1
|
Castillo P, Kuda O, Kopecky J, Pomar CA, Palou A, Palou M, Picó C. Stachydrine, N-acetylornithine and trimethylamine N-oxide levels as candidate milk biomarkers of maternal consumption of an obesogenic diet during lactation. Biofactors 2023; 49:1022-1037. [PMID: 37227188 DOI: 10.1002/biof.1974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
We aimed to evaluate whether improving maternal diet during lactation in diet-induced obese rats reverts the impact of western diet (WD) consumption on the metabolome of milk and offspring plasma, as well as to identify potential biomarkers of these conditions. Three groups of dams were followed: control-dams (CON-dams), fed with standard diet (SD); WD-dams, fed with WD prior and during gestation and lactation; and reversion-dams (REV-dams), fed as WD-dams but moved to SD during lactation. Metabolomic analysis was performed in milk at lactation days 5, 10, and 15, and in plasma from their male and female offspring at postnatal day 15. Milk of WD-dams presented, throughout lactation and compared to CON-dams, altered profiles of amino acids and of the carnitine pool, accompanied by changes in other polar metabolites, being stachydrine, N-acetylornithine, and trimethylamine N-oxide the most relevant and discriminatory metabolites between groups. The plasma metabolome profile was also altered in the offspring of WD-dams in a sex-dependent manner, and stachydrine, ergothioneine and the acylcarnitine C12:1 appeared as the top three most discriminating metabolites in both sexes. Metabolomic changes were largely normalized to control levels both in the milk of REV-dams and in the plasma of their offspring. We have identified a set of polar metabolites in maternal milk and in the plasma of the offspring whose alterations may indicate maternal intake of an unbalanced diet during gestation and lactation. Levels of these metabolites may also reflect the beneficial effects of implementing a healthier diet during lactation.
Collapse
Affiliation(s)
- Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kopecky
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
2
|
Yin K, Zhang K, Zhao Q, Wu Q, Zheng J, Zhou N, Tang S, Makielski JC, Cheng J. Electrocardiographic and Echocardiographic Features of Carnitine-Deficient Animal Model. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Primary systemic carnitine deficiency (CDSP) is a rare disease that can lead to sudden cardiac death (SCD). Meanwhile, cardiac manifestations had been widely reported in CDSP cases. Researches on phenotype and mechanism are needed imperatively to evaluate the influence of carnitine
deficiency on cardiovascular system. We induce an intraperitonealinjected carnitine deficiency mouse model and a transgenic mouse model created by CRISPR/Cas-mediated genome engineering to observe the ECG and echocardiography parameters to explore the cardiac pathophysiological features in
carnitine deficiency. In female drug-induced carnitine-deficient mice, the tendency of shortened QTc interval existed in experimental groups compared with the control group (P<0 05). Statistically significant differences in QTc interval existed in low-dose as well as high-dose groups
and control (P<0 05). The same rule appeared in heart rate (HR) and T wave duration (P<0 05). After 8 weeks of continuous injection, HR, left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS) in low-dose group, HR as well as LVPWd in high-dose
group increased significantly compared with the control (all P<0 05). In male drug-induced carnitine deficient mice, the tendency of shortened QTc interval also existed in experimental groups compared with the control group (P<0 05). Statistically significant differences in QTc
interval existed in low-dose group and control (P<0 05). Compared with the control, PR interval declined significantly in high-dose group (P<0 05). After 8 weeks of continuous injection, no cardiac functional indexes in experimental groups altered significantly compared
with the control (all P>0 05) were found. In transgenic mice, free carnitine (C0) level statistically decreased (P<0 05) compared with the wild-type (WT) mice. There was no statistical difference between mice carried two single heterozygote (P>0 05). However, C0 level
between compound heterozygote and single heterozygote was statistically significant (P>0 05). Moreover, there were no significant differences recorded compared with WT in ECG and echocardiography (P>0 05). This study suggested that carnitine deficiency had impact on cardiac
function and structure in some situations. We summarized the ECG and echocardiography features of carnitine-deficient mice model and build the first transgenic animal model imitating the pathogenic genotype in human CDSP patients, which provide a foundation for further research on pathophysiological
and molecular mechanism.
