1
|
Suresh RN, Jung YY, Harsha KB, Mohan CD, Ahn KS, Rangappa KS. Isoxazolyl-urea derivative evokes apoptosis and paraptosis by abrogating the Wnt/β-catenin axis in colon cancer cells. Chem Biol Interact 2024; 399:111143. [PMID: 39004389 DOI: 10.1016/j.cbi.2024.111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Deregulated activation of the Wnt/β-catenin pathway is observed in many types of human malignancies including colon cancer. Abrogation of the Wnt/β-catenin pathway has been demonstrated as an effective way of inducing cancer cell death. Herein, a new isoxazolyl-urea (QR-5) was synthesized and examined its efficacy on the viability of colon cancer cell lines. QR-5 displayed selective cytotoxicity towards colon cancer cells over normal counterparts. QR-5 induced apoptosis as evidenced by elevation in sub-G1 cells, decrease in Bcl-2, MMP-9, COX-2, VEGF and cleavage of PARP and caspase-3. QR-5 reduced the mitochondrial membrane potential, decreased the expression of Alix and elevated the expression of ATF4 and CHOP indicating the induction of paraptosis. The inhibitor of apoptosis (Z-DEVD-FMK) and paraptosis (CHX) could not restore Alix expression and PARP cleavage in QR-5 treated cells, respectively suggesting the complementation between the two cell death pathways. QR-5 suppressed the expression of Wnt/β-catenin pathway proteins which was also evidenced by the downregulation of nuclear and cytoplasmic β-catenin. The dependency of QR-5 on β-catenin for inducing apoptosis and paraptosis was demonstrated by knockdown experiments using β-catenin specific siRNA. Overall, QR-5 induces apoptosis as well as paraptosis by mitigating the Wnt/β-catenin axis in colon cancer cells.
Collapse
Affiliation(s)
- Rajaghatta N Suresh
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdae-mun-gu, Seoul, 02447, Republic of Korea
| | - Kachigere B Harsha
- Department of Chemistry, School of Engineering, University of Mysore, Mysuru, 570006, India
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdae-mun-gu, Seoul, 02447, Republic of Korea.
| | | |
Collapse
|
2
|
Liu HY, Sun XJ, Xiu SY, Zhang XY, Wang ZQ, Gu YL, Yi CX, Liu JY, Dai YS, Yuan X, Liao HP, Liu ZM, Pang XC, Li TC. Frizzled receptors (FZDs) in Wnt signaling: potential therapeutic targets for human cancers. Acta Pharmacol Sin 2024; 45:1556-1570. [PMID: 38632318 PMCID: PMC11272778 DOI: 10.1038/s41401-024-01270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/24/2024] [Indexed: 04/19/2024] Open
Abstract
Frizzled receptors (FZDs) are key contributors intrinsic to the Wnt signaling pathway, activation of FZDs triggering the Wnt signaling cascade is frequently observed in human tumors and intimately associated with an aggressive carcinoma phenotype. It has been shown that the abnormal expression of FZD receptors contributes to the manifestation of malignant characteristics in human tumors such as enhanced cell proliferation, metastasis, chemotherapy resistance as well as the acquisition of cancer stemness. Given the essential roles of FZD receptors in the Wnt signaling in human tumors, this review aims to consolidate the prevailing knowledge on the specific status of FZD receptors (FZD1-10) and elucidate their respective functions in tumor progression. Furthermore, we delineate the structural basis for binding of FZD and its co-receptors to Wnt, and provide a better theoretical foundation for subsequent studies on related mechanisms. Finally, we describe the existing biological classes of small molecule-based FZD inhibitors in detail in the hope that they can provide useful assistance for design and development of novel drug candidates targeted FZDs.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiao-Jiao Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Si-Yu Xiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiang-Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhi-Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yan-Lun Gu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Chu-Xiao Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun-Yan Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yu-Song Dai
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hua-Peng Liao
- Yizhang County People's Hospital, Chenzhou, 424200, China
| | - Zhen-Ming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Xiao-Cong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China.
| | - Tian-Cheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China.
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100034, China.
| |
Collapse
|
3
|
Carpenter KA, Thurlow KE, Craig SEL, Grainger S. Wnt regulation of hematopoietic stem cell development and disease. Curr Top Dev Biol 2023; 153:255-279. [PMID: 36967197 PMCID: PMC11104846 DOI: 10.1016/bs.ctdb.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells that give rise to all cells of the blood and most immune cells. Due to their capacity for unlimited self-renewal, long-term HSCs replenish the blood and immune cells of an organism throughout its life. HSC development, maintenance, and differentiation are all tightly regulated by cell signaling pathways, including the Wnt pathway. Wnt signaling is initiated extracellularly by secreted ligands which bind to cell surface receptors and give rise to several different downstream signaling cascades. These are classically categorized either β-catenin dependent (BCD) or β-catenin independent (BCI) signaling, depending on their reliance on the β-catenin transcriptional activator. HSC development, homeostasis, and differentiation is influenced by both BCD and BCI, with a high degree of sensitivity to the timing and dosage of Wnt signaling. Importantly, dysregulated Wnt signals can result in hematological malignancies such as leukemia, lymphoma, and myeloma. Here, we review how Wnt signaling impacts HSCs during development and in disease.
