1
|
Saka W, Anigbogu C, Kehinde M, Jaja S. L-Arginine supplementation enhanced expression of glucose transporter (GLUT 1) in sickle cell anaemia subjects in the steady state. Curr Res Physiol 2023; 6:100096. [DOI: 10.1016/j.crphys.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/05/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
|
2
|
Sorkina EL, Chichkova VV, Sklyanik IA, Shestakova MV, Mel'nichenko GA, Barkan A. [The role of glucose and insulin in the metabolic regulation of growth hormone secretion]. ACTA ACUST UNITED AC 2021; 67:52-59. [PMID: 33586392 PMCID: PMC8926113 DOI: 10.14341/probl12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
The exact physiological basis for the suppression of growth hormone secretion by oral glucose intake remains unknown, despite the widespread use of the oral glucose tolerance test in endocrinology. Lack of growth hormone suppression by glucose occurs in about a third of patients with acromegaly, as well as in other disorders. It is currently known that the secretion of growth hormone is affected by various factors, such as age, gender, body mass index, and the redistribution of adipose tissue. There is also evidence of the impact of overeating as well as being overweight on the secretion of growth hormone. It is known that both of these conditions are associated with hyperinsulinemia, which determines the possibility of its predominant role in suppressing the secretion of growth hormone. The purpose of this review is to discuss the accumulated data on the isolated effects of hyperglycemia and hyperinsulinemia on growth hormone secretion, as well as other metabolic regulators and conditions affecting its signaling. Understanding of the pathophysiological basis of these mechanisms is essential for further research of the role of glucose and insulin in the metabolic regulation of growth hormone secretion. However, the studies in animal models are complicated by interspecific differences in the response of growth hormone to glucose loading, and the only possible available model in healthy people may be the hyperinsulinemic euglycemic clamp.
Collapse
Affiliation(s)
| | | | | | | | | | - A Barkan
- University of Michigan, Ann Arbor
| |
Collapse
|
3
|
Gilani N, Haghshenas R, Esmaeili M. Application of multivariate longitudinal models in SIRT6, FBS, and BMI analysis of the elderly. Aging Male 2019; 22:260-265. [PMID: 29901417 DOI: 10.1080/13685538.2018.1477933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective: SIRT6 is a main regulator of metabolism and lifespan and its importance has been implicated in the prevention against aging-related diseases. The objective of this study was to examine the application of multivariate longitudinal models in SIRT6, FBS, and BMI analysis in the elderly men after eight weeks concurrent training with supplementation of l-arginine (l-Arg). Methods: Thirty two elderly men with mean age of 63.09 ± 3.71 years were randomly divided into four equal-sized groups (each n = 8); Exercise + supplement (ES) group; exercise + placebo (EP) group; supplement (S) group and control (C) group. The ES and EP groups performed the eight weeks of concurrent training, three sessions per week. Group ES and group S consumed 1000 mg of l-Arg per day at 8:00 pm. Measurements of biochemical variables were done by ELISA Reader method. For analytical purposes, we used the paired sample t-test and multivariate longitudinal modeling with generalized estimating equation (GEE) methodology. All analyses have been implemented in R-3.4.1. p Values less than .05 were considered statistically significant. Results: With respect to significant association between sirt6, FBS, and BMI, this study showed that synergy effect of training and supplementation was greater than the sum of their individual effects on SIRT6 (β = 0.79, p < .001), FBS (β = -5.56, p = .022), and BMI (β = -3.89; p = .041). Also exercise alone had a significantly larger effect than supplementation alone on responses. Conclusions: It can be concluded that the joint usage of concurrent training and supplement of l-Arg for elderly men could improve the metabolism and body composition.