Collapse
Affiliation(s)
- Kun Yin
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Kai Zhang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qianhao Zhao
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qiuping Wu
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jingjing Zheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Nan Zhou
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shuangbo Tang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jonathan C. Makielski
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, 53792, WI, USA
| | - Jianding Cheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
3
|
Wang JX, Rahimnejad S, Zhang YY, Ren J, Wang J, Qiao F, Zhang ML, Du ZY. Mildronate triggers growth suppression and lipid accumulation in largemouth bass (Micropterus salmoides) through disturbing lipid metabolism. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:145-159. [PMID: 35034221 DOI: 10.1007/s10695-021-01040-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Many metabolic diseases in fish are often associated with lowered mitochondrial fatty acid β-oxidation (FAO). However, the physiological role of mitochondrial FAO in lipid metabolism has not been verified in many carnivorous fish species, for example in largemouth bass (Micropterus salmonids). In the present study, a specific mitochondrial FAO inhibitor, mildronate (MD), was used to investigate the effects of impaired mitochondrial FAO on growth performance, health status, and lipid metabolism of largemouth bass. The results showed that the dietary MD treatment significantly suppressed growth performance and caused heavy lipid accumulation, especially neutral lipid, in the liver. The MD-treated fish exhibited lower monounsaturated fatty acid and higher long-chain polyunsaturated fatty acids in the muscle. The MD treatment downregulated the gene expressions in lipolysis and lipogenesis, as well as the expressions of the genes and some key proteins in FAO without enhancing peroxisomal FAO. Additionally, the MD-treated fish had lower serum aspartate aminotransferase activity and lower pro-inflammation- and apoptosis-related genes in the liver. Taken together, MD treatment markedly induced lipid accumulation via depressing lipid catabolism. Our findings reveal the pivotal roles of mitochondrial FAO in maintaining health and lipid homeostasis in largemouth bass and could be hopeful in understanding metabolic diseases in farmed carnivorous fish.
Collapse
Affiliation(s)
- Jun-Xian Wang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Samad Rahimnejad
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Yan-Yu Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | | | - Jie Wang
- HANOVE Research Center, Wuxi, China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Functional differences between l- and d-carnitine in metabolic regulation evaluated using a low-carnitine Nile tilapia model. Br J Nutr 2019; 122:625-638. [PMID: 32124711 DOI: 10.1017/s000711451900148x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
l-Carnitine is essential for mitochondrial β-oxidation and has been used as a lipid-lowering feed additive in humans and farmed animals. d-Carnitine is an optical isomer of l-carnitine and dl-carnitine has been widely used in animal feeds. However, the functional differences between l- and d-carnitine are difficult to study because of the endogenous l-carnitine background. In the present study, we developed a low-carnitine Nile tilapia model by treating fish with a carnitine synthesis inhibitor, and used this model to investigate the functional differences between l- and d-carnitine in nutrient metabolism in fish. l- or d-carnitine (0·4 g/kg diet) was fed to the low-carnitine tilapia for 6 weeks. l-Carnitine feeding increased the acyl-carnitine concentration from 3522 to 10 822 ng/g and alleviated the lipid deposition from 15·89 to 11·97 % in the liver of low-carnitine tilapia. However, as compared with l-carnitine group, d-carnitine feeding reduced the acyl-carnitine concentration from 10 822 to 5482 ng/g, and increased lipid deposition from 11·97 to 20·21 % and the mRNA expression of the genes involved in β-oxidation and detoxification in the liver. d-Carnitine feeding also induced hepatic inflammation, oxidative stress and apoptosis. A metabolomic investigation further showed that d-carnitine feeding increased glycolysis, protein metabolism and activity of the tricarboxylic acid cycle and oxidative phosphorylation. Thus, l-carnitine can be physiologically utilised in fish, whereas d-carnitine is metabolised as a xenobiotic and induces lipotoxicity. d-Carnitine-fed fish demonstrates increases in peroxisomal β-oxidation, glycolysis and amino acid degradation to maintain energy homeostasis. Therefore, d-carnitine is not recommended for use in farmed animals.
