1
|
Cui Y, Zhou Q, Jin M, Jiang S, Shang P, Dong X, Li L. Research progress on pharmacological effects and bioavailability of berberine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8485-8514. [PMID: 38888754 DOI: 10.1007/s00210-024-03199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Berberine (BBR), a benzylisoquinoline alkaloid obtained from natural medicines such as coptidis rhizoma, has a wide range of pharmacological activities such as protecting the nervous system, protecting the cardiovascular system, anti-inflammatory, antidiabetic, antihyperlipidemic, antitumor, antibacterial, and antidiarrheal. However, factors such as poor solubility, low permeability, P-glycoprotein (P-gp) efflux, and hepatic-intestinal metabolism result in BBR having a low bioavailability (< 1%), which restricts its application in clinical settings. Therefore, improving its bioavailability is a prerequisite for its clinical applications. This review summarizes the various pharmacological effects of BBR and analyzes the main reasons for its poor bioavailability. It introduces methods to improve the bioavailability of BBR through the use of absorption enhancers and P-gp inhibitors, structural modification of BBR, and preparation of BBR salts and cocrystals as well as the development of new formulations and focuses on the bioavailability study of the new formulations of BBR. The research of BBR was also prospected in order to provide reference for the further research of BBR.
Collapse
Affiliation(s)
- Yulong Cui
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quanying Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Jin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siqi Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizhao Shang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofan Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingjun Li
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Kodi T, Praveen S, Paka SK, Sankhe R, Gopinathan A, Krishnadas N, Kishore A. Neuroprotective Effects of Metformin and Berberine in Lipopolysaccharide-Induced Sickness-Like Behaviour in Mice. Adv Pharmacol Pharm Sci 2024; 2024:8599268. [PMID: 39346967 PMCID: PMC11438515 DOI: 10.1155/2024/8599268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/01/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Sickness behaviour, a set of behavioural changes associated with neuroinflammation, is expressed as decreased mobility and depressed behaviour. Activation of AMP-activated protein kinase (AMPK) is reported to regulate inflammation in conditions such as Alzheimer and traumatic brain injury. Metformin, an antidiabetic agent acting via AMPK activation, possesses anti-inflammatory properties. Similarly, the reported anti-inflammatory activities of berberine could be partially attributed to its ability to activate AMPK. In this study, we investigated the effects of metformin and berberine against lipopolysaccharide (LPS)-induced sickness-like behaviour, associated with neuroinflammation, impaired cognition, and oxidative stress. Swiss albino mice were divided into four groups, normal control, LPS control, metformin treatment, and berberine treatment. The control groups received saline for 7 days. Groups 3 and 4 received metformin (200 mg/kg) and berberine (100 mg/kg), respectively, orally once daily for 7 days. On day 7, 1 h after the treatments, animals received LPS (1.5 mg/kg i.p.) to induce sickness-like behaviour. Open field test (OFT) and forced swim test (FST), were performed within 2 h of LPS administration. Then, proinflammatory cytokines (IL-1β and TNF-α), acetylcholinesterase activity (AChE), and oxidative stress markers were estimated in the brain homogenate. In the LPS control group, immobility state, proinflammatory cytokines, AChE, and lipid peroxidation were significantly increased, whereas the glutathione levels were decreased. Pretreatment with metformin significantly improved immobility in the FST, with reduced IL-1β, oxidative stress markers, and AChE activity. However, no significant changes were observed in OFT. Berberine pretreatment exhibited only an apparent, statistically insignificant, improvement in sickness-like behaviour assessed using FST and OFT, cytokine levels, oxidative markers, and AChE. Several factors affect treatment efficacy, such as treatment duration and administered dose. Considering these, berberine warrants elaborate preclinical evaluation for neuroinflammation. Nevertheless, based on the effects observed, AMPK activators could regulate neuroinflammation, cognition, and oxidative stress linked with sickness-like behaviour.
Collapse
Affiliation(s)
- Triveni Kodi
- Department of Pharmacology Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sharanya Praveen
- Department of Pharmacology Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sravan Kumar Paka
- Department of Pharmacology Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Runali Sankhe
- Department of Pharmacology Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Adarsh Gopinathan
- Department of Pharmacology Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nandakumar Krishnadas
- Department of Pharmacology Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Anoop Kishore
- Department of Pharmacology Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
3
|
Sunhe YX, Zhang YH, Fu RJ, Xu DQ, Tang YP. Neuroprotective effect and preparation methods of berberine. Front Pharmacol 2024; 15:1429050. [PMID: 39309003 PMCID: PMC11412855 DOI: 10.3389/fphar.2024.1429050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Berberine (BBR) is a natural alkaloid, which has played an important role in the field of medicine since its discovery in the late 19th century. However, the low availability of BBR in vivo prevents its full effect. In recent years, a large number of studies confirmed that BBR has a protective effect on the nervous system through various functions, yet the issue of the inability to systematically understand the protection of BBR on the nervous system remains a gap that needs to be addressed. Many existing literature introductions about berberine in neurodegenerative diseases, but the role of berberine in the nervous system goes far beyond these. Different from these literatures, this review is divided into three parts: preparation method, mechanism, and therapeutic effect. Various dosage forms of BBR and their preparation methods are added, in order to provide a reasonable choice of BBR, and help to solve the problem of low bioavailability in treatment. More importantly, we more comprehensively summarize the mechanism of BBR to protect the nervous system, in addition to the treatment of neurodegenerative diseases (anti-oxidative stress, anti-neuroinflammation, regulation of apoptosis), two extra mechanisms of berberine for the protection of the nervous system were also introduced: bidirectional regulation of autophagy and promote angiogenesis. Also, we have clarified the precise mechanism by which BBR has a therapeutic effect not only on neurodegenerative illnesses but also on multiple sclerosis, gliomas, epilepsy, and other neurological conditions. To sum up, we hope that these can evoke more efforts to comprehensively utilize of BBR nervous system, and to promote the application of BBR in nervous system protection.
Collapse
Affiliation(s)
| | | | | | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
4
|
Khaled AM, Othman MS, Obeidat ST, Aleid GM, Aboelnaga SM, Fehaid A, Hathout HMR, Bakkar AA, Moneim AEA, El-Garawani IM, Morsi DS. Green-Synthesized Silver and Selenium Nanoparticles Using Berberine: A Comparative Assessment of In Vitro Anticancer Potential on Human Hepatocellular Carcinoma Cell Line (HepG2). Cells 2024; 13:287. [PMID: 38334679 PMCID: PMC10854975 DOI: 10.3390/cells13030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
A well-known natural ingredient found in several medicinal plants, berberine (Ber), has been shown to have anticancer properties against a range of malignancies. The limited solubility and bioavailability of berberine can be addressed using Ber-loaded nanoparticles. In this study, we compared the in vitro cytotoxic effects of both Ber-loaded silver nanoparticles (Ber-AgNPs) and Ber-loaded selenium nanoparticles (Ber-SeNPs) in the human liver cancer cell line (HepG2) and mouse normal liver cells (BNL). The IC50 values in HepG2 for berberine, Ber-AgNPs, Ber-SeNPs, and cisplatin were 26.69, 1.16, 0.04, and 0.33 µg/mL, respectively. Our results show that Ber and its Ag and Se nanoparticles exerted a good antitumor effect against HepG2 cells by inducing apoptosis via upregulating p53, Bax, cytosolic cytochrome C levels, and caspase-3 activity, and the down-regulation of Bcl-2 levels. Similarly, incubation with Ber and both Ber-NPs (Ag and Se) led to a significant dose-dependent elevation in inflammatory markers' (TNF-α, NF-κB, and COX-2) levels compared to the control group. In addition, it led to the arrest of the G1 cell cycle by depleting the expression of cyclin D1 and CDK-2 mRNA. Furthermore, Ber and both Ber-NPs (Ag and Se) caused a significant dose-dependent increase in LDH activity in HepG2 cells. Furthermore, our findings offer evidence that Ber and its nanoparticles intensified oxidative stress in HepG2 cells. Furthermore, the migration rate of cells subjected to berberine and its nanoforms was notably decreased compared to that of control cells. It can be inferred that Ber nanoparticles exhibited superior anticancer efficacy against HepG2 compared to unprocessed Ber, perhaps due to their improved solubility and bioavailability. Furthermore, Ber-SeNPs exhibited greater efficacy than Ber-AgNPs, possibly as a result of the inherent anticancer characteristics of selenium.
