1
|
Daei Sorkhabi A, Komijani E, Sarkesh A, Ghaderi Shadbad P, Aghebati-Maleki A, Aghebati-Maleki L. Advances in immune checkpoint-based immunotherapies for multiple sclerosis: rationale and practice. Cell Commun Signal 2023; 21:321. [PMID: 37946301 PMCID: PMC10634124 DOI: 10.1186/s12964-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/19/2023] [Indexed: 11/12/2023] Open
Abstract
Beyond the encouraging results and broad clinical applicability of immune checkpoint (ICP) inhibitors in cancer therapy, ICP-based immunotherapies in the context of autoimmune disease, particularly multiple sclerosis (MS), have garnered considerable attention and hold great potential for developing effective therapeutic strategies. Given the well-established immunoregulatory role of ICPs in maintaining a balance between stimulatory and inhibitory signaling pathways to promote immune tolerance to self-antigens, a dysregulated expression pattern of ICPs has been observed in a significant proportion of patients with MS and its animal model called experimental autoimmune encephalomyelitis (EAE), which is associated with autoreactivity towards myelin and neurodegeneration. Consequently, there is a rationale for developing immunotherapeutic strategies to induce inhibitory ICPs while suppressing stimulatory ICPs, including engineering immune cells to overexpress ligands for inhibitory ICP receptors, such as program death-1 (PD-1), or designing fusion proteins, namely abatacept, to bind and inhibit the co-stimulatory pathways involved in overactivated T-cell mediated autoimmunity, and other strategies that will be discussed in-depth in the current review. Video Abstract.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Komijani
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pedram Ghaderi Shadbad
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Rahmat-Zaie R, Amini J, Haddadi M, Beyer C, Sanadgol N, Zendedel A. TNF-α/STAT1/CXCL10 mutual inflammatory axis that contributes to the pathogenesis of experimental models of multiple sclerosis: A promising signaling pathway for targeted therapies. Cytokine 2023; 168:156235. [PMID: 37267677 DOI: 10.1016/j.cyto.2023.156235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Identifying mutual neuroinflammatory axis in different experimental models of multiple sclerosis (MS) is essential to evaluate the de- and re-myelination processes and improve therapeutic interventions' reproducibility. METHODS The expression profile data set of EAE (GSE47900) and cuprizone (GSE100663) models were downloaded from the Gene Expression Omnibus database. The R package and GEO2R software processed these raw chip data. Gene Ontology (GO) functional analysis, KEGG pathway analysis, and protein-protein interaction network analysis were performed to investigate interactions between common differentially expressed genes (DEGs) in all models. Finally, the ELISA method assessed the protein level of highlighted mutual cytokines in serum. RESULTS Our data introduced 59 upregulated [CXCL10, CCL12, and GBP6 as most important] and 17 downregulated [Serpinb1a, Prr18, and Ugt8a as most important] mutual genes. The signal transducer and activator of transcription 1 (STAT1) and CXCL10 were the most crucial hub proteins among mutual upregulated genes. These mutual genes were found to be mainly involved in the TNF-α, TLRs, and complement cascade signaling, and animal models shared 26 mutual genes with MS individuals. Finally, significant upregulation of serum level of TNF-α/IL-1β/CXCL10 cytokines was confirmed in all models in a relatively similar pattern. CONCLUSION For the first time, our study revealed the common neuroinflammatory pathway in animal models of MS and introduced candidate hub genes for better evaluating the preclinical efficacy of pharmacological interventions and designing prospective targeted therapies.