Collapse
Affiliation(s)
- Kelsey A Carpenter
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Kate E Thurlow
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States; Van Andel Institute Graduate School, Grand Rapids, MI, United States
| | - Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
4
|
Yang L, Ma D, Tang S, Jiang T, Yu J, Wang L, Zou L. Comprehensive Genomic Analysis for Identifying FZD6 as a Novel Diagnostic Biomarker for Acute Myeloid Leukemia. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9130958. [PMID: 36452482 PMCID: PMC9704059 DOI: 10.1155/2022/9130958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2023]
Abstract
As a family of G protein-coupled receptors (GPCRs) with a seven-span transmembrane structure, frizzled class receptors (FZDs) play crucial roles in regulating multiple biological functions. However, their transcriptional expression profile and prognostic significance in acute myeloid leukemia (AML) are unclear. In AML, the role of FZDs was explored by performing the comprehensive analysis on the relationship between clinical characteristics and mRNA expression profiles from public databases including cBioPortal for Cancer Genomics, Gene Expression Profile Interactive Analysis (GEPIA), and Cancer Cell Line Encyclopedia (CCLE). We identified that in the majority of 27 AML cell lines, frizzled class receptor 6 (FZD6) was high-expressed. A significantly higher expression of FZD6 in AML patients was observed when compared to normal controls (P < 0.01). Compared with intermediate and poor/adverse risk group patients, FZD6 expressed much lower in cytogenetic favorable risk group patients (P < 0.0001). Patients with higher-expressed FZD6 were associated with shorter overall survival (OS) (P = 0.0089) rather than progression-free survival (PFS). However, the predictive effect of FZD6 on OS could be reversed by hematopoietic stem cell transplantation (HSCT). The data of gene set enrichment analysis (GSEA) demonstrated that 4 gene sets, including MYC targets, HEME metabolism, E2F targets, and UV response, were differentially enriched in the high-expression FZD6 group. To conclude, the study suggested that high expression of FZD6 might be a novel poor prognostic biomarker for AML treatment.
Collapse
Affiliation(s)
- Li Yang
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing, China 400014
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China 400016
| | - Deyu Ma
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing, China 400014
- National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China 400014
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China 400014
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China 400014
| | - Shi Tang
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing, China 400014
- National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China 400014
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China 400014
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China 400014
| | - Tingting Jiang
- National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China 400014
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China 400014
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China 400014
- Center for Pediatric Hematology Diseases of Children's Hospital of Chongqing Medical University, Chongqing, China 400014
| | - Jie Yu
- National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China 400014
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China 400014
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China 400014
- Center for Pediatric Hematology Diseases of Children's Hospital of Chongqing Medical University, Chongqing, China 400014
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China 400016
| | - Lin Zou
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing, China 400014
- Clinical Research Unit, Children's Hospital of Shanghai Jiao Tong University, Shanghai, China 200062
- Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China 200062
| |
Collapse
|
5
|
Han H, Zhu B, Xie J, Huang Y, Geng Y, Chen K, Wang W. Expression level and prognostic potential of beta-catenin-interacting protein in acute myeloid leukemia. Medicine (Baltimore) 2022; 101:e30022. [PMID: 35984200 PMCID: PMC9387945 DOI: 10.1097/md.0000000000030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inhibitor of beta-catenin and TCF (ICAT) is a key protein in the Wnt-β-catenin signaling pathway. However, its role in acute myeloid leukemia (AML) remains unknown. In this study, we evaluated its expression level as well as its prognostic value in AML patients. A total of 72 patients with AML and 30 control subjects were enrolled in this study during the period of January 2017 and December 2019 at Zhongshan Hospital of SunYat-sen University. ICAT and β-catenin expression levels in peripheral blood were determined via enzyme-linked immunosorbent assays. ICAT levels in AML patients were significantly lower and β-catenin levels were higher than those of the control group. After the first course of standard chemotherapy, the concentration of ICAT in the partial remission group (93.79 ng/mL) was significantly higher than that in the initial diagnosis group (49.38 ng/mL) and the no response group (39.94 ng/mL). AML subtypes had lower ICAT expression levels than controls, and ICAT levels were significantly correlated with body mass index, bone marrow/peripheral blood blast cell proportions, and white blood cell and red blood cell counts at initial diagnosis. Furthermore, low ICAT expression was found to be associated with poor disease-free survival and overall survival in AML. ICAT is closely associated with AML progression and can be used as an indicator to monitor AML treatment efficacy.
