1
|
Priya V, Srinivasan D, Priyadarsini S, Dabaghzadeh F, Rana SS, Chengaiyan JG, Sudesh R, Ahmad F. Anxiolytic, Antidepressant and Healthy Sleep-Promoting Potential of Rosmarinic Acid: Mechanisms and Molecular Targets. Neuropsychiatr Dis Treat 2025; 21:641-661. [PMID: 40134762 PMCID: PMC11934053 DOI: 10.2147/ndt.s501597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/20/2025] [Indexed: 03/27/2025] Open
Abstract
The etiology of psychiatric disorders is complex and results from intricate interactions among multiple neurobiological, psychological, environmental, and genetic factors. Furthermore, the roles of gut microbiome dyshomeostasis in their pathogeneses are just beginning to be uncovered, adding to another level of complexity. In recent years, significant efforts have been directed toward discovering multimodal yet safe therapeutics to counteract psychological deficits. Rosmarinic acid (RA), a polyphenol found in several medicinal herbs, has received considerable attention as a potential multifaceted therapeutic agent, particularly for neuropsychiatric conditions. In order to critically evaluate this aspect, data was compiled and consolidated after extensive searches on scholarly databases like PubMed, Google Scholar, and Web of Science. Peer-reviewed publications which focused on RA as a therapeutic agent for psychiatric disorders were included regardless of the year of publication and country of origin. Based on pre-clinical and clinical evidence, this review delves into the various mechanistic aspects of the antidepressant, anxiolytic, and sleep-promoting functions of RA. The beneficial effects of RA on the gut-microbiome-brain (GMB) axis and their implications for the regulation of neuroprotective pathways are also discussed, with a particular focus on exploiting them to ameliorate neuropsychiatric conditions. Our assessment indicated that RA is a multimodal neuroprotectant against psychiatric conditions and beneficially influences a plethora of targets related to redox, inflammatory, synaptic, cell death, neurotrophic, and cell signaling pathways. As a dietary agent, RA may also be relevant in favorably altering the GMB axis, indicating its prospects as a potential multimodal adjuvant therapeutic agent in regulating the pathogenic mechanisms underlying neuropsychiatric conditions. However, more extensive clinical studies are required to ascertain the neuromodulatory actions of RA in neuronal pathophysiologies, including psychiatric ailments.
Collapse
Affiliation(s)
- Vijayan Priya
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India, 632014
| | - Dhiyanesh Srinivasan
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India, 632014
| | | | - Fatemeh Dabaghzadeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014India
| | - Jeevitha Gada Chengaiyan
- Department of Biosciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014India
| | - Ravi Sudesh
- Department of Biomedical Science, School of Bio Sciences and Technology (SBST) Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India, 632014
| |
Collapse
|
2
|
Karaca O, Akaras N, Şimşek H, Gür C, İleritürk M, Küçükler S, Gencer S, Kandemir FM. Therapeutic potential of rosmarinic acid in tramadol-induced hepatorenal toxicity: Modulation of oxidative stress, inflammation, RAGE/NLRP3, ER stress, apoptosis, and tissue functions parameters. Food Chem Toxicol 2025; 197:115275. [PMID: 39848458 DOI: 10.1016/j.fct.2025.115275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
AIM Tramadol (TRM), a widely used opioid analgesic for moderate to severe pain, is associated with liver and kidney toxicity at high doses or prolonged use. This study investigates the protective role of rosmarinic acid (RA), a natural phenolic compound known for its antioxidant, anti-inflammatory, and cell-protective properties, against TRM-induced hepatorenal toxicity. METHODS Thirty-five male Wistar rats were divided into five groups: Control, TRM, RA, TRM + RA25, and TRM + RA50. Rats received TRM (50 mg/kg) and RA (25 or 50 mg/kg), with liver and kidney function tests, oxidative stress, inflammation, ER stress, apoptosis, and tissue damage indicators assessed through qRT-PCR, ELISA, Western blotting, H&E, and immunohistochemical analysis. RESULTS TRM induced liver and kidney dysfunctions, evident from increased ALT, AST, ALP, urea, creatinine, nephrin, TIM-1 and 8-OHdG levels, along with activated oxidative stress, inflammation, ER stress, and apoptosis pathways. RA significantly reduced these effects, ameliorating histologic and immunohistochemical markers of tissue damage and inflammation. CONCLUSION RA demonstrates therapeutic potential by mitigating TRM-induced hepatorenal toxicity and preserving tissue integrity.
Collapse
Affiliation(s)
- Onur Karaca
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Hasan Şimşek
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cihan Gür
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Mustafa İleritürk
- Department of Animal Science, Horasan Vocational College, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Selman Gencer
- Department of Internal Diseases, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
3
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Baldwin LA, Calabrese V. The chemoprotective hormetic effects of rosmarinic acid. Open Med (Wars) 2024; 19:20241065. [PMID: 39444791 PMCID: PMC11497216 DOI: 10.1515/med-2024-1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Rosmarinic acid is a polyphenol found in numerous fruits and vegetables, consumed in supplement form, and tested in numerous clinical trials for therapeutic applications due to its putative chemopreventive properties. Rosmarinic acid has been extensively studied at the cellular, whole animal, and molecular mechanism levels, presenting a complex array of multi-system biological effects. Rosmarinic acid-induced hormetic dose responses are widespread, occurring in numerous biological models and cell types for a broad range of endpoints. Consequently, this article provides the first assessment of rosmarinic acid-induced hormetic concentration/dose responses, their quantitative features, mechanistic foundations, extrapolative strengths/limitations, and their biomedical, clinical, and public health implications.
Collapse
Affiliation(s)
- Edward J. Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health Sciences, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, United States of America
| | - Peter Pressman
- University of Maine, Orono, ME, 04469, United States of America
| | - A. Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, United States of America
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, United States of America
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Linda A. Baldwin
- 5 Sapphire Lane, Greenfield, MA, 01301, United States of America
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Catania, 95123, Italy
| |
Collapse
|
4
|
Jin J, Xu X, Wang X, Chen B, Miao Y, Chen Z, Yan D, Qiu F. Development and validation of a liquid chromatography-tandem mass spectrometry method for simultaneous quantification of eight Xiakucao Oral liquid-related compounds in rat plasma and its application in pharmacokinetic study. Biomed Chromatogr 2024; 38:e5902. [PMID: 38922974 DOI: 10.1002/bmc.5902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 06/28/2024]
Abstract
Xiakucao Oral Liquid (XKCOL) has been widely used for treating mammary gland hyperplasia and goiter in China. However, its pharmacokinetic data have been missing to date. To conduct its pharmacokinetic study, we established an LC-tandem mass spectrometry method for the simultaneous determination of eight XKCOL-related compounds in rat plasma. Liquid-liquid extraction was used for the sampling process. Chromatographic separation was performed on a Phenomenon Luna C18 column with a mobile phase of methanol and 2 mM ammonium acetate, using gradient elution at a flow rate of 0.8 mL/min. Detection was performed in the multiple reaction monitoring mode using negative electrospray ionization (ESI-) with optimized MS parameters. Endogenous substances and carryover did not interfere in the detection of analytes. The calibration curves showed a good linear relationship within the linear ranges. The intra- and inter-batch accuracy and precision were 94.8%-110.0% and ≤11.2%, respectively. There was no significant matrix effect and the recovery was reproducible. The dilution of samples did not affect the accuracy and precision. The solution and plasma samples were stable under the various test conditions. The major components of XKCOL absorbed into the blood were salvianic acid A and rosmarinic acid. They demonstrated linear kinetics over the dose range used in this study.
Collapse
Affiliation(s)
- Jingyi Jin
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqing Xu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinwei Wang
- Department of Medicine, Guiyang XinTian Pharmaceutical Co., LTD, Guiyang, China
- Department of Medicine, Haitian Medical Technology Co., LTD, Shanghai, China
| | - Biao Chen
- Department of Medicine, Guiyang XinTian Pharmaceutical Co., LTD, Guiyang, China
- Department of Medicine, Haitian Medical Technology Co., LTD, Shanghai, China
| | - Yingying Miao
- Department of Medicine, Guiyang XinTian Pharmaceutical Co., LTD, Guiyang, China
- Department of Medicine, Haitian Medical Technology Co., LTD, Shanghai, China
| | - Zhongguo Chen
- Department of Medicine, Haitian Medical Technology Co., LTD, Shanghai, China
| | - Dongming Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Furong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Villegas C, Cortez N, Ogundele AV, Burgos V, Pardi PC, Cabrera-Pardo JR, Paz C. Therapeutic Applications of Rosmarinic Acid in Cancer-Chemotherapy-Associated Resistance and Toxicity. Biomolecules 2024; 14:867. [PMID: 39062581 PMCID: PMC11274592 DOI: 10.3390/biom14070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Chemotherapeutic drugs and radiotherapy are fundamental treatments to combat cancer, but, often, the doses in these treatments are restricted by their non-selective toxicities, which affect healthy tissues surrounding tumors. On the other hand, drug resistance is recognized as the main cause of chemotherapeutic treatment failure. Rosmarinic acid (RA) is a polyphenol of the phenylpropanoid family that is widely distributed in plants and vegetables, including medicinal aromatic herbs, consumption of which has demonstrated beneficial activities as antioxidants and anti-inflammatories and reduced the risks of cancers. Recently, several studies have shown that RA is able to reverse cancer resistance to first-line chemotherapeutics, as well as play a protective role against toxicity induced by chemotherapy and radiotherapy, mainly due to its scavenger capacity. This review compiles information from 56 articles from Google Scholar, PubMed, and ClinicalTrials.gov aimed at addressing the role of RA as a complementary therapy in cancer treatment.
Collapse
Affiliation(s)
- Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
| | - Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
| | - Ayorinde Victor Ogundele
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
- Department of Chemistry and Industrial Chemistry, Kwara State University, Malete 1530, Nigeria
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | | | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000000, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
| |
Collapse
|
6
|
Mirzaei F, Agbaria L, Bhatnagar K, Sirimanne N, Omar A'amar N, Jindal V, Gerald Thilagendra A, Tawfiq Raba F. Coffee and Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2024; 289:21-55. [PMID: 39168581 DOI: 10.1016/bs.pbr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Coffee, a universally consumed beverage, is known to contain thousands of bioactive constituents that have garnered interest due to their potential neuroprotective effects against various neurodegenerative disorders, including Alzheimer's disease (AD). Extensive research has been conducted on coffee constituents such as Caffeine, Trigonelline, Chlorogenic acid, and Caffeic acid, focusing on their neuroprotective properties. These compounds have potential to impact key mechanisms in AD development, including amyloidopathy, tauopathy, and neuroinflammation. Furthermore, apart from its neuroprotective effects, coffee consumption has been associated with anticancerogenic and anti-inflammatory effects, thereby enhancing its therapeutic potential. Studies suggest that moderate coffee intake, typically around two to three cups daily, could potentially contribute to mitigating AD progression and lowering the risk of related neurological disorders. This literature underscores the potential neuroprotective properties of coffee compounds, which usually perform their neuronal protective effects via modulating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), nuclear factor erythroid-derived 2-like 2 (Nrf2), interleukins, tumor necrosis factor-alpha (TNF-α), and many other molecules.