Collapse
Affiliation(s)
- Roya Rahmat-Zaie
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Javad Amini
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Mohammad Haddadi
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Adib Zendedel
- Institute of Anatomy, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
3
|
Vogelsang A, Eichler S, Huntemann N, Masanneck L, Böhnlein H, Schüngel L, Willison A, Loser K, Nieswandt B, Kehrel BE, Zarbock A, Göbel K, Meuth SG. Platelet Inhibition by Low-Dose Acetylsalicylic Acid Reduces Neuroinflammation in an Animal Model of Multiple Sclerosis. Int J Mol Sci 2021; 22:9915. [PMID: 34576080 PMCID: PMC8465626 DOI: 10.3390/ijms22189915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/10/2023] Open
Abstract
Aside from the established immune-mediated etiology of multiple sclerosis (MS), compelling evidence implicates platelets as important players in disease pathogenesis. Specifically, numerous studies have highlighted that activated platelets promote the central nervous system (CNS)-directed adaptive immune response early in the disease course. Platelets, therefore, present a novel opportunity for modulating the neuroinflammatory process that characterizes MS. We hypothesized that the well-known antiplatelet agent acetylsalicylic acid (ASA) could inhibit neuroinflammation by affecting platelets if applied at low-dose and investigated its effect during experimental autoimmune encephalomyelitis (EAE) as a model to study MS. We found that oral administration of low-dose ASA alleviates symptoms of EAE accompanied by reduced inflammatory infiltrates and less extensive demyelination. Remarkably, the percentage of CNS-infiltrated CD4+ T cells, the major drivers of neuroinflammation, was decreased to 40.98 ± 3.28% in ASA-treated mice compared to 56.11 ± 1.46% in control animals at the disease maximum as revealed by flow cytometry. More interestingly, plasma levels of thromboxane A2 were decreased, while concentrations of platelet factor 4 and glycoprotein VI were not affected by low-dose ASA treatment. Overall, we demonstrate that low-dose ASA could ameliorate the platelet-dependent neuroinflammatory response in vivo, thus indicating a potential treatment approach for MS.
Collapse
Affiliation(s)
- Anna Vogelsang
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany; (S.E.); (N.H.); (L.M.); (H.B.); (K.G.)
| | - Susann Eichler
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany; (S.E.); (N.H.); (L.M.); (H.B.); (K.G.)
| | - Niklas Huntemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany; (S.E.); (N.H.); (L.M.); (H.B.); (K.G.)
- Department of Neurology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany;
| | - Lars Masanneck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany; (S.E.); (N.H.); (L.M.); (H.B.); (K.G.)
- Department of Neurology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany;
| | - Hannes Böhnlein
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany; (S.E.); (N.H.); (L.M.); (H.B.); (K.G.)
| | - Lisa Schüngel
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, 48149 Münster, Germany; (L.S.); (B.E.K.); (A.Z.)
| | - Alice Willison
- The Northern Foundation School, Newcastle-upon-Tyne University Hospitals, Newcastle-upon-Tyne NE15 8NY, UK;
| | - Karin Loser
- Department of Human Medicine, Institute of Immunology, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
| | - Bernhard Nieswandt
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany;
| | - Beate E. Kehrel
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, 48149 Münster, Germany; (L.S.); (B.E.K.); (A.Z.)
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, 48149 Münster, Germany; (L.S.); (B.E.K.); (A.Z.)
| | - Kerstin Göbel
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany; (S.E.); (N.H.); (L.M.); (H.B.); (K.G.)
