo F, Wang Y, Xu X, Ding R, Tang W, Sun Y, Wang X, Zhang Y, Wu J, Xie Y, Liu M, Wang Z, Yi F. CCDC92 deficiency ameliorates podocyte lipotoxicity in diabetic kidney disease. Metabolism 2024; 150:155724. [PMID: 37952690 DOI: 10.1016/j.metabol.2023.155724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND AND AIMS Podocyte injury is considered as the most important early event contributing to diabetic kidney disease (DKD). Recent findings provide new insights into the roles of lipids and lipid-modulating proteins as key determinants of podocyte function in health and kidney disease. CCDC92, a novel member of coiled-coil domain-containing protein family, was indicated relevant to lipid metabolism, coronary heart disease and type 2 diabetes. However, the expression pattern and role of CCDC92 in the kidney is not clear. This study was designed to elucidate the contribution of CCDC92 in the pathogenesis of DKD. METHODS Sections with a pathological diagnosis of different classes of DKD, including subjects with mild DKD (class II, n = 6), subjects with moderate DKD (class III, n = 6) or subjects with severe DKD (class IV, n = 6), and control samples (n = 12) were detected for the expression level of CCDC92 and lipid accumulation. Two types of diabetic mice model (db/db and HFD/STZ) in podocyte-specific Ccdc92 knockout background were generated to clarify the role of CCDC92 in podocyte lipotoxicity. RESULTS The level of CCDC92 was increased in renal biopsies sections from patients with DKD, which was correlated with eGFR and lipid accumulation in glomeruli. In animal studies, CCDC92 were also induced in the kidney from two independent diabetic models, especially in podocytes. Podocyte-specific deletion of Ccdc92 ameliorated podocyte injury and ectopic lipid deposition under diabetic condition. Mechanically, CCDC92 promoted podocyte lipotoxicity, at least in part through ABCA1 signaling-mediated lipid homeostasis. CONCLUSION Our studies demonstrates that CCDC92 acts as a novel regulator of lipid homeostasis to promote podocyte injury in DKD, suggesting that CCDC92 might be a potential biomarker of podocyte injury in DKD, and targeting CCDC92 may be an effective innovative therapeutic strategy for patients with DKD.
Collapse
Affiliation(s)
- Fuwen Zuo
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Youzhao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xinlei Xu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Ruihao Ding
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yu Sun
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jichao Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Ziying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China; National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan 250012, China.
| |
Collapse
|
7
|
Li X, Zhang Y, Xing X, Li M, Liu Y, Xu A, Zhang J. Podocyte injury of diabetic nephropathy: Novel mechanism discovery and therapeutic prospects. Biomed Pharmacother 2023; 168:115670. [PMID: 37837883 DOI: 10.1016/j.biopha.2023.115670] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus, posing significant challenges in terms of early prevention, clinical diagnosis, and treatment. Consequently, it has emerged as a major contributor to end-stage renal disease. The glomerular filtration barrier, composed of podocytes, endothelial cells, and the glomerular basement membrane, plays a vital role in maintaining renal function. Disruptions in podocyte function, including hypertrophy, shedding, reduced density, and apoptosis, can impair the integrity of the glomerular filtration barrier, resulting in elevated proteinuria, abnormal glomerular filtration rate, and increased creatinine levels. Hence, recent research has increasingly focused on the role of podocyte injury in DN, with a growing emphasis on exploring therapeutic interventions targeting podocyte injury. Studies have revealed that factors such as lipotoxicity, hemodynamic abnormalities, oxidative stress, mitochondrial dysfunction, and impaired autophagy can contribute to podocyte injury. This review aims to summarize the underlying mechanisms of podocyte injury in DN and provide an overview of the current research status regarding experimental drugs targeting podocyte injury in DN. The findings presented herein may offer potential therapeutic targets and strategies for the management of DN associated with podocyte injury.