Collapse
Affiliation(s)
- Hui Han
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Baofang Zhu
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Jinye Xie
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Yunxiu Huang
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Yiyun Geng
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Kang Chen
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Weijia Wang
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
- *Correspondence: Weijia Wang, Department of Laboratory Medicine Zhongshan Hospital of Sun Yat-sen University, 2 East of Sun Wen Road, Shi Qi District, Zhongshan 528403, Guangdong Province, China (e-mail: )
| |
Collapse
|
6
|
Karthika C, Sureshkumar R, Zehravi M, Akter R, Ali F, Ramproshad S, Mondal B, Tagde P, Ahmed Z, Khan FS, Rahman MH, Cavalu S. Multidrug Resistance of Cancer Cells and the Vital Role of P-Glycoprotein. Life (Basel) 2022; 12:897. [PMID: 35743927 PMCID: PMC9227591 DOI: 10.3390/life12060897] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
P-glycoprotein (P-gp) is a major factor in the multidrug resistance phenotype in cancer cells. P-gp is a protein that regulates the ATP-dependent efflux of a wide range of anticancer medicines and confers resistance. Due to its wide specificity, several attempts have been made to block the action of P-gp to restore the efficacy of anticancer drugs. The major goal has been to create molecules that either compete with anticancer medicines for transport or function as a direct P-gp inhibitor. Despite significant in vitro success, there are presently no drugs available in the clinic that can "block" P-gp-mediated resistance. Toxicity, unfavourable pharmacological interactions, and a variety of pharmacokinetic difficulties might all be the reason for the failure. On the other hand, P-gp has a significant effect in the body. It protects the vital organs from the entry of foreign bodies and other toxic chemicals. Hence, the inhibitors of P-gp should not hinder its action in the normal cells. To develop an effective inhibitor of P-gp, thorough background knowledge is needed in this field. The main aim of this review article was to set forth the merits and demerits of the action of P-gp on cancer cells as well as on normal cells. The influence of P-gp on cancer drug delivery and the contribution of P-gp to activating drug resistance were also mentioned.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, Tamil Nadu, India;
| | - Raman Sureshkumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, Tamil Nadu, India;
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University Alkharj, Alkharj 11942, Saudi Arabia;
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea;
| | - Faraat Ali
- Department of Licensing and Enforcement, Laboratory Services, Botswana Medicines Regulatory Authority (BoMRA), Gaborone 999106, Botswana;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India;
| | - Zubair Ahmed
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Mahala Campus, Community College, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, Faculty of Sciences and Arts, King Khalid University, Dhahran Al Janoub, Abha 61413, Saudi Arabia;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
7
|
Karthika C, Sureshkumar R, Zehravi M, Akter R, Ali F, Ramproshad S, Mondal B, Kundu MK, Dey A, Rahman MH, Antonescu A, Cavalu S. Multidrug Resistance in Cancer Cells: Focus on a Possible Strategy Plan to Address Colon Carcinoma Cells. Life (Basel) 2022; 12:811. [PMID: 35743842 PMCID: PMC9224881 DOI: 10.3390/life12060811] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 12/20/2022] Open
Abstract
Even though various treatment methods are available for cancer, the death curve is not reducing. The diagnosis of cancer at the fourth stage and drug resistance are the leading reasons for treatment failure and lower survival rates. In this review article, we summarize the possible pitfalls during cancer treatment in general, which mainly include multidrug resistance, and propose a hypothesis for colorectal cancer specifically. We also evaluate multidrug resistance in cancer in general and colorectal cancer in particular and hypothesize a concept based on combination therapy with 5-fluorouracil, curcumin, and lipids for the possible management of colorectal cancer. In addition, a hypothetical approach, combining a synthetic agent and a natural chemotherapeutic agent, to treating colorectal cancer is also discussed. This hypothesis could improve the management of colorectal cancer.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Raman Sureshkumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, 24, Wonju 26426, Korea;