Collapse
Affiliation(s)
- Foad Mirzaei
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia.
| | - Lila Agbaria
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Khushbu Bhatnagar
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Nethmini Sirimanne
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Nathalie Omar A'amar
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Vaishali Jindal
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Albankha Gerald Thilagendra
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Farah Tawfiq Raba
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| |
Collapse
|
7
|
Xiang G, Yang L, Qin J, Wang S, Zhang Y, Yang S. Revealing the potential bioactive components and mechanism of Qianhua Gout Capsules in the treatment of gouty arthritis through network pharmacology, molecular docking and pharmacodynamic study strategies. Heliyon 2024; 10:e30983. [PMID: 38770346 PMCID: PMC11103544 DOI: 10.1016/j.heliyon.2024.e30983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Recent clinical studies have confirmed the effectiveness of Qianhua Gout Capsules (QGC) in the treatment of gouty arthritis (GA). However, the specific regulatory targets and mechanisms of action of QGC are still unclear. To address this gap, we utilized network pharmacology, molecular docking, and pharmacodynamic approaches to investigate the bioactive components and associated mechanisms of QGC in the treatment of GA. By employing UPLC-Q Exactive-MS, we identified the compounds present in QGC, with active ingredients defined as those with oral bioavailability ≥30 % and drug similarity ≥0.18. Subsequently, the targets of these active compounds were determined using the TCMSP database, while GA-related targets were identified from DisGeNET, GeneCards, TTD, OMIM, and DrugBank databases. Further analysis including PPI analysis, GO analysis, and KEGG pathway enrichment was conducted on the targets. Validation of the predicted results was performed using a GA rat model, evaluating pathological changes, inflammatory markers, and pathway protein expression. Our results revealed a total of 130 components, 44 active components, 16 potential shared targets, GO-enriched terms, and 47 signaling pathways related to disease targets. Key active ingredients included quercetin, kaempferol, β-sitosterol, luteolin, and wogonin. The PPI analysis highlighted five targets (PPARG, IL-6, MMP-9, IL-1β, CXCL-8) with the highest connectivity, predominantly enriched in the IL-17 signaling pathway. Molecular docking experiments demonstrated strong binding of CXCL8, IL-1β, IL-6, MMP9, and PPARG targets with the top five active compounds. Furthermore, animal experiments confirmed the efficacy of QGC in treating GA in rats, showing reductions in TNF-α, IL-6, and MDA levels, and increases in SOD levels in serum. In synovial tissues, QGC treatment upregulated CXCL8 and PPARG expression, while downregulating IL-1β, MMP9, and IL-6 expression. In conclusion, this study applied a network pharmacology approach to uncover the composition of QGC, predict its pharmacological interactions, and demonstrate its in vivo efficacy, providing insights into the anti-GA mechanisms of QGC. These findings pave the way for future investigations into the therapeutic mechanisms underlying QGC's effectiveness in the treatment of GA.
Collapse
Affiliation(s)
- Gelin Xiang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Jing Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Di Pede G, Mena P, Bresciani L, Achour M, Lamuela-Raventós RM, Estruch R, Landberg R, Kulling SE, Wishart D, Rodriguez-Mateos A, Clifford MN, Crozier A, Manach C, Del Rio D. A Systematic Review and Comprehensive Evaluation of Human Intervention Studies to Unravel the Bioavailability of Hydroxycinnamic Acids. Antioxid Redox Signal 2024; 40:510-541. [PMID: 37382416 PMCID: PMC10960166 DOI: 10.1089/ars.2023.0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
Significance: Hydroxycinnamic acids (HCAs) are the main phenolic acids in the western diet. Harmonizing the available information on the absorption, distribution, metabolism, and excretion (ADME) of HCAs is fundamental to unraveling the compounds responsible for their health effects. This work systematically assessed pharmacokinetics, including urinary recovery, and bioavailability of HCAs and their metabolites, based on literature reports. Recent Advances: Forty-seven intervention studies with coffee, berries, herbs, cereals, tomato, orange, grape products, and pure compounds, as well as other sources yielding HCA metabolites, were included. Up to 105 HCA metabolites were collected, mainly acyl-quinic and C6-C3 cinnamic acids. C6-C3 cinnamic acids, such as caffeic and ferulic acid, reached the highest blood concentrations (maximum plasma concentration [Cmax] = 423 nM), with time to reach Cmax (Tmax) values ranging from 2.7 to 4.2 h. These compounds were excreted in urine in higher amounts than their phenylpropanoic acid derivatives (4% and 1% of intake, respectively), but both in a lower percentage than hydroxybenzene catabolites (11%). Data accounted for 16 and 18 main urinary and blood HCA metabolites, which were moderately bioavailable in humans (collectively 25%). Critical Issues: A relevant variability emerged. It was not possible to unequivocally assess the bioavailability of HCAs from each ingested source, and data from some plant based-foods were absent or inconsistent. Future Directions: A comprehensive study investigating the ADME of HCAs derived from their most important dietary sources is urgently required. Eight key metabolites were identified and reached interesting plasma Cmax concentrations and urinary recoveries, opening up new perspectives to evaluate their bioactivity at physiological concentrations. Antioxid. Redox Signal. 40, 510-541.
Collapse
Affiliation(s)
| | - Pedro Mena
- Department of Food and Drugs, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | | | - Mariem Achour
- Human Nutrition Unit, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ramon Estruch
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Sabine E. Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - David Wishart
- Department of Biological Sciences and University of Alberta, Edmonton, Canada
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, United Kingdom
| | - Michael N. Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Department of Nutrition Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, Australia
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Claudine Manach
- Human Nutrition Unit, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Daniele Del Rio
- Department of Food and Drugs, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
9
|
Lucini Mas A, Sabatino ME, Theumer MG, Wunderlin DA, Baroni MV. Antioxidant activity of chia flour as a food supplement in a cellular model: Repercussions of processing and in vitro digestion. Heliyon 2024; 10:e24125. [PMID: 38226208 PMCID: PMC10788807 DOI: 10.1016/j.heliyon.2024.e24125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
Food processing and digestion can alter bioactive compound composition of food, affecting their potential biological activity. In this study, we evaluated the direct and protective antioxidant effects of polyphenols extracted from defatted chia flour (DCF) (salviaflaside, rosmarinic and fertaric acid as major compounds), sweet cookies supplemented with DCF (CFC) (same major compounds), and their digested fractions (rosmarinic acid, salviaflaside, fertaric and salvianolic E/B/L acid as major compounds) in HepG2 cells in basal and in oxidative stress conditions. DCF showed protective antioxidant effects by decreasing reactive oxygen species (ROS) and protein oxidation products (POP) while increasing reduced glutathione (GSH). Additionally, CFC revealed similar protective effects and even showed enhanced modulation of the antioxidant system due to the activation of antioxidant enzymes. However, the digested fractions only decreased ROS, indicating continued antioxidant effects. This study underscores the importance of evaluating manufacturing and digestion effects to confirm a food's antioxidant properties.
Collapse
Affiliation(s)
- Agustin Lucini Mas
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC-CONICET) SeCyT - Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Eugenia Sabatino
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC-CONICET) SeCyT - Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Martin Gustavo Theumer
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), UNC, CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Daniel Alberto Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC-CONICET) SeCyT - Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Verónica Baroni
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC-CONICET) SeCyT - Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
10
|
Silva LR, Rodrigues S, Kumar N, Goel N, Singh K, Gonçalves AC. Development of phenolic acids-based system as anticancer drugs. ADVANCEMENT OF PHENOLIC ACIDS IN DRUG DISCOVERY 2024:255-294. [DOI: 10.1016/b978-0-443-18538-0.00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Oresanya IO, Orhan IE. Deciphering Neuroprotective Effect of Rosmarinus officinalis L. (syn. Salvia rosmarinus Spenn.) through Preclinical and Clinical Studies. Curr Drug Targets 2024; 25:330-352. [PMID: 38258779 DOI: 10.2174/0113894501255093240117092328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Rosmarinus officinalis L. (RO, rosemary) is a well-known medicinal, aromatic, and culinary herb with traditional use in European folk medicine against memory deficits and neurodegenerative disorders. This review highlights the different neuroprotective activities of RO investigated in both preclinical and clinical studies, as well as in silico molecular docking of bioactive compounds found in RO. The neuroprotective effect of RO was searched through databases including PubMed, Web of Science (WoS), Scopus, and Clinical Trials using the keywords "Rosmarinus officinalis, rosemary, neuroprotective effect, memory, cognitive dysfunction, Alzheimer's disease." RO, which is rich in secondary metabolites that have memory-enhancing potential, has displayed neuroprotection through different molecular mechanisms such as inhibition of cholinesterase, modulation of dopaminergic and oxytocinergic systems, mediation of oxidative and inflammatory proteins, involved in neuropathic pain, among others. RO extracts exhibited antidepressant and anxiolytic activities. Also, the plant has shown efficacy in scopolamine-, lipopolysaccharide-, AlCl3-, and H2O2-induced amnesia as well as amyloid-beta- and ibotenic acid-induced neurotoxicity and chronic constriction injury-related oxidative stress memory and cognitive impairments in animal models. A few clinical studies available supported the neuroprotective effects of RO and its constituents. However, more clinical studies are needed to confirm results from preclinical studies further and should include not only placebo-controlled studies but also studies including positive controls using approved drugs. Many studies underlined that constituents of RO may have the potential for developing drug candidates against Alzheimer's disease that possess high bioavailability, low toxicity, and enhanced penetration to CNS, as revealed from the experimental and molecular docking analysis.