Collapse
Affiliation(s)
- Azza M. Khaled
- Biochemistry Department, College of Medicine, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (A.M.K.); (M.S.O.); (G.M.A.)
| | - Mohamed S. Othman
- Biochemistry Department, College of Medicine, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (A.M.K.); (M.S.O.); (G.M.A.)
| | - Sofian T. Obeidat
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (S.T.O.); (S.M.A.)
| | - Ghada M. Aleid
- Biochemistry Department, College of Medicine, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (A.M.K.); (M.S.O.); (G.M.A.)
| | - Shimaa M. Aboelnaga
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (S.T.O.); (S.M.A.)
| | - Alaa Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, El Mansoura 35516, Egypt;
| | - Heba M. R. Hathout
- Natural Resources Department, Faculty of African Postgraduate Studies, Cairo University, Giza 12613, Egypt;
| | - Ashraf A. Bakkar
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza 12566, Egypt;
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt
| | - Islam M. El-Garawani
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt; (I.M.E.-G.); (D.S.M.)
| | - Dalia S. Morsi
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt; (I.M.E.-G.); (D.S.M.)
| |
Collapse
|
5
|
Gao Y, Nie K, Wang H, Dong H, Tang Y. Research progress on antidepressant effects and mechanisms of berberine. Front Pharmacol 2024; 15:1331440. [PMID: 38318145 PMCID: PMC10839030 DOI: 10.3389/fphar.2024.1331440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Depression, a global health problem with growing prevalence, brings serious impacts on the daily life of patients. However, the antidepressants currently used in clinical are not perfectly effective, which greatly reduces the compliance of patients. Berberine is a natural quaternary alkaloid which has been shown to have a variety of pharmacological effects, such as hypoglycemic, lipid-regulation, anti-cancer, antibacterial, anti-oxidation, anti-inflammatory, and antidepressant. This review summarizes the evidence of pharmacological applications of berberine in treating depression and elucidates the mechanisms of berberine regulating neurotransmitter levels, promoting the regeneration of hippocampal neurons, improving hypothalamic-pituitary-adrenal axis dysfunction, anti-oxidative stress, and suppressing inflammatory status in order to provide a reference for further research and clinical application of berberine.
Collapse
Affiliation(s)
- Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Feng JH, Chen K, Shen SY, Luo YF, Liu XH, Chen X, Gao W, Tong YR. The composition, pharmacological effects, related mechanisms and drug delivery of alkaloids from Corydalis yanhusuo. Biomed Pharmacother 2023; 167:115511. [PMID: 37729733 DOI: 10.1016/j.biopha.2023.115511] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
Corydalis yanhusuo W. T. Wang, also known as yanhusuo, yuanhu, yanhu and xuanhu, is one of the herb components of many Chinese Traditional Medicine prescriptions such as Jin Ling Zi San and Yuanhu-Zhitong priscription. C. yanhusuo was traditionally used to relieve pain and motivate blood and Qi circulation. Now there has been growing interest in pharmacological effects of alkaloids, the main bioactive components of C. yanhusuo. Eighty-four alkaloids isolated from C. yanhusuo are its important bioactive components and can be characterized into protoberberine alkaloids, aporphine alkaloids, opiate alkaloids and others and proper extraction or co-administration methods modulate their contents and efficacy. Alkaloids from C. yanhusuo have various pharmacological effects on the nervous system, cardiovascular system, cancer and others through multiple molecular mechanisms such as modulating neurotransmitters, ion channels, gut microbiota, HPA axis and signaling pathways and are potential treatments for many diseases. Plenty of novel drug delivery methods such as autologous red blood cells, self-microemulsifying drug delivery systems, nanoparticles and others have also been investigated to better exert the effects of alkaloids from C. yanhusuo. This review summarized the alkaloid components of C. yanhusuo, their pharmacological effects and mechanisms, and methods of drug delivery to lay a foundation for future investigations.
Collapse
Affiliation(s)
- Jia-Hua Feng
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Kang Chen
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Si-Yu Shen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yun-Feng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xi-Hong Liu
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xin Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yu-Ru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
7
|
Tian E, Sharma G, Dai C. Neuroprotective Properties of Berberine: Molecular Mechanisms and Clinical Implications. Antioxidants (Basel) 2023; 12:1883. [PMID: 37891961 PMCID: PMC10604532 DOI: 10.3390/antiox12101883] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid natural product, is isolated primarily from Coptis chinensis and other Berberis plants. BBR possesses various bioactivities, including antioxidant, anti-inflammation, anticancer, immune-regulation, and antimicrobial activities. Growing scientific evidence underscores BBR's substantial neuroprotective potential, prompting increased interest and scrutiny. In this comprehensive review, we elucidate the neuroprotective attributes of BBR, delineate the underlying molecular mechanisms, and assess its clinical safety and efficacy. The multifaceted molecular mechanisms responsible for BBR's neuroprotection encompass the attenuation of oxidative stress, mitigation of inflammatory responses, inhibition of apoptotic pathways, facilitation of autophagic processes, and modulation of CYP450 enzyme activities, neurotransmitter levels, and gut microbiota composition. Furthermore, BBR engages numerous signaling pathways, including the PI3K/Akt, NF-κB, AMPK, CREB, Nrf2, and MAPK pathways, to confer its neuroprotective effects. This comprehensive review aims to provide a substantial knowledge base, stimulate broader scientific discourse, and facilitate advancements in the application of BBR for neuroprotection.
Collapse
Affiliation(s)
- Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
8
|
Salem HA, Abu-Elfotuh K, Alzahrani S, Rizk NI, Ali HS, Elsherbiny N, Aljohani A, Hamdan AME, Chellasamy P, Abdou NS, Gowifel AMH, Darwish A, Ibrahim OM, Abd Elmageed ZY. Punicalagin's Protective Effects on Parkinson's Progression in Socially Isolated and Socialized Rats: Insights into Multifaceted Pathway. Pharmaceutics 2023; 15:2420. [PMID: 37896179 PMCID: PMC10610313 DOI: 10.3390/pharmaceutics15102420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Parkinson's disease (PD) is a gradual deterioration of dopaminergic neurons, leading to motor impairments. Social isolation (SI), a recognized stressor, has recently gained attention as a potential influencing factor in the progress of neurodegenerative illnesses. We aimed to investigate the intricate relationship between SI and PD progression, both independently and in the presence of manganese chloride (MnCl2), while evaluating the punicalagin (PUN) therapeutic effects, a natural compound established for its cytoprotective, anti-inflammatory, and anti-apoptotic activities. In this five-week experiment, seven groups of male albino rats were organized: G1 (normal control), G2 (SI), G3 (MnCl2), G4 (SI + MnCl2), G5 (SI + PUN), G6 (MnCl2 + PUN), and G7 (SI + PUN + MnCl2). The results revealed significant changes in behavior, biochemistry, and histopathology in rats exposed to SI and/or MnCl2, with the most pronounced effects detected in the SI rats concurrently exposed to MnCl2. These effects were associated with augmented oxidative stress biomarkers and reduced antioxidant activity of the Nrf2/HO-1 pathway. Additionally, inflammatory pathways (HMGB1/RAGE/TLR4/NF-ᴋB/NLRP3/Caspase-1 and JAK-2/STAT-3) were upregulated, while dysregulation of signaling pathways (PI3K/AKT/GSK-3β/CREB), sustained endoplasmic reticulum stress by activation PERK/CHOP/Bcl-2, and impaired autophagy (AMPK/SIRT-1/Beclin-1 axis) were observed. Apoptosis induction and a decrease in monoamine levels were also noted. Remarkably, treatment with PUN effectively alleviated behaviour, histopathological changes, and biochemical alterations induced by SI and/or MnCl2. These findings emphasize the role of SI in PD progress and propose PUN as a potential therapeutic intervention to mitigate PD. PUN's mechanisms of action involve modulation of pathways such as HMGB1/RAGE/TLR4/NF-ᴋB/NLRP3/Caspase-1, JAK-2/STAT-3, PI3K/AKT/GSK-3β/CREB, AMPK/SIRT-1, Nrf2/HO-1, and PERK/CHOP/Bcl-2.
