1
|
Orton SM, Millis K, Choate P. Epigenetics of Trauma Transmission and Fetal Alcohol Spectrum Disorder: What Does the Evidence Support? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6706. [PMID: 37681846 PMCID: PMC10487479 DOI: 10.3390/ijerph20176706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Fetal alcohol spectrum disorder (FASD) results from teratogenic impacts of alcohol consumption during pregnancy. Trauma and prenatal alcohol exposure (PAE) can both cause neurodevelopmental impairment, and it has been proposed that FASD can amplify effects of trauma. Certain PAE and trauma effects are mediated via epigenetic mechanisms. The objective of this review is to present the current evidence for epigenetics in trauma transmission as it relates to FASD, to help bridge a potential knowledge gap for social workers and related health professionals. We include a primer on epigenetic mechanisms and inheritance, followed by a summary of the current biomedical evidence supporting intergenerational and transgenerational epigenetic transmission of trauma, its relevance to FASD, the intersection with social transmission, and finally the application to social work. We propose potential models of transmission, considering where social and epigenetic pathways may intersect and/or compound across generations. Overall, we aim to provide a better understanding of epigenetic-trauma transmission for its application to health professions, in particular which beliefs are (and are not) evidence-based. We discuss the lack of research and challenges of studying epigenetic transmission in humans and identify the need for public health interventions and best practices that are based on the current evidence.
Collapse
Affiliation(s)
- Sarah M. Orton
- Faculty of Science and Technology, Department of Biology, Mount Royal University, Calgary, AB T3E 6K6, Canada;
| | - Kimberly Millis
- Faculty of Science and Technology, Department of Biology, Mount Royal University, Calgary, AB T3E 6K6, Canada;
| | - Peter Choate
- Faculty of Health, Community & Education, Department of Child Studies and Social Work, Mount Royal University, Calgary, AB T3E 6K6, Canada;
| |
Collapse
|
2
|
Gillis RF, Palmour RM. miRNA Expression Analysis of the Hippocampus in a Vervet Monkey Model of Fetal Alcohol Spectrum Disorder Reveals a Potential Role in Global mRNA Downregulation. Brain Sci 2023; 13:934. [PMID: 37371413 DOI: 10.3390/brainsci13060934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
MicroRNAs (miRNAs) are short-length non-protein-coding RNA sequences that post-transcriptionally regulate gene expression in a broad range of cellular processes including neuro- development and have previously been implicated in fetal alcohol spectrum disorders (FASD). In this study, we use our vervet monkey model of FASD to follow up on a prior multivariate (developmental age × ethanol exposure) mRNA analysis (GSE173516) to explore the possibility that the global mRNA downregulation we observed in that study could be related to miRNA expression and function. We report here a predominance of upregulated and differentially expressed miRNAs. Further, the 24 most upregulated miRNAs were significantly correlated with their predicted targets (Target Scan 7.2). We then explored the relationship between these 24 miRNAs and the fold changes observed in their paired mRNA targets using two prediction platforms (Target Scan 7.2 and miRwalk 3.0). Compared to a list of non-differentially expressed miRNAs from our dataset, the 24 upregulated and differentially expressed miRNAs had a greater impact on the fold changes of their corresponding mRNA targets across both platforms. Taken together, this evidence raises the possibility that ethanol-induced upregulation of specific miRNAs might contribute functionally to the general downregulation of mRNAs observed by multiple investigators in response to prenatal alcohol exposure.
Collapse
Affiliation(s)
- Rob F Gillis
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Roberta M Palmour
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Behavioural Science Foundation, Mansion KN 0101, Saint Kitts and Nevis
| |
Collapse
|
3
|
Baker JA, Brettin JT, Mulligan MK, Hamre KM. Effects of Genetics and Sex on Acute Gene Expression Changes in the Hippocampus Following Neonatal Ethanol Exposure in BXD Recombinant Inbred Mouse Strains. Brain Sci 2022; 12:1634. [PMID: 36552094 PMCID: PMC9776411 DOI: 10.3390/brainsci12121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are prevalent neurodevelopmental disorders. Genetics have been shown to have a role in the severity of alcohol's teratogenic effects on the developing brain. We previously identified recombinant inbred BXD mouse strains that show high (HCD) or low cell death (LCD) in the hippocampus following ethanol exposure. The present study aimed to identify gene networks that influence this susceptibility. On postnatal day 7 (3rd-trimester-equivalent), male and female neonates were treated with ethanol (5.0 g/kg) or saline, and hippocampi were collected 7hrs later. Using the Affymetrix microarray platform, ethanol-induced gene expression changes were identified in all strains with divergent expression sets found between sexes. Genes, such as Bcl2l11, Jun, and Tgfb3, showed significant strain-by-treatment interactions and were involved in many apoptosis pathways. Comparison of HCD versus LCD showed twice as many ethanol-induced genes changes in the HCD. Interestingly, these changes were regulated in the same direction suggesting (1) more perturbed effects in HCD compared to LCD and (2) limited gene expression changes that confer resistance to ethanol-induced cell death in LCD. These results demonstrate that genetic background and sex are important factors that affect differential cell death pathways after alcohol exposure during development that could have long-term consequences.
Collapse
Affiliation(s)
- Jessica A. Baker
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| | - Jacob T. Brettin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kristin M. Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
4
|
Gillis RF, Palmour RM. mRNA expression analysis of the hippocampus in a vervet monkey model of fetal alcohol spectrum disorder. J Neurodev Disord 2022; 14:21. [PMID: 35305552 PMCID: PMC8934503 DOI: 10.1186/s11689-022-09427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/10/2022] [Indexed: 11/12/2022] Open
Abstract
Background Fetal alcohol spectrum disorders (FASD) are common, yet preventable developmental disorders that stem from prenatal exposure to alcohol. This exposure leads to a wide array of behavioural and physical problems with a complex and poorly defined biological basis. Molecular investigations to date predominantly use rodent animal models, but because of genetic, developmental and social behavioral similarity, primate models are more relevant. We previously reported reduced cortical and hippocampal neuron levels in an Old World monkey (Chlorocebus sabaeus) model with ethanol exposure targeted to the period of rapid synaptogenesis and report here an initial molecular study of this model. The goal of this study was to evaluate mRNA expression of the hippocampus at two different behavioural stages (5 months, 2 years) corresponding to human infancy and early childhood. Methods Offspring of alcohol-preferring or control dams drank a maximum of 3.5 g ethanol per kg body weight or calorically matched sucrose solution 4 days per week during the last 2 months of gestation. Total mRNA expression was measured with the Affymetrix GeneChip Rhesus Macaque Genome Array in a 2 × 2 study design that interrogated two independent variables, age at sacrifice, and alcohol consumption during gestation. Results and discussion Statistical analysis identified a preferential downregulation of expression when interrogating the factor ‘alcohol’ with a balanced effect of upregulation vs. downregulation for the independent variable ‘age’. Functional exploration of both independent variables shows that the alcohol consumption factor generates broad functional annotation clusters that likely implicate a role for epigenetics in the observed differential expression, while the variable age reliably produced functional annotation clusters predominantly related to development. Furthermore, our data reveals a novel connection between EFNB1 and the FASDs; this is highly plausible both due to the role of EFNB1 in neuronal development as well as its central role in craniofrontal nasal syndrome (CFNS). Fold changes for key genes were subsequently confirmed via qRT-PCR. Conclusion Prenatal alcohol exposure leads to global downregulation in mRNA expression. The cellular interference model of EFNB1 provides a potential clue regarding how genetically susceptible individuals may develop the phenotypic triad generally associated with classic fetal alcohol syndrome. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-022-09427-z.
Collapse
|
5
|
Lussier AA, Bodnar TS, Weinberg J. Intersection of Epigenetic and Immune Alterations: Implications for Fetal Alcohol Spectrum Disorder and Mental Health. Front Neurosci 2021; 15:788630. [PMID: 34924946 PMCID: PMC8680672 DOI: 10.3389/fnins.2021.788630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023] Open
Abstract
Prenatal alcohol exposure can impact virtually all body systems, resulting in a host of structural, neurocognitive, and behavioral abnormalities. Among the adverse impacts associated with prenatal alcohol exposure are alterations in immune function, including an increased incidence of infections and alterations in immune/neuroimmune parameters that last throughout the life-course. Epigenetic patterns are also highly sensitive to prenatal alcohol exposure, with widespread alcohol-related alterations to epigenetic profiles, including changes in DNA methylation, histone modifications, and miRNA expression. Importantly, epigenetic programs are crucial for immune system development, impacting key processes such as immune cell fate, differentiation, and activation. In addition to their role in development, epigenetic mechanisms are emerging as attractive candidates for the biological embedding of environmental factors on immune function and as mediators between early-life exposures and long-term health. Here, following an overview of the impact of prenatal alcohol exposure on immune function and epigenetic patterns, we discuss the potential role for epigenetic mechanisms in reprogramming of immune function and the consequences for health and development. We highlight a range of both clinical and animal studies to provide insights into the array of immune genes impacted by alcohol-related epigenetic reprogramming. Finally, we discuss potential consequences of alcohol-related reprogramming of immune/neuroimmune functions and their effects on the increased susceptibility to mental health disorders. Overall, the collective findings from animal models and clinical studies highlight a compelling relationship between the immune system and epigenetic pathways. These findings have important implications for our understanding of the biological mechanisms underlying the long-term and multisystem effects of prenatal alcohol exposure, laying the groundwork for possible novel interventions and therapeutic strategies to treat individuals prenatally exposed to alcohol.
Collapse
Affiliation(s)
- Alexandre A Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Tamara S Bodnar
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Buckley DM, Sidik A, Kar RD, Eberhart JK. Differentially sensitive neuronal subpopulations in the central nervous system and the formation of hindbrain heterotopias in ethanol-exposed zebrafish. Birth Defects Res 2019; 111:700-713. [PMID: 30793540 DOI: 10.1002/bdr2.1477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND A cardinal feature of prenatal ethanol exposure is CNS damage, resulting in a continuum of neurological and behavioral impairments that are described by the term fetal alcohol spectrum disorders (FASD). FASDs are variable and depend on several factors, including the amount, timing, and duration of prenatal ethanol exposure. To enhance interventions for CNS dysfunction, it is necessary to identify ethanol-sensitive neuronal populations and expand the understanding of factors that modify ethanol teratogenesis. METHODS To investigate the susceptibility of different neuronal subtypes, we exposed transgenic zebrafish (Danio rerio) to several ethanol concentrations (0.25, 0.5, 1.0, 1.5, or 2.0%), at different hours post fertilization (hpf; 0, 6, or 24 hpf), for various durations (0-24, 0-48, 4-24, 6-24, 6-48,or 24-48 hpf). Following exposure, embryo survival rates were determined, and CNS neurogenesis, differentiation, and patterning were assessed. RESULTS Embryo survival rates decrease as ethanol concentrations increase and drastically decline when exposed from 0-24 hpf compared to 4-24 hpf. Abnormal tangential migration of facial motor neurons is observed in isl1:gfp embryos exposed to ethanol concentrations as low as 0.25%, and the formation of IVth ventricle heterotopias are revealed by embryos exposed to ≥1.0% ethanol. Whereas, expression of olig2:dsred and ptf1a:gfp in the cerebellum and spinal cord are largely unaffected. While levels of etv4 mRNA are overtly resistant to ethanol, we observe significant reductions in ptch2 mRNA levels. CONCLUSIONS These data show differentially sensitive CNS neuron subpopulations with susceptibility to low levels of ethanol. In addition, these data reveal the formation of ethanol-induced hindbrain heterotopias.