Collapse
|
5
|
Wang Y, Christopher BA, Wilson KA, Muoio D, McGarrah RW, Brunengraber H, Zhang GF. Propionate-induced changes in cardiac metabolism, notably CoA trapping, are not altered by l-carnitine. Am J Physiol Endocrinol Metab 2018; 315:E622-E633. [PMID: 30016154 PMCID: PMC6230704 DOI: 10.1152/ajpendo.00081.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High concentrations of propionate and its metabolites are found in several diseases that are often associated with the development of cardiac dysfunction, such as obesity, diabetes, propionic acidemia, and methylmalonic acidemia. In the present work, we employed a stable isotope-based metabolic flux approach to understand propionate-mediated perturbation of cardiac energy metabolism. Propionate led to accumulation of propionyl-CoA (increased by ~101-fold) and methylmalonyl-CoA (increased by 36-fold). This accumulation caused significant mitochondrial CoA trapping and inhibited fatty acid oxidation. The reduced energy contribution from fatty acid oxidation was associated with increased glucose oxidation. The enhanced anaplerosis of propionate and CoA trapping altered the pool sizes of tricarboxylic acid cycle (TCA) metabolites. In addition to being an anaplerotic substrate, the accumulation of proprionate-derived malate increased the recycling of malate to pyruvate and acetyl-CoA, which can enter the TCA for energy production. Supplementation of 3 mM l-carnitine did not relieve CoA trapping and did not reverse the propionate-mediated fuel switch. This is due to new findings that the heart appears to lack the specific enzyme catalyzing the conversion of short-chain (C3 and C4) dicarboxylyl-CoAs to dicarboxylylcarnitines. The discovery of this work warrants further investigation on the relevance of dicarboxylylcarnitines, especially C3 and C4 dicarboxylylcarnitines, in cardiac conditions such as heart failure.
Collapse
Affiliation(s)
- Yingxue Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University , Guangzhou , China
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University , Durham, North Carolina
| | - Bridgette A Christopher
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University , Durham, North Carolina
- Department of Medicine, Duke University , Durham, North Carolina
| | - Kirkland A Wilson
- Department of Nutrition, Case Western Reserve University , Cleveland, Ohio
| | - Deborah Muoio
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University , Durham, North Carolina
- Department of Medicine, Duke University , Durham, North Carolina
| | - Robert W McGarrah
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University , Durham, North Carolina
- Department of Medicine, Duke University , Durham, North Carolina
| | - Henri Brunengraber
- Department of Nutrition, Case Western Reserve University , Cleveland, Ohio
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University , Durham, North Carolina
- Department of Medicine, Duke University , Durham, North Carolina
| |
Collapse
|
6
|
Li JM, Li LY, Qin X, Degrace P, Demizieux L, Limbu SM, Wang X, Zhang ML, Li DL, Du ZY. Inhibited Carnitine Synthesis Causes Systemic Alteration of Nutrient Metabolism in Zebrafish. Front Physiol 2018; 9:509. [PMID: 29867554 PMCID: PMC5954090 DOI: 10.3389/fphys.2018.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/20/2018] [Indexed: 12/30/2022] Open
Abstract
Impaired mitochondrial fatty acid β-oxidation has been correlated with many metabolic syndromes, and the metabolic characteristics of the mammalian models of mitochondrial dysfunction have also been intensively studied. However, the effects of the impaired mitochondrial fatty acid β-oxidation on systemic metabolism in teleost have never been investigated. In the present study, we established a low-carnitine zebrafish model by feeding fish with mildronate as a specific carnitine synthesis inhibitor [0.05% body weight (BW)/d] for 7 weeks, and the systemically changed nutrient metabolism, including carnitine and triglyceride (TG) concentrations, fatty acid (FA) β-oxidation capability, and other molecular and biochemical assays of lipid, glucose, and protein metabolism, were measured. The results indicated that mildronate markedly decreased hepatic carnitine concentrations while it had no effect in muscle. Liver TG concentrations increased by more than 50% in mildronate-treated fish. Mildronate decreased the efficiency of liver mitochondrial β-oxidation, increased the hepatic mRNA expression of genes related to FA β-oxidation and lipolysis, and decreased the expression of lipogenesis genes. Mildronate decreased whole body glycogen content, increased glucose metabolism rate, and upregulated the expression of glucose uptake and glycolysis genes. Mildronate also increased whole body protein content and hepatic mRNA expression of mechanistic target of rapamycin (mtor), and decreased the expression of a protein catabolism-related gene. Liver, rather than muscle, was the primary organ targeted by mildronate. In short, mildronate-induced hepatic inhibited carnitine synthesis in zebrafish caused decreased mitochondrial FA β-oxidation efficiency, greater lipid accumulation, and altered glucose and protein metabolism. This reveals the key roles of mitochondrial fatty acid β-oxidation in nutrient metabolism in fish, and this low-carnitine zebrafish model could also be used as a novel fish model for future metabolism studies.