Collapse
Affiliation(s)
- Ibukun O Oresanya
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Ilkay E Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No. 112, 06670 Ankara, Türkiye
| |
Collapse
|
12
|
Lee YE, Lee E, Rinik UR, Kim JY, Jung BH, Kwon O. Bioavailability of Korean mint ( Agastache rugosa) polyphenols in humans and a Caco-2 cell model: a preliminary study exploring the efficacy. Food Funct 2023; 14:8933-8941. [PMID: 37723877 DOI: 10.1039/d3fo02665e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Agastache rugosa, commonly known as Korean mint (KM), is a medicinal plant renowned for its potential health-promoting properties. However, the lack of bioavailability studies has hindered the acquisition of conclusive evidence. In this study, we investigated the bioavailability of six key polyphenols present in KM, including rosmarinic acid (RA), acacetin (AC), and four glycosides of AC. Utilizing UPLC-MS/MS, we analyzed their presence in human plasma and Caco-2 monolayers grown in permeable filter supports. Following single ingestion, we were able to detect RA, AC, and tilianin (TA) in the plasma. Consistent results were obtained for AC and TA but no transport was found for RA in a highly tight Caco-2 cell monolayer, indicating transport through the intercellular space for RA and transepithelial transport for AC and TA. Other AC glucosides with acetyl and/or malonyl groups were rarely found in the plasma. Interestingly, AC glucosides with only an acetyl group appeared at the basolateral side in Caco-2 monolayers, suggesting exclusive hydrolysis of malonyl glucosides in the colon. These findings highlight the high potential of RA, AC, and TA as bioactive compounds that may confer health benefits.
Collapse
Affiliation(s)
- Yea-Eun Lee
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Eunok Lee
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Urmi Rahman Rinik
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Byung Hwa Jung
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
13
|
Kitamura N, Yamamoto Y, Yamamoto N, Murase T. Rosmarinic acid ameliorates HCl-induced cystitis in rats. PLoS One 2023; 18:e0288813. [PMID: 37463180 DOI: 10.1371/journal.pone.0288813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Shiso (Perilla frutescens var crispa f. purprea) is a traditional medicinal herb that exerts anti-inflammatory effects and alleviates lower urinary tract symptoms. In this study, we examined the effects of rosmarinic acid, a major polyphenol in shiso, on urinary function and the bladder in a rat hydrochloric acid-induced cystitis model. Sprague-Dawley rats were administered intravesically with hydrochloric acid or saline solution (control) to induce cystitis. Afterwards, the rats were administered orally with distilled water or rosmarinic acid for three days and then the intravesical pressure was measured, a stretch stimulation test was performed using the harvested bladder, and histological and biochemical analyses were performed. In addition, we investigated the effects of rosmarinic acid on the expression of inflammation-related molecules in normal human bladder epithelial cells. Rosmarinic acid ameliorated hydrochloric acid-induced shortening of micturition interval by 49%. In hydrochloric acid-treated bladders, significantly more prostaglandin E2 was released after stretching; however, rosmarinic acid suppressed its release to control levels. Rosmarinic acid also reduced hydrochloric acid-induced epithelial thickening and the levels of inflammatory molecules in the bladder. Furthermore, rosmarinic acid suppressed interleukin 1β-induced increases in Cox2 and Il6 expression in bladder epithelial cells. These findings indicate that rosmarinic acid can ameliorate hydrochloric acid-induced cystitis in rats and that these effects are due, at least in part, to its anti-inflammatory effects on the bladder and inhibition of stretch-induced prostaglandin E2 release.
Collapse
Affiliation(s)
- Naoya Kitamura
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | | | - Naoki Yamamoto
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | | |
Collapse
|
14
|
Samy CRA, Karunanithi K, Sheshadhri J, Rengarajan M, Srinivasan P, Cherian P. ( R)-(+)-Rosmarinic Acid as an Inhibitor of Herpes and Dengue Virus Replication: an In Silico Assessment. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2023; 33:543-550. [PMID: 37151219 PMCID: PMC9994773 DOI: 10.1007/s43450-023-00381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/20/2023] [Indexed: 03/28/2023]
Abstract
Since ancient times, viruses such as dengue, herpes, Ebola, AIDS, influenza, chicken meat, and SARS have been roaming around causing great health burdens. Currently, the prescribed antiviral drugs have not cured the complications caused by viruses, whereas viral replication was not controlled by them. The treatments suggested are not only ineffectual, but also sometimes inefficient against viruses at all stages of the viral cycle as well. To fight against these contagious viruses, people rely heavily on medicinal plants to enhance their innate and adaptive immune systems. In this research, the preparation of ligands and proteins was performed using the Maestro V.13.2 module tool. This software, consisting of LigPrep, Grid Generation, SiteMap, and Glide XP, has each contributed significantly to the preparation of ligands and proteins. Ultimately, the research found that (R)-(+)-rosmarinic acid was found to have significant docking scores of - 10.847 for herpes virus, of - 10.033 for NS5, and - 7.259 for NS1. In addition, the Prediction of Activity Spectra for Substances (PASS) server indicates that rosmarinic acid possesses a diverse spectrum of enzymatic activities, as probability active (Pa) values start at > 0.751, whereas it has fewer adverse effects than the drugs prescribed for viruses. Accordingly, it was found the rate of acute toxicity values of (R)-(+)-rosmarinic acid at doses LD50 log10 (mmol/g) and LD50 (mg/g) in different routes of administration, such as intraperitoneal, intravenous, oral, and subcutaneous. Ultimately, the present study concluded that (R)-(+)-rosmarinic acid would expose significant antiviral effects in in vitro and in vivo experiments, and this research would be a valuable asset for the future, especially for those who wish to discover a drug molecule for a variety of viruses. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43450-023-00381-y.
Collapse
Affiliation(s)
- Christy Rani Arokia Samy
- Department of Chemistry, Thiru. Vi. Ka. Government Arts College, Kidarankondan, Thiruvarur, Tamil Nadu India 610 003
| | - Kalaimathi Karunanithi
- Department of Chemistry, Government College of Engineering, Sengipatti, Thanjavur, Tamil Nadu India 613 402
| | - Jayasree Sheshadhri
- Department of Chemistry, Prince Shri Venkateshwara Padmavathy Engineering College, Ponmar, Chennai, 600 127 India
| | - Murugesan Rengarajan
- Department of Zoology, Annai Vailankanni Arts and Science College, Bishop Sundaram Campus, Thanjavur, Tamil Nadu 613 007 India
| | - Prabhu Srinivasan
- Department of Botany, Annai Vailankanni Arts and Science College, Bishop Sundaram Campus, Thanjavur, Tamil Nadu 613 007 India
| | - Pinkie Cherian
- Department of Botany, St Joseph’s College for Women, Alappuzha, Kerala 688 001 India
| |
Collapse
|
15
|
Abduh MS, Alruhaimi RS, Alqhtani HA, Hussein OE, Abukhalil MH, Kamel EM, Mahmoud AM. Rosmarinic acid mitigates chlorpyrifos-induced oxidative stress, inflammation, and kidney injury in rats by modulating SIRT1 and Nrf2/HO-1 signaling. Life Sci 2023; 313:121281. [PMID: 36521549 DOI: 10.1016/j.lfs.2022.121281] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Chlorpyrifos (CPF) is a widely used broad-spectrum pesticide with multi-organ toxic effects. Oxidative stress was found to play a role in the deleterious effects of CPF, including nephrotoxicity. This study investigated the protective effect of the antioxidant polyphenol rosmarinic acid (RA) against CPF-induced kidney injury, with an emphasis on oxidative injury, inflammation, SIRT1, and Nrf2/HO-1 signaling. Rats received 10 mg/kg CPF and 25, 50, and 100 mg/kg RA orally for 28 days, and the samples were collected for analysis. CPF increased serum urea and creatinine and kidney Kim-1 and caused several histopathological alterations. ROS, MDA, NO, NF-κB p65, TNF-α, and IL-1β were elevated in the kidney of CPF-intoxicated rats. RA ameliorated kidney function markers, prevented tissue injury, suppressed ROS, MDA, and NO, and downregulated NF-κB p65, TNF-α, and IL-1β in CPF-intoxicated rats in a dose-dependent manner. RA decreased Bax, caspase-3, oxidative DNA damage, and Keap1, boosted antioxidant enzymes and Bcl-2, and upregulated Nrf2, HO-1, and SIRT1 in CPF-administered rats. Molecular docking simulation revealed the binding affinity of RA toward NF-κB, Keap1, HO-1, and SIRT1. In conclusion, RA prevented CPF nephrotoxicity by attenuating oxidative stress, inflammation, and apoptosis and upregulating SIRT1 and Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Haifa A Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omnia E Hussein
- Higher Technological Institute of Applied Health Sciences, Beni-Suef, Egypt
| | - Mohammad H Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an, Jordan; Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma'an, Jordan
| | - Emadeldin M Kamel
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
16
|
Caffeic Acid and Diseases-Mechanisms of Action. Int J Mol Sci 2022; 24:ijms24010588. [PMID: 36614030 PMCID: PMC9820408 DOI: 10.3390/ijms24010588] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Caffeic acid belongs to the polyphenol compounds we consume daily, often in the form of coffee. Even though it is less explored than caffeic acid phenethyl ester, it still has many positive effects on human health. Caffeic acid can affect cancer, diabetes, atherosclerosis, Alzheimer's disease, or bacterial and viral infections. This review focuses on the molecular mechanisms of how caffeic acid achieves its effects.
Collapse
|
17
|
Oral Pharmacokinetics of Hydroxycinnamic Acids: An Updated Review. Pharmaceutics 2022; 14:pharmaceutics14122663. [PMID: 36559157 PMCID: PMC9784852 DOI: 10.3390/pharmaceutics14122663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Hydroxycinnamic acids (HCAs) such as caffeic acid (CA), chlorogenic acid (CGA), coumaric acid (COA) isomers, ferulic acid (FA) and rosmarinic acid (RA) are natural phenolic acids with widespread distribution in vegetal foods and well-documented pharmacological activities. However, the low bioavailability of HCAs impairs their administration by the oral route. The present review addresses new findings and important factors/obstacles for their oral administration, which were unexplored in the reviews published a decade ago concerning the bioavailability of phenolic acids. Based on this, the article aims to perform an updated review of the water solubility and gastrointestinal stability of HCAs, as well as describe their oral absorption, distribution, metabolism and excretion (ADME) processes by in vitro, ex vivo, in situ and in vivo methods.
Collapse
|
18
|
Flavones, Flavonols, Lignans, and Caffeic Acid Derivatives from Dracocephalum moldavica and Their In Vitro Effects on Multiple Myeloma and Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms232214219. [PMID: 36430695 PMCID: PMC9696366 DOI: 10.3390/ijms232214219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Phenolic plant constituents are well known for their health-promoting and cancer chemopreventive properties, and products containing such constituents are therefore readily consumed. In the present work, we isolated 13 phenolic constituents of four different compound classes from the aerial parts of the Moldavian dragonhead, an aromatic and medicinal plant with a high diversity on secondary metabolites. All compounds were tested for their apoptotic effect on myeloma (KMS-12-PE) and AML (Molm-13) cells, with the highest activity observed for the flavone and flavonol derivatives. While diosmetin (6) exhibited the most pronounced effects on the myeloma cell line, two polymethylated flavones, namely cirsimaritin (1) and xanthomicrol (3), were particularly active against AML cells and therefore subsequently investigated for their antiproliferative effects at lower concentrations. At a concentration of 2.5 µM, cirsimaritin (1) reduced proliferation of Molm-13 cells by 72% while xanthomicrol (3) even inhibited proliferation to the extent of 84% of control. In addition, both compounds were identified as potent FLT3 inhibitors and thus display promising lead structures for further drug development. Moreover, our results confirmed the chemopreventive properties of flavonoids in general, and in particular of polymethylated flavones, which have been intensively investigated especially over the last decade.