Collapse
Affiliation(s)
- Desire M Buckley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Alfire Sidik
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Ranjeet D Kar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Johann K Eberhart
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
7
|
Chater-Diehl E, Sokolowski D, Alberry B, Singh SM. Coordinated Tcf7l2 regulation in a mouse model implicates Wnt signaling in fetal alcohol spectrum disorders. Biochem Cell Biol 2018; 97:375-379. [PMID: 30398926 DOI: 10.1139/bcb-2018-0215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mouse models of fetal alcohol spectrum disorders (FASD) have repeatedly identified genes with long-term changes in expression, DNA methylation, noncoding RNA, and histone modifications in response to neurodevelopmental alcohol exposure. Articulation of FASD is achieved via alcohol's effect on gene expression, likely involving epigenetic regulation. The list of genes affected is large and heterogeneous, depending on experimental protocol. We present reanalysis and synthesis of results highlighting the Wnt transcription factor 7 like 2 (Tcf7l2) gene as uniquely compatible with hippocampal DNA methylation, histone modifications, and gene expression changes in a coordinated response to neurodevelopmental alcohol exposure. We data-mined the literature for Tcf7l2 alterations in response to prenatal alcohol exposure. Four studies identified changes in brain Tcf7l2 expression in different FASD models. Further, we performed an in silico TCF7L2 binding site analysis for FASD mouse model data sets. Seven of these published gene lists were significantly enriched for TCF7L2 binding, indicating potential functional relationships. Finally, TCF7L2 is involved in regulation of hundreds of genes, with a role in brain development, myelination, and neuronal function. Tcf7l2 may be involved in neurological defects associated with alcohol exposure via dysregulation of many genes through Wnt signaling. Further functional work is warranted to validate this model for FASD.
Collapse
Affiliation(s)
- Eric Chater-Diehl
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Dustin Sokolowski
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Bonnie Alberry
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada.,Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Shiva M Singh
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada.,Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
8
|
Heterogeneity of p53 dependent genomic responses following ethanol exposure in a developmental mouse model of fetal alcohol spectrum disorder. PLoS One 2017; 12:e0180873. [PMID: 28723918 PMCID: PMC5516996 DOI: 10.1371/journal.pone.0180873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 06/22/2017] [Indexed: 11/28/2022] Open
Abstract
Prenatal ethanol exposure can produce structural and functional deficits in the brain and result in Fetal Alcohol Spectrum Disorder (FASD). In rodent models acute exposure to a high concentration of alcohol causes increased apoptosis in the developing brain. A single causal molecular switch that signals for this increase in apoptosis has yet to be identified. The protein p53 has been suggested to play a pivotal role in enabling cells to engage in pro-apoptotic processes, and thus figures prominently as a hub molecule in the intracellular cascade of responses elicited by alcohol exposure. In the present study we examined the effect of ethanol-induced cellular and molecular responses in primary somatosensory cortex (SI) and hippocampus of 7-day-old wild-type (WT) and p53-knockout (KO) mice. We quantified apoptosis by active caspase-3 immunohistochemistry and ApopTag™ labeling, then determined total RNA expression levels in laminae of SI and hippocampal subregions. Immunohistochemical results confirmed increased incidence of apoptotic cells in both regions in WT and KO mice following ethanol exposure. The lack of p53 was not protective in these brain regions. Molecular analyses revealed a heterogeneous response to ethanol exposure that varied depending on the subregion, and which may go undetected using a global approach. Gene network analyses suggest that the presence or absence of p53 alters neuronal function and synaptic modifications following ethanol exposure, in addition to playing a classic role in cell cycle signaling. Thus, p53 may function in a way that underlies the intellectual and behavioral deficits observed in FASD.
Collapse
|
9
|
Zhang C, Boa-Amponsem O, Cole GJ. Comparison of molecular marker expression in early zebrafish brain development following chronic ethanol or morpholino treatment. Exp Brain Res 2017; 235:2413-2423. [PMID: 28493069 DOI: 10.1007/s00221-017-4977-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
Abstract
This study was undertaken to ascertain whether defined markers of early zebrafish brain development are affected by chronic ethanol exposure or morpholino knockdown of agrin, sonic hedgehog, retinoic acid, and fibroblast growth factors, four signaling molecules that are suggested to be ethanol sensitive. Zebrafish embryos were exposed to 2% ethanol from 6 to 24 hpf or injected with agrin, shha, aldh1a3, or fgf8a morpholinos. In situ hybridization was employed to analyze otx2, pax6a, epha4a, krx20, pax2a, fgf8a, wnt1, and eng2b expression during early brain development. Our results showed that pax6a mRNA expression was decreased in eye, forebrain, and hindbrain of both chronic ethanol exposed and select MO treatments. Epha4a expression in rhombomere R1 boundary was decreased in chronic ethanol exposure and aldh1a3 morphants, lost in fgf8a morphants, but largely unaffected in agrin and shha morphants. Ectopic pax6a and epha4a expression in midbrain was only found in fgf8a morphants. These results suggest that while chronic ethanol induces obvious morphological change in brain architecture, many molecular markers of these brain structures are relatively unaffected by ethanol exposure.
Collapse
Affiliation(s)
- Chengjin Zhang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Durham, NC, USA
| | - Oswald Boa-Amponsem
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Durham, NC, USA
- Integrated Biosciences Program, Durham, NC, USA
| | - Gregory J Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Durham, NC, USA.
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
10
|
Lussier AA, Weinberg J, Kobor MS. Epigenetics studies of fetal alcohol spectrum disorder: where are we now? Epigenomics 2017; 9:291-311. [PMID: 28234026 PMCID: PMC5549650 DOI: 10.2217/epi-2016-0163] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adverse in utero events can alter the development and function of numerous physiological systems, giving rise to lasting neurodevelopmental deficits. In particular, data have shown that prenatal alcohol exposure can reprogram neurobiological systems, altering developmental trajectories and resulting in increased vulnerability to adverse neurobiological, behavioral and health outcomes. Increasing evidence suggests that epigenetic mechanisms are potential mediators for the reprogramming of neurobiological systems, as they may provide a link between the genome, environmental conditions and neurodevelopmental outcomes. This review outlines the current state of epigenetic research in fetal alcohol spectrum disorder, highlighting the role of epigenetic mechanisms in the reprogramming of neurobiological systems by alcohol and as potential diagnostic tools for fetal alcohol spectrum disorder. We also present an assessment of the current limitations in studies of prenatal alcohol exposure, and highlight the future steps needed in the field.
Collapse
Affiliation(s)
- Alexandre A Lussier
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanne Weinberg
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Human Early Learning Partnership, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Rojas-Mayorquín AE, Padilla-Velarde E, Ortuño-Sahagún D. Prenatal Alcohol Exposure in Rodents As a Promising Model for the Study of ADHD Molecular Basis. Front Neurosci 2016; 10:565. [PMID: 28018163 PMCID: PMC5156702 DOI: 10.3389/fnins.2016.00565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/23/2016] [Indexed: 12/17/2022] Open
Abstract
A physiological parallelism, or even a causal effect relationship, can be deducted from the analysis of the main characteristics of the “Alcohol Related Neurodevelopmental Disorders” (ARND), derived from prenatal alcohol exposure (PAE), and the behavioral performance in the Attention-deficit/hyperactivity disorder (ADHD). These two clinically distinct disease entities, exhibits many common features. They affect neurological shared pathways, and also related neurotransmitter systems. We briefly review here these parallelisms, with their common and uncommon characteristics, and with an emphasis in the subjacent molecular mechanisms of the behavioral manifestations, that lead us to propose that PAE in rats can be considered as a suitable model for the study of ADHD.
Collapse
Affiliation(s)
- Argelia E Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Centro Universitario de Ciencias Biológicas y Agropecuarias, Instituto de Neurociencias, Universidad de Guadalajara Guadalajara, Mexico
| | - Edgar Padilla-Velarde
- Departamento de Ciencias Ambientales, Centro Universitario de Ciencias Biológicas y Agropecuarias, Instituto de Neurociencias, Universidad de Guadalajara Guadalajara, Mexico
| | - Daniel Ortuño-Sahagún
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Mexico
| |
Collapse
|
12
|
Gupta KK, Gupta VK, Shirasaka T. An Update on Fetal Alcohol Syndrome-Pathogenesis, Risks, and Treatment. Alcohol Clin Exp Res 2016; 40:1594-602. [PMID: 27375266 DOI: 10.1111/acer.13135] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022]
Abstract
Alcohol is a well-established teratogen that can cause variable physical and behavioral effects on the fetus. The most severe condition in this spectrum of diseases is known as fetal alcohol syndrome (FAS). The differences in maternal and fetal enzymes, in terms of abundance and efficiency, in addition to reduced elimination, allow for alcohol to have a prolonged effect on the fetus. This can act as a teratogen through numerous methods including reactive oxygen species (generated as by products of CYP2E1), decreased endogenous antioxidant levels, mitochondrial damage, lipid peroxidation, disrupted neuronal cell-cell adhesion, placental vasoconstriction, and inhibition of cofactors required for fetal growth and development. More recently, alcohol has also been shown to have epigenetic effects. Increased fetal exposure to alcohol and sustained alcohol intake during any trimester of pregnancy is associated with an increased risk of FAS. Other risk factors include genetic influences, maternal characteristics, for example, lower socioeconomic statuses and smoking, and paternal chronic alcohol use. The treatment options for FAS have recently started to be explored although none are currently approved clinically. These include prenatal antioxidant administration food supplements, folic acid, choline, neuroactive peptides, and neurotrophic growth factors. Tackling the wider impacts of FAS, such as comorbidities, and the family system have been shown to improve the quality of life of FAS patients. This review aimed to focus on the pathogenesis, especially mechanisms of alcohol teratogenicity, and risks of developing FAS. Recent developments in potential management strategies, including prenatal interventions, are discussed.