Collapse
Affiliation(s)
- Neda Gilani
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Rouhollah Haghshenas
- Department of Sport Sciences, Faculty of Humanities, Semnan University , Semnan , Iran
| | - Mahmoud Esmaeili
- Department of Sport Sciences, Faculty of Humanities, Semnan University , Semnan , Iran
| |
Collapse
|
4
|
Hamada M, Ihara T, Furuse M. Differences in free amino acid concentrations in milk between Wistar and Wistar Kyoto rats. J Vet Med Sci 2019; 81:838-845. [PMID: 30982807 PMCID: PMC6612506 DOI: 10.1292/jvms.19-0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Wistar Kyoto (WKY) rats, an animal depression model, display abnormal behaviors such as
hypoactivity and depression-like behavior compared with Wistar (WIS) rats as a control. A
previous study confirmed a dysfunction of amino acid metabolism in the brain of WKY rats
compared with that of WIS rats. At the neonatal stage, free amino acids in milk are
important nutrients because they act as immediate nutrients for offspring and may affect
later health and behavior of the offspring. Therefore, the present study aimed to
investigate free amino acid concentrations in milk and the relationships between free
amino acid concentrations in milk and plasma in WIS and WKY rats. The concentrations of
ten of the determined free amino acids in milk were significantly higher, but only
L-methionine was significantly lower, in WKY rats. Six free amino acids had significantly
higher concentrations in colostrum and two free amino acids had higher concentrations in
matured milk. Free amino acid concentrations in plasma changed by both genetic background
and lactation stage; however, the patterns of change in most free amino acid
concentrations except for taurine in plasma were similar between WIS and WKY rats. The
transport ratio of free amino acids from plasma to milk was not similar among the free
amino acids tested, and each free amino acid was influenced by the genetic background
and/or the type of milk.
Collapse
Affiliation(s)
- Mizuki Hamada
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Tsubasa Ihara
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Peyton KJ, Liu XM, Shebib AR, Johnson FK, Johnson RA, Durante W. Arginase inhibition prevents the development of hypertension and improves insulin resistance in obese rats. Amino Acids 2018; 50:747-754. [PMID: 29700652 DOI: 10.1007/s00726-018-2567-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/09/2018] [Indexed: 01/12/2023]
Abstract
This study investigated the temporal activation of arginase in obese Zucker rats (ZR) and determined if arginase inhibition prevents the development of hypertension and improves insulin resistance in these animals. Arginase activity, plasma arginine and nitric oxide (NO) concentration, blood pressure, and insulin resistance were measured in lean and obese animals. There was a chronological increase in vascular and plasma arginase activity in obese ZR beginning at 8 weeks of age. The increase in arginase activity in obese animals was associated with a decrease in insulin sensitivity and circulating levels of arginine and NO. The rise in arginase activity also preceded the increase in blood pressure in obese ZR detected at 12 weeks of age. Chronic treatment of 8-week-old obese animals with an arginase inhibitor or L-arginine for 4 weeks prevented the development of hypertension and improved plasma concentrations of arginine and NO. Arginase inhibition also improved insulin sensitivity in obese ZR while L-arginine supplementation had no effect. In conclusion, arginase inhibition prevents the development of hypertension and improves insulin sensitivity while L-arginine administration only mitigates hypertension in obese animals. Arginase represents a promising therapeutic target in ameliorating obesity-associated vascular and metabolic dysfunction.
Collapse
Affiliation(s)
- Kelly J Peyton
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Xiao-Ming Liu
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Ahmad R Shebib
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Fruzsina K Johnson
- College of Osteopathic Medicine, William Cary University, Hattiesburg, MS, USA
| | - Robert A Johnson
- College of Osteopathic Medicine, William Cary University, Hattiesburg, MS, USA
| | - William Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA.
| |
Collapse
|
6
|
Exercise training reverses the negative effects of chronic L-arginine supplementation on insulin sensitivity. Life Sci 2017; 191:17-23. [DOI: 10.1016/j.lfs.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/24/2017] [Accepted: 10/01/2017] [Indexed: 12/14/2022]
|
7
|
l-Arginine Enhances Resistance against Oxidative Stress and Heat Stress in Caenorhabditis elegans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13100969. [PMID: 27690079 PMCID: PMC5086708 DOI: 10.3390/ijerph13100969] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/23/2016] [Accepted: 09/20/2016] [Indexed: 01/21/2023]
Abstract
The antioxidant properties of l-arginine (l-Arg) in vivo, and its effect on enhancing resistance to oxidative stress and heat stress in Caenorhabditis elegans were investigated. C. elegans, a worm model popularly used in molecular and developmental biology, was used in the present study. Here, we report that l-Arg, at a concentration of 1 mM, prolonged C. elegans life by 26.98% and 37.02% under oxidative and heat stress, respectively. Further experiments indicated that the longevity-extending effects of l-Arg may be exerted by its free radical scavenging capacity and the upregulation of aging-associated gene expression in worms. This work is important in the context of numerous recent studies that concluded that environment stresses are associated with an increased population death rate.