| | - Faraat Ali
- Department of Licensing and Enforcement, Laboratory Services, Botswana Medicines Regulatory Authority (BoMRA), Gaborone 999106, Botswana;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, 24, Wonju 26426, Korea;
| | - Angela Antonescu
- Faculty of Medicine and Pharmacy, University of Oradea, Pta 1 Decembrie 10, 410087 Oradea, Romania;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Pta 1 Decembrie 10, 410087 Oradea, Romania;
| |
Collapse
|
8
|
Genome-Wide Analysis in Drosophila Reveals the Genetic Basis of Variation in Age-Specific Physical Performance and Response to ACE Inhibition. Genes (Basel) 2022; 13:genes13010143. [PMID: 35052483 PMCID: PMC8775566 DOI: 10.3390/genes13010143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/20/2023] Open
Abstract
Despite impressive results in restoring physical performance in rodent models, treatment with renin–angiotensin system (RAS) inhibitors, such as Lisinopril, have highly mixed results in humans, likely, in part, due to genetic variation in human populations. To date, the genetic determinants of responses to drugs, such as RAS inhibitors, remain unknown. Given the complexity of the relationship between physical traits and genetic background, genomic studies which predict genotype- and age-specific responses to drug treatments in humans or vertebrate animals are difficult. Here, using 126 genetically distinct lines of Drosophila melanogaster, we tested the effects of Lisinopril on age-specific climbing speed and endurance. Our data show that functional response and sensitivity to Lisinopril treatment ranges from significant protection against physical decline to increased weakness depending on genotype and age. Furthermore, genome-wide analyses led to identification of evolutionarily conserved genes in the WNT signaling pathway as being significantly associated with variations in physical performance traits and sensitivity to Lisinopril treatment. Genetic knockdown of genes in the WNT signaling pathway, Axin, frizzled, nemo, and wingless, diminished or abolished the effects of Lisinopril treatment on climbing speed traits. Our results implicate these genes as contributors to the genotype- and age-specific effects of Lisinopril treatment and because they have orthologs in humans, they are potential therapeutic targets for improvement of resiliency. Our approach should be widely applicable for identifying genomic variants that predict age- and sex-dependent responses to any type of pharmaceutical treatment.
Collapse
|
9
|
Wang R, Wang X, Zhang J, Liu Y. LINC00942 Promotes Tumor Proliferation and Metastasis in Lung Adenocarcinoma via FZD1 Upregulation. Technol Cancer Res Treat 2021; 20:1533033820977526. [PMID: 34253104 PMCID: PMC8280845 DOI: 10.1177/1533033820977526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been reported to play important roles in the progression of human cancers. Herein, bioinformatic analysis identified that LINC00942 was a highly overexpressed lncRNA in lung adenocarcinoma (LUAD). The present study aimed to explore the roles and possible molecular mechanisms of LINC00942 in LUAD. METHODS First, on the basis of TCGA database, the expression and prognosis of LINC00942 were analyzed in LUAD tissues. Then, si-LINC00942 was transfected into A549 and H1299 cells to knockdown the expression of LINC00942. Cell viability was detected by MTT assay. Flow cytometry was used to analyze cell apoptosis. The expressions of PCNA, Bax, Bcl-2, and wnt/β-catenin pathway proteins were detected by western blotting. Dual-luciferase reporter assay was used to evaluate the regulatory relationship between LINC00942 and miR-5006-5p, or miR-5006-5p and FZD1. RESULTS We discovered that LINC00942 was up-regulated in LUAD tissues compared with adjacent tissues. Besides, we found the increased LINC00942 expression was associated with poor survival. In addition, silencing of LINC00942 suppressed the proliferation, migration, invasion and facilitated the apoptosis of A549 and H1299 cells. Moreover, silencing of LINC00942 repressed the expression of PCNA, Bcl-2, and enhanced Bax expression in A549 and H1299 cells. Mechanically, LINC00942 exerted its effects via enhancing Wnt signaling. LINC00942 functioned as competing endogenous RNA (ceRNA) by binding to miR-5006-5p, upregulating the expression of FZD1, which was a direct target of miR-5006-5p. CONCLUSION Our findings indicated that LINC00942/miR-5006-5p/FZD1 axis played important roles in LUAD growth through enhancing Wnt signaling. LINC00942/miR-5006-5p/FZD1 axis might serve as a potential biomarker and therapeutic target for LUAD treatment.