Collapse
Affiliation(s)
- Hoda A. Salem
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Karema Abu-Elfotuh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Sharifa Alzahrani
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.S.A.); (S.A.)
| | - Nermin I. Rizk
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menouf 32952, Egypt;
| | - Howaida S. Ali
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.S.A.); (S.A.)
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Alhanouf Aljohani
- Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ahmed M. E. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | | | - Nada S. Abdou
- Faculty of Medicine, Misr University for Science and Technology (MUST), Giza 11556, Egypt;
| | - Ayah M. H. Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt;
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Osama Mohamed Ibrahim
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Tanta, Tanta 31527, Egypt;
| | - Zakaria Y. Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA 71203, USA;
| |
Collapse
|
9
|
Pan L, Wang Y, Guan R, Shi Q. Study on the active ingredients and mechanism of Jiaotai Pill in the treatment of primary insomnia based on network pharmacology and GEO statistics: A review. Medicine (Baltimore) 2023; 102:e35253. [PMID: 37747012 PMCID: PMC10519549 DOI: 10.1097/md.0000000000035253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
OBJECTIVE To explore the active components and mechanism of Jiaotai Pill (JTP) in the treatment of primary insomnia (PI) based on gene expression omnibus. METHODS The main active components of Jiaotai Pills were obtained by TCMSP and literature mining, and the targets of the active components of Jiaotai Pills were predicted. The targets were verified and standardized by Uniprot database. PI-related targets were obtained from GeneCards, OMIM, DrugBank, PharmGKB, and TTD databases. Obtaining an intersection action target point of the Jiaotai pill and the PI by using a Venny diagram; Gene chip data (GSE208668) was downloaded from gene expression omnibus database, and then gene probe enrichment analysis (GSEA) was used to screen the differentially expressed genes between PI patients and normal controls, and molecular docking was used to virtually verify the screened differentially expressed genes with potential active compounds. RESULTS 21 active components and 263 potential targets of Jiaotai Pill were screened by database analysis and literature mining, 112 of which were intersected with PI. Molecular docking results showed that quercetin, EGCG, kaempferol, R-kanatin, stigmasterol, berberine and other core active components had good docking activity with related differential genes. CONCLUSION Jiaotai Pill can regulate the release of inflammatory factors through multiple active ingredients, multiple disease targets, multiple biological pathways and multiple pathways to achieve the purpose of treating PI, which provides a theoretical basis for the clinical treatment of PI and broadens the clinical use of Jiaotai Pill.
Collapse
Affiliation(s)
- Limin Pan
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yaolei Wang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Ruiqian Guan
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Qingchun Shi
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
10
|
Gholizadeh N, Dalimi A, Ghaffarifar F, Nader-Mohammadi M, Molavi P, Dadkhah M, Molaei S. Berberine improves inhibitory avoidance memory impairment of Toxoplasma gondii-infected rat model of ketamine-induced schizophrenia. BMC Complement Med Ther 2023; 23:303. [PMID: 37649038 PMCID: PMC10469906 DOI: 10.1186/s12906-023-04107-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Memory impairment caused by Toxoplasma gondii infection has been documented. Berberine (BRB) is well known for its enhancing effects on memory and has shown promising results. However, the impact of BRB on T. gondii infection and schizophrenia-induced consolidation and reconsolidation memory impairment is still unclear. Here; we examined the effect of BRB on the inhibitory avoidance (IA) memory consolidation and reconsolidation impairment induced by T. gondii infection, and ketamine (Ket) as a pharmacological model of schizophrenia. Also; the brain-derived neurotrophic factor (BDNF) levels in the medial prefrontal cortex (mPFC) and hippocampus were analyzed. METHODS Rats were infected with T. gondii RH strain or received Ket (30 mg/kg/day) intraperitoneally (i.p) for at least five consecutive days (as the model of schizophrenia). Then followed by oral administration with BRB (25 mg/kg/day) for five days. Finally, the IA memory retention test was examined 48 post-conditioning, and BDNF was measured. RESULTS Results indicated IA memory impairment in T. gondii-infected animals since lower step-through latency (STL) was observed than in control animals. We found significant (P = 0.01, P = 0.001) elevations in STL and a significant decrease (P = 0.001) in total time spent in the dark area following BRB administration in infected and Ket-treated rats, indicating improvement (increased STL) in consolidation and reconsolidation memory. Moreover, BDNF levels were reduced (P = 0.01) in the hippocampus and mPFC regions of both T. gondii- infected and Ket-induced groups, which remarkably enhanced after BRB treatment. Furthermore; we found that BRB administration notably increased the mPFC BDNF levels in mPFC (P < 0.01) and hippocampus (P = 0.001) in the Ket-treated and rats infected with T. gondii. CONCLUSION Taken together; BRB may be a valuable preclinical treatment for improving memory impairment through BDNF expression in PFC and hippocampus, therefore; BRB is suggested for memory disturbances induced by T. gondii infection.
Collapse
Affiliation(s)
- Neghin Gholizadeh
- Students Research Committee, Public Health School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehryar Nader-Mohammadi
- Department of Psychiatry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Parviz Molavi
- Department of Psychiatry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
11
|
Salawi A, Almoshari Y, Sultan MH, Madkhali OA, Bakkari MA, Alshamrani M, Safhi AY, Sabei FY, Al Hagbani T, Ali MS, Alam MS. Production, Characterization, and In Vitro and In Vivo Studies of Nanoemulsions Containing St. John’s Wort Plant Constituents and Their Potential for the Treatment of Depression. Pharmaceuticals (Basel) 2023; 16:ph16040490. [PMID: 37111247 PMCID: PMC10141068 DOI: 10.3390/ph16040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The current project was designed to prepare an oil-in-water (oil/water) hypericin nanoemulsion using eucalyptus oil for the preparation of an oil phase with chitosan as an emulsion stabilizer. The study might be a novelty in the field of pharmaceutical sciences, especially in the area of formulation development. Tween® 80 (Polysorbate) was used as the nonionic surfactant. The nanoemulsion was prepared by using the homogenization technique, followed by its physicochemical evaluation. The surface morphological studies showed the globular structure has a nano-sized diameter, as confirmed by zeta size analysis. The zeta potential analysis confirmed a positive surface charge that might be caused by the presence of chitosan in the formulation. The pH was in the range of 5.14 to 6.11, which could also be compatible with the range of nasal pH. The viscosity of the formulations was found to be affected by the concentration of chitosan (F1-11.61 to F4-49.28). The drug release studies showed that the presence of chitosan greatly influenced the drug release, as it was noticed that formulations having an elevated concentration of chitosan release lesser amounts of the drug. The persistent stress in the mouse model caused a variety of depressive- and anxiety-like behaviors that can be counteracted by chemicals isolated from plants, such as sulforaphane and tea polyphenols. In the behavioral test and source performance test, hypericin exhibited antidepressant-like effects. The results show that the mice treated for chronic mild stress had a considerably higher preference for sucrose after receiving continuous hypericin for 4 days (p = 0.0001) compared to the animals administered with normal saline (p ≤ 0.0001) as well as the naïve group (p ≤ 0.0001). In conclusion, prepared formulations were found to be stable and can be used as a potential candidate for the treatment of depression.