Collapse
|
8
|
Dabhade P, Kotwal S. Tackling the aging process with bio-molecules: a possible role for caloric restriction, food-derived nutrients, vitamins, amino acids, peptides, and minerals. J Nutr Gerontol Geriatr 2013; 32:24-40. [PMID: 23451844 DOI: 10.1080/21551197.2012.753777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Aging is a multifactorial process leading to general deterioration in many tissues and organs, accompanied by an increased incidence and severity of a wide variety of chronic, incurable, and often fatal diseases. A possibility of slowing down the aging process and improving the quality of life in old age by nutritional intervention has renewed the interest of the scientific world in anti-aging therapies. These include potential dietary interventions, adherence to nutrition, hormonal and cell-based therapies, genetic manipulations, and anti-aging supplements or nutrients. This review addresses strategies to slow the aging process by caloric restriction and the use of nutritional supplements.
Collapse
Affiliation(s)
- Prachi Dabhade
- University Department of Biochemistry, RTM Nagpur University, Nagpur, India
| | | |
Collapse
|
9
|
de Castro Barbosa T, Jiang LQ, Zierath JR, Nunes MT. L-Arginine enhances glucose and lipid metabolism in rat L6 myotubes via the NO/ c-GMP pathway. Metabolism 2013; 62:79-89. [PMID: 22889511 DOI: 10.1016/j.metabol.2012.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The amino acid Arginine (Arg) is the main biological precursor of nitric oxide (NO) and has been described to improve insulin sensitivity in diabetes and obesity. We investigated the molecular mechanisms involved in the long-term effects of Arg on glucose and lipid metabolism. MATERIALS AND METHODS L6 myotubes were treated with Arg (7 mmol/L) for 6 days. D-Mannitol (7 mmol/L) was used as control; spermine NONOate (10 μmol/L) and L-NAME (100 μmol/L) were used to evaluate the NO/c-GMP pathway role. Basal and insulin-induced (120 nmol/L) glycogen synthesis, glucose uptake and lipid oxidation, c-GMP and nitrite levels, and the intracellular signaling pathways were evaluated. RESULTS Arg-treatment increased: 1) basal and insulin-stimulated glycogen synthesis; 2) glucose uptake; 3) palmitate oxidation; 4) p-Akt (Ser(473)), total and plasma membrane GLUT4 content, total and p-AMPK-α and p-ACC (Ser(79)), p-GSK-3α/β (Ser(21/9)) and 5) nitrite and c-GMP levels. L-NAME treatment suppressed Arg effects on: 1) nitrite and c-GMP content; 2) glycogen synthesis and glucose uptake; 3) basal and insulin-stimulated p-Akt (Ser(473)), total and p-AMPK-α and ACC, and nNOS expression. CONCLUSION We provide evidence that Arg improves glucose and lipid metabolism in skeletal muscle, in parallel with increased phosphorylation of Akt and AMPK-α. These effects were mediated by the NO/c-GMP pathway. Thus, arginine treatment enhances signal transduction and has a beneficial effect of metabolism in skeletal muscle through direct activation of Akt and AMPK pathways.
Collapse
Affiliation(s)
- Thais de Castro Barbosa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
10
|
Brunetto EL, Teixeira SDS, Giannocco G, Machado UF, Nunes MT. T3 rapidly increases SLC2A4 gene expression and GLUT4 trafficking to the plasma membrane in skeletal muscle of rat and improves glucose homeostasis. Thyroid 2012; 22:70-9. [PMID: 22136156 DOI: 10.1089/thy.2010.0409] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glucose transporter 4 (GLUT4) is highly expressed in muscle and fat tissue, where triiodothyronine (T(3)) induces solute carrier family 2 facilitated glucose transporter member 4 (SLC2A4) gene transcription. T(3) was also shown to rapidly increase glucose uptake in myocytes exposed to cycloheximide, indicating that it might act nongenomically to regulate GLUT4 availability. We tested this hypothesis by evaluating, in thyroidectomized rats (Tx rats), the acute and/or chronic T(3) effects on GLUT4 mRNA expression and polyadenylation, protein content, and trafficking to the plasma membrane (PM) in skeletal muscle, as well as on blood glucose disappearance rate (kITT) after insulin administration. METHODS Rats were surgically thyroidectomized and treated with T(3) (0.3 to 100 μg/100 g body weight) from 10 minutes to 5 days, and killed thereafter. Sham-operated (SO) rats were used as controls. Total RNA was extracted from the skeletal muscles (soleus [SOL] and extensorum digitalis longus [EDL]) and subjected to Northern blotting analysis using rat GLUT4 cDNA probe. Total protein was extracted and subjected to specific centrifugations for subcellular fractionation, and PM as well as microsomal (M) fractions were subjected to Western blotting analysis, using anti-GLUT4 antiserum as a probe. GLUT4 mRNA polyadenylation was examined by a rapid amplification of cDNA ends-poly(A) test (RACE-PAT). RESULTS Thyroidectomy reduced skeletal muscle GLUT4 mRNA, mRNA poly(A) tail length, protein content, and trafficking to the PM, as well as the kITT. The acute T(3) treatment rapidly (30 minutes) increased all these parameters compared with Tx rats. The 5-day T(3) treatment increased GLUT4 mRNA and protein expression, and restored GLUT4 trafficking to the PM and kITT to SO values. CONCLUSIONS The results presented here show for the first time that, in parallel to its transcriptional action on the SLC2A4 gene, T(3) exerts a rapid post-transcriptional effect on GLUT4 mRNA polyadenylation, which might increase transcript stability and translation efficiency, leading to the increased GLUT4 content and availability to skeletal muscle, as well as on GLUT4 translocation to the PM, improving the insulin sensitivity, as shown by the kITT.