Collapse
Affiliation(s)
- Ronghua Wang
- Department of Outpatient, Dongying People's Hospital, Dongying, Shandong, People's Republic of China
| | - Xiuyun Wang
- Department of Oncology, Dongying People's Hospital, Dongying, Shandong, People's Republic of China
| | - Jingtao Zhang
- Department of Respiratory Medicine, Dongying District People's Hospital of Dongying city, Dongying, Shandong, People's Republic of China
| | - Yanpei Liu
- Department of Outpatient, Dongying People's Hospital, Dongying, Shandong, People's Republic of China
| |
Collapse
|
10
|
Ganesan M, Kanimozhi G, Pradhapsingh B, Khan HA, Alhomida AS, Ekhzaimy A, Brindha GR, Prasad NR. Phytochemicals reverse P-glycoprotein mediated multidrug resistance via signal transduction pathways. Biomed Pharmacother 2021; 139:111632. [PMID: 34243600 DOI: 10.1016/j.biopha.2021.111632] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
P-glycoprotein, encoded by ATP-binding cassette transporters B1 gene (ABCB1), renders multidrug resistance (MDR) during cancer chemotherapy. Several synthetic small molecule inhibitors affect P-glycoprotein (P-gp) transport function in MDR tumor cells. However, inhibition of P-gp transport function adversely accumulates chemotherapeutic drugs in non-target normal tissues. Moreover, most small-molecule P-gp inhibitors failed in the clinical trials due to the low therapeutic window at the maximum tolerated dose. Therefore, downregulation of ABCB1-gene expression (P-gp) in tumor tissues seems to be a novel approach rather than inhibiting its transport function for the reversal of multidrug resistance (MDR). Several plant-derived phytochemicals modulate various signal transduction pathways and inhibit translocation of transcription factors, thereby reverses P-gp mediated MDR in tumor cells. Therefore, phytochemicals may be considered an alternative to synthetic small molecule P-gp inhibitors for the reversal of MDR in cancer cells. This review discussed the role of natural phytochemicals that modulate ABCB1 expression through various signal transduction pathways in MDR cancer cells. Therefore, modulating the cell signaling pathways by phytochemicals might play crucial roles in modulating ABCB1 gene expression and the reversal of MDR.
Collapse
Affiliation(s)
- M Ganesan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | - G Kanimozhi
- Department of Biochemistry, Dharmapuram Gnanambigai Government Arts College for Women, Mayiladuthurai, Tamil Nadu, India
| | - B Pradhapsingh
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Alhomida
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aishah Ekhzaimy
- Division of Endocrinology, Department of Medicine, King Khalid University Hospital, Riyadh 12372, Saudi Arabia
| | - G R Brindha
- School of Computing, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India.
| |
Collapse
|
11
|
Katanaev VL, Blagodatski A, Xu J, Khotimchenko Y, Koval A. Mining Natural Compounds to Target WNT Signaling: Land and Sea Tales. Handb Exp Pharmacol 2021; 269:215-248. [PMID: 34455487 DOI: 10.1007/164_2021_530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
WNT signaling plays paramount roles in organism development, physiology, and disease, representing a highly attractive target for drug development. However, no WNT-modulating drugs have been approved, with several candidates trudging through the early clinical trials. This delay instigates alternative approaches to discover WNT-modulating drugs. Natural products were the source of therapeutics for centuries, but the chemical diversity they offer, especially when looking at different taxonomic groups and habitats, is still to a large extent unexplored. These considerations urge researchers to screen natural compounds for the WNT-modulatory activities. Since several reviews on such endeavors exist, we here have attempted to present these efforts as "Land and sea tales" (citing the book title by Rudyard Kipling) superimposing them onto the traditional pipeline of drug discovery and early development. In doing so, we illustrate each step of the pipeline with case studies stemming from our own research. It will become obvious that several steps of the pipeline need to be modified when applied to natural products rather than to synthetic libraries. Yet the main message of this chapter is that natural compounds represent a powerful source for the WNT signaling modulators and can be developed towards drug candidates against WNT-dependent maladies.
Collapse
Affiliation(s)
- Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Centre in Oncohaematology, University of Geneva, Geneva, Switzerland.
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.