Collapse
Affiliation(s)
| | - Vinay K Gupta
- School of Medicine, University of Birmingham, Birmingham, UK
| | - Tomohiro Shirasaka
- Department of Neuropsychiatry, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
13
|
Rogic S, Wong A, Pavlidis P. Meta-Analysis of Gene Expression Patterns in Animal Models of Prenatal Alcohol Exposure Suggests Role for Protein Synthesis Inhibition and Chromatin Remodeling. Alcohol Clin Exp Res 2016; 40:717-27. [PMID: 26996386 PMCID: PMC5310543 DOI: 10.1111/acer.13007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 01/11/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can result in an array of morphological, behavioral, and neurobiological deficits that can range in their severity. Despite extensive research in the field and a significant progress made, especially in understanding the range of possible malformations and neurobehavioral abnormalities, the molecular mechanisms of alcohol responses in development are still not well understood. There have been multiple transcriptomic studies looking at the changes in gene expression after PAE in animal models; however, there is a limited apparent consensus among the reported findings. In an effort to address this issue, we performed a comprehensive re-analysis and meta-analysis of all suitable, publically available expression data sets. METHODS We assembled 10 microarray data sets of gene expression after PAE in mouse and rat models consisting of samples from a total of 63 ethanol (EtOH)-exposed and 80 control animals. We re-analyzed each data set for differential expression and then used the results to perform meta-analyses considering all data sets together or grouping them by time or duration of exposure (pre- and postnatal, acute and chronic, respectively). We performed network and Gene Ontology enrichment analysis to further characterize the identified signatures. RESULTS For each subanalysis, we identified signatures of differential expressed genes that show support from multiple studies. Overall, the changes in gene expression were more extensive after acute EtOH treatment during prenatal development than in other models. Considering the analysis of all the data together, we identified a robust core signature of 104 genes down-regulated after PAE, with no up-regulated genes. Functional analysis reveals over representation of genes involved in protein synthesis, mRNA splicing, and chromatin organization. CONCLUSIONS Our meta-analysis shows that existing studies, despite superficial dissimilarity in findings, share features that allow us to identify a common core signature set of transcriptome changes in PAE. This is an important step to identifying the biological processes that underlie the etiology of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Sanja Rogic
- Department of Psychiatry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Albertina Wong
- Department of Psychiatry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Paul Pavlidis
- Department of Psychiatry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Laufer BI, Kapalanga J, Castellani CA, Diehl EJ, Yan L, Singh SM. Associative DNA methylation changes in children with prenatal alcohol exposure. Epigenomics 2015; 7:1259-74. [DOI: 10.2217/epi.15.60] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Prenatal alcohol exposure (PAE) can cause fetal alcohol spectrum disorders (FASD). Previously, we assessed PAE in brain tissue from mouse models, however whether these changes are present in humans remains unknown. Materials & methods: In this report, we show some identical changes in DNA methylation in the buccal swabs of six children with FASD using the 450K array. Results: The changes occur in genes related to protocadherins, glutamatergic synapses, and hippo signaling. The results were found to be similar in another heterogeneous replication group of six FASD children. Conclusion: The replicated results suggest that children born with FASD have unique DNA methylation defects that can be influenced by sex and medication exposure. Ultimately, with future clinical development, assessment of DNA methylation from buccal swabs can provide a novel strategy for the diagnosis of FASD.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Joachim Kapalanga
- Department of Pediatrics, The University of Western Ontario, London, ON, Canada
| | - Christina A Castellani
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Eric J Diehl
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | | | - Shiva M Singh
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
- Department of Pediatrics, The University of Western Ontario, London, ON, Canada
- Program in Neuroscience, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
15
|
Lussier AA, Stepien KA, Neumann SM, Pavlidis P, Kobor MS, Weinberg J. Prenatal alcohol exposure alters steady-state and activated gene expression in the adult rat brain. Alcohol Clin Exp Res 2015; 39:251-61. [PMID: 25684047 DOI: 10.1111/acer.12622] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/28/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is associated with alterations in numerous physiological systems, including the stress and immune systems. We have previously shown that PAE increases the course and severity of arthritis in an adjuvant-induced arthritis (AA) model. While the molecular mechanisms underlying these effects are not fully known, changes in neural gene expression are emerging as important factors in the etiology of PAE effects. As the prefrontal cortex (PFC) and hippocampus (HPC) play key roles in neuroimmune function, PAE-induced alterations to their transcriptome may underlie abnormal steady-state functions and responses to immune challenge. This study examined brains from adult PAE and control females from our recent AA study to determine whether PAE causes long-term alterations in gene expression and whether these mediate the altered severity and course of arthritis in PAE females. METHODS Adult females from PAE, pair-fed (PF), and ad libitum-fed control (C) groups were injected with either saline or complete Freund's adjuvant. Animals were terminated at the peak of inflammation or during resolution (Days 16 and 39 postinjection, respectively); cohorts of saline-injected PAE, PF, and C females were terminated in parallel. Gene expression was analyzed in the PFC and HPC using whole-genome mRNA expression microarrays. RESULTS Significant changes in gene expression in both the PFC and HPC were found in PAE compared to controls in response to ethanol exposure alone (saline-injected females), including genes involved in neurodevelopment, apoptosis, and energy metabolism. Moreover, in response to inflammation (adjuvant-injected females), PAE animals showed unique expression patterns, while failing to exhibit the activation of genes and regulators involved in the immune response observed in control and pair-fed animals. CONCLUSIONS These results support the hypothesis that PAE affects neuroimmune function at the level of gene expression, demonstrating long-term effects of PAE on the central nervous system response under steady-state conditions and following an inflammatory insult.
Collapse
Affiliation(s)
- Alexandre A Lussier
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Vieira AR, De Carvalho FM, Johnson L, DeVos L, Swailes AL, Weber ML, Deeley K. Fine Mapping of 6q23.1 Identifies TULP4 as Contributing to Clefts. Cleft Palate Craniofac J 2015; 52:128-34. [DOI: 10.1597/13-023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objective The aim of this work was to fine-map the region 6q23.1, which obtained suggestive linkage signal (logarithm of the odds [LOD] score = 2.22 under a recessive model) to cleft lip with or without cleft palate (CL±P) in our previous genome-wide linkage scan to identify possible genetic variants that may contribute to CL±P. Design We used densely spaced markers spanning the entire 6q23.1 region to test for association with CL±P in a family cohort sample. Setting Clinical information and DNA samples were obtained from families in the Philippines at their homes or primary health care clinics. Participants The study sample consisted of 477 subjects (224 females and 253 males), segregating isolated CL±P, from 72 living in the same area in the Philippines. Main Outcome Measure Overtransmission of alleles to persons born with CL±P. Results We found statistical evidence of association between a marker of TULP4 (rs651333) with CL±P ( P = .00007). Conclusions Our results further support the linkage results for the chromosome 6q region and reveal a novel candidate gene for CL±P.
Collapse
Affiliation(s)
- Alexandre R. Vieira
- Department of Oral Biology and Center for Craniofacial and Dental Genetics and Department of Pediatric Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Flavia M. De Carvalho
- Department of Genetics, Institute of Biology, Center of Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lindsay Johnson
- Health Information Management, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lauren DeVos
- Department of Oral Biology; School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alexa L. Swailes
- Department of Oral Biology, School of Dental Medicine, and Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Megan L. Weber
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kathleen Deeley
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Zhou FC. Dissecting FASD through the global transcriptome. Alcohol Clin Exp Res 2015; 39:408-12. [PMID: 25702586 DOI: 10.1111/acer.12655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/12/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Feng C Zhou
- Department of Anatomy & Cell Biology, Stark Research Institute of Neuroscience, Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, Indiana; Department of Psychology, Indiana University & Purdue University at Indianapolis (IUPUI), Indianapolis, Indiana
| |
Collapse
|
18
|
Kleiber ML, Laufer BI, Stringer RL, Singh SM. Third trimester-equivalent ethanol exposure is characterized by an acute cellular stress response and an ontogenetic disruption of genes critical for synaptic establishment and function in mice. Dev Neurosci 2014; 36:499-519. [PMID: 25278313 DOI: 10.1159/000365549] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/26/2014] [Indexed: 11/19/2022] Open
Abstract
The developing brain is remarkably sensitive to alcohol exposure, resulting in the wide range of cognitive and neurobehavioral characteristics categorized under the term fetal alcohol spectrum disorders (FASD). The brain is particularly susceptible to alcohol during synaptogenesis, a process that occurs heavily during the third trimester and is characterized by the establishment and pruning of neural circuitry; however, the molecular response of the brain to ethanol during synaptogenesis has not been documented. To model a binge-like exposure during the third-trimester neurodevelopmental equivalent, neonate mice were given a high (5 g/kg over 2 h) dose of ethanol at postnatal day 7. Acute transcript changes within the brain were assessed using expression arrays and analyzed for associations with gene ontology functional categories, canonical pathways, and gene network interactions. The short-term effect of ethanol was characterized by an acute stress response and a downregulation of energetically costly cellular processes. Further, alterations to a number of genes with roles in synaptic transmission and hormonal signaling, particularly those associated with the neuroendocrine development and function, were evident. Ethanol exposure during synaptogenesis was also associated with altered histone deacetylase and microRNA transcript levels, suggesting that abnormal epigenetic patterning may maintain some of the persistent molecular consequences of developmental ethanol exposure. The results shed insight into the sensitivity of the brain to ethanol during the third-trimester equivalent and outline how ethanol-induced alterations to genes associated with neural connectivity may contribute to FASD phenotypes.