Collapse
|
19
|
Jang AK, Rashid MM, Lee G, Kim DY, Ryu HW, Oh SR, Park J, Lee H, Hong J, Jung BH. Metabolites identification for major active components of Agastache rugosa in rat by UPLC-Orbitap-MS: Comparison of the difference between metabolism as a single component and as a component in a multi-component extract. J Pharm Biomed Anal 2022; 220:114976. [DOI: 10.1016/j.jpba.2022.114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
|
20
|
Kashchenko NI, Olennikov DN. Glycosides of Rosmarinic Acid from Nepeta multifida. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Liu J, Shi Y, Peng D, Wang L, Yu N, Wang G, Chen W. Salvia miltiorrhiza Bge. (Danshen) in the Treating Non-alcoholic Fatty Liver Disease Based on the Regulator of Metabolic Targets. Front Cardiovasc Med 2022; 9:842980. [PMID: 35528835 PMCID: PMC9072665 DOI: 10.3389/fcvm.2022.842980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is rapidly prevalent due to its strong association with increased metabolic syndrome such as cardio- and cerebrovascular disorders and diabetes. Few drugs can meet the growing disease burden of NAFLD. Salvia miltiorrhiza Bge. (Danshen) have been used for over 2,000 years in clinical trials to treat NAFLD and metabolic syndrome disease without clarified defined mechanisms. Metabolic targets restored metabolic homeostasis in patients with NAFLD and improved steatosis by reducing the delivery of metabolic substrates to liver as a promising way. Here we systematic review evidence showing that Danshen against NAFLD through diverse and crossing mechanisms based on metabolic targets. A synopsis of the phytochemistry and pharmacokinetic of Danshen and the mechanisms of metabolic targets regulating the progression of NAFLD is initially provided, followed by the pharmacological activity of Danshen in the management NAFLD. And then, the possible mechanisms of Danshen in the management of NAFLD based on metabolic targets are elucidated. Specifically, the metabolic targets c-Jun N-terminal kinases (JNK), sterol regulatory element-binding protein-1c (SREBP-1c), nuclear translocation carbohydrate response element–binding protein (ChREBP) related with lipid metabolism pathway, and peroxisome proliferator-activated receptors (PPARs), cytochrome P450 (CYP) and the others associated with pleiotropic metabolism will be discussed. Finally, providing a critical assessment of the preclinic and clinic model and the molecular mechanism in NAFLD.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- *Correspondence: Lei Wang,
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- Weidong Chen,
| |
Collapse
|
22
|
Noor S, Mohammad T, Rub MA, Raza A, Azum N, Yadav DK, Hassan MI, Asiri AM. Biomedical features and therapeutic potential of rosmarinic acid. Arch Pharm Res 2022; 45:205-228. [PMID: 35391712 PMCID: PMC8989115 DOI: 10.1007/s12272-022-01378-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
For decades, the use of secondary metabolites of various herbs has been an attractive strategy in combating human diseases. Rosmarinic acid (RA) is a bioactive phenolic compound commonly found in plants of Lamiaceae and Boraginaceae families. RA is biosynthesized using amino acids tyrosine and phenylalanine via enzyme-catalyzed reactions. However, the chemical synthesis of RA involves an esterification reaction between caffeic acid and 3,4-dihydroxy phenyl lactic acid contributing two phenolic rings to the structure of RA. Several studies have ascertained multiple therapeutic benefits of RA in various diseases, including cancer, diabetes, inflammatory disorders, neurodegenerative disorders, and liver diseases. Many previous scientific papers indicate that RA can be used as an anti-plasmodic, anti-viral and anti-bacterial drug. In addition, due to its high anti-oxidant capacity, this natural polyphenol has recently gained attention for its possible application as a nutraceutical compound in the food industry. Here we provide state-of-the-art, flexible therapeutic potential and biomedical features of RA, its implications and multiple uses. Along with various valuable applications in safeguarding human health, this review further summarizes the therapeutic advantages of RA in various human diseases, including cancer, diabetes, neurodegenerative diseases. Furthermore, the challenges associated with the clinical applicability of RA have also been discussed.
Collapse
Affiliation(s)
- Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Malik Abdul Rub
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ali Raza
- Department of Medical Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Naved Azum
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsugu, Incheon, 21924, Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
23
|
Technological strategies applied for rosmarinic acid delivery through different routes – A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Parvandi M, Rezadoost H, Farzaneh M. Introducing Alternaria tenuissima SBUp1, as an endophytic fungus of Ferula assa-foetida from Iran, which is a rich source of rosmarinic acid. Lett Appl Microbiol 2021; 73:569-578. [PMID: 34297439 DOI: 10.1111/lam.13542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
Endophytic fungi are the endogenous micro-organisms to interacting with the plant cells, which do not exhibit any symptoms on the host plant and may produce some of the main secondary metabolites of the host plant cells. Ferula assa-foetida is a perennial and endemic medicinal plant of Iran, which is a rich source of sesquiterpene, coumarins, polysulfides and phenolic acids. In this study, 28 endophytic fungi isolates including Fusarium (60·7%), Aspergillus (7·1%), Alternaria (17·9%) and Plectosphaerella (7·1%) were isolated from F. assa-foetida root (57·1%), stem (32·1%) and leaf (10·8%) collected from Parvand protected area. Subsequently, their ability to produce phenolic acids was evaluated. The high amounts of total phenol (326·09 mg g-1 of dry weight, DW), total flavonoid (901·11 mg g-1 DW) and antioxidant activity (247·96 mg l-1 ) were found in the supernatant fluid of SBUp1 isolate. The high-performance liquid chromatography analysis of 14 phenolic acids showed that rosmarinic acid (RA) is the main phenolic acid in the supernatant fluid of SBUp1 by 64·11 mg g-1 DW confirmed by the liquid chromatography coupled with mass spectrometric analysis. According to morphological identification followed by phylogenetic study based on internal transcribed spacer (ITS) sequencing (ITS1-5.8S-ITS2) analysis, the SBUp1 isolate was identified as Alternaria tenuissima. Eventually, to our knowledge, it is the first document confirming A. tenuissima as an endophytic fungus of F. assa-foetida, which is a rich source of RA.
Collapse
Affiliation(s)
- M Parvandi
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - H Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - M Farzaneh
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
25
|
Nyandwi JB, Ko YS, Jin H, Yun SP, Park SW, Kim HJ. Rosmarinic Acid Exhibits a Lipid-Lowering Effect by Modulating the Expression of Reverse Cholesterol Transporters and Lipid Metabolism in High-Fat Diet-Fed Mice. Biomolecules 2021; 11:1470. [PMID: 34680102 PMCID: PMC8533102 DOI: 10.3390/biom11101470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperlipidemia is a potent risk factor for the development of cardiovascular diseases. The reverse cholesterol transport (RCT) process has been shown to alleviate hyperlipidemia and protect against cardiovascular diseases. Recently, rosmarinic acid was reported to exhibit lipid-lowering effects. However, the underlying mechanism is still unclear. This study aims to investigate whether rosmarinic acid lowers lipids by modulating the RCT process in high-fat diet (HFD)-induced hyperlipidemic C57BL/6J mice. Our results indicated that rosmarinic acid treatment significantly decreased body weight, blood glucose, and plasma total cholesterol and triglyceride levels in HFD-fed mice. Rosmarinic acid increased the expression levels of cholesterol uptake-associated receptors in liver tissues, including scavenger receptor B type 1 (SR-B1) and low-density lipoprotein receptor (LDL-R). Furthermore, rosmarinic acid treatment notably increased the expression of cholesterol excretion molecules, ATP-binding cassette G5 (ABCG5) and G8 (ABCG8) transporters, and cholesterol 7 alpha-hydroxylase A1 (CYP7A1) as well as markedly reduced cholesterol and triglyceride levels in liver tissues. In addition, rosmarinic acid facilitated fatty acid oxidation through AMP-activated protein kinase (AMPK)-mediated carnitine palmitoyltransferase 1A (CPT1A) induction. In conclusion, rosmarinic acid exhibited a lipid-lowering effect by modulating the expression of RCT-related proteins and lipid metabolism-associated molecules, confirming its potential for the prevention or treatment of hyperlipidemia-derived diseases.
Collapse
Affiliation(s)
- Jean Baptiste Nyandwi
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali 4285, Rwanda
| | - Young Shin Ko
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
| | - Hana Jin
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
26
|
Wu L, Velander P, Brown AM, Wang Y, Liu D, Bevan DR, Zhang S, Xu B. Rosmarinic Acid Potently Detoxifies Amylin Amyloid and Ameliorates Diabetic Pathology in a Transgenic Rat Model of Type 2 Diabetes. ACS Pharmacol Transl Sci 2021; 4:1322-1337. [PMID: 34423269 PMCID: PMC8369672 DOI: 10.1021/acsptsci.1c00028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 11/30/2022]
Abstract
Protein aggregation is associated with a large number of human protein-misfolding diseases, yet FDA-approved drugs are currently not available. Amylin amyloid and plaque depositions in the pancreas are hallmark features of type 2 diabetes. Moreover, these amyloid deposits are implicated in the pathogenesis of diabetic complications such as neurodegeneration. We recently discovered that catechols and redox-related quinones/anthraquinones represent a broad class of protein aggregation inhibitors. Further screening of a targeted library of natural compounds in complementary medicine that were enriched with catechol-containing compounds identified rosmarinic acid (RA) as a potent inhibitor of amylin aggregation (estimated inhibitory concentration IC50 = 200-300 nM). Structure-function relationship analysis of RA showed the additive effects of the two catechol-containing components of the RA molecule. We further showed that RA does not reverse fibrillation back to monomeric amylin but rather lead to nontoxic, remodeled protein aggregates. RA has significant ex vivo efficacy in reducing human amylin oligomer levels in HIP rat sera as well as in sera from diabetic patients. In vivo efficacy studies of RA treatment with the diabetic HIP rat model demonstrated significant reduction in amyloid islet deposition and strong mitigation of diabetic pathology. Our work provides new in vitro molecular mechanisms and in vivo efficacy insights for a model nutraceutical agent against type 2 diabetes and other aging-related protein-misfolding diseases.