Collapse
|
12
|
Qiao Y, Li C, Zhang M, Zhang X, Wei L, Cao K, Zhang X, Bi H, Gao T. Effects of Tibetan medicine metacinnabar (β-HgS) combined with imipramine or sertraline on depression-like symptoms in mice. Front Pharmacol 2022; 13:971243. [PMID: 36120298 PMCID: PMC9478660 DOI: 10.3389/fphar.2022.971243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/05/2022] [Indexed: 12/04/2022] Open
Abstract
Depression is a common mood disorder that has exhibited an increased incidence rate worldwide, but the overall clinical efficacy of antidepressants remains unsatisfactory. In traditional Ayurveda and Tibetan medicines, β-HgS-containing medicines have been used to treat neurological diseases for thousands of years, and our previous study found that β-HgS ameliorated depression-like behaviors in chronic restraint stress (CRS)-treated or chronic unpredictable mild stress (CUMS)-treated mice. Hence, present study investigated the effects of β-HgS combined with the clinical first-line antidepressants, imipramine (IMI) and sertraline (SER), on depression-like symptoms in CRS- and CUMS-co-treated mice. Our results revealed that β-HgS promoted the antidepressant effect of SER on depression-like behavior in mice, and enhanced its effects on promoting glucocorticoid receptor (GR) expression and neuronal proliferation in key hippocampal subregions, as well as increasing interleukin 10 (IL-10) levels and decreasing malondialdehyde levels in the sera of stress-stimulated mice. As for IMI, β-HgS enhanced its effects on preventing atrophy and severe structural damage in the hippocampus, as well as in promoting hippocampal GR levels and neuronal proliferation and serum IL-10 and superoxide dismutase (SOD) levels. Additionally, combination therapy resulted in the increased diversity of important intestinal microbiota compared to that of monotherapy, which may help sustain the health of the digestive tract and reduce inflammation to further enhance the antidepressant effects of IMI and SER in mice.
Collapse
Affiliation(s)
- Yajun Qiao
- Department of Psychiatry, The People’s Hospital of Jiangmen, Southern Medical University, Jiangmen, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Cen Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Ming Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xingfang Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- Medical College, Qinghai University, Xining, China
| | - Lixin Wei
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- *Correspondence: Hongtao Bi, ; Lixin Wei, ; Tingting Gao,
| | - Keshen Cao
- Department of Psychiatry, The People’s Hospital of Jiangmen, Southern Medical University, Jiangmen, China
| | - Xiaoyuan Zhang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- *Correspondence: Hongtao Bi, ; Lixin Wei, ; Tingting Gao,
| | - Tingting Gao
- Department of Psychiatry, The People’s Hospital of Jiangmen, Southern Medical University, Jiangmen, China
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Hongtao Bi, ; Lixin Wei, ; Tingting Gao,
| |
Collapse
|
13
|
Duarte-Filho LAMDS, Amariz IA, Nishimura RHV, Massaranduba ABR, Menezes PMN, Damasceno TA, Brys I, Rolim LA, Silva FS, Ribeiro LADA. β-carboline-independent antidepressant-like effect of the standardized extract of the barks of Mimosa tenuiflora (Willd) Poir. occurs via 5-HT 2A/2C receptors in mice. J Psychopharmacol 2022; 36:836-848. [PMID: 35723216 DOI: 10.1177/02698811221104050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Depression is a psychiatric disorder with limited therapy options. Psychedelics are new antidepressant candidates, being the ayahuasca one of the most promising ones. A synergistic combination of N,N-dimethyltryptamine (DMT) and β-carbolines allows ayahuasca antidepressant properties. Another psychedelic and DMT-containing beverage is the jurema wine used religiously by indigenous people from Northeastern Brazil. AIMS To evaluate the antidepressant-like effect of standardized extract of Mimosa tenuiflora (SEMT), associated or not with harmine (β-carboline), in behavioral models of depression. METHODS The SEMT was submitted to (+) ESI-IT-LC/MS analysis for DMT quantification. To assess the antidepressant-like effect of SEMT, the open field (OFT), tail suspension (TST), and forced swim (FST) tests were performed. To verify the participation of serotonergic systems, the 5-hydroxytryptophan (5-HTP)-induced head twitch test was performed. RESULTS The content of DMT found in SEMT was 24.74 ± 0.8 mg/g. Yuremamine was also identified. SEMT presented an antidepressant-like effect in mice submitted to the TST and FST, independent from harmine, with no significant alterations on the OFT. The sub-dose interaction between SEMT and ketamine also produced an anti-immobility effect in the TST, with no changes in the OFT. SEMT potentiated the head twitch behavior induced by 5-HTP and ketanserin prevented its antidepressant-like effect in the TST (p < 0.05). CONCLUSIONS SEMT presented a harmine-independent antidepressant-like effect in mice submitted to the TST and FST. This effect occurs possibly via activation of serotonergic systems, particularly the 5-HT2A/2C receptors.
Collapse
Affiliation(s)
| | - Isabela Araujo Amariz
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil.,Central de Análise de Fármacos, Medicamentos e Alimentos (CAFMA) UNIVASF, Petrolina, Pernambuco, Brazil
| | | | - Ana Beatriz Rodrigues Massaranduba
- Pós-Graduação em Ciências da Saúde e Biológicas (PGCSB) UNIVASF, Petrolina, Pernambuco, Brazil.,Grupo de Pesquisa em Neurociências e Psicologia Experimental (Neurovale) UNIVASF, Petrolina, Pernambuco, Brazil.,Grupo de Pesquisa em Processamento de Sinais e Visão Computacional (SigProCV) UNIVASF, Petrolina, Pernambuco, Brazil
| | | | | | - Ivani Brys
- Pós-Graduação em Ciências da Saúde e Biológicas (PGCSB) UNIVASF, Petrolina, Pernambuco, Brazil.,Grupo de Pesquisa em Neurociências e Psicologia Experimental (Neurovale) UNIVASF, Petrolina, Pernambuco, Brazil
| | - Larissa Araújo Rolim
- Pós-Graduação em Biociências (PGB) UNIVASF, Pernambuco, Brazil.,Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil.,Central de Análise de Fármacos, Medicamentos e Alimentos (CAFMA) UNIVASF, Petrolina, Pernambuco, Brazil.,Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Fabrício Souza Silva
- Pós-Graduação em Biociências (PGB) UNIVASF, Pernambuco, Brazil.,Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Luciano Augusto de Araújo Ribeiro
- Pós-Graduação em Biociências (PGB) UNIVASF, Pernambuco, Brazil.,Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| |
Collapse
|
14
|
Fang C, Zhang Z, Xu H, Liu Y, Wang X, Yuan L, Xu Y, Zhu Z, Zhang A, Shao A, Lou M. Natural Products for the Treatment of Post-stroke Depression. Front Pharmacol 2022; 13:918531. [PMID: 35712727 PMCID: PMC9196125 DOI: 10.3389/fphar.2022.918531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Post-stroke depression (PSD) is the most frequent and important neuropsychiatric consequence of stroke. It is strongly associated with exacerbated deterioration of functional recovery, physical and cognitive recoveries, and quality of life. However, its mechanism is remarkably complicated, including the neurotransmitters hypothesis (which consists of a monoaminergic hypothesis and glutamate-mediated excitotoxicity hypothesis), inflammation hypothesis, dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, and neurotrophic hypothesis and neuroplasticity. So far, the underlying pathogenesis of PSD has not been clearly defined yet. At present, selective serotonin reuptake inhibitors (SSRIs) have been used as the first-line drugs to treat patients with PSD. Additionally, more than SSRIs, a majority of the current antidepressants complied with multiple side effects, which limits their clinical application. Currently, a wide variety of studies revealed the therapeutic potential of natural products in the management of several diseases, especially PSD, with minor side effects. Accordingly, in our present review, we aim to summarize the therapeutic targets of these compounds and their potential role in-clinic therapy for patients with PSD.