| | - Sven G. Meuth
- Department of Neurology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
4
|
Zarini-Gakiye E, Vaezi G, Parivar K, Sanadgol N. Age and Dose-Dependent Effects of Alpha-Lipoic Acid on Human Microtubule- Associated Protein Tau-Induced Endoplasmic Reticulum Unfolded Protein Response: Implications for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:451-464. [PMID: 33573583 DOI: 10.2174/1871527320666210126114442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In human tauopathies, pathological aggregation of misfolded/unfolded proteins, particularly microtubule-associated protein tau (MAPT, tau) is considered to be an essential mechanism that triggers the induction of endoplasmic reticulum (ER) stress. OBJECTIVE Here, we assessed the molecular effects of natural antioxidant alpha-lipoic acid (ALA) in human tauR406W (hTau)-induced ER unfolded protein response (ERUPR) in fruit flies. METHODS In order to reduce hTau neurotoxicity during brain development, we used a transgenic model of tauopathy where the maximum toxicity was observed in adult flies. Then, the effects of ALA (0.001, 0.005, and 0.025% w/w of diet) in htau-induced ERUPR and behavioral dysfunctions in the ages 20 and 30 days were evaluated in Drosophila melanogaster. RESULTS Data from expression (mRNA and protein) patterns of htau, analysis of eyes external morphology as well as larvae olfactory memory were confirmed by our tauopathy model. Moreover, the expression of ERUPR-related proteins involving Activating Transcription Factor 6 (ATF6), inositol regulating enzyme 1 (IRE1), and protein kinase RNA-like ER kinase (PERK) wase upregulated and locomotor function decreased in both ages of the model flies. Remarkably, the lower dose of ALA modified ERUPR and supported the reduction of behavioral deficits in youngest adults through the enhancement of GRP87/Bip, reduction of ATF6, downregulation of PERK-ATF4 pathway, and activation of the IRE1-XBP1 pathway. On the other hand, only a higher dose of ALA affected the ERUPR via moderation of PERK-ATF4 signaling in the oldest adults. As ALA also exerts higher protective effects on the locomotor function of younger adults when htauR406Wis expressed in all neurons (htau-elav) and mushroom body neurons (htau-ok), we proposed that ALA has age-dependent effects in this model. CONCLUSION Taken together, based on our results, we conclude that aging potentially influences the ALA effective dose and mechanism of action on tau-induced ERUPR. Further molecular studies will warrant possible therapeutic applications of ALA in age-related tauopathies.
Collapse
Affiliation(s)
- Elahe Zarini-Gakiye
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gholamhassan Vaezi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| |
Collapse
|
5
|
Sha S, Pearson JA, Peng J, Hu Y, Huang J, Xing Y, Zhang L, Zhu Y, Zhao H, Wong FS, Chen L, Wen L. TLR9 Deficiency in B Cells Promotes Immune Tolerance via Interleukin-10 in a Type 1 Diabetes Mouse Model. Diabetes 2021; 70:504-515. [PMID: 33154070 PMCID: PMC7881860 DOI: 10.2337/db20-0373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/01/2020] [Indexed: 12/22/2022]
Abstract
Toll-like receptor 9 (TLR9) is highly expressed in B cells, and B cells are important in the pathogenesis of type 1 diabetes (T1D) development. However, the intrinsic effect of TLR9 in B cells on β-cell autoimmunity is not known. To fill this knowledge gap, we generated NOD mice with a B-cell-specific deficiency of TLR9 (TLR9fl/fl/CD19-Cre+ NOD). The B-cell-specific deletion of TLR9 resulted in near-complete protection from T1D development. Diabetes protection was accompanied by an increased proportion of interleukin-10 (IL-10)-producing B cells. We also found that TLR9-deficient B cells were hyporesponsive to both innate and adaptive immune stimuli. This suggested that TLR9 in B cells modulates T1D susceptibility in NOD mice by changing the frequency and function of IL-10-producing B cells. Molecular analysis revealed a network of TLR9 with matrix metalloproteinases, tissue inhibitor of metalloproteinase-1, and CD40, all of which are interconnected with IL-10. Our study has highlighted an important connection of an innate immune molecule in B cells to the immunopathogenesis of T1D. Thus, targeting the TLR9 pathway, specifically in B cells, may provide a novel therapeutic strategy for T1D treatment.
Collapse
Affiliation(s)
- Sha Sha
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - James A Pearson
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - Jian Peng
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - Youjia Hu
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - Juan Huang
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - Yanpeng Xing
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Luyao Zhang
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Zhu
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT
| | - Hongyu Zhao
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT
| | - F Susan Wong
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, U.K
| | - Li Chen
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| |
Collapse
|
6
|
Amini R, Karampoor S, Zahednasab H, Keyvani H, Gheiasian M, Jalilian FA. Serum levels of matrix metalloproteinase-2, -9, and vitamin D in patients with multiple sclerosis with or without herpesvirus-6 seropositivity. Braz J Infect Dis 2020; 24:144-149. [PMID: 32243867 PMCID: PMC9392051 DOI: 10.1016/j.bjid.2020.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Razieh Amini
- Hamadan University of Medical Sciences, Faculty of Medicine, Department of Molecular Medicine and Genetics, Hamadan, Iran
| | - Sajad Karampoor
- Iran University of Medical Sciences, School of Medicine, Department of Virology, Tehran, Iran.