Collapse
Affiliation(s)
- Erika Lia Brunetto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
11
|
Jiang MY, Cai DP. Oral arginine improves linear growth of long bones and the neuroendocrine mechanism. Neurosci Bull 2011; 27:156-62. [PMID: 21614098 DOI: 10.1007/s12264-011-1051-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE To investigate the effect of oral administration of arginine on linear growth of long bones in male pubertal rats and the underlying mechanisms, focusing on expression of genes related to the hypothalamus-pituitary growth axis and the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway. METHODS Rats were randomly divided into control and intervention groups. In the intervention group, arginine was solved in water (0.045 g L-arginine was mixed with 1 mL water) and administered in rats (10 mL/kg) through gastric perfusion once per day, for totally 28 d. Rats in the control group received normal saline treatment. Bone histomorphometry analysis was used to measure growth plate width and mineral apposition rate of the tibia, as well as trabecular bone volume fraction, osteoblast surface and osteoclast surface of the femur. Serum growth hormone (GH) concentration was determined by radioimmunoassay. Real-time PCR was used to measure the expression of neuronal nitric oxide synthase (nNOS), soluble guanylyl cyclases (sGCα1 and sGCβ1), growth hormone-releasing hormone (Ghrh) and somatostatin (SS) in hypothalamus, as well as Gh in pituitary. Western blot was used to detect the protein levels of nNOS, sGCα1 and sGCβ1 in hypothalamus. RESULTS After treatment with arginine, the growth plate width of tibia and osteoblast surface of femur were increased (P < 0.05), and serum GH concentration was elevated (P < 0.05). Besides, mRNA and protein levels of nNOS and sGCα1 (P < 0.05), as well as the expression of Gh mRNA (P < 0.01), were significantly up-regulated, while the expression of SS mRNA was down-regulated (P < 0.05). CONCLUSION Oral administration of arginine could improve linear growth of long bones by regulating mRNA expression of SS and Gh and inducing GH secretion, possibly via nNOS-NO-sGC-cGMP signal transduction pathway.
Collapse
Affiliation(s)
- Ming-Yu Jiang
- Department of Integrated Traditional Chinese and Western Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| | | |
Collapse
|
12
|
Clinical use of amino acids as dietary supplement: pros and cons. J Cachexia Sarcopenia Muscle 2011; 2:75-80. [PMID: 21766052 PMCID: PMC3118002 DOI: 10.1007/s13539-011-0032-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/27/2011] [Indexed: 02/07/2023] Open
Abstract
Nitrogen supply is pivotal for the maintenance of life. Amino acids can be utilized to synthesize both glucose and lipids. The opposite, i.e., production of amino acids from either one of them, is not possible in the absence of other amino acids as donors of nitrogen. The quality of amino acid content in protein has been re-evaluated recently, and the relevance of essential amino acids has been repeatedly underlined. Essential amino acid requirements in different mammals are not identical, and ratios among them should be taken into account when projecting an efficient formulation. Recent research has demonstrated that genes respond to different qualities and quantities of nutritional supply, and increased provision of essential amino acids increases lifespan in animal experiments through mitochondriogenesis and maintenance of elevated rates of synthesis of anti-oxidant molecules. Moreover, genetic expression of key controllers of synthesis, like mTOR, may be particularly important for understanding skeletal muscle maintenance. Losses of muscle mass and impaired immune function are related to reduced protein supply, and there is increasing evidence that regular essential amino acid intake as part of an oral diet is effective in reversing muscle catabolism, promoting muscle anabolism, and restoring immunological function. Therefore, the use of amino acids as supplements to diet would be expanding in the near future. Is this safe? Few data are available on amino acid toxicity, and only one essential amino acid may be considered to have clinically relevant toxicity: methionine, because it is transformed into a toxic intermediate, homocysteine, when cysteine synthesis is required by metabolic needs. Matching of stoichiometric ratios between methionine and cysteine may solve the problem of supplying sufficient amounts of sulfur to the body. Arginine and glutamine are two non-essential amino acids than can become "conditionally essential" because of elevated needs during pathological conditions, and metabolism may not be able to maintain their concentrations at sufficient levels to match metabolic requirements. Chronic exogenous arginine supplementation has not proven to exert positive clinical effects in different trials, and sequential articulation of the knowledge of introduction of arginine-driven transcriptional, translational, and epigenetic adaptations may give us a key for interpreting those puzzling results.