Collapse
Affiliation(s)
- Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyu Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibo Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Meiqing Lou,
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Meiqing Lou,
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Meiqing Lou,
| |
Collapse
|
15
|
Noori T, Sureda A, Sobarzo-Sánchez E, Shirooie S. The Role of Natural Products in Treatment of Depressive Disorder. Curr Neuropharmacol 2022; 20:929-949. [PMID: 34979889 PMCID: PMC9881107 DOI: 10.2174/1570159x20666220103140834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Depressive disorder is one of the most common psychiatric syndromes that, if left untreated, can cause many disturbances in a person's life. Numerous factors are involved in depression, including inflammation, brain-derived neurotrophic factor (BDNF), GABAergic system, hypothalamic- pituitary-adrenal (HPA) Axis, monoamine neurotransmitters (serotonin (5-HT), noradrenaline, and dopamine). Common treatments for depression are selective serotonin reuptake inhibitors, tricyclic antidepressants, and monoamine oxidase inhibitors, but these drugs have several side effects such as anxiety, diarrhea, constipation, weight loss, and sexual dysfunctions. These agents only reduce the symptoms and temporarily reduce the rate of cognitive impairment associated with depression. As a result, extensive research has recently been conducted on the potential use of antidepressant and sedative herbs. According to the available data, herbs used in traditional medicine can be significantly effective in reducing depression, depressive symptoms and improving patients' performance. The present study provides a summary of biomarkers and therapeutic goals of depression and shows that natural products such as saffron or genipin have antidepressant effects. Some of the useful natural products and their mechanisms were evaluated. Data on various herbs and natural isolated compounds reported to prevent and reduce depressive symptoms is also discussed.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, Palma de Mallorca E-07122, Balearic Islands, Spain;,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile; Chile;,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran;,Address correspondence to this author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; E-mail:
| |
Collapse
|
16
|
Sahu K, Singh S, Devi B, Singh C, Singh A. A review on the neuroprotective effect of berberine against chemotherapy-induced cognitive impairment. Curr Drug Targets 2022; 23:913-923. [PMID: 35240956 DOI: 10.2174/1389450123666220303094752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
Chemobrain is one of the major side effects of chemotherapy, despite increased research, the mechanisms underlying chemotherapy-induced cognitive changes remain unknown. Though, several possibly important candidate mechanisms have been identified and will be studied further in the future. Chemobrain is characterized by memory loss, cognitive impairment, difficulty in language, concentration, acceleration, and learning. The major characteristic of chemobrain is oxidative stress, mitochondrial dysfunction, immune dysregulation, hormonal alteration, white matter abnormalities, and DNA damage. Berberine (BBR) is an isoquinoline alkaloid extracted from various berberine species. BBR is a small chemical that easily passes the blood-brain barrier (BBB), making it useful for treating neurodegenerative diseases. Many studies on the pharmacology of BBR have been reported in the past. Furthermore, several clinical and experimental research indicates that BBR has a variety of pharmacological effects. So, in this review, we explore the pathogenesis of chemobrain and the neuroprotective potential of BBR against chemobrain. We also introduced the therapeutic role of BBR in various neurodegenerative and neurological diseases such as Alzheimer's, Parkinson's disease, mental depression, schizophrenia, anxiety, and also some stroke.
Collapse
Affiliation(s)
- Kuleshwar Sahu
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| | - Sukhdev Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| | - Bhawna Devi
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| | - Charan Singh
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab-144603, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| |
Collapse
|
17
|
Abu-Elfotuh K, Al-Najjar AH, Mohammed AA, Aboutaleb AS, Badawi GA. Fluoxetine ameliorates Alzheimer's disease progression and prevents the exacerbation of cardiovascular dysfunction of socially isolated depressed rats through activation of Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome signaling pathway. Int Immunopharmacol 2022; 104:108488. [PMID: 35042170 DOI: 10.1016/j.intimp.2021.108488] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
Depression is a risk factor for Alzheimer's (AD) and cardiovascular diseases (CVD). Therefore, depression treatment restricts its deteriorating effects on mood, memory and CV system. Fluoxetine is the most widely used antidepressant drug, it has neuroprotective effect through its antioxidant/anti-inflammatory properties. The current study investigated for the first-time the cross link between depression, AD and CVD besides, role of fluoxetine in mitigating such disorders. Depression was induced in rats by social isolation (SI) for 12 weeks, AlCL3 (70 mg/kg/day, i.p.) was used to induce AD which was administered either in SI or normal control (NC) grouped rats starting at 8th week till the end of the experiment, fluoxetine (10 mg/kg/day, p.o) treatment also was started at 8th week. SI and AD showed a statistically significant deteriorated effect on behavioral, neurochemical and histopathological analysis which was exaggerated when two disorder combined than each alone. Fluoxetine treatment showed protective effect against SI, AD and prevents exacerbation of CVD. Fluoxetine improved animals' behavior, increased brain monoamines, BDNF besides increased antioxidant defense mechanism of SOD, TAC contents and increased protein expression of Nrf2/HO-1 with significant decrease of AChE activity, β-amyloid, Tau protein, MDA, TNF-α, IL1β contents as well as decreased protein expression of NF-kB, TLR4, NLRP3 and caspase1. It also showed cardioprotective effects as it improved lipid profile with pronounced decrease of cardiac enzymes of CK-MB, troponin and MEF2. In conclusion, fluoxetine represents as a promising drug against central and peripheral disorders through its anti-inflammatory/antioxidant effects via targeting antioxidant Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Aya H Al-Najjar
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Asmaa A Mohammed
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Amany S Aboutaleb
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ghada A Badawi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University, El Arish, Egypt.
| |
Collapse
|
18
|
Berberine, a Herbal Metabolite in the Metabolic Syndrome: The Risk Factors, Course, and Consequences of the Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041351. [PMID: 35209140 PMCID: PMC8874997 DOI: 10.3390/molecules27041351] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022]
Abstract
In recent years, the health of patients exposed to the consequences of the metabolic syndrome still requires the search for new solutions, and plant nutraceuticals are currently being intensively investigated. Berberine is a plant alkaloid possessing scientifically determined mechanisms of the prevention of the development of atherosclerosis, type 2 diabetes, and obesity, as well as cardiovascular complications and cancer. It positively contributes to elevated levels of fasting, postprandial blood glucose, and glycosylated hemoglobin, while decreasing insulin resistance. It stimulates glycolysis, improving insulin secretion, and inhibits gluconeogenesis and adipogenesis in the liver; by reducing insulin resistance, berberine also improves ovulation. The anti-obesity action of berberine has been also well-documented. Berberine acts as an anti-sclerotic, lowering the LDL and testosterone levels. The alkaloid exhibits an anti-inflammatory property by stalling the expression of cyclooxygenase 2 (COX-2) and prostaglandin E2. Berberine is neuroprotective and acts as an antidepressive. However, the outcomes in psychiatric patients are nonspecific, as it has been shown that berberine improves metabolic parameters in schizophrenic patients, acting as an adjuvant during antipsychotic treatment. Berberine acts as an anticancer option by inducing apoptosis, the cell cycle arrest, influencing MAPK (mitogen-activated protein kinase), and influencing transcription regulation. The inhibition of carcinogenesis is also combined with lipid metabolism.