Collapse
Affiliation(s)
- Ling Wu
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
- Biomanufacturing
Research Institute & Technology Enterprise (BRITE) and Department
of Pharmaceutical Sciences, North Carolina
Central University, Durham, North Carolina 27707, United States
| | - Paul Velander
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Anne M. Brown
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Yao Wang
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Dongmin Liu
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - David R. Bevan
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Shijun Zhang
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Bin Xu
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
- Biomanufacturing
Research Institute & Technology Enterprise (BRITE) and Department
of Pharmaceutical Sciences, North Carolina
Central University, Durham, North Carolina 27707, United States
- Affiliated
Program Faculty, Duke Comprehensive Stroke
Center, Durham, North Carolina 27710, United States
| |
Collapse
|
27
|
Seyed MA, Ayesha S, Azmi N, Al-Rabae FM, Al-Alawy AI, Al-Zahrani OR, Hawsawi Y. The neuroprotective attribution of Ocimum basilicum: a review on the prevention and management of neurodegenerative disorders. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00295-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Background
Bioactive principles from various natural resources including medicinal herbs have always played a crucial role in healthcare settings and increasingly became key players in drug discovery and development for many biopharmaceutical applications. Additionally, natural products (NPs) have immense arrangement of distinctive chemical structures with diverse functional groups that motivated numerous investigators including synthetic chemists to discover new therapeutic entities. Numerous pre-clinical investigations involving the animal models have evident the usefulness of these NPs against various human diseases including neurodegenerative disorders (NDs).
Main text
Ocimum basilicum Linn (O. basilicum L.), also known as sweet basil, is well practiced in traditional healthcare systems and has been used to treat various human illnesses, which include malaria, skin disease, diarrhea, bronchitis, dysentery, arthritis, eye diseases, and insect bites and emphasize the significance of the ethno-botanical approach as a potential source of novel drug leads With the growing interest in advanced techniques, herbal medicine and medicinal plants explorations are still considered to be a novel resource for new pharmacotherapeutic discovery and development. O. basilicum L and its bioactive principles including apigenin, eugenol, myretenal, β-sitosterol, luteolin, rosmarinic acid, carnosic acid, essential oil (EO)-rich phenolic compounds, and others like anthocyanins and flavones could be of therapeutic values in NDs by exhibiting their neuro-protective efficacy on various signaling pathways. The present comprehensive review collected various related information using the following searching engines such as PubMed, Science Direct, Google Scholar, etc. and focused mainly the English written documents. The search period comprised of last two decades until present.
Conclusion
Although these efficacious plant genera of prime importance and has potential medical and socioeconomic importance, yet the pivotal evidence for its neuroprotective potential in novel clinical trials remains lacking. However, with the available wealth of obtainable literature on this medicinal plant, which supports this review and concludes that O. basilicum L may function as a promising therapeutics for the treatment of NDs.
Collapse
|
28
|
Wang LY, Niu YY, Zhao MY, Yu YM, Li YT, Wu ZY, Yan CW. Supramolecular self-assembly of amantadine hydrochloride with ferulic acid via dual optimization strategy establishes a precedent of synergistic antiviral drug-phenolic acid nutraceutical cocrystal. Analyst 2021; 146:3988-3999. [PMID: 34013306 DOI: 10.1039/d1an00478f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To display the capability of the phenolic acid nutraceutical ferulic acid (FLA) in optimizing the in vitro/in vivo properties of the antiviral drug amantadine hydrochloride (AMH) and achieve synergistically enhanced antiviral effects, thereby gaining some new insights into pharmaceutical cocrystals of antiviral drugs with phenolic acid nutraceuticals, a cocrystallization strategy of dual optimization was created. Based on this strategy, the first drug-phenolic acid nutraceutical cocrystal of AMH with FLA, namely AMH-FLA-H2O, was successfully assembled and completely characterized by employing single-crystal X-ray diffraction and other analytical techniques. The cocrystal was revealed to be composed of AMH, FLA, and water molecules in the ratio of 3 : 1 : 1.5, and charge-assisted hydrogen bonds containing chloride ions crucially maintained the crystal lattice together with water molecules. The in vitro/in vivo properties of the cocrystal were systematically evaluated via both theoretical and experimental methods, and the results indicate that the dissolubility of AMH is down-regulated by two-thirds in the cocrystal, resulting in its potential for sustained pharmacokinetic release and the elimination of the adverse effects of AMH. More importantly, the enhanced antiviral effects of the current cocrystal were proven against four viral strains, and the pharmaceutical synergy between AMH and FLA was realized with a combination index (CI) of less than 1. Thus, the present work provides a novel crystalline product with bright commercial prospect for the classical antiviral drug AMH and also establishes an avenue for the synergetic antiviral application of nutraceutical phenolic acids via the cocrystallization strategy of dual optimization.
Collapse
Affiliation(s)
- Ling-Yang Wang
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Yuan-Yuan Niu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Ming-Yu Zhao
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Yue-Ming Yu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Yan-Tuan Li
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China. and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science. Qingdao, Shandong, PR China
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Cui-Wei Yan
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| |
Collapse
|
29
|
Zhang C, Liu C, Wu H, Wang J, Sun Y, Liu R, Li T, Yu X, Geng D, Sun YK. Global Analysis the Potential Medicinal Substances of Shuangxia Decoction and the Process In Vivo via Mass Spectrometry Technology. Front Pharmacol 2021; 12:654807. [PMID: 33995072 PMCID: PMC8120809 DOI: 10.3389/fphar.2021.654807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/15/2021] [Indexed: 12/29/2022] Open
Abstract
Shuangxia decoction is an effective traditional Chinese medicine formula for treating insomnia. Up to now, there has not been any report about the effective substances. An omics data processing method based on mass spectrometry technology is used to explore the chemical composition changes of Shuangxia decoction, the components absorbed into the blood and brain, and to explore the anti-insomnia mechanism based on molecular docking technology. Forty-nine chemical components in Shuangxia decoction have been identified, and 51 new components generated by co-decoction have been discovered. It was found that 7,404 compounds of Shuangxia decoction were absorbed into the blood. Forty kinds of known compounds were quickly identified, and 15 new compounds generated by co-decoction were also found to be absorbed into the blood. By using UPLC-MS/MS method, it was confirmed that 10 compounds were absorbed into the blood and 9 compounds were absorbed into the brain. Furthermore, it is found that rosmarinic acid is mainly distributed in the hypothalamus and striatum, and caffeic acid is mainly distributed in the hypothalamus, striatum, and hippocampus. Molecular docking results showed rosmarinic acid, danshensu, and HMLA with GABAA receptor have excellent binding characteristics, even surpassing the proligand. Danshensu and HMLA with dopamine D2 receptor also showed good binding energy. Our findings will help to further confirm the mechanism of Shuangxia decoction for relieving insomnia, and we also establish a novel data processing method for supplementing the mechanism of the efficacy of other traditional Chinese medicine formula.
Collapse
Affiliation(s)
- Chenning Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanxin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Runhua Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tianyi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Di Geng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi-Kun Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Hitl M, Kladar N, Gavarić N, Božin B. Rosmarinic Acid-Human Pharmacokinetics and Health Benefits. PLANTA MEDICA 2021; 87:273-282. [PMID: 33285594 DOI: 10.1055/a-1301-8648] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Rosmarinic acid is a phenolic compound commonly found in the Lamiaceae (Labiateae) plant species. It is considered responsible for a wide spectrum of biological and pharmacological activities of plants containing this compound. The aim of the current review is to present the fate of rosmarinic acid inside the human body, explained through pharmacokinetic steps and to briefly present the health benefits of RA. Pharmacokinetics was at first studied in animal models, but several studies were conducted in humans as well. This compound can be applied topically, pulmonary, intranasally, and via intravenous infusion. However, peroral application is the main route of entry into the human body. Presumably, it is mainly metabolized by the gut microflora, providing simple, more easily absorbed phenolic units. Inside the body, the rosmarinic acid molecule undergoes structural changes, as well as conjugation reactions. Renal excretion represents the main path of elimination. Previously conducted studies reported no serious adverse effects of herbal remedies containing RA, as well as their positive effects on human health. In addition to in vitro studies, clinical investigations suggested its benefits in dermatological, allergic, and osteoarthritic disorders, as well as for improving cognitive performance and in metabolic syndrome treatment. Future studies should investigate the kinetics during long-term application in patients who would have potential benefits from RA usage. Pharmaceutical formulations designed to prevent the fast metabolism of RA and allow its penetration into other compartments of the human body are also interesting topics for future research.
Collapse
Affiliation(s)
- Maja Hitl
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nebojša Kladar
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Neda Gavarić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Biljana Božin
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
31
|
Comparative metabolism study on chlorogenic acid, cryptochlorogenic acid and neochlorogenic acid using UHPLC-Q-TOF MS coupled with network pharmacology. Chin J Nat Med 2021; 19:212-224. [PMID: 33781455 DOI: 10.1016/s1875-5364(21)60023-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 11/21/2022]
Abstract
Chlorogenic acid (5-CQA), neochlorogenic acid (3-CQA), and cryptochlorogenic acid (4-CQA), usually simultaneously exist in many traditional Chinese medicines (TCMs). However, insufficient attentions have been paid to the comparative metabolism study on these three isomeric constituents with similar effects on anti-inflammation until now. In this study, a novel strategy was established to perform comparative analysis of their metabolic fates in rats and elucidate the pharmacological mechanism of anti-inflammation. Firstly, diagnostic product ions (DPIs) deduced from the representative reference standards were adopted to rapidly screen and characterize the metabolites in rat plasma, urine and faeces using UHPLC-Q-TOF MS. Subsequently, Network pharmacology was utilized to elucidate their anti-inflammatory mechanism. Consequently, a total of 73 metabolites were detected and characterized, including 50, 47 and 43 metabolites for 5-CQA, 4-CQA and 3-CQA, orderly. Moreover, the network pharmacology study indicated that these three isomeric constituents and their major metabolites with similar in vivo metabolic pathways exerted anti-inflammatory effects through co-owned 20 biological processes, which involved 10 major signal pathways and 159 potential targets. Our study shed light on the similarities and differences of the metabolic profiling and anti-inflammatory activity among these three isomeric constituents and set an example for the further researches on the active mechanism of isomeric constituents existing in TCMs based on comparative metabolism study.