| | - Hamid Zahednasab
- University of Tehran, Institute of Biochemistry and Biophysics, Tehran, Iran
| | - Hossein Keyvani
- Iran University of Medical Sciences, School of Medicine, Department of Virology, Tehran, Iran
| | - Masoud Gheiasian
- Hamadan University of Medical Sciences, Faculty of Medicine, Department of Neurology, Hamadan, Iran
| | - Farid Azizi Jalilian
- Hamadan University of Medical Sciences, Faculty of Medicine Hamadan, Department of Medical Virology, Hamadan, Iran.
| |
Collapse
|
7
|
Moghbeli M. Genetic and Molecular Biology of Multiple Sclerosis Among Iranian Patients: An Overview. Cell Mol Neurobiol 2020; 40:65-85. [PMID: 31482432 DOI: 10.1007/s10571-019-00731-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is one if the common types of autoimmune disorders in developed countries. Various environmental and genetic factors are associated with initiation and progression of MS. It is believed that the life style changes can be one of the main environmental risk factors. The environmental factors are widely studied and reported, whereas minority of reports have considered the role of genetic factors in biology of MS. Although Iran is a low-risk country in the case of MS prevalence, it has been shown that there was a dramatically rising trend of MS prevalence among Iranian population during recent decades. Therefore, it is required to assess the probable MS risk factors in Iran. In the present study, we summarized all of the reported genes until now which have been associated with MS susceptibility among Iranian patients. To clarify the probable molecular biology of MS progression, we categorized these reported genes based on their cellular functions. This review paves the way of introducing a specific population-based diagnostic panel of genetic markers among the Iranian population for the first time in the world.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Metformin-induced AMPK activation stimulates remyelination through induction of neurotrophic factors, downregulation of NogoA and recruitment of Olig2+ precursor cells in the cuprizone murine model of multiple sclerosis. ACTA ACUST UNITED AC 2019; 27:583-592. [PMID: 31620963 DOI: 10.1007/s40199-019-00286-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 06/30/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Oligodendrocytes (OLGs) damage and myelin distraction is considered as a critical step in many neurological disorders especially multiple sclerosis (MS). Cuprizone (cup) animal model of MS targets OLGs degeneration and frequently used to the mechanistic understanding of de- and remyelination. The aim of this study was exploring the effects of metformin on the OLGs regeneration, myelin repair and profile of neurotrophic factors in the mice brain after cup-induced acute demyelination. METHODS Mice (C57BL/6 J) were fed with chow containing 0.2% cup for 5 weeks to induce specific OLGs degeneration and acute demyelination. Next, the cup was withdrawn to allow one-week recovery (spontaneous remyelination). At the end of this period, mature OLGs markers, myelin-associated neurite outgrowth inhibitor protein A (NogoA), premature specific OLGs transcription factor (Olig2), anti-apoptosis marker (survivin), neurotrophic factors, and AMPK activation were monitored in the presence or absence of metformin (50 mg/kg body weight/day) in the corpus callosum (CC). RESULTS Our finding indicated that consumption of metformin during the recovery period potentially induced an active form of AMPK (p-AMPK) and promoted repopulation of mature OLGs (MOG+ cells, MBP+ cells) in CC through up-regulation of BDNF, CNTF, and NGF as well as down-regulation of NogoA and recruitment of Olig2+ precursor cells. CONCLUSIONS This study for the first time reveals that metformin-induced AMPK, a master regulator of energy homeostasis, activation following toxic demyelination could potentially accelerate regeneration and supports spontaneous demyelination. These findings suggest the development of new therapeutic strategies based on AMPK activation for MS in the near future. Graphical abstract An overview of the possible molecular mechanisms of action of metformin-mediated remyelinationa.