Collapse
|
19
|
Wang Q, Sun YN, Zou CM, Zhang TL, Li Z, Liu M, Shi BY, Shi SS, Yu CY, Wei TM. Regulation of the kynurenine/serotonin pathway by berberine and the underlying effect in the hippocampus of the chronic unpredictable mild stress mice. Behav Brain Res 2022; 422:113764. [PMID: 35051489 DOI: 10.1016/j.bbr.2022.113764] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/15/2022] [Accepted: 01/15/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Depression is a common mental disorder and is one of the main causes of disability. Berberine (BBR), the major constituent alkaloid originally from the famous Chinese herb Huanglian (Coptis chinensis), has been shown to exert antidepressant-like effects. This study was to investigate the hypothesis that BBR treats depressive-like behavior by shifting the balance of the kynurenine (KYN)/serotonin (5-HT) pathway toward the 5-HT pathway through downregulated indoleamine 2,3-dioxygenase 1 (IDO1), monoamine oxidase A (MAOA) and upregulated dopamine decarboxylase (DDC) in hippocampus. METHOD A chronic unpredictable mild stress (CUMS) mice model of depression was established via 21 days unpredictable stimulation. Then the mice were randomly assigned into six groups, namely control, model, fluoxetine [FLU, (10 mg/kg)], BBRL (25 mg/kg), BBRM (50 mg/kg), and BBRH (100 mg/kg) groups. Behavioral assessments were conducted to evaluate the antidepressant effects of BBR. The levels of 5-HT, KYN, tryptophan (TRP), and 5-hydroxyindoleacetic acid (5-HIAA) in hippocampus were estimated using high performance liquid chromatography (HPLC). The mRNA and protein levels of DDC, MAOA and IDO1 in hippocampus were detected by real-time quantitative polymerase chain reaction (qRT-PCR) and western blot (WB), respectively. RESULT The results showed that a successful CUMS mice model was established through 21 days of continuous unpredictable stimulation, as indicated by the significant decrease in locomotor activity and increase in immobility time, reduction in body weight and sucrose preference rate etc. Compared with the normal group, the concentrations of KYN/TRP had significantly increased (p## <0.01) and 5-HT/5-HIAA had decreased (p#<0.05) at day 21 in the control group, but then improved after drug treatment with FLU and BBR. Compared with the normal group, the mRNA of IDO1 and MAOA were significantly upregulated (p#<0.05) in the control group, MAOA and IDO1 gene were downregulated by FLU and BBR treatment. Protein expressions of IDO1 and MAOA was significantly increased (p#<0.05) and DDC downregulated (p##<0.01). BBR treatment downregulated IDO1 and MAOA, upregulated DDC. CONCLUSIONS BBR reversed the abnormalities of the KYN/5-HT pathway in depressed mice and achieved an excellent antidepressant effect. Its direct impact may be observed as changes in biological indicators in mice hippocampus tissue.
Collapse
Affiliation(s)
- Qi Wang
- College of Pharmacy, Harbin Medical University (Daqing), Daqing 163319, China
| | - Ya-Nan Sun
- College of Pharmacy, Harbin Medical University (Daqing), Daqing 163319, China
| | - Chun-Ming Zou
- College of Pharmacy, Harbin Medical University (Daqing), Daqing 163319, China
| | - Te-Li Zhang
- Department of Pharmacy, The People's Hospital of Daqing, Daqing 163319, China
| | - Zhu Li
- Department of human resource, Harbin Medical University (Daqing), Daqing 163319, China
| | - Min Liu
- College of Pharmacy, Harbin Medical University (Daqing), Daqing 163319, China
| | - Bi-Ying Shi
- College of Pharmacy, Harbin Medical University (Daqing), Daqing 163319, China
| | - Shan-Shan Shi
- College of Pharmacy, Harbin Medical University (Daqing), Daqing 163319, China
| | - Chun-Yue Yu
- College of Pharmacy, Harbin Medical University (Daqing), Daqing 163319, China.
| | - Tai-Ming Wei
- College of Pharmacy, Harbin Medical University (Daqing), Daqing 163319, China.
| |
Collapse
|
20
|
Tang Y, Su H, Wang H, Lu F, Nie K, Wang Z, Huang W, Dong H. The effect and mechanism of Jiao-tai-wan in the treatment of diabetes mellitus with depression based on network pharmacology and experimental analysis. Mol Med 2021; 27:154. [PMID: 34875999 PMCID: PMC8650382 DOI: 10.1186/s10020-021-00414-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of diabetes mellitus (DM) and depression is increasing year by year around the world, bringing a serious burden to patients and their families. Jiao-tai-wan (JTW), a well-known traditional Chinese medicine (TCM), has been approved to have hypoglycemic and antidepressant effects, respectively, but whether JTW has such dual effects and its potential mechanisms is still unknown. This study is to evaluate the dual therapeutic effects of JTW on chronic restraint stress (CRS)-induced DM combined with depression mice, and to explore the underlying mechanisms through network pharmacology. METHODS CRS was used on db/db mice for 21 days to induce depression-like behaviors, so as to obtain the DM combined with depression mouse model. Mice were treated with 0.9% saline (0.1 ml/10 g), JTW (3.2 mg/kg) and Fluoxetine (2.0 mg/kg), respectively. The effect of JTW was accessed by measuring fasting blood glucose (FBG) levels, conducting behavioral tests and observing histopathological change. The ELISA assay was used to evaluate the levels of inflammatory cytokines and the UHPLC-MS/MS method was used to determine the depression-related neurotransmitters levels in serum. The mechanism exploration of JTW against DM and depression were performed via a network pharmacological method. RESULTS The results of blood glucose measurement showed that JTW has a therapeutic effect on db/db mice. Behavioral tests and the levels of depression-related neurotransmitters proved that JTW can effectively ameliorate depression-like symptoms in mice induced by CRS. In addition, JTW can also improve the inflammatory state and reduce the number of apoptotic cells in the hippocampus. According to network pharmacology, 28 active compounds and 484 corresponding targets of JTW, 1407 DM targets and 1842 depression targets were collected by screening the databases, and a total of 117 targets were obtained after taking the intersection. JTW plays a role in reducing blood glucose level and antidepressant mainly through active compounds such as quercetin, styrene, cinnamic acid, ethyl cinnamate, (R)-Canadine, palmatine and berberine, etc., the key targets of its therapeutic effect include INS, AKT1, IL-6, VEGF-A, TNF and so on, mainly involved in HIF-1 signal pathway, pathways in cancer, Hepatitis B, TNF signal pathway, PI3K-Akt signal pathway and MAPK signaling pathway, etc. CONCLUSION: Our experimental study showed that JTW has hypoglycemic and antidepressant effects. The possible mechanism was explored by network pharmacology, reflecting the characteristics of multi-component, multi-target and multi-pathway, which provides a theoretical basis for the experimental research and clinical application of JTW in the future.
Collapse
Affiliation(s)
- Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhi Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenya Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
21
|
PSD-93 up-regulates the synaptic activity of corticotropin-releasing hormone neurons in the paraventricular nucleus in depression. Acta Neuropathol 2021; 142:1045-1064. [PMID: 34536123 DOI: 10.1007/s00401-021-02371-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022]
Abstract
Since the discovery of ketamine anti-depressant effects in last decade, it has effectively revitalized interest in investigating excitatory synapses hypothesis in the pathogenesis of depression. In the present study, we aimed to reveal the excitatory synaptic regulation of corticotropin-releasing hormone (CRH) neuron in the hypothalamus, which is the driving force in hypothalamic-pituitary-adrenal (HPA) axis regulation. This study constitutes the first observation of an increased density of PSD-93-CRH co-localized neurons in the hypothalamic paraventricular nucleus (PVN) of patients with major depression. PSD-93 overexpression in CRH neurons in the PVN induced depression-like behaviors in mice, accompanied by increased serum corticosterone level. PSD-93 knockdown relieved the depression-like phenotypes in a lipopolysaccharide (LPS)-induced depression model. Electrophysiological data showed that PSD-93 overexpression increased CRH neurons synaptic activity, while PSD-93 knockdown decreased CRH neurons synaptic activity. Furthermore, we found that LPS induced increased the release of glutamate from microglia to CRH neurons resulted in depression-like behaviors using fiber photometry recordings. Together, these results show that PSD-93 is involved in the pathogenesis of depression via increasing the synaptic activity of CRH neurons in the PVN, leading to the hyperactivity of the HPA axis that underlies depression-like behaviors.