Collapse
Affiliation(s)
- Morgan L Kleiber
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, Ont., Canada
| | | | | | | |
Collapse
|
19
|
Tyler CR, Allan AM. Prenatal alcohol exposure alters expression of neurogenesis-related genes in an ex vivo cell culture model. Alcohol 2014; 48:483-92. [PMID: 24954023 DOI: 10.1016/j.alcohol.2014.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Prenatal alcohol exposure can lead to long-lasting changes in functional and genetic programs of the brain, which may underlie behavioral alterations seen in Fetal Alcohol Spectrum Disorder (FASD). Aberrant fetal programming during gestational alcohol exposure is a possible mechanism by which alcohol imparts teratogenic effects on the brain; however, current methods used to investigate the effects of alcohol on development often rely on either direct application of alcohol in vitro or acute high doses in vivo. In this study, we used our established moderate prenatal alcohol exposure (PAE) model, resulting in maternal blood alcohol content of approximately 20 mM, and subsequent ex vivo cell culture to assess expression of genes related to neurogenesis. Proliferating and differentiating neural progenitor cell culture conditions were established from telencephalic tissue derived from embryonic day (E) 15-17 tissue exposed to alcohol via maternal drinking throughout pregnancy. Gene expression analysis on mRNA derived in vitro was performed using a microarray, and quantitative PCR was conducted for genes to validate the microarray. Student's t tests were performed for statistical comparison of each exposure under each culture condition using a 95% confidence interval. Eleven percent of genes on the array had significantly altered mRNA expression in the prenatal alcohol-exposed neural progenitor culture under proliferating conditions. These include reduced expression of Adora2a, Cxcl1, Dlg4, Hes1, Nptx1, and Vegfa and increased expression of Fgf13, Ndn, and Sox3; bioinformatics analysis indicated that these genes are involved in cell growth and proliferation. Decreased levels of Dnmt1 and Dnmt3a were also found under proliferating conditions. Under differentiating conditions, 7.3% of genes had decreased mRNA expression; these include Cdk5rap3, Gdnf, Hey2, Heyl, Pard6b, and Ptn, which are associated with survival and differentiation as indicated by bioinformatics analysis. This study is the first to use chronic low to moderate PAE, to more accurately reflect maternal alcohol consumption, and subsequent neural progenitor cell culture to demonstrate that PAE throughout gestation alters expression of genes involved in neural development and embryonic neurogenesis.
Collapse
|
20
|
Zhang C, Frazier JM, Chen H, Liu Y, Lee JA, Cole GJ. Molecular and morphological changes in zebrafish following transient ethanol exposure during defined developmental stages. Neurotoxicol Teratol 2014; 44:70-80. [PMID: 24929233 DOI: 10.1016/j.ntt.2014.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022]
Abstract
Alcohol is a teratogen that has diverse effects on brain and craniofacial development, leading to a constellation of developmental disorders referred to as fetal alcohol spectrum disorder (FASD). The molecular basis of ethanol insult remains poorly understood, as does the relationship between molecular and behavioral changes as a consequence of prenatal ethanol exposure. Zebrafish embryos were exposed to a range of ethanol concentrations (0.5-5.0%) during defined developmental stages, and examined for morphological phenotypes characteristic of FASD. Embryos were also analyzed by in situ hybridization for changes in expression of defined cell markers for neural cell types that are sonic hedgehog-dependent. We show that transient binge-like ethanol exposures during defined developmental stages, such as early gastrulation and early neurulation, result in a range of phenotypes and changes in expression of Shh-dependent genes. The severity of fetal alcohol syndrome (FAS) morphological phenotypes, such as microphthalmia, depends on the embryonic stage and concentration of alcohol exposure, as does diminution of retinal Pax6a or forebrain and hindbrain GAD1 gene expression. We also show that changes in eye and brain morphology correlate with changes in Pax6a and GAD1 gene expression. Our results therefore show that transient binge-like ethanol exposures in zebrafish embryos produce the stereotypical morphological phenotypes of FAS, with the severity of phenotypes depending on the developmental stage and alcohol concentration of exposure.
Collapse
Affiliation(s)
- Chengjin Zhang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, United States
| | - Jared M Frazier
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, United States; Department of Biology, North Carolina Central University, Durham, NC 27707, United States
| | - Hao Chen
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, United States
| | - Yao Liu
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, United States
| | - Ju-Ahng Lee
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, United States; Department of Biology, North Carolina Central University, Durham, NC 27707, United States
| | - Gregory J Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, United States; Department of Biology, North Carolina Central University, Durham, NC 27707, United States.
| |
Collapse
|
21
|
Kleiber ML, Diehl EJ, Laufer BI, Mantha K, Chokroborty-Hoque A, Alberry B, Singh SM. Long-term genomic and epigenomic dysregulation as a consequence of prenatal alcohol exposure: a model for fetal alcohol spectrum disorders. Front Genet 2014; 5:161. [PMID: 24917881 PMCID: PMC4040446 DOI: 10.3389/fgene.2014.00161] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/15/2014] [Indexed: 01/02/2023] Open
Abstract
There is abundant evidence that prenatal alcohol exposure leads to a range of behavioral and cognitive impairments, categorized under the term fetal alcohol spectrum disorders (FASDs). These disorders are pervasive in Western cultures and represent the most common preventable source of neurodevelopmental disabilities. The genetic and epigenetic etiology of these phenotypes, including those factors that may maintain these phenotypes throughout the lifetime of an affected individual, has become a recent topic of investigation. This review integrates recent data that has progressed our understanding FASD as a continuum of molecular events, beginning with cellular stress response and ending with a long-term “footprint” of epigenetic dysregulation across the genome. It reports on data from multiple ethanol-treatment paradigms in mouse models that identify changes in gene expression that occur with respect to neurodevelopmental timing of exposure and ethanol dose. These studies have identified patterns of genomic alteration that are dependent on the biological processes occurring at the time of ethanol exposure. This review also adds to evidence that epigenetic processes such as DNA methylation, histone modifications, and non-coding RNA regulation may underlie long-term changes to gene expression patterns. These may be initiated by ethanol-induced alterations to DNA and histone methylation, particularly in imprinted regions of the genome, affecting transcription which is further fine-tuned by altered microRNA expression. These processes are likely complex, genome-wide, and interrelated. The proposed model suggests a potential for intervention, given that epigenetic changes are malleable and may be altered by postnatal environment. This review accentuates the value of mouse models in deciphering the molecular etiology of FASD, including those processes that may provide a target for the ammelioration of this common yet entirely preventable disorder.
Collapse
Affiliation(s)
- Morgan L Kleiber
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| | - Eric J Diehl
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| | - Benjamin I Laufer
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| | - Katarzyna Mantha
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| | | | - Bonnie Alberry
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| | - Shiva M Singh
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| |
Collapse
|
22
|
Small G Proteins Dexras1 and RHES and Their Role in Pathophysiological Processes. Int J Cell Biol 2014; 2014:308535. [PMID: 24817889 PMCID: PMC3979064 DOI: 10.1155/2014/308535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/18/2014] [Indexed: 11/23/2022] Open
Abstract
Dexras1 and RHES, monomeric G proteins, are members of small GTPase family that are involved in modulation of pathophysiological processes. Dexras1 and RHES levels are modulated by hormones and Dexras1 expression undergoes circadian fluctuations. Both these GTPases are capable of modulating calcium ion channels which in turn can potentially modulate neurosecretion/hormonal release. These two GTPases have been reported to prevent the aberrant cell growth and induce apoptosis in cell lines. Present review focuses on role of these two monomeric GTPases and summarizes their role in pathophysiological processes.
Collapse
|
23
|
Patten AR, Fontaine CJ, Christie BR. A comparison of the different animal models of fetal alcohol spectrum disorders and their use in studying complex behaviors. Front Pediatr 2014; 2:93. [PMID: 25232537 PMCID: PMC4153370 DOI: 10.3389/fped.2014.00093] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022] Open
Abstract
Prenatal ethanol exposure (PNEE) has been linked to widespread impairments in brain structure and function. There are a number of animal models that are used to study the structural and functional deficits caused by PNEE, including, but not limited to invertebrates, fish, rodents, and non-human primates. Animal models enable a researcher to control important variables such as the route of ethanol administration, as well as the timing, frequency and amount of ethanol exposure. Each animal model and system of exposure has its place, depending on the research question being undertaken. In this review, we will examine the different routes of ethanol administration and the various animal models of fetal alcohol spectrum disorders (FASD) that are commonly used in research, emphasizing their strengths and limitations. We will also present an up-to-date summary on the effects of prenatal/neonatal ethanol exposure on behavior across the lifespan, focusing on learning and memory, olfaction, social, executive, and motor functions. Special emphasis will be placed where the various animal models best represent deficits observed in the human condition and offer a viable test bed to examine potential therapeutics for human beings with FASD.
Collapse
Affiliation(s)
- Anna R Patten
- Division of Medical Sciences, University of Victoria , Victoria, BC , Canada
| | | | - Brian R Christie
- Division of Medical Sciences, University of Victoria , Victoria, BC , Canada ; Department of Biology, University of Victoria , Victoria, BC , Canada ; Program in Neuroscience, The Brain Research Centre, University of British Columbia , Vancouver, BC , Canada ; Department of Cellular and Physiological Sciences, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
24
|
Kashyap B, Pegorsch L, Frey RA, Sun C, Shelden EA, Stenkamp DL. Eye-specific gene expression following embryonic ethanol exposure in zebrafish: roles for heat shock factor 1. Reprod Toxicol 2013; 43:111-24. [PMID: 24355176 DOI: 10.1016/j.reprotox.2013.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 01/03/2023]
Abstract
The mechanisms through which ethanol exposure results in developmental defects remain unclear. We used the zebrafish model to elucidate eye-specific mechanisms that underlie ethanol-mediated microphthalmia (reduced eye size), through time-series microarray analysis of gene expression within eyes of embryos exposed to 1.5% ethanol. 62 genes were differentially expressed (DE) in ethanol-treated as compared to control eyes sampled during retinal neurogenesis (24-48 h post-fertilization). The EDGE (extraction of differential gene expression) algorithm identified >3000 genes DE over developmental time in ethanol-exposed eyes as compared to controls. The DE lists included several genes indicating a mis-regulated cellular stress response due to ethanol exposure. Combined treatment with sub-threshold levels of ethanol and a morpholino targeting heat shock factor 1 mRNA resulted in microphthalmia, suggesting convergent molecular pathways. Thermal preconditioning partially prevented ethanol-mediated microphthalmia while maintaining Hsf-1 expression. These data suggest roles for reduced Hsf-1 in mediating microphthalmic effects of embryonic ethanol exposure.