Collapse
|
9
|
Assessment of CD40 and CD40L expression in rheumatoid arthritis patients, association with clinical features and DAS28. Clin Exp Med 2019; 19:427-437. [PMID: 31313080 DOI: 10.1007/s10238-019-00568-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023]
Abstract
The predominance of the effector mechanisms by CD4 + T cells is a characteristic of inflammatory autoimmune diseases such as rheumatoid arthritis (RA). The CD40/CD40L costimulatory pathway contributes to these pathogenic mechanisms by promoting autoantibody production and inflammation. Aberrant expression of CD40 and CD40L in RA patients has been shown, the latter prevailing in females. However, contrasting results have emerged regarding the clinical associations of these findings. We determined the association of CD40 and CD40L expression with the clinical activity evaluated through DAS28 in RA patients. A total of 38 female RA patients and 10 age- and sex-matched control subjects were included. CD40 and CD40L mRNA expression was quantified by real-time qPCR, cell surface proteins were determined by flow cytometry, and protein soluble forms were determined by ELISA. The expansion of a CD4 + T cell subpopulation expressing CD40 was identified in the RA group. In addition, high frequencies of CD4 + CD40L + T cells expressing high levels of CD40L, increased levels of sCD40L and overexpression of CD40L mRNA were observed in these patients. Moreover, there was a gradual increase in CD40L when data were stratified according to DAS28, except for very active patients. No correlation was observed between the levels of mRNA, cell surface protein and soluble protein of CD40 and CD40L with the clinical features of RA patients. There is an altered expression of CD40L in female RA patients in association with clinical activity assessed by DAS28, these findings support the evidence that suggests CD40L as a marker of clinical activity.
Collapse
|
10
|
Sanadgol N, Golab F, Askari H, Moradi F, Ajdary M, Mehdizadeh M. Alpha-lipoic acid mitigates toxic-induced demyelination in the corpus callosum by lessening of oxidative stress and stimulation of polydendrocytes proliferation. Metab Brain Dis 2018; 33:27-37. [PMID: 29022246 DOI: 10.1007/s11011-017-0099-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/21/2017] [Indexed: 12/26/2022]
Abstract
Multiple Sclerosis (MS), is a disease that degenerates myelin in central nervous system (CNS). Reactive oxygen species (ROSs) are toxic metabolites, and accumulating data indicate that ROSs-mediated apoptosis of oligodendrocytes (OLGs) plays a major role in the pathogenesis of MS under oxidative stress conditions. In this study, we investigated the role of endogenous antioxidant alpha-lipoic acid (ALA) as ROSs scavenger in the OLGs loss and myelin degeneration during cuprizone (cup)-induced demyelination in the experimental model of MS. Our results have shown that ALA treatment significantly increased population of mature OLGs (MOG+ cells), as well as decreased oxidative stress (ROSs, COX-2 and PGE2) and apoptosis mediators (caspase-3 and Bax/Bcl2 ratio) in corpus callosum (CC). Surprisingly, ALA significantly stimulates population of NG2 chondroitin sulfate proteoglycan positive glia (NG2+ cells or polydendrocytes), from week 4 afterward. Accordingly ALA could prevents apoptosis, delays demyelination and recruits OLGs survival and regeneration mechanisms in CC. We conclude that ALA has protective effects against toxic demyelination via reduction of redox signaling, and alleviation of polydendrocytes vulnerability to excitotoxic challenge.