Collapse
|
32
|
Melo CPB, Saito P, Vale DL, Rodrigues CCA, Pinto IC, Martinez RM, Bezerra JR, Baracat MM, Verri WA, Fonseca-Bazzo YM, Georgetti SR, Casagrande R. Protective effect of oral treatment with Cordia verbenacea extract against UVB irradiation deleterious effects in the skin of hairless mouse. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 216:112151. [PMID: 33581679 DOI: 10.1016/j.jphotobiol.2021.112151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Photochemoprotection of the skin can be achieved by inhibiting inflammation and oxidative stress, which we tested using Cordia verbenacea extract, a medicinal plant known for its rich content of antioxidant molecules and anti-inflammatory activity. In vitro antioxidant evaluation of Cordia verbenacea leaves ethanolic extract (CVE) presented the following results: ferric reducing antioxidant power (886.32 μM equivalent of Trolox/g extract); IC50 of 19.128 μg/ml for scavenging 2,2-diphenyl-1-picrylhydrazyl; IC50 of 12.48 μg/mL for scavenging 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid); decrease of hydroperoxides from linoleic acid (IC50 of 10.20 μg/mL); inhibition of thiobarbituric acid reactive substances (IC50 8.90 μg/mL); iron-chelating ability in bathophenanthroline iron assay (IC50 47.35 μg/mL); chemiluminescence triggered by free radicals in the H2O2/horseradish peroxidase/luminol (IC50 0.286 μg/mL) and xanthine/xanthine oxidase/luminol (IC50 0.42 μg/mL) methods. CVE (10-100 mg per kg, 30 min before and immediately after UVB exposure) treatment was performed by gavage in hairless mice. CVE inhibited skin edema, neutrophil infiltration, and overproduction of MMP-9; reduced levels of TNF-α, IL-1β, and IL- 6; numbers of skin mast cells, epidermal thickening, number of epidermal apoptotic keratinocytes, and collagen degradation. CVE increased the skin's natural antioxidant defenses as observed by Nrf-2, NAD(P)H quinone oxidoreductase 1, and heme oxygenase 1 mRNA expression enhancement. Furthermore, CVE inhibited lipid peroxidation and superoxide anion production and recovered antioxidant reduced glutathione, catalase activity, and ROS scavenging capacity of the skin. Concluding, CVE downregulates the skin inflammatory and oxidative damages triggered by UVB, demonstrating its potentialities as a therapeutic approach.
Collapse
Affiliation(s)
- Cristina P B Melo
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - Priscila Saito
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - David L Vale
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - Camilla C A Rodrigues
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - Ingrid C Pinto
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - Renata M Martinez
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - Julia Rojo Bezerra
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - Marcela M Baracat
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Yris Maria Fonseca-Bazzo
- Laboratório de Controle da Qualidade, Faculdade de Ciências da Saúde, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, DF CEP 70910-900, Brazil.
| | - Sandra R Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| |
Collapse
|
33
|
Wang X, Qian Y, Li X, Jia X, Yan Z, Han M, Qiao M, Ma X, Chu Y, Zhou S, Yang W. Rapid determination of rosmarinic acid and its two bioactive metabolites in the plasma of rats by LC-MS/MS and application to a pharmacokinetics study. Biomed Chromatogr 2021; 35:e4984. [PMID: 33025603 DOI: 10.1002/bmc.4984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Rosmarinic acid (RA), an ester compound of caffeic acid (CA) and 3,4-dihydroxyphenyllacic acid, is widely distributed in the herbs of the Lamiaceae family and has shown a wide spectrum of pharmacological properties. CA and FA (ferulic acid) are two bioactive metabolites in vivo after oral administration of RA; however, a rapid and robust analytical approach that can enable the quantitative assay of RA and two bioactive metabolites is still lacking. A liquid chromatography/tandem mass spectrometry method was established that was capable of the quantitative determination of RA, CA and FA by negative-mode multiple reaction monitoring within 7 min using a Zorbax SB-C18 column and an isocratic elution. This assay method was validated as linear over the investigated ranges with correlation coefficients (r) > 0.9950. The intra- and inter-day precision was <10.65%, and the accuracies (relative error, %) <-6.41%. The validated approach was applied to a pharmacokinetics study of RA and its two metabolites in rats after oral and intravenous administration. RA was rapidly metabolized in both administration modes, whilst the metabolites CA and FA were only detectable by oral administration. The absolute availability of RA was calculated to be 4.13%.
Collapse
Affiliation(s)
- Xiangyang Wang
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
- Skate Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
| | - Yuexin Qian
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Li
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Jia
- Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
- China Pharmaceutical University, Nanjing, China
| | - Zhexuan Yan
- Skate Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
| | - Min Han
- Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
- Skate Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
| | - Miao Qiao
- Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
- Skate Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
| | - Xiaohui Ma
- Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
- Skate Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
| | - Yang Chu
- Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
- Skate Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
| | - Shuiping Zhou
- Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
- Skate Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
34
|
Niu YY, Wang LY, Yu YM, Li YT, Wu ZY, Yan CW. Molecular adduct of amantadine ferulate presents a pathway for slowing in vitro/ vivo releases and raising synergistic antiviral effects via dual optimization salification strategy. CrystEngComm 2021. [DOI: 10.1039/d1ce00382h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first synthesized antiviral drug-nutriment molecular salt demonstrating simultaneous slowed-release and synergistically enhanced antiviral effects is studied theoretically and experimentally.
Collapse
Affiliation(s)
- Yuan-Yuan Niu
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| | - Ling-Yang Wang
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| | - Yue-Ming Yu
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| | - Yan-Tuan Li
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| | - Cui-Wei Yan
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| |
Collapse
|
35
|
Fachel FNS, Michels LR, Azambuja JH, Lenz GS, Gelsleichter NE, Endres M, Scholl JN, Schuh RS, Barschak AG, Figueiró F, Bassani VL, Henriques AT, Koester LS, Teixeira HF, Braganhol E. Chitosan-coated rosmarinic acid nanoemulsion nasal administration protects against LPS-induced memory deficit, neuroinflammation, and oxidative stress in Wistar rats. Neurochem Int 2020; 141:104875. [PMID: 33039443 DOI: 10.1016/j.neuint.2020.104875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 01/22/2023]
Abstract
Rosmarinic acid (RA) lipid-nanotechnology-based delivery systems associate with mucoadhesive biopolymers for nasal administration has arisen as a new promising neuroprotective therapy for neurodegenerative disorders (ND). We have previously demonstrated the glioprotective effect of chitosan-coated RA nanoemulsions (RA CNE) against lipopolysaccharide (LPS)-induced damage in rat astrocyte primary culture. Here, we further investigate the protective effect of RA CNE nasal administration on LPS-induced memory deficit, neuroinflammation, and oxidative stress in Wistar rats, since these in vivo studies were crucial to understand the impact of developed delivery systems in the RA neuroprotective effects. The animals were treated through nasal route with RA CNE (2 mg·mL-1), free RA (2 mg·mL-1), blank CNE, and saline (control and LPS groups) administrations (n.a., 100 μL per nostril) twice a day (7 a.m./7 p.m.) for six days. On the sixth day, the animals received the last treatments and LPS was intraperitoneally (i.p.) administrated (250 μg·kg-1). Overall results, proved for the first time that the RA CNE nasal administration elicits a neuroprotective effect against LPS-induced damage, which was associated with increased 1.6 times recognition index, decreased 5.0 and 1.9 times in GFAP+ cell count and CD11b expression, respectively, as well as increased 1.7 times SH in cerebellum and decreased 3.9 times TBARS levels in cerebral cortex in comparison with LPS group. RA CNE treatment also facilitates RA bioavailability in the brain, confirmed by RA quantification. Free RA also demonstrates a protective effect in some studied parameters, although no RA was quantified in the brain.
Collapse
Affiliation(s)
- Flávia Nathiely Silveira Fachel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luana Roberta Michels
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana Hofstätter Azambuja
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Gabriela Spies Lenz
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Nicolly Espindola Gelsleichter
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Marcelo Endres
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Roselena Silvestri Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alethea Gatto Barschak
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Valquíria Linck Bassani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amelia Teresinha Henriques
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
36
|
Martini S, Tagliazucchi D, Minelli G, Lo Fiego DP. Influence of linseed and antioxidant-rich diets in pig nutrition on lipid oxidation during cooking and in vitro digestion of pork. Food Res Int 2020; 137:109528. [PMID: 33233160 DOI: 10.1016/j.foodres.2020.109528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 11/18/2022]
Abstract
Enrichment of pig diets with polyunsaturated fatty acids (PUFA) is considered an emerging strategy to increase their intake in the human diet. However, PUFA are particularly vulnerable to oxidative reactions leading to the generation of toxic compounds. The aim of this study was to evaluate the effect of supplementation of pig diets with extruded linseed (L), either or not in combination with synthetic antioxidants (E, tocopheryl-acetate and selenium) or natural extracts (P, grape-skin and oregano), and basal diet (C, without linseed) on the oxidative stability in raw, grilled and in vitro digested pork. The diet supplementation with antioxidant-rich ingredients resulted in the accumulation of specific metabolites in meat. Actually, 11 different phenolic- and 6 tocopherol-derived metabolites were identified by UHPLC/HR-MS. These metabolites were potentially correlated with the reduction in the oxidative phenomena occurring during meat cooking and digestion. Specifically, 16% and 35% reduction in the amounts of lipid hydroperoxides and TBA-RS were assessed after cooking of meat from P diet, respect to the L diet. Diet supplementations with α-tocopheryl acetate and selenium reduced the oxidative reactions only during meat cooking. A significant reduction was attended at the end of in vitro digestion, showing about 24% and 34% hydroperoxides and TBA-RS concentration reductions, respectively, in P diet samples respect to the L ones. Thus, our study suggests that the appearance of phenolic metabolites in meat could be associated to a reduction in the oxidative phenomena during meat cooking and digestion.
Collapse
Affiliation(s)
- Serena Martini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy.
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Giovanna Minelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Domenico Pietro Lo Fiego
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
37
|
Bioavailability and nutrikinetics of rosemary tea phenolic compounds in humans. Food Res Int 2020; 139:109815. [PMID: 33509454 DOI: 10.1016/j.foodres.2020.109815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
Rosmarinus officinalis L. is a widespread aromatic plant commonly consumed as a tea in traditional cuisine and in folk medicine to treat various illnesses due to its therapeutic properties. To the best of our knowledge, there are no reports on the bioavailability and metabolism of R. officinalis tea polyphenols in humans. This study was aimed at assessing the bioavailability and nutrikinetics of R. officinalis phenolic compounds in healthy humans for the first time. Forty-eight compounds were identified in plasma and urine. Few un-metabolized compounds were detected since rosemary polyphenols were extensively metabolized into phase II conjugates, with rapid appearance and clearance in plasma, pointing to small intestinal absorption. Phase II derivatives of caffeic acid showed kinetics compatible with both intestinal and colonic hydrolysis of rosmarinic acid yielding free caffeic and 3,4-dihydroxyphenyl-lactic acids, which were absorbed and metabolized into phase II derivatives. These metabolites, along with reduced forms of caffeic acid and their phase II metabolites, and those of hydroxyphenylpropionic, hydroxylphenylacetic, benzoic and hippuric acids, highlight the importance of colonic absorption. Total urinary excretion of the phenols added up to 235 µmol, corresponding to 22.3% of the ingested amount (1055 µM). In conclusion, rosemary tea polyphenols are partially bioavailable and extensively metabolized, mainly by the colonic microbiota.