| | - Artem Blagodatski
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences Pushchino, Moscow, Russia
| | - Jiabin Xu
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Centre in Oncohaematology, University of Geneva, Geneva, Switzerland
| | - Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- National Scientific Center for Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Centre in Oncohaematology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Sun Y, Wang W, Zhao C. Frizzled Receptors in Tumors, Focusing on Signaling, Roles, Modulation Mechanisms, and Targeted Therapies. Oncol Res 2020; 28:661-674. [PMID: 32998794 PMCID: PMC7962935 DOI: 10.3727/096504020x16014648664459] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wnt molecules play crucial roles in development and adult homeostasis through their receptors Frizzled proteins (Fzds). Fzds mediate canonical β-catenin pathway and various noncanonical β-catenin-independent pathways. Aberrant Fzd signaling is involved in many diseases including cancer. Wnt/β-catenin is a well-established oncogenic pathway involved in almost every aspect of tumor development. However, Fzd-mediated noncanonical Wnt pathways function as both tumor promoters and tumor suppressors depending on cellular context. Fzd-targeted therapies have proven to be effective on cultured tumor cells, tumor cell xenografts, mouse tumor models, and patient-derived xenografts (PDX). Moreover, Fzd-targeted therapies synergize with chemotherapy in preclinical models. However, the occurrence of fragility fractures in patients treated with Fzd-targeted agents such as OMP-54F28 and OMP-18R5 limits the development of this combination. Along with new insights on signaling, roles, and modulation mechanisms of Fzds in human tumors, more Fzd-related therapeutic targets will be developed.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyangP.R. China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyangP.R. China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyangP.R. China
| |
Collapse
|
13
|
Ruan Y, Kim HN, Ogana H, Kim YM. Wnt Signaling in Leukemia and Its Bone Marrow Microenvironment. Int J Mol Sci 2020; 21:ijms21176247. [PMID: 32872365 PMCID: PMC7503842 DOI: 10.3390/ijms21176247] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
Leukemia is an aggressive hematologic neoplastic disease. Therapy-resistant leukemic stem cells (LSCs) may contribute to the relapse of the disease. LSCs are thought to be protected in the leukemia microenvironment, mainly consisting of mesenchymal stem/stromal cells (MSC), endothelial cells, and osteoblasts. Canonical and noncanonical Wnt pathways play a critical role in the maintenance of normal hematopoietic stem cells (HSC) and LSCs. In this review, we summarize recent findings on the role of Wnt signaling in leukemia and its microenvironment and provide information on the currently available strategies for targeting Wnt signaling.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
- Correspondence:
| |
Collapse
|
14
|
Ghandadi M, Valadan R, Mohammadi H, Akhtari J, Khodashenas S, Ashari S. Wnt-β-catenin Signaling Pathway, the Achilles' Heels of Cancer Multidrug Resistance. Curr Pharm Des 2020; 25:4192-4207. [PMID: 31721699 DOI: 10.2174/1381612825666191112142943] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Most of the anticancer chemotherapies are hampered via the development of multidrug resistance (MDR), which is the resistance of tumor cells against cytotoxic effects of multiple chemotherapeutic agents. Overexpression and/or over-activation of ATP-dependent drug efflux transporters is a key mechanism underlying MDR development. Moreover, enhancement of drug metabolism, changes in drug targets and aberrant activation of the main signaling pathways, including Wnt, Akt and NF-κB are also responsible for MDR. METHODS In this study, we have reviewed the roles of Wnt signaling in MDR as well as its potential therapeutic significance. Pubmed and Scopus have been searched using Wnt, β-catenin, cancer, MDR and multidrug resistance as keywords. The last search was done in March 2019. Manuscripts investigating the roles of Wnt signaling in MDR or studying the modulation of MDR through the inhibition of Wnt signaling have been involved in the study. The main focus of the manuscript is regulation of MDR related transporters by canonical Wnt signaling pathway. RESULT AND CONCLUSION Wnt signaling has been involved in several pathophysiological states, including carcinogenesis and embryonic development. Wnt signaling is linked to various aspects of MDR including P-glycoprotein and multidrug resistance protein 1 regulation through its canonical pathways. Aberrant activation of Wnt/β- catenin signaling leads to the induction of cancer MDR mainly through the overexpression and/or over-activation of MDR related transporters. Accordingly, Wnt/β-catenin signaling can be a potential target for modulating cancer MDR.
Collapse
Affiliation(s)
- Morteza Ghandadi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Valadan
- Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran.,Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Hamidreza Mohammadi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of toxicology and pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Akhtari
- Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran.,Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shabanali Khodashenas
- Department of Medical Biotechnology, Faculty of Medical Sciences, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sorour Ashari
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of toxicology and pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
15
|
Liu M, Zhou P, Li J, Jiang Y. Nicotinamide Inhibits Glycolysis of HL-60 Cells by Modulating Sirtuin 1 (SIRT1)/Peroxisome Proliferator-Activated Receptor γ Coactivator 1α (PGC-1α)/Hypoxia-Inducible Factor-2α (HIF2α) Signaling Pathway. Med Sci Monit 2020; 26:e920810. [PMID: 32469848 PMCID: PMC7282349 DOI: 10.12659/msm.920810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Nicotinamide can affect differentiation and proliferation of leukemia cells. This research aimed to explore the regulatory effect of nicotinamide on glycolysis metabolism of leukemia cells and to clarify the associated mechanisms. Material/Methods HL-60 cells were treated with nicotinamide and divided into 0.1, 1, and 10 μmol/l groups. HL-60 cells without any administration were assigned as negative control (CT group). Glucolytic activity was evaluated by detecting lactic acid production, and glucose level was measured using glucose consumption assay. Apoptosis of HL-60 was examined using flow cytometry assay, when cells were cultured for 24 h. Expressions of sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and hypoxia-inducible factor-2α (HIF2α) were evaluated using a reverse transcription PCR assay and Western blotting assay, respectively. Results Nicotinamide remarkably decreased lactic acid production and glucose levels in leukemia cells compared with that of the CT group (p<0.05). Nicotinamide significantly induced the apoptosis of HL-60 cells compared to that of the negative control group (p<0.05). Nicotinamide significantly inhibited the SIRT1/PGC-1α/HIF2α signaling pathway mRNAs compared to that of the CT group (p<0.05). Nicotinamide remarkably reduced mitochondrial regulatory factors SIRT1/PGC-1α expression compared to that in the CT group (p<0.05). Nicotinamide obviously downregulated HIF2α compared with that of the CT group (p<0.05). Moreover, all of the above nicotinamide-induced effects, including glycolytic activity, apoptosis, and expression of SIRT1/PGC-1α/HIF2α, were changed in a dose-dependent manner. Conclusions Nicotinamide can inhibit glycolysis of HL-60 cells by inhibiting the mitochondrial regulatory factor SIRT1/PGC-1α and suppressing transcription factor HIF2α.