Collapse
Affiliation(s)
- Bhavani Kashyap
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States; Neuroscience Graduate Program, University of Idaho, Moscow, ID 83844, United States
| | - Laurel Pegorsch
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Ruth A Frey
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Chi Sun
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States; Neuroscience Graduate Program, University of Idaho, Moscow, ID 83844, United States
| | - Eric A Shelden
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, United States; Center for Reproductive Biology, University of Idaho, Moscow, ID 83844, United States
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States; Neuroscience Graduate Program, University of Idaho, Moscow, ID 83844, United States; Center for Reproductive Biology, University of Idaho, Moscow, ID 83844, United States.
| |
Collapse
|
25
|
Cole GJ, Zhang C, Ojiaku P, Bell V, Devkota S, Mukhopadhyay S. Effects of ethanol exposure on nervous system development in zebrafish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 299:255-315. [PMID: 22959306 DOI: 10.1016/b978-0-12-394310-1.00007-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alcohol (ethanol) is a teratogen that adversely affects nervous system development in a wide range of animal species. In humans numerous congenital abnormalities arise as a result of fetal alcohol exposure, leading to a spectrum of disorders referred to as fetal alcohol spectrum disorder (FASD). These abnormalities include craniofacial defects as well as neurological defects that affect a variety of behaviors. These human FASD phenotypes are reproduced in the rodent central nervous system (CNS) following prenatal ethanol exposure. While the study of ethanol effects on zebrafish development has been more limited, several studies have shown that different strains of zebrafish exhibit differential susceptibility to ethanol-induced cyclopia, as well as behavioral deficits. Molecular mechanisms underlying the effects of ethanol on CNS development also appear to be shared between rodent and zebrafish. Thus, zebrafish appear to recapitulate the observed effects of ethanol on human and mouse CNS development, indicating that zebrafish can serve as a complimentary developmental model system to study the molecular basis of FASD. Recent studies examining the effect of ethanol exposure on zebrafish nervous system development are reviewed, with an emphasis on attempts to elucidate possible molecular pathways that may be impacted by developmental ethanol exposure. Recent work from our laboratories supports a role for perturbed extracellular matrix function in the pathology of ethanol exposure during zebrafish CNS development. The use of the zebrafish model to assess the effects of ethanol exposure on adult nervous system function as manifested by changes in zebrafish behavior is also discussed.
Collapse
Affiliation(s)
- Gregory J Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|
26
|
Solzak JP, Liang Y, Zhou FC, Roper RJ. Commonality in Down and fetal alcohol syndromes. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2013; 97:187-97. [PMID: 23554291 PMCID: PMC4096968 DOI: 10.1002/bdra.23129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND Down syndrome (DS) and Fetal Alcohol Syndrome (FAS) are two leading causes of birth defects with phenotypes ranging from craniofacial abnormalities to cognitive impairment. Despite different origins, we report that in addition to sharing many phenotypes, DS and FAS may have common underlying mechanisms of development. METHODS Literature was surveyed for DS and FAS as well as mouse models. Gene expression and apoptosis were compared in embryonic mouse models of DS and FAS by qPCR, immunohistochemical and immunoflurorescence analyses. The craniometry was examined using MicroCT at postnatal day 21. RESULTS A literature survey revealed over 20 comparable craniofacial and structural deficits in both humans with DS and FAS and corresponding mouse models. Similar phenotypes were experimentally found in pre- and postnatal craniofacial and neurological tissues of DS and FAS mice. Dysregulation of two genes, Dyrk1a and Rcan1, key to craniofacial and neurological precursors of DS, was shared in craniofacial precursors of DS and FAS embryos. Increased cleaved caspase 3 expression was also discovered in comparable regions of the craniofacial and brain precursors of DS and FAS embryos. Further mechanistic studies suggested overexpression of trisomic Ttc3 in DS embyros may influence nuclear pAkt localization and cell survival. CONCLUSIONS This first and initial study indicates that DS and FAS share common dysmorphologies in humans and animal models. This work also suggests common mechanisms at cellular and molecular levels that are disrupted by trisomy or alcohol consumption during pregnancy and lead to craniofacial and neurological phenotypes associated with DS or FAS.
Collapse
Affiliation(s)
- Jeffrey P. Solzak
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Yun Liang
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Feng C. Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
27
|
Neurodevelopmental alcohol exposure elicits long-term changes to gene expression that alter distinct molecular pathways dependent on timing of exposure. J Neurodev Disord 2013; 5:6. [PMID: 23497526 PMCID: PMC3621102 DOI: 10.1186/1866-1955-5-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/20/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Maternal alcohol consumption is known to adversely affect fetal neurodevelopment. While it is known that alcohol dose and timing play a role in the cognitive and behavioral changes associated with prenatal alcohol exposure, it is unclear what developmental processes are disrupted that may lead to these phenotypes. METHODS Mice (n=6 per treatment per developmental time) were exposed to two acute doses of alcohol (5 g/kg) at neurodevelopmental times representing the human first, second, or third trimester equivalent. Mice were reared to adulthood and changes to their adult brain transcriptome were assessed using expression arrays. These were then categorized based on Gene Ontology annotations, canonical pathway associations, and relationships to interacting molecules. RESULTS The results suggest that ethanol disrupts biological processes that are actively occurring at the time of exposure. These include cell proliferation during trimester one, cell migration and differentiation during trimester two, and cellular communication and neurotransmission during trimester three. Further, although ethanol altered a distinct set of genes depending on developmental timing, many of these show interrelatedness and can be associated with one another via 'hub' molecules and pathways such as those related to huntingtin and brain-derived neurotrophic factor. CONCLUSIONS These changes to brain gene expression represent a 'molecular footprint' of neurodevelopmental alcohol exposure that is long-lasting and correlates with active processes disrupted at the time of exposure. This study provides further support that there is no neurodevelopmental time when alcohol cannot adversely affect the developing brain.
Collapse
|
28
|
Ethanol exposure alters protein expression in a mouse model of fetal alcohol spectrum disorders. INTERNATIONAL JOURNAL OF PROTEOMICS 2012; 2012:867141. [PMID: 22745907 PMCID: PMC3382221 DOI: 10.1155/2012/867141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/01/2012] [Accepted: 04/01/2012] [Indexed: 11/18/2022]
Abstract
Alcohol exposure during development can result in variable growth retardation and facial dysmorphology known as fetal alcohol spectrum disorders. Although the mechanisms underlying the disorder are not fully understood, recent progress has been made that alcohol induces aberrant changes in gene expression and in the epigenome of embryos. To inform the gene and epigenetic changes in alcohol-induced teratology, we used whole-embryo culture to identify the alcohol-signature protein profile of neurulating C6 mice. Alcohol-treated and control cultures were homogenized, isoelectrically focused, and loaded for 2D gel electrophoresis. Stained gels were cross matched with analytical software. We identified 40 differentially expressed protein spots (P < 0.01), and 9 spots were selected for LC/MS-MS identification. Misregulated proteins include serotransferrin, triosephosphate isomerase and ubiquitin-conjugating enzyme E2 N. Misregulation of serotransferrin and triosephosphate isomerase was confirmed with immunologic analysis. Alteration of proteins with roles in cellular function, cell cycle, and the ubiquitin-proteasome pathway was induced by alcohol. Several misregulated proteins interact with effectors of the NF-κB and Myc transcription factor cascades. Using a whole-embryo culture, we have identified misregulated proteins known to be involved in nervous system development and function.
Collapse
|
29
|
Ramadoss J, Magness RR. Multiplexed digital quantification of binge-like alcohol-mediated alterations in maternal uterine angiogenic mRNA transcriptome. Physiol Genomics 2012; 44:622-8. [PMID: 22535877 DOI: 10.1152/physiolgenomics.00009.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genomic studies on fetal alcohol spectrum disorders (FASD) have utilized either genome-wide microarrays/bioinformatics or targeted real-time PCR (RT-PCR). We utilized herein for the first time a novel digital approach with high throughput as well as the capability to focus on one physiological system. The aim of the present study was to investigate alcohol-induced alterations in uterine angiogenesis-related mRNA abundance using digital mRNA technology. Four biological and three technical replicates of uterine arterial endothelial cells from third-trimester ewes were fluorescence-activated cell sorted, validated, and treated without or with binge-like alcohol. A capture probe covalently bound to an oligonucleotide containing biotin and a color-coded reporter probe were designed for 85 angiogenesis-related genes and analyzed with the Nanostring nCounter system. Twenty genes were downregulated (↓) and two upregulated (↑), including angiogenic growth factors/receptors (↓placental growth factor), adhesion molecules (↓angiopoietin-like-3; ↓collagen-18A1; ↓endoglin), proteases/matrix proteins/inhibitors (↓alanyl aminopeptidase; ↓collagen-4A3; ↓heparanase; ↓plasminogen, ↑plasminogen activator urokinase; ↓platelet factor-4; ↓plexin domain containing-1; ↓tissue inhibitor of metalloproteinases-3), transcription/signaling molecules (↓heart and neural crest derivatives-2; ↓DNA-binding protein inhibitor; ↓NOTCH-4; ↓ribosomal protein-L13a1; ↓ribosomal protein large-P1), cytokines/chemokines (↓interleukin-1B), and miscellaneous growth factors (↓leptin; ↓platelet-derived growth factor-α); ↓transforming growth factor (TGF-α; ↑TGF-β receptor-1). These novel data show significant detrimental alcohol effects on genes controlling angiogenesis supporting a mechanistic role for abnormal uteroplacental vascular development in FASD. The tripartite digital gene expression system is therefore a valuable tool to answer many additional questions about FASD from both mechanistic as well as ameliorative perspectives.
Collapse
Affiliation(s)
- Jayanth Ramadoss
- Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | |
Collapse
|
30
|
Kleiber ML, Laufer BI, Wright E, Diehl EJ, Singh SM. Long-term alterations to the brain transcriptome in a maternal voluntary consumption model of fetal alcohol spectrum disorders. Brain Res 2012; 1458:18-33. [PMID: 22560501 DOI: 10.1016/j.brainres.2012.04.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/29/2012] [Accepted: 04/09/2012] [Indexed: 12/16/2022]
Abstract
Many women continue to consume low to moderate quantities of alcohol during pregnancy, which can result in the variable neurobehavioural effects in the absence of physiological abnormalities that characterize fetal alcohol spectrum disorders (FASD). Previously, we reported that a mouse model for FASD based on voluntary maternal ethanol consumption throughout gestation resulted in offspring that showed mild developmental delay, anxiety-related traits, and deficits in spatial learning. Here, we extend this model by evaluating the gene expression changes that occur in the adult brain of C57BL/6J mice prenatally exposed to ethanol via maternal preference drinking. The results of two independent expression array experiments indicate that ethanol induces subtle but consistent changes to global gene expression. Gene enrichment analysis showed over-represented gene ontology classifications of cellular, embryonic, and nervous system development. Molecular network analysis supported these classifications, with significant networks related to cellular and tissue development, free radical scavenging, and small molecule metabolism. Further, a number of genes identified have previously been implicated in FASD-relevant neurobehavioural phenotypes such as cognitive function (Ache, Bcl2, Cul4b, Dkc1, Ebp, Lcat, Nsdh1, Sstr3), anxiety (Bcl2), attention deficit hyperactivity disorder (Nsdh1), and mood disorders (Bcl2, Otx2, Sstr3). The results suggest a complex residual "footprint" of neurodevelopmental ethanol exposure that may provide a new perspective for identifying mechanisms that underlie the life-long persistence of FASD-related cognitive and behavioural alterations, including potential targets for treatment.