Collapse
|
13
|
Dioguardi FS. To give or not to give? Lessons from the arginine paradox. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2011; 4:90-8. [PMID: 21625171 DOI: 10.1159/000327777] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arginine is one of the 20 amino acids (AA) found in proteins and synthesized by human cells. However, arginine is also the substrate for a series of reactions leading to the synthesis of other AA and is an obligatory substrate for two enzymes with diverging actions, arginases and nitric oxide synthases (NOS), giving origin to urea and NO, respectively. NO is a very potent vasodilator when produced by endothelial NOS (eNOS). The 'arginine paradox' is the fact that, despite intracellular physiological concentration of arginine being several hundred micromoles per liter, far exceeding the ∼5 μM K(M) of eNOS, the acute provision of exogenous arginine still increases NO production. Clinically, an additional paradox is that the largest controlled study on chronic oral arginine supplementation in patients after myocardial infarction had to be interrupted for excess mortality in treated patients. Expression and activity of arginases, which produce urea and divert arginine from NOS, are positively related to exogenous arginine supplementation. Therefore, the more arginine is introduced, the more it is destroyed, eventually leading to impaired NO production. In this review, conditions influencing the low arginine concentrations found in plasma will be reviewed, revising the paradigm that simple replenishment of what is lacking will always produce beneficial consequences.
Collapse
|
14
|
Gerlinger-Romero F, Guimarães-Ferreira L, Giannocco G, Nunes MT. Chronic supplementation of beta-hydroxy-beta methylbutyrate (HMβ) increases the activity of the GH/IGF-I axis and induces hyperinsulinemia in rats. Growth Horm IGF Res 2011; 21:57-62. [PMID: 21237681 DOI: 10.1016/j.ghir.2010.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/07/2010] [Accepted: 12/20/2010] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Beta-hydroxy-beta-methylbutyrate (HMβ) is a metabolite of leucine widely used for improving sports performance. Although HMβ is recognized to promote anabolic or anti-catabolic effects on protein metabolism, the impact of its long-term use on skeletal muscle and/or genes that control the skeletal protein balance is not fully known. This study aimed to investigate whether chronic HMβ treatment affects the activity of GH/IGF-I axis and skeletal muscle IGF-I and myostatin mRNA expression. DESIGN Rats were treated with HMβ (320mg/kg BW) or vehicle, by gavage, for 4 weeks, and killed by decapitation. Blood was collected for evaluation of serum insulin, glucose and IGF-I concentrations. Samples of pituitary, liver, extensor digitorum longus (EDL) and soleus muscles were collected for total RNA or protein extraction to evaluate the expression of pituitary growth hormone (GH) gene (mRNA and protein), hepatic insulin-like growth factor I (IGF-I) mRNA, skeletal muscle IGF-I and myostatin mRNA by Northern blotting/real time-PCR, or Western blotting. RESULTS Chronic HMβ treatment increased the content of pituitary GH mRNA and GH, hepatic IGF-I mRNA and serum IGF-I concentration. No changes were detected on skeletal muscle IGF-I and myostatin mRNA expression. However, the HMβ-treated rats although normoglycemic, exhibited hyperinsulinemia. CONCLUSIONS The data presented herein extend the body of evidence on the potential role of HMβ-treatment in stimulating GH/IGF-I axis activity. In spite of this effect, HMβ supplementation also induces an apparent insulin resistance state which might limit the beneficial aspects of the former results, at least in rats under normal nutritional status and health conditions.