Collapse
|
38
|
Liang W, Xiong T, Wang X, Deng H, Bai Y, Fan TP, Zheng X, Cai Y. A novel feruloyl esterase with high rosmarinic acid hydrolysis activity from Bacillus pumilus W3. Int J Biol Macromol 2020; 161:525-530. [PMID: 32531366 DOI: 10.1016/j.ijbiomac.2020.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022]
Abstract
A novel feruloyl esterase (BpFae12) with rosmarinic acid (RA) hydrolysis activity was isolated from Bacillus pumilus W3 and expressed in Escherichia coli BL21 (DE3). With RA as a substrate, the optimal pH and temperature of BpFae12 were pH 8.0 and 50 °C, respectively. The specific enzyme activity was 12.8 U·mg-1. BpFae12 showed the highest activity and substrate affinity toward RA (Vmax of 13.13 U·mg-1, Km of 0.41 mM). Moreover, it also presented strong hydrolysis performance against chlorogenic acid (190.17 U·mg-1). RA was effectively Hydrolyzed into more bioactive caffeic acid and 3,4-dihydroxyphenyllactic acid by BpFae12, which have potential applications in the food industry.
Collapse
Affiliation(s)
- Weiyue Liang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Tianzhen Xiong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaomei Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huaxiang Deng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shanxi 710069, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1T, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shanxi 710069, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
39
|
Guo C, Shangguan Y, Zhang M, Ruan Y, Xue G, Ma J, Yang J, Qiu L. Rosmarinic acid alleviates ethanol-induced lipid accumulation by repressing fatty acid biosynthesis. Food Funct 2020; 11:2094-2106. [PMID: 32129352 DOI: 10.1039/c9fo02357g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Recent studies have demonstrated that rosmarinic acid is a valuable natural product for treatment of alcoholic liver disease. However, the mechanisms whereby rosmarinic acid improves alcoholic liver disease remain unclear. Here we performed experiments using a non-transformed mouse hepatocyte cell line (AML12). Oil-red O staining demonstrated that rosmarinic acid reduced ethanol-induced lipid accumulation. It was shown that rosmarinic acid prevented ethanol-induced elevation of the malondialdehyde level. We also found that rosmarinic acid inhibited ethanol-induced mRNA expression of tumor necrosis factor-α and interleukin 6. Metabolomics analysis revealed that rosmarinic acid ameliorated ethanol-induced fatty acid biosynthesis in the cytoplasm. In addition, palmitic acid was a candidate biomarker in cells exposed to ethanol or ethanol plus rosmarinic acid. Rosmarinic acid prevented the ethanol-induced increase in sorbitol that is a component of the polyol pathway. Moreover, we confirmed that rosmarinic acid attenuated ethanol-induced mRNA expression of fatty acid synthase, probably by modulating the AMPK/SREBP-1c pathway. Furthermore, rosmarinic acid prevented the ethanol-induced decrease in eight metabolites that are involved in mitochondrial metabolism, including glycine and succinic acid which are the components of carnitine synthesis. These results provide a crucial insight into the molecular mechanism of rosmarinic acid in alleviating ethanol-induced injury.
Collapse
Affiliation(s)
- Chang Guo
- School of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Kouba M, Kos Durjava M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Chesson A, Westendorf J, Gregoretti L, Manini P, Dusemund B. Safety and efficacy of a dried aqueous ethanol extract of Melissa officinalis L. leaves when used as a sensory additive for all animal species. EFSA J 2020; 18:e06016. [PMID: 32874225 PMCID: PMC7448011 DOI: 10.2903/j.efsa.2020.6016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of a dried aqueous ethanol extract of Melissa officinalis L. leaves when used as a sensory feed additive for all animal species. The aqueous ethanol extract is specified to contain ≥ 10% of hydroxycinnamic acid derivatives including ≥ 3% of rosmarinic acid. Considering the contradictory data from the Ames tests and uncertainty about the qualitative and quantitative presence of flavonoids and other compounds in the extract from M. officinalis L. leaves, the FEEDAP Panel could not conclude on the genotoxicity of the additive under assessment. Although the identified components of the extract do not raise concerns for the safety of target species, the analysis of the extract is incomplete. In the absence of adequate analytical and safety data, the FEEDAP Panel is unable to conclude on the safety of the additive for the target species. The use of M. officinalis L. leaf dried extract in animal feed at the proposed use level does not raise significantly the exposure levels of the consumer for compounds derived from this plant. However, in the absence of adequate data on genotoxicity, the Panel cannot conclude on the safety for the consumer. In the absence of specific studies, the FEEDAP Panel cannot conclude on the safety of the additive for the user. M. officinalis L. is a native species to Europe and its use in animal nutrition is not expected to pose a risk for the environment. Since M. officinalis L. and its extracts are recognised to flavour food and its function in feed would be essentially the same as that in food, no further demonstration of efficacy is considered necessary for the extract.
Collapse
|
41
|
Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. ACTA ACUST UNITED AC 2019; 24:e00370. [PMID: 31516850 PMCID: PMC6734135 DOI: 10.1016/j.btre.2019.e00370] [Citation(s) in RCA: 641] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/04/2019] [Accepted: 08/12/2019] [Indexed: 01/19/2023]
Abstract
Plant phenolics are considered to be a vital human dietary component and exhibit a tremendous antioxidant activity as well as other health benefits. Epidemiology evidence indicates that a diet rich in antioxidant fruits and vegetables significantly reduces the risk of many oxidative stress related diseases viz. cancers, diabetes and cardiovascular. The number and position of hydroxyl group in a particular phenolic compound leads to the variation in their antioxidant potential. Polyphenols are the main source of dietary antioxidants, and are effortlessly absorbed in the intestine. Phenolic acids, a sub class of plant phenolics, possess phenol moiety and resonance stabilized structure which causes the H-atom donation results in antioxidant property through radical scavenging mechanism. Other mode such as radical quenching via electron donation and singlet oxygen quenching are also known for the antioxidant activity of phenolic acids. Furthermore, phenolic acids are found ubiquitously and well documented for other health protective effects like antimicrobial, anticancer, anti-inflammatory, anti-mutagenic etc. The contribution emphasize on the phenolic acids potential in drug discovery. In addition their occurrence, biosynthesis, metabolism and health effects are discussed in detail.
Collapse
Affiliation(s)
- Naresh Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Indore, Madhya Pradesh-453552, India
| | - Nidhi Goel
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India
| |
Collapse
|
42
|
Abstract
Naturally occurring food-derived active ingredients have received huge attention for their chemopreventive and chemotherapy capabilities in several diseases. Rosmarinic acid (RA) is a caffeic acid ester and a naturally-occurring phenolic compound in a number of plants belonging to the Lamiaceae family, such as Rosmarinus officinalis (rosemary) from which it was formerly isolated. RA intervenes in carcinogenesis through different ways, including in tumor cell proliferation, apoptosis, metastasis, and inflammation. On the other hand, it also exerts powerful antimicrobial, anti-inflammatory, antioxidant and even antidepressant, anti-aging effects. The present review aims to provide an overview on anticancer activities of RA and to deliberate its therapeutic potential against a wide variety of diseases. Given the current evidence, RA may be considered as part of the daily diet in the treatment of several diseases, with pre-determined doses avoiding cytotoxicity.
Collapse
|
43
|
Zych M, Kaczmarczyk-Sedlak I, Wojnar W, Folwarczna J. Effect of Rosmarinic Acid on the Serum Parameters of Glucose and Lipid Metabolism and Oxidative Stress in Estrogen-Deficient Rats. Nutrients 2019; 11:E267. [PMID: 30691017 PMCID: PMC6412204 DOI: 10.3390/nu11020267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 12/25/2022] Open
Abstract
Rosmarinic acid is found in medicinal and spice plants such as rosemary, lemon balm, and mint. The aim of the study was to investigate the effect of rosmarinic acid on parameters of glucose and lipid metabolism and parameters of oxidative stress in rats in the early phase of estrogen deficiency. The study was carried out on mature female Wistar rats divided into the following groups: sham-operated control rats, ovariectomized control rats, and ovariectomized rats treated orally with rosmarinic acid at a dose of 10 mg/kg or 50 mg/kg daily for 28 days. The concentration of sex hormones, parameters related to glucose and lipid metabolism as well as parameters of antioxidant abilities and oxidative damage were determined in the blood serum. In the ovariectomized control rats, the homeostasis model assessment of insulin resistance (HOMA-IR) index and cholesterol concentration increased, the superoxide dismutase activity increased, and the reduced glutathione concentration decreased. Administration of rosmarinic acid at both doses induced decreases in the fructosamine concentration and HOMA-IR, an increase in the concentration of reduced glutathione, and a decrease in the concentration of advanced oxidation protein products in ovariectomized rats. Moreover, rosmarinic acid at a dose of 50 mg/kg induced a decrease in the total cholesterol and triglyceride concentrations. The results indicate that rosmarinic acid may be useful in the prevention of metabolic disorders associated with estrogen deficiency, however further studies are necessary.
Collapse
Affiliation(s)
- Maria Zych
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Ilona Kaczmarczyk-Sedlak
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Weronika Wojnar
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Joanna Folwarczna
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| |
Collapse
|
44
|
Kang S, Lim Y, Kim YJ, Jung ES, Suh DH, Lee CH, Park E, Hong J, Velliquette RA, Kwon O, Kim JY. Multivitamin and Mineral Supplementation Containing Phytonutrients Scavenges Reactive Oxygen Species in Healthy Subjects: A Randomized, Double-Blinded, Placebo-Controlled Trial. Nutrients 2019; 11:E101. [PMID: 30621298 PMCID: PMC6356358 DOI: 10.3390/nu11010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 02/06/2023] Open
Abstract
Phytonutrients and vitamin and mineral supplementation have been reported to provide increased antioxidant capacity in humans; however, there is still controversy. In the current clinical trial, we examined the antioxidant and DNA protection capacity of a plant-based, multi-vitamin/mineral, and phytonutrient (PMP) supplementation in healthy adults who were habitually low in the consumption of fruits and vegetables. This study was an eight-week, double-blind, randomized, parallel-arm, and placebo-controlled trial. PMP supplementation for eight weeks reduced reactive oxygen species (ROS) and prevented DNA damage without altering endogenous antioxidant system. Plasma vitamins and phytonutrients were significantly correlated with ROS scavenging and DNA damage. In addition, gene expression analysis in PBMC showed subtle changes in superoxide metabolic processes. In this study, we showed that supplementation with a PMP significantly improved ROS scavenging activity and prevented DNA damage. However, additional research is still needed to further identify mechanisms of actions and the role of circulating phytonutrient metabolites.