Collapse
Affiliation(s)
- Morgan L Kleiber
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | | | | | | |
Collapse
|
31
|
Maternal voluntary drinking in C57BL/6J mice: Advancing a model for fetal alcohol spectrum disorders. Behav Brain Res 2011; 223:376-87. [DOI: 10.1016/j.bbr.2011.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/03/2011] [Accepted: 05/06/2011] [Indexed: 01/25/2023]
|
32
|
Dufour-Rainfray D, Vourc’h P, Tourlet S, Guilloteau D, Chalon S, Andres CR. Fetal exposure to teratogens: Evidence of genes involved in autism. Neurosci Biobehav Rev 2011; 35:1254-65. [DOI: 10.1016/j.neubiorev.2010.12.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/08/2010] [Accepted: 12/21/2010] [Indexed: 01/08/2023]
|
33
|
Zhou FC, Zhao Q, Liu Y, Goodlett CR, Liang T, McClintick JN, Edenberg HJ, Li L. Alteration of gene expression by alcohol exposure at early neurulation. BMC Genomics 2011; 12:124. [PMID: 21338521 PMCID: PMC3056799 DOI: 10.1186/1471-2164-12-124] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 02/21/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have previously demonstrated that alcohol exposure at early neurulation induces growth retardation, neural tube abnormalities, and alteration of DNA methylation. To explore the global gene expression changes which may underline these developmental defects, microarray analyses were performed in a whole embryo mouse culture model that allows control over alcohol and embryonic variables. RESULT Alcohol caused teratogenesis in brain, heart, forelimb, and optic vesicle; a subset of the embryos also showed cranial neural tube defects. In microarray analysis (accession number GSM9545), adopting hypothesis-driven Gene Set Enrichment Analysis (GSEA) informatics and intersection analysis of two independent experiments, we found that there was a collective reduction in expression of neural specification genes (neurogenin, Sox5, Bhlhe22), neural growth factor genes [Igf1, Efemp1, Klf10 (Tieg), and Edil3], and alteration of genes involved in cell growth, apoptosis, histone variants, eye and heart development. There was also a reduction of retinol binding protein 1 (Rbp1), and de novo expression of aldehyde dehydrogenase 1B1 (Aldh1B1). Remarkably, four key hematopoiesis genes (glycophorin A, adducin 2, beta-2 microglobulin, and ceruloplasmin) were absent after alcohol treatment, and histone variant genes were reduced. The down-regulation of the neurospecification and the neurotrophic genes were further confirmed by quantitative RT-PCR. Furthermore, the gene expression profile demonstrated distinct subgroups which corresponded with two distinct alcohol-related neural tube phenotypes: an open (ALC-NTO) and a closed neural tube (ALC-NTC). Further, the epidermal growth factor signaling pathway and histone variants were specifically altered in ALC-NTO, and a greater number of neurotrophic/growth factor genes were down-regulated in the ALC-NTO than in the ALC-NTC embryos. CONCLUSION This study revealed a set of genes vulnerable to alcohol exposure and genes that were associated with neural tube defects during early neurulation.
Collapse
Affiliation(s)
- Feng C Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kaminen-Ahola N, Ahola A, Flatscher-Bader T, Wilkins SJ, Anderson GJ, Whitelaw E, Chong S. Postnatal growth restriction and gene expression changes in a mouse model of fetal alcohol syndrome. ACTA ACUST UNITED AC 2011; 88:818-26. [PMID: 20878912 DOI: 10.1002/bdra.20729] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Growth restriction, craniofacial dysmorphology, and central nervous system defects are the main diagnostic features of fetal alcohol syndrome. Studies in humans and mice have reported that the growth restriction can be prenatal or postnatal, but the underlying mechanisms remain unknown.We recently described a mouse model of moderate gestational ethanol exposure that produces measurable phenotypes in line with fetal alcohol syndrome (e.g., craniofacial changes and growth restriction in adolescent mice). In this study, we characterize in detail the growth restriction phenotype by measuring body weight at gestational day 16.5, cross-fostering from birth to weaning, and by extending our observations into adulthood. Furthermore, in an attempt to unravel the molecular events contributing to the growth phenotype, we have compared gene expression patterns in the liver and kidney of nonfostered, ethanol-exposed and control mice at postnatal day 28.We find that the ethanol-induced growth phenotype is not detectable prior to birth, but is present at weaning, even in mice that have been cross-fostered to unexposed dams. This finding suggests a postnatal growth restriction phenotype that is not due to deficient postpartum care by dams that drank ethanol, but rather a physiologic result of ethanol exposure in utero. We also find that, despite some catch-up growth after 5 weeks of age, the effect extends into adulthood, which is consistent with longitudinal studies in humans.Genome-wide gene expression analysis revealed interesting ethanol-induced changes in the liver, including genes involved in the metabolism of exogenous and endogenous compounds, iron homeostasis, and lipid metabolism.
Collapse
Affiliation(s)
- Nina Kaminen-Ahola
- Epigenetics Laboratory, Queensland Institute of Medical Research, 300 Herston Rd., Herston, Queensland 4006, Australia
| | | | | | | | | | | | | |
Collapse
|
35
|
Ballini A, Cantore S, Tullo D, Desiate A. Dental and craniofacial characteristics in a patient with Dubowitz syndrome: a case report. J Med Case Rep 2011; 5:38. [PMID: 21272302 PMCID: PMC3039604 DOI: 10.1186/1752-1947-5-38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 01/27/2011] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Dubowitz syndrome is a very rare, autosomal recessive disease characterized by microcephaly, growth retardation, a high sloping forehead, facial asymmetry, blepharophimosis, sparse hair and eyebrows, low-set ears and mental retardation. Symptoms vary between patients, but other characteristics include a soft high-pitched voice, dental and craniofacial abnormalities, partial webbing of the fingers and toes, palate deformations, genital abnormalities, eczema, hyperactivity, preference for concrete over abstract thinking, language difficulties and an aversion to crowds. CASE PRESENTATION We describe the craniofacial and dental characteristics of a 12-year-old Caucasian Italian boy with both the typical and less common findings of Dubowitz syndrome. CONCLUSION Diagnosis of Dubowitz syndrome is mainly based on the facial phenotype. Possible conditions for differential diagnosis include Bloom syndrome, Smith-Lemli-Opitz syndrome, and fetal alcohol syndrome. As there are few reports of this syndrome in the literature, we hope this case report will enable health professionals to recognize the phenotypic alterations of this syndrome, and allow early referral for the necessary multidisciplinary treatments.
Collapse
Affiliation(s)
- Andrea Ballini
- Department of Dental Sciences and Surgery, University of Bari 'Aldo Moro', Bari, Italy.
| | | | | | | |
Collapse
|
36
|
Robinson JF, Port JA, Yu X, Faustman EM. Integrating genetic and toxicogenomic information for determining underlying susceptibility to developmental disorders. ACTA ACUST UNITED AC 2010; 88:920-30. [DOI: 10.1002/bdra.20708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
Robinson JF, Guerrette Z, Yu X, Hong S, Faustman EM. A systems-based approach to investigate dose- and time-dependent methylmercury-induced gene expression response in C57BL/6 mouse embryos undergoing neurulation. BIRTH DEFECTS RESEARCH. PART B, DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY 2010; 89:188-200. [PMID: 20540155 PMCID: PMC3726008 DOI: 10.1002/bdrb.20241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Aberrations during neurulation due to genetic and/or environmental factors underlie a variety of adverse developmental outcomes, including neural tube defects (NTDs). Methylmercury (MeHg) is a developmental neurotoxicant and teratogen that perturbs a wide range of biological processes/pathways in animal models, including those involved in early gestation (e.g., cell cycle, cell differentiation). Yet, the relationship between these MeHg-linked effects and changes in gestational development remains unresolved. Specifically, current information lacks mechanistic comparisons across dose or time for MeHg exposure during neurulation. These detailed investigations are crucial for identifying sensitive indicators of toxicity and for risk assessment applications. METHODS Using a systems-based toxicogenomic approach, we examined dose- and time-dependent effects of MeHg on gene expression in C57BL/6 mouse embryos during cranial neural tube closure, assessing for significantly altered genes and associated Gene Ontology (GO) biological processes. Using the GO-based application GO-Quant, we quantitatively assessed dose- and time-dependent effects on gene expression within enriched GO biological processes impacted by MeHg. RESULTS We observed MeHg to significantly alter expression of 883 genes, including several genes (e.g., Vangl2, Celsr1, Ptk7, Twist, Tcf7) previously characterized to be crucial for neural tube development. Significantly altered genes were associated with development cell adhesion, cell cycle, and cell differentiation-related GO biological processes. CONCLUSIONS Our results suggest that MeHg-induced impacts within these biological processes during gestational development may underlie MeHg-induced teratogenic and neurodevelopmental toxicity outcomes.
Collapse
Affiliation(s)
- Joshua F. Robinson
- Department of Environmental and Occupational Health
Sciences, University of Washington, Seattle, Washington
- Institute for Risk Analysis and Risk Communication,
Seattle, Washington
- Center for Child Environmental Health Risks Research,
Seattle, Washington
| | - Zachariah Guerrette
- Department of Environmental and Occupational Health
Sciences, University of Washington, Seattle, Washington
- Institute for Risk Analysis and Risk Communication,
Seattle, Washington
- Center for Child Environmental Health Risks Research,
Seattle, Washington
| | - Xiaozhong Yu
- Department of Environmental and Occupational Health
Sciences, University of Washington, Seattle, Washington
- Institute for Risk Analysis and Risk Communication,
Seattle, Washington
- Center for Child Environmental Health Risks Research,
Seattle, Washington
| | - Sungwoo Hong
- Department of Environmental and Occupational Health
Sciences, University of Washington, Seattle, Washington
- Institute for Risk Analysis and Risk Communication,
Seattle, Washington
- Center for Child Environmental Health Risks Research,
Seattle, Washington
| | - Elaine M. Faustman
- Department of Environmental and Occupational Health
Sciences, University of Washington, Seattle, Washington
- Center for Ecogenetics and Environmental Health, Seattle,
Washington
- Institute for Risk Analysis and Risk Communication,
Seattle, Washington
- Center on Human Development and Disability, Seattle,
Washington
- Center for Child Environmental Health Risks Research,
Seattle, Washington
| |
Collapse
|
38
|
Abstract
The magnitude of the detrimental effects following in utero alcohol exposure, including fetal alcohol syndrome and other fetal alcohol spectrum disorders (FASD), is globally underestimated. The effects include irreversible cognitive and behavioral disabilities as a result of abnormal brain development, pre- and postnatal growth retardation and facial dysmorphism. Parental alcohol exposure and its effect on offspring has been recognized for centuries, but only recently have we begun to gain molecular insight into the mechanisms involved in alcohol teratogenesis. Genetic attributes (susceptibility and protective alleles) of the mother and the fetus contribute to the risk of developing FASD and specific additional environmental conditions, including malnutrition, have an important role. The severity of FASD depends on the level of alcohol exposure, the developmental stage at which exposure occurs and the nature of the exposure (chronic or acute), and although the most vulnerable period is during the first trimester, damage can occur throughout gestation. Preconception alcohol exposure can also have a detrimental effect on the offspring. Several developmental pathways are affected in FASD, including nervous system development, growth and remodeling of tissues, as well as metabolic pathways that regulate glucocorticoid signaling and balanced levels of retinol, insulin and nitric oxide. A body of knowledge has accumulated to support the role of environmentally induced epigenetic remodeling during gametogenesis and after conception as a key mechanism for the teratogenic effects of FASD that persist into adulthood. Transgenerational effects are likely to contribute to the global burden of alcohol-related disease. FASD results in lifelong disability and preventative programs should include both maternal alcohol abstention and preconception alcohol avoidance.