Collapse
Affiliation(s)
- Jia-Min Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling-Yu Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuan Qin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Pascal Degrace
- Team Pathophysiology of Dyslipidemia, Faculty of Sciences Gabriel, INSERM UMR1231 "Lipides, Nutrition, Cancer," Université Bourgogne Franche-Comté, Dijon, France
| | - Laurent Demizieux
- Team Pathophysiology of Dyslipidemia, Faculty of Sciences Gabriel, INSERM UMR1231 "Lipides, Nutrition, Cancer," Université Bourgogne Franche-Comté, Dijon, France
| | - Samwel M Limbu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China.,Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Dong-Liang Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
7
|
Pan H, Li LY, Li JM, Wang WL, Limbu SM, Degrace P, Li DL, Du ZY. Inhibited fatty acid β-oxidation impairs stress resistance ability in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2017; 68:500-508. [PMID: 28774846 DOI: 10.1016/j.fsi.2017.07.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/24/2017] [Accepted: 07/29/2017] [Indexed: 05/23/2023]
Abstract
Energy metabolism plays important roles in stress resistance and immunity in mammals, however, such functions have not been established in fish. In the present study, Nile tilapia (Oreochromis niloticus) was fed with mildronate, an inhibitor of mitochondrial fatty acid (FA) β-oxidation, for six weeks subsequently challenged with Aeromonas hydrophila and ammonia nitrogen exposure. Mildronate treatment reduced significantly l-carnitine concentration and mitochondrial FA β-oxidation efficiency, while it increased lipid accumulation in liver. The fish with inhibited hepatic FA catabolism had lower survival rate when exposed to Aeromonas hydrophila and ammonia nitrogen. Moreover, fish fed mildronate supplemented diet had lower immune enzymes activities and anti-inflammatory cytokine genes expressions, but had higher pro-inflammatory cytokine genes expressions. However, the oxidative stress-related biochemical indexes were not significantly affected by mildronate treatment. Taken together, inhibited mitochondrial FA β-oxidation impaired stress resistance ability in Nile tilapia mainly through inhibiting immune functions and triggering inflammation. This is the first study showing the regulatory effects of lipid catabolism on stress resistance and immune functions in fish.
Collapse
Affiliation(s)
- Han Pan
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Ling-Yu Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Jia-Min Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Wei-Li Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Samwel Mchele Limbu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China; Department of Aquatic Sciences and Fisheries Technology, University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Pascal Degrace
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, "Lipids, Nutrition, Cancer", Université de Bourgogne Franche-Comté, Dijon, France
| | - Dong-Liang Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China.