Collapse
|
22
|
Anti-Inflammatory Potential of Daturaolone from Datura innoxia Mill.: In Silico, In Vitro and In Vivo Studies. Pharmaceuticals (Basel) 2021; 14:ph14121248. [PMID: 34959649 PMCID: PMC8708807 DOI: 10.3390/ph14121248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Exploration of leads with therapeutic potential in inflammatory disorders is worth pursuing. In line with this, the isolated natural compound daturaolone from Datura innoxia Mill. was evaluated for its anti-inflammatory potential using in silico, in vitro and in vivo models. Daturaolone follows Lipinski's drug-likeliness rule with a score of 0.33. Absorption, distribution, metabolism, excretion and toxicity prediction show strong plasma protein binding; gastrointestinal absorption (Caco-2 cells permeability = 34.6 nm/s); no blood-brain barrier penetration; CYP1A2, CYP2C19 and CYP3A4 metabolism; a major metabolic reaction, being aliphatic hydroxylation; no hERG inhibition; and non-carcinogenicity. Predicted molecular targets were mainly inflammatory mediators. Molecular docking depicted H-bonding interaction with nuclear factor kappa beta subunit (NF-κB), cyclooxygenase-2, 5-lipoxygenase, phospholipase A2, serotonin transporter, dopamine receptor D1 and 5-hydroxy tryptamine. Its cytotoxicity (IC50) value in normal lymphocytes was >20 µg/mL as compared to cancer cells (Huh7.5; 17.32 ± 1.43 µg/mL). Daturaolone significantly inhibited NF-κB and nitric oxide production with IC50 values of 1.2 ± 0.8 and 4.51 ± 0.92 µg/mL, respectively. It significantly reduced inflammatory paw edema (81.73 ± 3.16%), heat-induced pain (89.47 ± 9.01% antinociception) and stress-induced depression (68 ± 9.22 s immobility time in tail suspension test). This work suggests a possible anti-inflammatory role of daturaolone; however, detailed mechanistic studies are still necessary to corroborate and extrapolate the findings.
Collapse
|
23
|
Zhao S, Rong C, Gao Y, Wu L, Luo X, Song S, Liu Y, Wong JH, Wang H, Yi L, Ng T. Antidepressant-like effect of Ganoderma lucidum spore polysaccharide-peptide mediated by upregulation of prefrontal cortex brain-derived neurotrophic factor. Appl Microbiol Biotechnol 2021; 105:8675-8688. [PMID: 34716786 DOI: 10.1007/s00253-021-11634-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
A 28-kDa polysaccharide-peptide (PGL) with antidepressant-like activities was isolated from spores of the mushroom Ganoderma lucidum. It was unadsorbed on DEAE-cellulose. Its internal amino acid sequences manifested pronounced similarity with proteins from the mushrooms Lentinula edodes and Agaricus bisporus. The monosaccharides present in 28-kDa PGL comprised predominantly of glucose (over 90%) and much fewer galactose, mannose residues, and other residues. PGL manifested antidepressant-like activities as follows. It enhanced viability and DNA content in corticosterone-injured PC12 cells(a cell line derived from a pheochromocytoma of the rat adrenal medulla with an embryonic origin from the neural crest containing a mixture of neuroblastic cells and eosinophilic cells) and reduced LDH release. A single acute PGL treatment shortened the duration of immobility of mice in both tail suspension and forced swimming tests. PGL treatment enhanced sucrose preference and shortened the duration of immobility in mice exposed to chronic unpredictable mild stress (CUMS). Chronic PGL treatment reversed the decline in mouse brain serotonin and norepinephrine levels but did not affect dopamine levels. PGL decreased serum corticosterone levels and increased BDNF mRNA and protein levels and increased synapsin I and PSD95 levels in the prefrontal cortex. This effect was completely blocked by pretreatment with the BDNF antagonist K252a, indicating that PGL increased synaptic proteins in a BDNF-dependent manner.Key points• An antidepressive polysaccharide-peptide PGL was isolated from G. lucidum spores.• PGL protected PC12 nerve cells from the toxicity of corticosterone.• PGL upregulated BDNF expression and influenced key factors in the prefrontal cortex.
Collapse
Affiliation(s)
- Shuang Zhao
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yi Gao
- Beijing Xicheng District Health Care Center for Mothers and Children, Beijing, 100053, China
| | - Linfeng Wu
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoheng Luo
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuang Song
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yu Liu
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, New Territories, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, 100193, China.
| | - Litao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Fujian Province, 361021, Xiamen, China.
| | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, New Territories, China.
| |
Collapse
|
24
|
Ghavimi H, Bayani Ershadi AS, Dastvar S, Hosseini MJ. The effects of minocycline in improving of methamphetamine withdrawal syndrome in male mice. Drug Chem Toxicol 2021; 45:2319-2327. [PMID: 34182834 DOI: 10.1080/01480545.2021.1942484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Methamphetamine (METH) is a potent psychostimulant drug with an increasing rate of abuse over recent years. Depressive-like behaviors are one of the major symptoms patients in the METH withdrawal period experience. There is limited evidence regarding the METH withdrawal treatment, and conventional managements are not completely effective. Furthermore, extensive promising literature supports minocycline, a well-known antibiotic with anti-oxidant, anti-inflammatory properties, to treat depressive-like behaviors. Therefore, we hypothesized that administration of minocycline might mitigate the methamphetamine (METH) induced depression in male mice. Administration of METH (2 mg/kg) to mice two times a day for 14 constitutive days was done to induce the METH-induced withdrawal syndrome model. Animals were divided into 10 groups (n = 10 in each group), and three doses of minocycline (2.5, 5 and 10 mg/kg) were daily administered to male albino mice for 10 days. Following the behavioral test, the animals were scarified, their hippocampus were dissected to measure oxidative stress parameters. Our data revealed that chronic administration of minocycline provoked antidepressant effects in behavioral tests, such as forced swim test (FST), tail suspension test (TST) and splash test. Additionally, minocycline was able to improve oxidative stresses and neuronal damage in the hippocampus and restore the body's antioxidant system by increasing glutathione (GSH) and the cellular energy (ATP) and reducing the malondialdehyde (MDA) level. According to our promising results of minocycline on targeting mitochondria and its performance, we suggest minocycline as a new therapeutic option in clinical trials of depression treatment.
Collapse
Affiliation(s)
- Hamed Ghavimi
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Sasan Bayani Ershadi
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samira Dastvar
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
25
|
Liang Y, Ye C, Chen Y, Chen Y, Diao S, Huang M. Berberine Improves Behavioral and Cognitive Deficits in a Mouse Model of Alzheimer's Disease via Regulation of β-Amyloid Production and Endoplasmic Reticulum Stress. ACS Chem Neurosci 2021; 12:1894-1904. [PMID: 33983710 DOI: 10.1021/acschemneuro.0c00808] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by β-amyloid (Aβ), neurofibrillary tangles, and neuronal cell death. Aggressive Aβ accumulation accelerates senile plaque formation and perturbs endoplasmic reticulum (ER) function. Aβ accumulation-induced changes stimulate the unfolded protein response (UPR), which can trigger neuronal apoptosis. Protein kinase RNA-like endoplasmic reticulum kinase (PERK), whose activation is stress-dependent, increases the phosphorylation of eukaryotic translation initiation factor-2α (eIF2α). eIF2α promotes the synthesis of β-site APP cleavage enzyme 1 (BACE1), which in turn facilitates Aβ generation and subsequent neuronal apoptosis. In this study, we investigated whether berberine could improve cognitive deficits in the triple-transgenic mouse model of Alzheimer's disease (3 × Tg AD) mice. Our results revealed that berberine treatment may inhibit PERK/eIF2α signaling-mediated BACE1 translation, thus reducing Aβ production and resultant neuronal apoptosis. Further, berberine may have neuroprotective effects, via attenuation of ER stress and oxidative stress. In sum, our study demonstrates the therapeutic potential of berberine for treating AD.