Collapse
Affiliation(s)
- Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, University of the Witwatersrand, Johannesburg, 2000, South Africa.
| |
Collapse
|
39
|
Kaminen-Ahola N, Ahola A, Maga M, Mallitt KA, Fahey P, Cox TC, Whitelaw E, Chong S. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet 2010; 6:e1000811. [PMID: 20084100 PMCID: PMC2797299 DOI: 10.1371/journal.pgen.1000811] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 12/10/2009] [Indexed: 11/19/2022] Open
Abstract
Recent studies have shown that exposure to some nutritional supplements and chemicals in utero can affect the epigenome of the developing mouse embryo, resulting in adult disease. Our hypothesis is that epigenetics is also involved in the gestational programming of adult phenotype by alcohol. We have developed a model of gestational ethanol exposure in the mouse based on maternal ad libitum ingestion of 10% (v/v) ethanol between gestational days 0.5-8.5 and observed changes in the expression of an epigenetically-sensitive allele, Agouti viable yellow (A(vy)), in the offspring. We found that exposure to ethanol increases the probability of transcriptional silencing at this locus, resulting in more mice with an agouti-colored coat. As expected, transcriptional silencing correlated with hypermethylation at A(vy). This demonstrates, for the first time, that ethanol can affect adult phenotype by altering the epigenotype of the early embryo. Interestingly, we also detected postnatal growth restriction and craniofacial dysmorphology reminiscent of fetal alcohol syndrome, in congenic a/a siblings of the A(vy) mice. These findings suggest that moderate ethanol exposure in utero is capable of inducing changes in the expression of genes other than A(vy), a conclusion supported by our genome-wide analysis of gene expression in these mice. In addition, offspring of female mice given free access to 10% (v/v) ethanol for four days per week for ten weeks prior to conception also showed increased transcriptional silencing of the A(vy) allele. Our work raises the possibility of a role for epigenetics in the etiology of fetal alcohol spectrum disorders, and it provides a mouse model that will be a useful resource in the continued efforts to understand the consequences of gestational alcohol exposure at the molecular level.
Collapse
Affiliation(s)
- Nina Kaminen-Ahola
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Australia
| | - Arttu Ahola
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Australia
- Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Murat Maga
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Kylie-Ann Mallitt
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Australia
| | - Paul Fahey
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Australia
| | - Timothy C. Cox
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Emma Whitelaw
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Australia
- Griffith Medical Research College, Griffith University and the Queensland Institute of Medical Research, Herston, Australia
| | - Suyinn Chong
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Australia
- Griffith Medical Research College, Griffith University and the Queensland Institute of Medical Research, Herston, Australia
- * E-mail:
| |
Collapse
|
40
|
Prenatal exposure to environmental tobacco smoke alters gene expression in the developing murine hippocampus. Reprod Toxicol 2009; 29:164-75. [PMID: 19969065 DOI: 10.1016/j.reprotox.2009.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/16/2009] [Accepted: 12/01/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Little is known about the effects of passive smoke exposures on the developing brain. OBJECTIVE The purpose of the current study was to identify changes in gene expression in the murine hippocampus as a consequence of in utero exposure to sidestream cigarette smoke (an experimental equivalent of environmental tobacco smoke (ETS)) at exposure levels that do not result in fetal growth inhibition. METHODS A whole body smoke inhalation exposure system was utilized to deliver ETS to pregnant C57BL/6J mice for 6 h/day from gestational days 6-17 (gd 6-17) [for microarray] or gd 6-18.5 [for fetal phenotyping]. RESULTS There were no significant effects of ETS exposure on fetal phenotype. However, 61 "expressed" genes in the gd 18.5 fetal hippocampus were differentially regulated (up- or down-regulated by 1.5-fold or greater) by maternal exposure to ETS. Of these 61 genes, 25 genes were upregulated while 36 genes were down-regulated. A systems biology approach, including computational methodologies, identified cellular response pathways, and biological themes, underlying altered fetal programming of the embryonic hippocampus by in utero cigarette smoke exposure. CONCLUSIONS Results from the present study suggest that even in the absence of effects on fetal growth, prenatal smoke exposure can alter gene expression during the "early" period of hippocampal growth and may result in abnormal hippocampal morphology, connectivity, and function.
Collapse
|
41
|
Altered gene expression in neural crest cells exposed to ethanol in vitro. Brain Res 2009; 1305 Suppl:S50-60. [DOI: 10.1016/j.brainres.2009.08.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 07/07/2009] [Accepted: 08/06/2009] [Indexed: 11/19/2022]
|
42
|
Arzumnayan A, Arzumanyan A, Anni H, Rubin R, Rubin E. Effects of ethanol on mouse embryonic stem cells. Alcohol Clin Exp Res 2009; 33:2172-9. [PMID: 19764938 DOI: 10.1111/j.1530-0277.2009.01057.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Fetal alcohol syndrome (FAS) reflects a constellation of congenital abnormalities caused by excess maternal consumption of alcohol. It is likely that interference with embryonic development plays a role in the pathogenesis of the disorder. Ethanol-induced apoptosis has been suggested as a causal factor in the genesis of FAS. Mouse embryonic stem (mES) cells are pluripotent cells that differentiate in vitro to cell aggregates termed embryoid bodies (EBs), wherein differentiation capacity and gene expression profile are similar to those of the early embryo. METHODS To investigate the effects of ethanol during differentiation, mES cells were cultured on a gelatin surface in the presence of leukemia inhibitory factor which maintains adherent undifferentiated cells or in suspension to promote formation of EBs. All cells were treated (1-6 days) with 80 mM ethanol. The pluripotency and differentiation of mES cells were evaluated by western blotting of stage-specific embryonic antigen (SSEA-1), transcription factors Oct-3/4, Sox-2, and Nanog, using alkaline phosphatase staining. Apoptosis (early to late stages) was assessed by fluorescence-activated cell sorting using TdT-mediated biotin-dUTP nick-end labelling assay and fluorescein isothiocyanate-Annexin V/propidium iodide staining. RESULTS Ethanol increased apoptosis during in vitro differentiation of mES cells to EBs, whereas undifferentiated cells were not affected. Ethanol exposure also interfered with pluripotency marker patterns causing an upregulation of SSEA-1 under self-renewal conditions. In EBs, ethanol delayed the downregulation of SSEA-1 and affected the regulation of transcription factors during differentiation. CONCLUSION Our findings suggest that ethanol may contribute to the pathogenesis of FAS by triggering apoptotic pathways during differentiation of embryonic stem cells and deregulating early stages of embryogenesis.
Collapse
Affiliation(s)
- Alla Arzumnayan
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
43
|
Compton SL, Kemppainen RJ, Behrend EN. Prenylated Rab acceptor domain family member 1 is involved in stimulated ACTH secretion and inhibition. Cell Signal 2009; 21:1901-9. [PMID: 19733236 DOI: 10.1016/j.cellsig.2009.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/24/2009] [Accepted: 08/21/2009] [Indexed: 11/25/2022]
Abstract
Dexamethasone (Dex) inhibits stimulated adrenocorticotrophic hormone (ACTH) secretion in AtT-20 cells, a mouse corticotroph tumor cell line. Dexras1 protein expression is induced in corticotrophs by Dex. The function of Dexras1 is unknown; however, it may be involved in corticotrophic negative feedback. Here we report the identification of a Dexras1 interactor, prenylated Rab acceptor domain family member 1 (PRAF1), a protein that localizes to the Golgi complex, post-Golgi vesicles, and endosomes. We determined that amino acids 54-175 of PRAF1 are essential for interaction with Dexras1 and that specific point mutations located within this region enhance PRAF1-Dexras1 interactions. AtT-20 cells stably transfected with truncated or mutated PRAF1 constructs had altered responses to corticotrophin-releasing hormone and Dex, upregulated expression of the ACTH prohormone pro-opiomelanocortin (POMC), altered POMC processing, and altered Golgi complex morphology with decreased intra-Golgi and intracellular co-localization of PRAF1 and ACTH proteins. Our findings indicate that PRAF1 plays a novel role in ACTH stimulated secretion. We propose a model whereby Dexras1 interaction with PRAF1 may lock the sites necessary for PRAF1-Rab3A-VAMP2 interaction resulting in Dex-mediated inhibition of ACTH secretion.
Collapse
Affiliation(s)
- Shannon L Compton
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, United States.
| | | | | |
Collapse
|
44
|
Rout UK, Clausen P. Common increase of GATA-3 level in PC-12 cells by three teratogens causing autism spectrum disorders. Neurosci Res 2009; 64:162-9. [DOI: 10.1016/j.neures.2009.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 02/19/2009] [Accepted: 02/23/2009] [Indexed: 01/17/2023]
|
45
|
Lee S, Choi I, Kang S, Rivier C. Role of various neurotransmitters in mediating the long-term endocrine consequences of prenatal alcohol exposure. Ann N Y Acad Sci 2009; 1144:176-88. [PMID: 19076376 DOI: 10.1196/annals.1418.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adult rats and mice born to dams exposed to alcohol (fetal alcohol-exposed [FAE]) exhibit enhanced activity of their hypothalamic-pituitary-adrenal (HPA) axis when exposed to stressors. However, the mechanisms responsible for this phenomenon remain incompletely understood. Here two possibilities are reviewed: one that pertains to nitric oxide (NO), an unstable gas that stimulates the HPA axis; and one that focuses on catecholamines, which also stimulate this axis. Significant alterations were not observed in levels of NO synthase, the enzyme responsible for NO formation, in the paraventricula nucleus (PVN) of FAE rats. However, the stimulatory influence of this gas on the hypothalamic-pituitary-adrenal (HPA) axis was enhanced in these animals, thereby providing a mechanism likely to participate in the neuroendocrine hyperactivity that is the hallmark of this model. It was also recently shown that, while the ability of catecholamines to release adrenocorticotropic hormone (ACTH) was comparable in control rats and rats exposed to alcohol during embryonic development, there was a significant upregulation of the C1 brain-stem region when these latter animals were exposed to mild footshocks. Since this region sends prominent projections to the PVN, its increased activity may participate in the HPA axis hyperactivity observed in FAE offspring. Finally, microarray technology was used to search for potential differences in genes present in the brains of control and FAE mice. When these brains were collected on day 17.5 of embryonic development, several genes were upregulated, while others were downregulated, which may provide potential new candidates that mediate the influence of prenatal alcohol on the HPA axis of adult offspring.