Collapse
Affiliation(s)
- Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ying Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaodong Xing
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
8
|
Chen Q, Xie C, Tang K, Luo M, Zhang Z, Jin Y, Liu Y, Zhou L, Kong Y. The E3 ligase Trim63 promotes podocyte injury and proteinuria by targeting PPARα to inhibit fatty acid oxidation. Free Radic Biol Med 2023; 209:40-54. [PMID: 37793501 DOI: 10.1016/j.freeradbiomed.2023.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
Podocyte injury is a hallmark of glomerular disease and one of the leading causes of chronic kidney disease (CKD). Peroxisome proliferator-activated receptor α (PPARα) plays a key role in podocyte fatty acid oxidation (FAO). However, the underlying regulatory mechanisms remain unresolved. Trim63 is an E3 ubiquitin ligase that has been shown to inhibit PPARα activity; however, its role in fatty acid metabolism in the kidney has not been elucidated to date. In this study, we investigated the effects of overexpression and knockdown of Trim63 in Adriamycin (ADR)-induced nephropathy and diabetic nephropathy models and a podocyte cell line. In both rodents and human patients with proteinuric CKD, Trim63 was upregulated, particularly in the podocytes of injured glomeruli. In the ADR-induced nephropathy model, ectopic Trim63 application aggravated FAO deficiency and mitochondrial dysfunction and triggered intense lipid deposition, podocyte injury, and proteinuria. Notably, Trim63 inhibition alleviated FAO deficiency and mitochondrial dysfunction, and markedly restored podocyte injury and renal fibrosis in ADR-induced and diabetic nephropathy (DN) models. Additionally, Trim63 was observed to mediate PPARα ubiquitination and degradation, leading to podocyte injury. We demonstrate the pathological role of Trim63, which was previously unrecognized in kidney tissue, in FAO deficiency and podocyte injury. Targeting Trim63 may represent a viable therapeutic strategy for podocyte injury and proteinuria.
Collapse
Affiliation(s)
- Qiyan Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Division of Nephrology, The First People's Hospital of Foshan, Foshan, China
| | - Chao Xie
- Division of Nephrology, The First People's Hospital of Foshan, Foshan, China
| | - Kaiyue Tang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mujin Luo
- Division of Nephrology, The First People's Hospital of Foshan, Foshan, China
| | - Zhe Zhang
- Division of Nephrology, The First People's Hospital of Foshan, Foshan, China
| | - Yabin Jin
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yaozhong Kong
- Division of Nephrology, The First People's Hospital of Foshan, Foshan, China.
| |
Collapse
|
9
|
Li XY, Chen HR, Kuang DD, Pan LH, Li QM, Luo JP, Zha XQ. Laminaria japonica polysaccharide attenuates podocyte epithelial-mesenchymal transformation via TGF-β1-mediated Smad3 and p38MAPK pathways. Int J Biol Macromol 2023; 241:124637. [PMID: 37121417 DOI: 10.1016/j.ijbiomac.2023.124637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
In the present work, we explored the interventional effect and potential mechanism of a purified Laminaria japonica polysaccharide (LJP61A) on podocyte epithelial-mesenchymal transition (EMT) in TGF-β1-induced podocytes and adriamycin-treated mice. Results showed that compared to the model groups, LJP61A significantly up-regulated the levels of epithelial markers (Nephrin, WT-1, podocin) and down-regulated the levels of mesenchymal markers (α-SMA, FN1) in vitro and in vivo, thus preventing EMT-like morphological changes of podocytes, proteinuria and kidney injury. Smad3 and p38MAPK are two central pathways mediating podocyte EMT activated by TGF-β1. We found that LJP61A suppressed TGF-β1-induced activation of Smad3, Smad4 and p38MAPK in vitro and in vivo. Moreover, the inhibitory actions of LJP61A on podocyte EMT were synergistically strengthened by Smad3 inhibitor SIS3 and p38MAPK inhibitor SB203580. Taken together, these findings revealed that LJP61A could prevent podocyte EMT, which might be related to the inhibition of TGF-β1-mediated Smad3 and p38MAPK pathways.