Collapse
Affiliation(s)
- Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, P.O. Box 14665-354, Tehran, Iran
| | - Hassan Askari
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Cellular and Molecular Research Center, Iran University of Medical Science, P.O. Box 14665-354, Tehran, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Faculty of Advanced Technologies in Medicine, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Aarts SABM, Seijkens TTP, van Dorst KJF, Dijkstra CD, Kooij G, Lutgens E. The CD40-CD40L Dyad in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Front Immunol 2017; 8:1791. [PMID: 29312317 PMCID: PMC5732943 DOI: 10.3389/fimmu.2017.01791] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
The CD40-CD40L dyad is an immune checkpoint regulator that promotes both innate and adaptive immune responses and has therefore an essential role in the development of inflammatory diseases, including multiple sclerosis (MS). In MS, CD40 and CD40L are expressed on immune cells present in blood and lymphoid organs, affected resident central nervous system (CNS) cells, and inflammatory cells that have infiltrated the CNS. CD40-CD40L interactions fuel the inflammatory response underlying MS, and both genetic deficiency and antibody-mediated inhibition of the CD40-CD40L dyad reduce disease severity in experimental autoimmune encephalomyelitis (EAE). Both proteins are therefore attractive therapeutic candidates to modulate aberrant inflammatory responses in MS. Here, we discuss the genetic, experimental and clinical studies on the role of CD40 and CD40L interactions in EAE and MS and we explore novel approaches to therapeutically target this dyad to combat neuroinflammatory diseases.
Collapse
Affiliation(s)
- Suzanne A. B. M. Aarts
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tom T. P. Seijkens
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Munich, Germany
| | | | - Christine D. Dijkstra
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Munich, Germany
| |
Collapse
|
12
|
Sanadgol N, Golab F, Tashakkor Z, Taki N, Moradi Kouchi S, Mostafaie A, Mehdizadeh M, Abdollahi M, Taghizadeh G, Sharifzadeh M. Neuroprotective effects of ellagic acid on cuprizone-induced acute demyelination through limitation of microgliosis, adjustment of CXCL12/IL-17/IL-11 axis and restriction of mature oligodendrocytes apoptosis. PHARMACEUTICAL BIOLOGY 2017; 55:1679-1687. [PMID: 28447514 PMCID: PMC6130560 DOI: 10.1080/13880209.2017.1319867] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/29/2016] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Ellagic acid (EA) is a natural phenol antioxidant with various therapeutic activities. However, the efficacy of EA has not been examined in neuropathologic conditions. OBJECTIVE In vivo neuroprotective effects of EA on cuprizone (cup)-induced demyelination were evaluated. MATERIAL AND METHODS C57BL/6 J mice were fed with chow containing 0.2% cup for 4 weeks to induce oligodendrocytes (OLGs) depletion predominantly in the corpus callosum (CC). EA was administered at different doses (40 or 80 mg/kg body weight/day/i.p.) from the first day of cup diet. Oligodendrocytes apoptosis [TUNEL assay and myelin oligodendrocyte glycoprotein (MOG+)/caspase-3+ cells), gliosis (H&E staining, glial fibrillary acidic protein (GFAP+) and macrophage-3 (Mac-3+) cells) and inflammatory markers (interleukin 17 (IL-17), interleukin 11 (IL-11) and stromal cell-derived factor 1 α (SDF-1α) or CXCL12] during cup intoxication were examined. RESULTS High dose of EA (EA-80) increased mature oligodendrocytes population (MOG+ cells, p < 0.001), and decreased apoptosis (p < 0.05) compared with the cup mice. Treatment with both EA doses did not show any considerable effects on the expression of CXCL12, but significantly down-regulated the expression of IL-17 and up-regulated the expression of IL-11 in mRNA levels compared with the cup mice. Only treatment with EA-80 significantly decreased the population of active macrophage (MAC-3+ cells, p < 0.001) but not reactive astrocytes (GFAP+ cells) compared with the cup mice. DISCUSSION AND CONCLUSION In this model, EA-80 effectively reduces lesions via reduction of neuroinflammation and toxic effects of cup on mature OLGs. EA is a suitable therapeutic agent for moderate brain damage in neurodegenerative diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Nima Sanadgol
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
| | - Zakiyeh Tashakkor
- MSc in Cell and Developmental Biology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nooshin Taki