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China.
| |
Collapse
|
8
|
Ling B, Aziz C, Alcorn J. Systematic Evaluation of Key L-Carnitine Homeostasis Mechanisms during Postnatal Development in Rat. Nutr Metab (Lond) 2012; 9:66. [PMID: 22805277 PMCID: PMC3408321 DOI: 10.1186/1743-7075-9-66] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 07/17/2012] [Indexed: 01/01/2023] Open
Abstract
Background The conditionally essential nutrient, L-carnitine, plays a critical role in a number of physiological processes vital to normal neonatal growth and development. We conducted a systematic evaluation of the developmental changes in key L-carnitine homeostasis mechanisms in the postnatal rat to better understand the interrelationship between these pathways and their correlation to ontogenic changes in L-carnitine levels during postnatal development. Methods mRNA expression of heart, kidney and intestinal L-carnitine transporters, liver γ-butyrobetaine hydroxylase (Bbh) and trimethyllysine hydroxylase (Tmlh), and heart carnitine palmitoyltransferase (Cpt) were measured using quantitative RT-PCR. L-Carnitine levels were determined by HPLC-UV. Cpt and Bbh activity were measured by a spectrophotometric method and HPLC, respectively. Results Serum and heart L-carnitine levels increased with postnatal development. Increases in serum L-carnitine correlated significantly with postnatal increases in renal organic cation/carnitine transporter 2 (Octn2) expression, and was further matched by postnatal increases in intestinal Octn1 expression and hepatic γ-Bbh activity. Postnatal increases in heart L-carnitine levels were significantly correlated to postnatal increases in heart Octn2 expression. Although cardiac high energy phosphate substrate levels remained constant through postnatal development, creatine showed developmental increases with advancing neonatal age. mRNA levels of Cpt1b and Cpt2 significantly increased at postnatal day 20, which was not accompanied by a similar increase in activity. Conclusions Several L-carnitine homeostasis pathways underwent significant ontogenesis during postnatal development in the rat. This information will facilitate future studies on factors affecting the developmental maturation of L-carnitine homeostasis mechanisms and how such factors might affect growth and development.
Collapse
Affiliation(s)
- Binbing Ling
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada.
| | | | | |
Collapse
|
9
|
Lemire J, Mailloux R, Darwich R, Auger C, Appanna VD. The disruption of L-carnitine metabolism by aluminum toxicity and oxidative stress promotes dyslipidemia in human astrocytic and hepatic cells. Toxicol Lett 2011; 203:219-26. [PMID: 21439360 DOI: 10.1016/j.toxlet.2011.03.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 12/19/2022]
Abstract
L-Carnitine is a critical metabolite indispensable for the metabolism of lipids as it facilitates fatty acid transport into the mitochondrion where β-oxidation occurs. Human astrocytes (CCF-STTG1 cells) and hepatocytes (HepG2 cells) exposed to aluminum (Al) and hydrogen peroxide (H₂O₂), were characterized with lower levels of L-carnitine, diminished β-oxidation, and increased lipid accumulation compared to the controls. γ-Butyrobetainealdehyde dehydrogenase (BADH) and butyrobetaine dioxygenase (BBDOX), two key enzymes mediating the biogenesis of L-carnitine, were sharply reduced during Al and H₂O₂ challenge. Exposure of the Al and H₂O₂-treated cells to α-ketoglutarate (KG), led to the recovery of L-carnitine production with the concomitant reduction in ROS levels. It appears that the channeling of KG to combat oxidative stress results in decreased L-carnitine synthesis, an event that contributes to the dyslipidemia observed during Al and H₂O₂ insults in these mammalian cells. Hence, KG may help alleviate pathological conditions induced by oxidative stress.