Collapse
Affiliation(s)
- Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Hao-Ran Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Dan-Dan Kuang
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; Key Laboratory of Metabolism and Regulation for Major Disease of Anhui Higher Education Institutes, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
10
|
Abstract
The prevalence of obesity has increased dramatically during the past decades, which has been a major health problem. Since 1975, the number of people with obesity worldwide has nearly tripled. An increasing number of studies find obesity as a driver of chronic kidney disease (CKD) progression, and the mechanisms are complex and include hemodynamic changes, inflammation, oxidative stress, and activation of the renin-angiotensin-aldosterone system (RAAS). Obesity-related kidney disease is characterized by glomerulomegaly, which is often accompanied by localized and segmental glomerulosclerosis lesions. In these patients, the early symptoms are atypical, with microproteinuria being the main clinical manifestation and nephrotic syndrome being rare. Weight loss and RAAS blockers have a protective effect on obesity-related CKD, but even so, a significant proportion of patients eventually progress to end-stage renal disease despite treatment. Thus, it is critical to comprehend the mechanisms underlying obesity-related CKD to create new tactics for slowing or stopping disease progression. In this review, we summarize current knowledge on the mechanisms of obesity-related kidney disease, its pathological changes, and future perspectives on its treatment.
Collapse
Affiliation(s)
- Zongmiao Jiang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital Jilin University, Changchun, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Haiying Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Han
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xinhua Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Suteanu-Simulescu A, Zamfir AD, Ica R, Sarbu M, Munteanu CVA, Gadalean F, Vlad A, Bob F, Jianu DC, Petrica L. High-Resolution Tandem Mass Spectrometry Identifies a Particular Ganglioside Pattern in Early Diabetic Kidney Disease of Type 2 Diabetes Mellitus Patients. Molecules 2022; 27:2679. [PMID: 35566027 PMCID: PMC9103338 DOI: 10.3390/molecules27092679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Considering the valuable information provided by glycosphingolipids as molecular markers and the limited data available for their detection and characterization in patients suffering from Type 2 diabetic kidney disease (DKD), we developed and implemented a superior method based on high-resolution (HR) mass spectrometry (MS) and tandem MS (MS/MS) for the determination of gangliosides in the urine of DKD patients. This study was focused on: (i) testing of the HR MS and MS/MS feasibility and performances in mapping and sequencing of renal gangliosides in Type 2 DM patients; (ii) determination of the changes in the urine gangliosidome of DKD patients in different stages of the disease-normo-, micro-, and macroalbuminuria-in a comparative assay with healthy controls. Due to the high resolution and mass accuracy, the comparative MS screening revealed that the sialylation status of the ganglioside components; their modification by O-acetyl, CH3COO-, O-fucosyl, and O-GalNAc; as well as the composition of the ceramide represent possible markers for early DKD detection, the assessment of disease progression, and follow-up treatment. Moreover, structural investigation by MS/MS demonstrated that GQ1d(d18:1/18:0), GT1α(d18:1/18:0) and GT1b(d18:1/18:0) isomers are associated with macroalbuminuria, meriting further investigation in relation to their role in DKD.
Collapse
Affiliation(s)
- Anca Suteanu-Simulescu
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.S.-S.); (F.B.); (L.P.)
- Department of Nephrology, County Emergency Hospital, 300723 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.V.); (D.C.J.)
| | - Alina Diana Zamfir
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania; (A.D.Z.); (R.I.); (M.S.)
- Department of Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania
| | - Raluca Ica
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania; (A.D.Z.); (R.I.); (M.S.)
- Department of Physics, West University of Timisoara, 300223 Timisoara, Romania
| | - Mirela Sarbu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania; (A.D.Z.); (R.I.); (M.S.)
| | - Cristian V. A. Munteanu
- Department of Bioinformatics & Structural Biochemistry, Institute of Biochemistry, 060031 Bucharest, Romania;
| | - Florica Gadalean
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.S.-S.); (F.B.); (L.P.)
- Department of Nephrology, County Emergency Hospital, 300723 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.V.); (D.C.J.)
| | - Adrian Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.V.); (D.C.J.)
- Department of Internal Medicine II, Division of Diabetes and Metabolic Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Diabetes and Metabolic Diseases, County Emergency Hospital, 300723 Timisoara, Romania
| | - Flaviu Bob
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.S.-S.); (F.B.); (L.P.)
- Department of Nephrology, County Emergency Hospital, 300723 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.V.); (D.C.J.)
| | - Dragos Catalin Jianu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.V.); (D.C.J.)
- Department of Neurosciences, Division of Neurology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- First Department of Neurology, County Emergency Hospital, 300723 Timisoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.S.-S.); (F.B.); (L.P.)