Collapse
Affiliation(s)
- Seunghee Kang
- Department of Nutritional Science and Food Management, Ewha Womans Universiy, Seoul 03760, Korea.
| | - Yeni Lim
- Department of Nutritional Science and Food Management, Ewha Womans Universiy, Seoul 03760, Korea.
| | - You Jin Kim
- Department of Nutritional Science and Food Management, Ewha Womans Universiy, Seoul 03760, Korea.
| | - Eun Sung Jung
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Eunmi Park
- Department of Food and Nutrition, Hannam University, Daejeon 34430, Korea.
| | - Jina Hong
- Access Business Group International, LLC, 5600 Beach Blvd., Buena Park, CA 90621, USA.
| | - Rodney A Velliquette
- Access Business Group International, LLC, 5600 Beach Blvd., Buena Park, CA 90621, USA.
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans Universiy, Seoul 03760, Korea.
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea.
| |
Collapse
|
45
|
Fachel FNS, Schuh RS, Veras KS, Bassani VL, Koester LS, Henriques AT, Braganhol E, Teixeira HF. An overview of the neuroprotective potential of rosmarinic acid and its association with nanotechnology-based delivery systems: A novel approach to treating neurodegenerative disorders. Neurochem Int 2019; 122:47-58. [PMID: 30439384 DOI: 10.1016/j.neuint.2018.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022]
Abstract
Neurodegenerative disorders (ND) are characterized by slow and progressive neuronal dysfunction induced by the degeneration of neuronal cells in the central nervous system (CNS). Recently, the neuroprotective effects of natural compounds with anti-inflammatory and antioxidant activities has been clearly demonstrated. This appears to be an attractive therapeutic approach for ND, particularly regarding the use of polyphenols. In this review, we present an overview of the neuroprotective potential of rosmarinic acid (RA) and discuss the use of nanotechnology as a novel approach to treating ND. RA presents a variety of biological important activities, i.e. the modulation of pro-inflammatory cytokine expression, prevention of neurodegeneration and damage reduction. However, its poor bioavailability represents a limitation in terms of pharmacodynamics. In this sense, nanotechnology-based carriers could allow for the administration of higher but still safe amounts of RA, aiming for CNS delivery. Nasal administration could be a pleasant route for delivery to the CNS, as this represents a direct route to the CNS. With these advantages, RA-loaded nanotechnology-based therapy through the nasal route could be promising approach for the treatment of ND.
Collapse
Affiliation(s)
- Flávia Nathiely Silveira Fachel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roselena Silvestri Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kleyton Santos Veras
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Valquíria Linck Bassani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amelia Teresinha Henriques
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
46
|
Fachel FNS, Medeiros-Neves B, Dal Prá M, Schuh RS, Veras KS, Bassani VL, Koester LS, Henriques AT, Braganhol E, Teixeira HF. Box-Behnken design optimization of mucoadhesive chitosan-coated nanoemulsions for rosmarinic acid nasal delivery—In vitro studies. Carbohydr Polym 2018; 199:572-582. [DOI: 10.1016/j.carbpol.2018.07.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
|
47
|
Min J, Chen H, Gong Z, Liu X, Wu T, Li W, Fang J, Huang T, Zhang Y, Zhao W, Zhu C, Wang Q, Mi S, Wang N. Pharmacokinetic and Pharmacodynamic Properties of Rosmarinic Acid in Rat Cholestatic Liver Injury. Molecules 2018; 23:E2287. [PMID: 30205454 PMCID: PMC6225135 DOI: 10.3390/molecules23092287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/18/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
The objective of this study was to evaluate the hepatoprotective and metabolic effects of rosmarinic acid (RA) in rats. RA [100 mg/kg body weight (BW)] was intragastrically (i.g.) administered to Sprague-Dawley (SD) rats once a day for seven consecutive days. The rats were then i.g. administered α-naphthylisothiocyanate (ANIT) (80 mg/kg once on the 5th day) to induce acute intrahepatic cholestasis after the last administration of RA. Blood samples were collected at different time points (0.083 h, 0.17 h, 0.33 h, 0.5 h, 0.75 h, 1 h, 1.5 h, 3 h, 4 h, 6 h, 8 h, 12 h, 20 h) after administration, and the levels of RA were estimated by HPLC. Plasma and bile biochemical analysis, bile flow rate, and liver histopathology were measured to evaluate the hepatoprotective effect of RA. The PK-PD curves showed obviously clockwise (AST and ALT) or anticlockwise (TBA, TBIL). Pretreatment with RA at different doses significantly restrained ANIT-induced pathological changes in bile rate, TBA, TBIL, ALT, AST (p < 0.05 or p < 0.01). The relationship between RA concentration and its hepatoprotective effects on acute cholestasis responses was assessed by PK-PD modeling.
Collapse
Affiliation(s)
- Jianbin Min
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, China.
| | - Hao Chen
- College of Food and Drug, Anhui Science and Technology of University, Fengyang 233100, Anhui, China.
| | - Zipeng Gong
- Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road, Guiyang 550004, China.
| | - Xian Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, China.
| | - Tian Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, China.
| | - Weirong Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, China.
| | - Jiansong Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, China.
| | - Tianlai Huang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, China.
| | - Yingfeng Zhang
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, China.
| | - Wei Zhao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, China.
| | - Chenchen Zhu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, China.
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, China.
| | - Suiqing Mi
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, China.
| | - Ningsheng Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, China.
| |
Collapse
|
48
|
Kantar Gok D, Hidisoglu E, Ocak GA, Er H, Acun AD, Yargıcoglu P. Protective role of rosmarinic acid on amyloid beta 42-induced echoic memory decline: Implication of oxidative stress and cholinergic impairment. Neurochem Int 2018; 118:1-13. [PMID: 29655652 DOI: 10.1016/j.neuint.2018.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/23/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
Abstract
In the present study, we examined whether rosmarinic acid (RA) reverses amyloid β (Aβ) induced reductions in antioxidant defense, lipid peroxidation, cholinergic damage as well as the central auditory deficits. For this purpose, Wistar rats were randomly divided into four groups; Sham(S), Sham + RA (SR), Aβ42 peptide (Aβ) and Aβ42 peptide + RA (AβR) groups. Rat model of Alzheimer was established by bilateral injection of Aβ42 peptide (2,2 nmol/10 μl) into the lateral ventricles. RA (50 mg/kg, daily) was administered orally by gavage for 14 days after intracerebroventricular injection. At the end of the experimental period, we recorded the auditory event related potentials (AERPs) and mismatch negativity (MMN) response to assess auditory functions followed by histological and biochemical analysis. Aβ42 injection led to a significant increase in the levels of thiobarbituric acid reactive substances (TBARS) and 4-Hydroxy-2-nonenal (4-HNE) but decreased the activity of antioxidant enzymes (SOD, CAT, GSH-Px) and glutathione levels. Moreover, Aβ42 injection resulted in a reduction in the acetylcholine content and acetylcholine esterase activity. RA treatment prevented the observed alterations in the AβR group. Furthermore, RA attenuated the increased Aβ staining and astrocyte activation. We also found that Aβ42 injection decreased the MMN response and theta power/coherence of AERPs, suggesting an impairing effect on auditory discrimination and echoic memory processes. RA treatment reversed the Aβ42 related alterations in AERP parameters. In conclusion, our study demonstrates that RA prevented Aβ-induced antioxidant-oxidant imbalance and cholinergic damage, which may contribute to the improvement of neural network dynamics of auditory processes in this rat model.
Collapse
Affiliation(s)
- Deniz Kantar Gok
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070 Antalya, Turkey
| | - Enis Hidisoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070 Antalya, Turkey
| | - Guzide Ayse Ocak
- Department of Pathology, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070 Antalya, Turkey
| | - Hakan Er
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070 Antalya, Turkey
| | - Alev Duygu Acun
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070 Antalya, Turkey
| | - Piraye Yargıcoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070 Antalya, Turkey.
| |
Collapse
|
49
|
Achour M, Saguem S, Sarriá B, Bravo L, Mateos R. Bioavailability and metabolism of rosemary infusion polyphenols using Caco-2 and HepG2 cell model systems. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3741-3751. [PMID: 29327407 DOI: 10.1002/jsfa.8886] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/21/2017] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND Rosmarinus officinalis is an aromatic plant used in folk medicine as a result of the therapeutic properties associated with its phenolic composition, being rich in rosmarinic acid (RA) and caffeic acid (CA). To better understand the bioactivity of these compounds, their absorption and metabolism were assessed in human Caco-2 and HepG2 cells, as small intestine and liver models, respectively, using RA and CA standards, as well as a rosemary infusion and ferulic acid (FA). RESULTS Test compounds were partially up-taken and metabolized by Caco-2 and HepG2 cells, although a higher metabolization rate was observed after hepatic incubation compared to intestinal incubation. CA was the compound best absorbed followed by RA and FA, showing metabolites percentages of 30.4%, 11.8% and 4.4% in Caco-2 and 34.3%, 10.3% and 3.2% in HepG2 cells, respectively. RA in the rosemary infusion showed improved bioavailability compared to pure RA. Methyl derivatives were the main metabolites detected for CA and RA after intestinal and hepatic metabolism, followed by methyl-glucuronidates and glucuronidates. RA was also minimally hydrolyzed into CA, whereas FA only was glucuronidated. Rosemary polyphenols followed the same biotransformation pathways as the standards. In addition, phase II derivatives of luteolin were observed. CONCLUSION Rosemary polyphenols are partially metabolized in both the intestine and liver. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mariem Achour
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12ES02), Department of Biophysics, Faculty of Medicine Ibn El Jazzar of Sousse, University of Sousse, Sousse, Tunisia
| | - Saad Saguem
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12ES02), Department of Biophysics, Faculty of Medicine Ibn El Jazzar of Sousse, University of Sousse, Sousse, Tunisia
| | - Beatriz Sarriá
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Laura Bravo
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
50
|
A target-group-change strategy based on the UPLC-Q-TOF-MS E method for the metabolites identification of Fufang-Xialian-Capsule in rat's plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1085:42-53. [DOI: 10.1016/j.jchromb.2018.03.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
|