- MSc in Cell and Developmental Biology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Samira Moradi Kouchi
- MSc in Cell and Developmental Biology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ali Mostafaie
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorban Taghizadeh
- Department of Occupational Therapy, Faculty of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Ramroodi N, Khani M, Ganjali Z, Javan MR, Sanadgol N, Khalseh R, Ravan H, Sanadgol E, Abdollahi M. Prophylactic Effect of BIO-1211 Small-Molecule Antagonist of VLA-4 in the EAE Mouse Model of Multiple Sclerosis. Immunol Invest 2015; 44:694-712. [PMID: 26436854 DOI: 10.3109/08820139.2015.1085391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Some functional limitations and economic burden of therapeutic antibodies indicated that introducing of alternative therapeutic compounds with same or different mechanism of action could be worthwhile. In this regard small-molecule antagonists can have a wide range of impacts, so in this research, we examine the prophylactic effects of BIO-1211 [Very Late Antigen-4 (VLA4) blocker], in experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis in comparison with commercial available medicine, Natalizumab (NTZ)]. METHODS EAE was induced by subcutaneous immunization of myelin oligodendrocyte glycoprotein (MOG35-55) in 8-week-old C57BL/6 mice. During EAE induction, mice were separated to distinct groups and provided either BIO-1211 (5 and 10 mg/kg) or NTZ (5 mg/kg) and co-administration of these two compounds. After 21 days, neuro-inflammatory responses were analyzed using qRT-PCR, western blot, and ELISA methods. Pervade of immune cells to brain was examined by Evans blue staining and immunohistochemistry (IHC) analysis of specific markers of microglia/monocytes (CD11b) and leukocytes (CD45). RESULTS Targeted disruption of VLA4/VCAM1 interactions, by BIO-1211 agonist in mice, results in reduced cytokines expression, leukocyte trafficking, and inhibition of inflammatory responses in EAE (p < 0.01) in a dose-independent manner (data not shown). Mice treated with both BIO-1211 and NTZ exhibited a considerable depletion in the EAE clinical score, which correlated with decreased expression of TNF-α, IL-17, IFN-γ and pervade of CD11b(+) and CD45(+) cells into the cerebral cortex. CONCLUSION Our results indicated that BIO12-11 compound would be an useful tool to further understand the biological roles of VLA4/VCAM1 interactions, and could also be considered as EAE-suppressing agent.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/metabolism
- CD11b Antigen/metabolism
- Cell Movement/immunology
- Cerebral Cortex/immunology
- Cerebral Cortex/metabolism
- Cerebral Cortex/pathology
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression Regulation/drug effects
- Inflammation Mediators/metabolism
- Integrin alpha4beta1/antagonists & inhibitors
- Leukocyte Common Antigens/metabolism
- Leukocytes/immunology
- Leukocytes/metabolism
- Male
- Mice
- Monocytes/immunology
- Monocytes/metabolism
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Nitro Compounds
- Oligopeptides/administration & dosage
- Oligopeptides/chemistry
- Oligopeptides/pharmacology
- Permeability/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Thiazoles/administration & dosage
- Thiazoles/pharmacology
Collapse
Affiliation(s)
- Nourollah Ramroodi
- a Department of Neurology, Faculty of Medicine , Zahedan University of Medical Sciences , Zahedan , Iran
| | - Masood Khani
- b Department of Immunology, Faculty of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zohre Ganjali
- c Department of Biology, Faculty of Sciences , University of Zabol , Zabol , Iran
| | - Mohammad Reza Javan
- d Department of Immunology, Faculty of Medicine , Zabol University of Medical Sciences , Zabol , Iran
| | - Nima Sanadgol
- c Department of Biology, Faculty of Sciences , University of Zabol , Zabol , Iran
- e Department of Pharmacy and Pharmaceutical Science Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Roghayeh Khalseh
- f Department of Chemical Engineering , Babol Noushirvani University of Technology , Babol , Iran
| | - Hadi Ravan
- g Department of Biology, Faculty of Science , Shahid Bahonar University of Kerman , Kerman , Iran , and
| | - Ehsan Sanadgol
- h Department of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Abdollahi
- e Department of Pharmacy and Pharmaceutical Science Research Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|