Collapse
Affiliation(s)
- F Gerlinger-Romero
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes, São Paulo/SP, Brazil
| | | | | | | |
Collapse
|
15
|
de Castro Barbosa T, de Carvalho JEN, Poyares LL, Bordin S, Machado UF, Nunes MT. Potential role of growth hormone in impairment of insulin signaling in skeletal muscle, adipose tissue, and liver of rats chronically treated with arginine. Endocrinology 2009; 150:2080-6. [PMID: 19106217 DOI: 10.1210/en.2008-1487] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have shown that rats chronically treated with Arginine (Arg), although normoglycemic, exhibit hyperinsulinemia and decreased blood glucose disappearance rate after an insulin challenge. Attempting to investigate the processes underlying these alterations, male Wistar rats were treated with Arg (35 mg/d), in drinking water, for 4 wk. Rats were then acutely stimulated with insulin, and the soleus and extensorum digitalis longus muscles, white adipose tissue (WAT), and liver were excised for total and/or phosphorylated insulin receptor (IR), IR substrate 1/2, Akt, Janus kinase 2, signal transducer and activator of transcription (STAT) 1/3/5, and p85alpha/55alpha determination. Muscles and WAT were also used for plasma membrane (PM) and microsome evaluation of glucose transporter (GLUT) 4 content. Pituitary GH mRNA, GH, and liver IGF-I mRNA expression were estimated. It was shown that Arg treatment: 1) did not affect phosphotyrosine-IR, whereas it decreased phosphotyrosine-IR substrate 1/2 and phosphoserine-Akt content in all tissues studied, indicating that insulin signaling is impaired at post-receptor level; 2) decreased PM GLUT4 content in both muscles and WAT; 3) increased the pituitary GH mRNA, GH, and liver IGF-I mRNA expression, the levels of phosphotyrosine-STAT5 in both muscles, phosphotyrosine-Janus kinase 2 in extensorum digitalis longus, phosphotyrosine-STAT3 in liver, and WAT as well as total p85alpha in soleus, indicating that GH signaling is enhanced in these tissues; and 4) increased p55alpha total content in muscles, WAT, and liver. The present findings provide the molecular mechanisms by which insulin resistance and, by extension, reduced GLUT4 content in PM of muscles and WAT take place after chronic administration of Arg, and further suggest a putative role for GH in its genesis, considering its diabetogenic effect.
Collapse
Affiliation(s)
- Thais de Castro Barbosa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Brooks WW, Conrad CH, Robinson KG, Colucci WS, Bing OHL. L-arginine fails to prevent ventricular remodeling and heart failure in the spontaneously hypertensive rat. Am J Hypertens 2009; 22:228-34. [PMID: 19057517 DOI: 10.1038/ajh.2008.334] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The effects of long-term oral administration of L-arginine, a substrate for nitric oxide (NO) production, on left ventricular (LV) remodeling, myocardial function and the prevention of heart failure (HF) was compared to the angiotensin-converting enzyme (ACE) inhibitor captopril in a rat model of hypertensive HF (aged spontaneously hypertensive rat (SHR)). METHODS SHRs and age-matched normotensive Wistar-Kyoto (WKY) rats were assigned to either no treatment, treatment with L-arginine (7.5 g/l in drinking water) or captopril (1 g/l in drinking water) beginning at 14 months of age, a time when SHRs exhibit stable compensated hypertrophy with no hemodynamic impairment; animals were studied at 23 months of age or at the time of HF. RESULTS In untreated SHR, relative to WKY, there was significant LV hypertrophy, myocardial fibrosis, and isolated LV muscle performance and response to isoproterenol (ISO) were depressed; and, 7 of 10 SHRs developed HF. Captopril administration to six SHRs attenuated hypertrophy and prevented impaired inotropic responsiveness to ISO, contractile dysfunction, fibrosis, increased passive stiffness, and HF. In contrast, L-arginine administration to SHR increased LV hypertrophy and myocardial fibrosis while cardiac performance was depressed; and 7 of 9 SHRs developed HF. In WKY, L-arginine treatment but not captopril resulted in increased LV weight and the contractile response to ISO was blunted. Neither L-arginine nor captopril treatment of WKY changed fibrosis and HF did not occur. CONCLUSION These data demonstrate that in contrast to captopril, long-term treatment with L-arginine exacerbates age-related cardiac hypertrophy, fibrosis, and did not prevent contractile dysfunction or the development of HF in aging SHR.
Collapse
|