- Department of Nephrology, County Emergency Hospital, 300723 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.V.); (D.C.J.)
- Department of Neurosciences, Division of Neurology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
12
|
Sun Y, Cui S, Hou Y, Yi F. The Updates of Podocyte Lipid Metabolism in Proteinuric Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:438-451. [PMID: 34901191 DOI: 10.1159/000518132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Podocytes, functionally specialized and terminally differentiated glomerular visceral epithelial cells, are critical for maintaining the structure and function of the glomerular filtration barrier. Podocyte injury is considered as the most important early event contributing to proteinuric kidney diseases such as obesity-related renal disease, diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, and minimal change disease. Although considerable advances have been made in the understanding of mechanisms that trigger podocyte injury, cell-specific and effective treatments are not clinically available. SUMMARY Emerging evidence has indicated that the disorder of podocyte lipid metabolism is closely associated with various proteinuric kidney diseases. Excessive lipid accumulation in podocytes leads to cellular dysfunction which is defined as lipotoxicity, a phenomenon characterized by mitochondrial oxidative stress, actin cytoskeleton remodeling, insulin resistance, and inflammatory response that can eventually result in podocyte hypertrophy, detachment, and death. In this review, we summarize recent advances in the understanding of lipids in podocyte biological function and the regulatory mechanisms leading to podocyte lipid accumulation in proteinuric kidney disease. KEY MESSAGES Targeting podocyte lipid metabolism may represent a novel therapeutic strategy for patients with proteinuric kidney disease.
Collapse
Affiliation(s)
- Yu Sun
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Sijia Cui
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yunfeng Hou
- Intensive Care Unit, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
13
|
Zhang X, Wan Z, Cheng S, Gan H. Association of the ENPP1/ENTPD1 Polymorphisms in Hemodialysis Patients. Int J Gen Med 2021; 14:6401-6408. [PMID: 34675608 PMCID: PMC8502030 DOI: 10.2147/ijgm.s332911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/22/2021] [Indexed: 12/06/2022] Open
Abstract
Introduction ENPP1 and ENTPD1 are two main enzymes involved in ATP-AMP-ADP-adenosine axis, which is associated with lipid metabolism, diabetes mellitus (DM) and renal fibrosis. The single nucleotide polymorphisms (SNPs) of ENPP1 and ENTPD1, rs1044498 and rs6584026, are associated with these factors. This retrospective study aimed to address the two SNPs variants in hemodialysis (HD) patients and analyzes their relations with clinical characteristics. Methods This study included 543 regular HD patients over 3 months at our center. Overnight fasting peripheral blood sample was taken from each subject to extract the DNA. The genotypes of rs1044498 and rs6584026 were detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The basic clinical data were noted such as sex, age, and HD-age, and the main causes of chronic kidney disease (CKD) and the clinical characteristics were collected on average at least three times in half a year. T-test and Chi-test were performed for the statistical analyses. Binary logistic regression was applied for the significant parameters by excluding the confounders, gender, age and HD-age. All statistical tests were considered significant for P<0.05. Results The rs1044498 genotypes showed in two types, A/A and A/C without C/C. The rs6584026 genotypes were C/C and C/T without T/T. The genotype frequency of rs1044498 (A/C) was 0.238, and the genotype frequency of rs6584026 (C/T) was 0.328. The age and the level of lipoprotein α showed statistical significance with rs1044498 variant (A/C, P<0.05). The rs6584026 variant (C/T) was frequently found in patients with nephritis (P<0.05). The albumin, alkaline phosphatase (ALP), lipoprotein α, cholesterol, apolipoprotein B (Apo B), Apo B/A1 and nephritis were independently associated with rs6584026 variant (C/T, P<0.05) in binary logistic regression model by controlling the confounders of gender, age and HD-age. High level of triglyceride and low level of urine nitrogen were related to rs6584026 variant (C/T, P<0.05). Conclusion The rs1044498 and rs6584026 SNPs were related to several high levels of lipids, and rs6584026 variant was related to nephritis and autoimmune disease. The rs6584026 SNP may contribute to the increased risks of cholesterol and ApoB/A1 in HD patients.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ziming Wan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Si Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|