Collapse
Affiliation(s)
- Joseph Lemire
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E2C6, Canada
| | | | | | | | | |
Collapse
|
10
|
Sayed-Ahmed MM. Progression of cyclophosphamide-induced acute renal metabolic damage in carnitine-depleted rat model. Clin Exp Nephrol 2010; 14:418-26. [PMID: 20652348 DOI: 10.1007/s10157-010-0321-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 06/23/2010] [Indexed: 01/18/2023]
Abstract
BACKGROUND Little information is available regarding the mechanism of cyclophosphamide (CP)-induced renal damage. Therefore, this study examined whether carnitine deficiency constitutes a risk factor in and should be viewed as a mechanism during development of CP-induced nephrotoxicity and explored whether carnitine supplementation, using propionyl-L-carnitine (PLC), could offer protection against this toxicity. METHODS Experimental rats were assigned to one of six groups; the first three groups were injected intraperitoneally with normal saline, PLC (250 mg/kg/day) or D-carnitine (250 mg/kg/day) + Mildronate (200 mg/kg/day), respectively, for 10 successive days. The 4th, 5th and 6th groups received the same doses of normal saline, PLC or D-carnitine + Mildronate, respectively, for 5 successive days before and after a single dose of CP (200 mg/kg). RESULTS CP significantly increased serum creatinine, blood urea nitrogen (BUN), intramitochondrial acetyl-coenzyme A (CoA) and thiobarbituric acid reactive substances, significantly decreased total carnitine, intramitochondrial CoA-SH, adenosine triphosphate (ATP) and ATP/adenosine diphosphate (ADP) and reduced glutathione in kidney tissues. In carnitine-depleted rats, CP resulted in dramatic increase in serum nephrotoxicity indices and acetyl-CoA and induced progressive reduction in total carnitine, CoA-SH and ATP as well as severe histopathological lesions in kidney tissues. Interestingly, PLC completely reversed the biochemical and histopathological changes induced by CP to normal values. CONCLUSIONS Oxidative stress is not involved in CP-induced renal injury in this model. Carnitine deficiency and energy starvation constitute risk factors in and should be viewed as a mechanism during CP-induced nephrotoxicity. PLC prevents development of CP-induced nephrotoxicity by increasing intracellular carnitine content, intramitochondrial CoA-SH/acetyl-CoA ratio and energy production.
Collapse
Affiliation(s)
- Mohamed M Sayed-Ahmed
- Department of Pharmacology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia.
| |
Collapse
|
11
|
Ling B, Alcorn J. Acute administration of cefepime lowers L-carnitine concentrations in early lactation stage rat milk. J Nutr 2008; 138:1317-22. [PMID: 18567754 DOI: 10.1093/jn/138.7.1317] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our study investigated the potential for important in vivo drug-nutrient transport interactions at the lactating mammary gland using the L-carnitine transporter substrates, cefepime and L-carnitine, as proof-of-concept. On d 4 (n = 6/treatment) and d 10 (n = 6/treatment) of lactation, rats were administered cefepime (250 mg/h) or saline by continuous i.v. infusion (4 h). Serum and milk L-carnitine and cefepime concentrations were quantified by HPLC-UV. In whole mammary gland, organic cation/carnitine transporter (OCTN)1, OCTN2, OCTN3, amino acid transporter B(0,+) (ATB(0,+)), and L-carnitine transporter 2 expression were determined by quantitative RT-PCR and by western blot and immunohistochemistry when possible. Cefepime caused a 56% decrease in milk L-carnitine concentrations on lactation d 4 (P = 0.0048) but did not affect milk L-carnitine at lactation d 10 or serum L-carnitine concentrations at either time. The mean L-carnitine and cefepime milk:serum ratios (M/S) decreased from 9.1 +/- 0.4 to 4.9 +/- 0.6 (P < 0.0001) and 0.89 +/- 0.3 to 0.12 +/- 0.02 (P = 0.0473), respectively, between d 4 and d 10 of lactation. In both groups, OCTN2 (P < 0.0001), OCTN3 (P = 0.0039), and ATB(0,+) (P = 0.004) mRNA expression and OCTN2 protein (P < 0.0001) were higher in mammary glands at d 4 of lactation compared with d 10. Immunohistochemistry revealed OCTN1 and OCTN2 localization in the mammary alveolar epithelium and OCTN3 expression in the interstitial space and blood vessel endothelium. In conclusion, cefepime significantly decreased milk L-carnitine concentrations only at d 4 of lactation. Relative to d 10, enhanced expression of OCTN2 and ATB(0,+) in mammary glands at d 4 of lactation and higher M/S (L-carnitine and cefepime) suggests cefepime competes with L-carnitine for L-carnitine transporters expressed in the lactating mammary gland to adversely affect L-carnitine milk concentrations and these effects depend upon lactation stage.