Collapse
Affiliation(s)
- Soon Lee
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
46
|
Wang LL, Zhang Z, Li Q, Yang R, Pei X, Xu Y, Wang J, Zhou SF, Li Y. Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum Reprod 2008; 24:562-79. [PMID: 19091803 DOI: 10.1093/humrep/den439] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND microRNAs (miRNAs) play an important role in development and are associated with birth defects. Data are scant on the role of miRNAs in birth defects arising from exposure to environmental factors such as alcohol. METHODS In this study, we determined the expression levels of 509 mature miRNAs in fetal mouse brains with or without prenatal ethanol exposure using a miRNA microarray technique, verified by northern blot and PCR. Mouse embryos in culture were used to examine the effect of ethanol treatment on expression of the putative target genes of miR-10a (Hoxa1 and other Hox members) at mRNA and protein level. Open field and Morris water maze tests were also performed at post-natal day 35. RESULTS Ethanol treatment induced major fetal teratogenesis in mice and caused mental retardation in their offspring, namely lower locomotor activity (P < 0.01) and impaired task acquisition. Of the screened miRNAs, miR-10a, miR-10b, miR-9, miR-145, miR-30a-3p and miR-152 were up-regulated (fold change >1.5) in fetal brains with prenatal ethanol exposure, whereas miR-200a, miR-496, miR-296, miR-30e-5p, miR-362, miR-339, miR-29c and miR-154 were down-regulated (fold change <0.67). Both miR-10a and miR-10b were significantly up-regulated (P < 0.01) in brain after prenatal ethanol exposure. Ethanol treatment also caused major obstruction in the development of cultured embryos, with down-regulated Hoxa1. Co-incubation with folic acid blocked ethanol-induced teratogenesis, with up-regulated Hoxa1 and down-regulated miR-10a (P < 0.01). CONCLUSIONS The study provided new insights into the role of miRNAs and their target genes in the pathogenesis of fetal alcohol syndrome.
Collapse
Affiliation(s)
- Lin-Lin Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wentzel P, Eriksson UJ. Genetic influence on dysmorphogenesis in embryos from different rat strains exposed to ethanol in vivo and in vitro. Alcohol Clin Exp Res 2008; 32:874-87. [PMID: 18371156 DOI: 10.1111/j.1530-0277.2008.00647.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The aim was to investigate the susceptibility of embryos from 2 rat strains (U and H) to a 48 hours ethanol exposure in early pregnancy, both in vivo and in vitro. METHODS The embryos were studied on gestational days 9 to 11. We used 1 ethanol dose in vivo (6 g/kg x 2), 3 different ethanol concentrations in vitro (88 mM, 132 mM, 176 mM) and also attempted to diminish the teratogenic effect in vitro by supplying the antioxidant N-acetylcysteine (NAC, 0.5 mM) to the culture medium. RESULTS The U embryos were more damaged by ethanol than the H embryos, both in vivo and in vitro. NAC addition diminished, but failed to completely normalize, the embryonic maldevelopment. Ethanol increased the Bax/Bcl-2 ratio in the U embryos both in vivo and in vitro, but not in the H embryos. Furthermore, ethanol caused increased Caspase-3 immunostaining in U embryos, but not in H embryos. Ethanol exposure in vivo did not alter CuZnSOD and MnSOD mRNA levels in U and H embryos. In vitro, however, the ethanol-exposed U embryos increased their CuZnSOD and MnSOD mRNA levels, whereas the CuZnSOD mRNA was unchanged and MnSOD mRNA decreased in the H embryos, in neither strain did NAC exert any effect. The U embryos increased catalase gene expression in response to ethanol in vivo, but decreased catalase mRNA levels in vitro, changes normalized by NAC. The H embryos did not alter catalase mRNA levels in vivo, but increased gene expression in vitro, with no NAC effect. Ethanol affected the gene expression of the other ROS scavenging enzymes and the developmental genes studied - Bmp-4, Ret, Shh, Pax-6 - similarly in the 2 strains. CONCLUSIONS The findings support a role for genetic predisposition, oxidative stress, and apoptosis in ethanol teratogenicity, and suggest that the teratogenic predisposition of the more susceptible U rats may reside, at least in part, in the regulation of the ROS scavenging enzymes in the U embryos.
Collapse
Affiliation(s)
- Parri Wentzel
- Department of Medical Cell Biology, Biomedical Center, Uppsala Universitet, Uppsala, Sweden.
| | | |
Collapse
|
48
|
Higashiyama D, Saitsu H, Komada M, Takigawa T, Ishibashi M, Shiota K. Sequential developmental changes in holoprosencephalic mouse embryos exposed to ethanol during the gastrulation period. ACTA ACUST UNITED AC 2007; 79:513-23. [PMID: 17393481 DOI: 10.1002/bdra.20367] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Prenatal exposure to ethanol induces holoprosencephalic malformations in both humans and laboratory animals. However, its teratogenic window for inducing holoprosencephaly is narrow, and the teratogenic mechanism is not well understood. In the present study, we examined the morphological changes in the craniofacial structures of mouse embryos/fetuses at intervals following ethanol treatment and evaluated gene expression patterns in the embryos. METHODS Pregnant C57BL/6J mice were given two doses of ethanol (30 mg/kg in total) on the morning (7:00 and 11:00 AM) of day 7. The fetuses were observed at E10.5 and E15.5 grossly and/or histologically. The expression of Shh and Nkx2.1 gene transcripts was examined at E8.5 by in situ hybridization. RESULTS Gross and histological abnormalities of the brain and face were found in ethanol-exposed fetuses, and their midline structures were most frequently affected. The midline commissural fibers were often lacking in ethanol-exposed fetuses, even in those cases without external gross malformations. In situ hybridization revealed down-regulation of Shh and Nkx2.1 genes in ethanol-exposed embryos. CONCLUSIONS The results indicate that ethanol may perturb the expression of some developmental genes at a critical stage of embryonic development and induce holoprosencephaly and other midline craniofacial malformations, including histological brain abnormalities.
Collapse
Affiliation(s)
- Daisuke Higashiyama
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Green ML, Singh AV, Zhang Y, Nemeth KA, Sulik KK, Knudsen TB. Reprogramming of genetic networks during initiation of the Fetal Alcohol Syndrome. Dev Dyn 2007; 236:613-31. [PMID: 17200951 DOI: 10.1002/dvdy.21048] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fetal Alcohol Spectrum Disorders (FASD) are birth defects that result from maternal alcohol use. We used a non a priori approach to prioritize candidate pathways during alcohol-induced teratogenicity in early mouse embryos. Two C57BL/6 substrains (B6J, B6N) served as the basis for study. Dosing pregnant dams with alcohol (2x 2.9 g/kg ethanol spaced 4 hr on day 8) induced FASD in B6J at a higher incidence than B6N embryos. Counter-exposure to PK11195 (4 mg/kg) significantly protected B6J embryos but slightly promoted FASD in B6N embryos. Microarray transcript profiling was performed on the embryonic headfold 3 hr after the first maternal alcohol injection (GEO data series accession GSE1074). This analysis revealed metabolic and cellular reprogramming that was substrain-specific and/or PK11195-dependent. Mapping ethanol-responsive KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways revealed down-regulation of ribosomal proteins and proteasome, and up-regulation of glycolysis and pentose phosphate pathway in B6N embryos; and significant up-regulation of tight junction, focal adhesion, adherens junction, and regulation of the actin cytoskeleton (and near-significant up-regulation of Wnt signaling and apoptosis) pathways in both substrains. Expression networks constructed computationally from these altered genes identified entry points for EtOH at several hubs (MAPK1, ALDH3A2, CD14, PFKM, TNFRSF1A, RPS6, IGF1, EGFR, PTEN) and for PK11195 at AKT1. Our findings are consistent with the growing view that developmental exposure to alcohol alters common signaling pathways linking receptor activation to cytoskeletal reorganization. The programmatic shift in cell motility and metabolic capacity further implies cell signals and responses that are integrated by the mitochondrial recognition site for PK11195.
Collapse
Affiliation(s)
- Maia L Green
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
50
|
Blumer JB, Smrcka AV, Lanier S. Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling. Pharmacol Ther 2006; 113:488-506. [PMID: 17240454 PMCID: PMC1978177 DOI: 10.1016/j.pharmthera.2006.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/10/2006] [Indexed: 01/14/2023]
Abstract
Signal processing via heterotrimeric G-proteins in response to cell surface receptors is a central and much investigated aspect of how cells integrate cellular stimuli to produce coordinated biological responses. The system is a target of numerous therapeutic agents and plays an important role in adaptive processes of organs; aberrant processing of signals through these transducing systems is a component of various disease states. In addition to G-protein coupled receptor (GPCR)-mediated activation of G-protein signaling, nature has evolved creative ways to manipulate and utilize the Galphabetagamma heterotrimer or Galpha and Gbetagamma subunits independent of the cell surface receptor stimuli. In such situations, the G-protein subunits (Galpha and Gbetagamma) may actually be complexed with alternative binding partners independent of the typical heterotrimeric Galphabetagamma. Such regulatory accessory proteins include the family of regulator of G-protein signaling (RGS) proteins that accelerate the GTPase activity of Galpha and various entities that influence nucleotide binding properties and/or subunit interaction. The latter group of proteins includes receptor-independent activators of G-protein signaling (AGS) proteins that play surprising roles in signal processing. This review provides an overview of our current knowledge regarding AGS proteins. AGS proteins are indicative of a growing number of accessory proteins that influence signal propagation, facilitate cross talk between various types of signaling pathways, and provide a platform for diverse functions of both the heterotrimeric Galphabetagamma and the individual Galpha and Gbetagamma subunits.
Collapse
Affiliation(s)
| | - Alan V. Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY 14642-8711
| | - S.M. Lanier
- ** Corresponding Author, Stephen M. Lanier, Ph.D., Department of Pharmacology, Medical University of South Carolina, Colcock Hall, 2nd Floor, PO Box 250002, 179 Ashley Avenue, Charleston, SC 29425, 843-792-0442, E-mail:
| |
Collapse
|