Collapse
Affiliation(s)
- Miao Liu
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Pan Zhou
- Hubei Medical Devices, Quality Supervision and Test Institute, Wuhan, Hubei, China (mainland)
| | - Jiaojiao Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Yi Jiang
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
16
|
Martin-Orozco E, Sanchez-Fernandez A, Ortiz-Parra I, Ayala-San Nicolas M. WNT Signaling in Tumors: The Way to Evade Drugs and Immunity. Front Immunol 2019; 10:2854. [PMID: 31921125 PMCID: PMC6934036 DOI: 10.3389/fimmu.2019.02854] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
WNT/β-catenin signaling is involved in many physiological processes. Its implication in embryonic development, cell migration, and polarization has been shown. Nevertheless, alterations in this signaling have also been related with pathological events such as sustaining and proliferating the cancer stem cell (CSC) subset present in the tumor bulk. Related with this, WNT signaling has been associated with the maintenance, expansion, and epithelial-mesenchymal transition of stem cells, and furthermore with two distinctive features of this tumor population: therapeutic resistance (MDR, multidrug resistance) and immune escape. These mechanisms are developed and maintained by WNT activation through the transcriptional control of the genes involved in such processes. This review focuses on the description of the best known WNT pathways and the molecules involved in them. Special attention is given to the WNT cascade proteins deregulated in tumors, which have a decisive role in tumor survival. Some of these proteins function as extrusion pumps that, in the course of chemotherapy, expel the drugs from the cells; others help the tumoral cells hide from the immune effector mechanisms. Among the WNT targets involved in drug resistance, the drug extrusion pump MDR-1 (P-GP, ABCB1) and the cell adhesion molecules from the CD44 family are highlighted. The chemokine CCL4 and the immune checkpoint proteins CD47 and PD-L1 are included in the list of WNT target molecules with a role in immunity escape. This pathway should be a main target in cancer therapy as WNT signaling activation is essential for tumor progression and survival, even in the presence of the anti-tumoral immune response and/or antineoplastic drugs. The appropriate design and combination of anti-tumoral strategies, based on the modulation of WNT mediators and/or protein targets, could negatively affect the growth of tumoral cells, improving the efficacy of these types of therapies.
Collapse
Affiliation(s)
- Elena Martin-Orozco
- Department of Biochemistry and Molecular Biology (B) and Immunology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), ARADyAL, Murcia, Spain
| | - Ana Sanchez-Fernandez
- Department of Biochemistry and Molecular Biology (B) and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| | - Irene Ortiz-Parra
- Department of Biochemistry and Molecular Biology (B) and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| | - Maria Ayala-San Nicolas
- Department of Biochemistry and Molecular Biology (B) and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
17
|
Deng LM, Tan T, Zhang TY, Xiao XF, Gu H. miR‑1 reverses multidrug resistance in gastric cancer cells via downregulation of sorcin through promoting the accumulation of intracellular drugs and apoptosis of cells. Int J Oncol 2019; 55:451-461. [PMID: 31268161 PMCID: PMC6615921 DOI: 10.3892/ijo.2019.4831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers worldwide and results in the second greatest rate of cancer-associated mortality globally. Multidrug resistance (MDR) often develops during the chemotherapy, resulting in the failure of treatment. To investigate the molecular mechanism of MDR, the roles of microRNA (miR)-1 were studied in GC. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to investigate the expression levels of miR-1 and sorcin in SGC7901/ADM and SGC7901/VCR cell lines. The effect of miR-1 on the half maximal inhibitory concentration (IC50), cell apoptosis rates and drug accumulation was uncovered by MTT assay and flow cytometric analysis. Furthermore, dual-luciferase assay and western blotting were used to determine the target of miR-1 in GC. It was demonstrated that miR-1 was highly downregulated in MDR GC cell lines, including SGC7901/ADM and SGC7901/VCR. Overexpression of miR-1 in MDR GC cells decreased IC50, but increased the cell apoptosis rates and promoted the drug accumulation in cancer cells. Dual-luciferase activity assay indicated that sorcin was the target of miR-1 in GC. In addition, overexpression of sorcin could partially reverse the effect of miR-1 in MDR GC cells. The role of miR-1 in MDR GC cells makes it a potential therapeutic target for a successful clinical outcome.