Collapse
Affiliation(s)
- Binbing Ling
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5C9 Canada
| | | |
Collapse
|
12
|
Oppedisano F, Fanello D, Calvani M, Indiveri C. Interaction of mildronate with the mitochondrial carnitine/acylcarnitine transport protein. J Biochem Mol Toxicol 2008; 22:8-14. [PMID: 18273902 DOI: 10.1002/jbt.20208] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The interaction of mildronate [3-(2,2,2-trimethylhydrazine) propionate] with the purified mitochondrial carnitine/acylcarnitine transporter reconstituted in liposomes has been studied. Mildronate, externally added to the proteoliposomes, strongly inhibited the carnitine/carnitine antiport catalyzed by the reconstituted transporter with an IC(50) of 560 muM. A kinetic analysis revealed that the inhibition is completely competitive, that is, mildronate interacts with the substrate-binding site. The half-saturation constant of the transporter for external mildronate (K(i)) is 530 muM. Carnitine/mildronate antiport has been measured as [(3)H]carnitine uptake into proteoliposomes containing internal mildronate or as [(3)H]carnitine efflux from proteoliposomes in the presence of external mildronate, indicating that mildronate is transported by the carnitine/acylcarnitine transporter and that the inhibition observed was due to the transport of mildronate in the place of carnitine. The intraliposomal half-saturation constant for mildronate transport (K(m)) has been determined. Its value, 18 mM, is much higher than the external half-saturation constant (K(i)) in agreement with the asymmetric properties of the transporter. In vivo, the antiport reaction between cytosolic (administered) mildronate and matrix carnitine may cause intramitochondrial carnitine depletion. This effect, together with the inhibition of the physiological transport, will lead to impairment of fatty acid utilization.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Department of Cell Biology, University of Calabria, Via P.Bucci 4c, 87036 Arcavacata di Rende, Italy
| | | | | | | |
Collapse
|
13
|
Degrace P, Demizieux L, Du ZY, Gresti J, Caverot L, Djaouti L, Jourdan T, Moindrot B, Guilland JC, Hocquette JF, Clouet P. Regulation of Lipid Flux between Liver and Adipose Tissue during Transient Hepatic Steatosis in Carnitine-depleted Rats. J Biol Chem 2007; 282:20816-26. [PMID: 17496329 DOI: 10.1074/jbc.m611391200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rats with carnitine deficiency due to trimethylhydrazinium propionate (mildronate) administered at 80 mg/100 g body weight per day for 10 days developed liver steatosis only upon fasting. This study aimed to determine whether the transient steatosis resulted from triglyceride accumulation due to the amount of fatty acids preserved through impaired fatty acid oxidation and/or from up-regulation of lipid exchange between liver and adipose tissue. In liver, mildronate decreased the carnitine content by approximately 13-fold and, in fasted rats, lowered the palmitate oxidation rate by 50% in the perfused organ, increased 9-fold the triglyceride content, and doubled the hepatic very low density lipoprotein secretion rate. Concomitantly, triglyceridemia was 13-fold greater than in controls. Hepatic carnitine palmitoyltransferase I activity and palmitate oxidation capacities measured in vitro were increased after treatment. Gene expression of hepatic proteins involved in fatty acid oxidation, triglyceride formation, and lipid uptake were all increased and were associated with increased hepatic free fatty acid content in treated rats. In periepididymal adipose tissue, mildronate markedly increased lipoprotein lipase and hormone-sensitive lipase activities in fed and fasted rats, respectively. On refeeding, carnitine-depleted rats exhibited a rapid decrease in blood triglycerides and free fatty acids, then after approximately 2 h, a marked drop of liver triglycerides and a progressive decrease in liver free fatty acids. Data show that up-regulation of liver activities, peripheral lipolysis, and lipoprotein lipase activity were likely essential factors for excess fat deposit and release alternately occurring in liver and adipose tissue of carnitine-depleted rats during the fed/fasted transition.
Collapse
Affiliation(s)
- Pascal Degrace
- UMR 866 INSERM-UB, Equipe Physiopathologie des dyslipidémies, Faculté des Sciences, 21000 Dijon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dietary mildronate supplementation has no effect on carnitine biosynthetic enzyme mRNA expression in rat. Nutr Res 2007. [DOI: 10.1016/j.nutres.2007.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|