Collapse
Affiliation(s)
- Lang-Mei Deng
- Critical Care Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Tan Tan
- Department of Inspection, Chenzhou No.1 People's Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Tian-Yi Zhang
- Critical Care Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xue-Fei Xiao
- Critical Care Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Huan Gu
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
18
|
Ahmed K, Koval A, Xu J, Bodmer A, Katanaev VL. Towards the first targeted therapy for triple-negative breast cancer: Repositioning of clofazimine as a chemotherapy-compatible selective Wnt pathway inhibitor. Cancer Lett 2019; 449:45-55. [PMID: 30771433 DOI: 10.1016/j.canlet.2019.02.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022]
Abstract
Wnt signaling is overactivated in triple-negative breast cancer (TNBC) and several other cancers, and its suppression emerges as an effective anticancer treatment. However, no drugs targeting the Wnt pathway exist on the market nor in advanced clinical trials. Here we provide a comprehensive body of preclinical evidence that an anti-leprotic drug clofazimine is effective against TNBC. Clofazimine specifically inhibits canonical Wnt signaling in a panel of TNBC cells in vitro. In several mouse xenograft models of TNBC, clofazimine efficiently suppresses tumor growth, correlating with in vivo inhibition of the Wnt pathway in the tumors. Clofazimine is well compatible with doxorubicin, exerting additive effects on tumor growth suppression, producing no adverse effects. Its excellent and well-characterized pharmacokinetics profile, lack of serious adverse effects at moderate (yet therapeutically effective) doses, its combinability with cytotoxic therapeutics, and the novel mechanistic mode of action make clofazimine a prime candidate for the repositioning clinical trials. Our work may bring forward the anti-Wnt targeted therapy, desperately needed for thousands of patients currently lacking targeted treatments.
Collapse
Affiliation(s)
- Kamal Ahmed
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexey Koval
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jiabin Xu
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre Bodmer
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.
| |
Collapse
|
19
|
Peng Q, Wang L, Zhao D, Lv Y, Wang H, Chen G, Wang J, Xu W. Overexpression of FZD1 is Associated with a Good Prognosis and Resistance of Sunitinib in Clear Cell Renal Cell Carcinoma. J Cancer 2019; 10:1237-1251. [PMID: 30854133 PMCID: PMC6400675 DOI: 10.7150/jca.28662] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Frizzled class receptor 1 (FZD1), a receptor for Wnt signaling pathway. Overexpression of FZD1 has been detected in many cancer tissues and cells resulting in tumor development and drug resistance. However, its expression status and prognostic merit in renal cancer still remains unclear. We screened the FZD1 mRNA in clear cell renal cell carcinoma (ccRCC) and papillary renal cell carcinoma (pRCC) from TCGA database and Oncomine database. We then detected FZD1 mRNA expression in sunitinib-resistant cells and the corresponding parental cells by qRT-PCR. FZD1 level was significantly upregulated in renal cancer tissues, renal cancer cell lines and their corresponding sunitinib-resistant cells. FZD1 level was also associated with the clinicopathological characteristics of ccRCC patients that could discriminate metastasis, pathological stage, recurrence and prognosis in ccRCC patients. The Kaplan-Meier survival curve and the log-rank test revealed FZD1 was higher in lower clinical stage and grade that correlated with better overall survival (OS) and disease-free survival (DFS) in total and subgroups of ccRCC patients. Both univariate and multivariate cox regression analysis indicated that high FZD1 level was an independent predictor of good prognosis for OS (HR 0.569, P=0.001) and DFS (HR 0.559, P=0.036) in ccRCC patients. Using cBioportal program, less than 1% mutation in the patients with renal cancer was observed, the alterations in FZD1 were correlated with better OS (P=0.0404) in ccRCC patients. Finally, the result of KEGG pathway analysis predicted seven potential pathways that FZD1 and its related genes got involved in ccRCC, including Hippo signaling pathway. This indicated potential therapeutic targets of ccRCC. In conclusion, our results suggested that expression status of FZD1 had a diagnostic value and prognostic value in ccRCC patients, it also may serve as a potential drug target to relieve sunitinib resistance in renal cancer patients.
Collapse
Affiliation(s)
- Qiang Peng
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Lu Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Danfeng Zhao
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Yulin Lv
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Hongzhi Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Guang Chen
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Jiaqi Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Wanhai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| |
Collapse
|