Collapse
Affiliation(s)
- Yubin Liang
- Department of Neurology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Chenghui Ye
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuling Chen
- School of Mechanics and Engineering Sciences of Zhengzhou University, Zhengzhou 450001, China
| | - Ying Chen
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Shiyuan Diao
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Min Huang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
26
|
Therapeutic Effects of Berberine in Metabolic Diseases and Diabetes Mellitus. REVISTA BRASILEIRA DE FARMACOGNOSIA 2021. [DOI: 10.1007/s43450-021-00159-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Chen L, Zhu L, Chen J, Chen W, Qian X, Yang Q. Crystal structure-guided design of berberine-based novel chitinase inhibitors. J Enzyme Inhib Med Chem 2021; 35:1937-1943. [PMID: 33167737 PMCID: PMC7655067 DOI: 10.1080/14756366.2020.1837123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Glycoside hydrolase family 18 (GH18) chitinases play an important role in various organisms ranging from bacteria to mammals. Chitinase inhibitors have potential applications as pesticides, fungicides, and anti-asthmatics. Berberine, a plant-derived isoquinoline alkaloid, was previously reported to inhibit against various GH18 chitinases with only moderate Ki values ranging between 20 and 70 μM. In this report, we present for the first time the berberine-complexed crystal structure of SmChiB, a model GH18 chitinase from the bacterium Serratia marcescens. Based on the berberine-binding mode, a hydrophobic cavity-based optimisation strategy was developed to increase their inhibitory activity. A series of berberine derivatives were designed and synthesised, and their inhibitory activities against GH18 chitinases were evaluated. The compound 4c showed 80-fold-elevated inhibitory activity against SmChiB and the human chitinase hAMCase with Ki values at the sub-micromolar level. The mechanism of improved inhibitory activities was proposed. This work provides a new strategy for developing novel chitinase inhibitors.
Collapse
Affiliation(s)
- Lei Chen
- School of Bioengineering, Dalian University of Technology, Dalian, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jinli Chen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Laboratory for Lingnan Modern Agriculture, (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
28
|
Jagetia GC. Anticancer Potential of Natural Isoquinoline Alkaloid Berberine. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2021; 000:000-000. [DOI: 10.14218/jerp.2021.00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Kinetic Characterization and Inhibitor Screening for the Proteases Leading to Identification of Drugs against SARS-CoV-2. Antimicrob Agents Chemother 2021; 65:AAC.02577-20. [PMID: 33526482 PMCID: PMC8097444 DOI: 10.1128/aac.02577-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus (CoV) disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has claimed many lives worldwide and is still spreading since December 2019. The 3C-like protease (3CLpro) and papain-like protease (PLpro) are essential for maturation of viral polyproteins in SARS-CoV-2 life cycle and thus regarded as key drug targets for the disease. Coronavirus (CoV) disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has claimed many lives worldwide and is still spreading since December 2019. The 3C-like protease (3CLpro) and papain-like protease (PLpro) are essential for maturation of viral polyproteins in SARS-CoV-2 life cycle and thus regarded as key drug targets for the disease. In this study, 3CLpro and PLpro assay platforms were established, and their substrate specificities were characterized. The assays were used to screen collections of 1,068 and 2,701 FDA-approved drugs. After excluding the externally used drugs which are too toxic, we totally identified 12 drugs as 3CLpro inhibitors and 36 drugs as PLpro inhibitors active at 10 μM. Among these inhibitors, six drugs were found to suppress SARS-CoV-2 with the half-maximal effective concentration (EC50) below or close to 10 μM. This study enhances our understanding on the proteases and provides FDA-approved drugs for prevention and/or treatment of COVID-19.
Collapse
|
30
|
Mujtaba MA, Akhter MH, Alam MS, Ali MD, Hussain A. An updated review on therapeutic potential and recent advances in drug delivery of Berberine: Current status and future prospect. Curr Pharm Biotechnol 2021; 23:60-71. [PMID: 33557735 DOI: 10.2174/1389201022666210208152113] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022]
Abstract
Natural products are well known for their high potency with minimum side effects. Plant extracts are the most commonly used natural products because of their ease of availability and relatively low production cost. Berberine (BBR), a phytochemical component of some Chinese medicinal herbs (most commonlyBerberis vulgaris), is an isoquinoline alkaloid with several biological and pharmacological effects including antioxidant, anti-inflammatory, antitumour, antimicrobial, antidepressant,hepatoprotective, hypolipidemic, and hypoglycemic actions. Interestingly, multiple studies have shown that BBR is a potential drug candidate with a multi-spectrum therapeutic application. However, the oral delivery of BBR is challenged owing to its poor bioavailability. Therefore, its oral bioavailability needs to be enhanced before it can be used in many clinical applications. This review provides an overview of the various studies that support the broad range of pharmacological activities of BBR. Also, it includes a section to address the issues and challenges related with the drug and methods to improve the properties of BBR such as solubility, stability and bioavailability that may be explored to help patients reap the maximum benefit from this potentially useful drug.
Collapse
Affiliation(s)
- Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University. Saudi Arabia
| | | | | | - Mohammad Daud Ali
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam. Saudi Arabia
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451. Saudi Arabia
| |
Collapse
|
31
|
Berberine for Appetite Suppressant and Prevention of Obesity. BIOMED RESEARCH INTERNATIONAL 2021; 2020:3891806. [PMID: 33415147 PMCID: PMC7752296 DOI: 10.1155/2020/3891806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/03/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Berberine (BBR), a natural plant product, has been shown to have antidiabetic, cholesterol-reducing effects. To investigate the action of BBR as appetite suppressants, two experimental protocols were performed. In the first experiment, the mice were fed either a normal-chow diet or a high-fat diet (HF). The mice received daily intraperitoneal injections of BBR (10 mg/kg or saline at 1 ml/kg) for 3 weeks. To determine the antiobesity effects of BBR, the food consumption, body weight, fat contents, serum leptin, and glucose level were investigated. In the second experiment, we set out to validate the effect of BBR on central neuropeptide Y (NPY) stimulated rats. Experiments were carried out in 24-hour fasted rats, and then food intake and glucose level were subsequently recorded for 1 hour. The experimental groups were subdivided into the intra-3rd ventricular microinjections of ACSF (artificial cerebrospinal fluid), neuropeptide Y (NPY; 100 nM), NPY+BBR (10 nM), and NPY+BBR (100 nM) group. And then the blood glucose level was examined. In the first experiment, treatment with BBR in the HF diet mice reduced food intake, body weight, fat contents, serum leptin, and glucose level. In the second experiment, the NPY-injected group increased food intake by 39.3%, and food intake was reduced in the BBR group by 47.5%, compared with the ACSF-injected group. Also, the serum glucose level in the NPY+BBR (100 nM) group was significantly lower than that in the NPY (100 nM) group. The results suggest that BBR improved lipid dysregulation in obesity by controlling the central obesity related pathway.
Collapse
|
32
|
Sharma A, Bajaj P, Bhandari A, Kaur G. From ayurvedic folk medicine to preclinical neurotherapeutic role of a miraculous herb, Tinospora cordifolia. Neurochem Int 2020; 141:104891. [PMID: 33137454 DOI: 10.1016/j.neuint.2020.104891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/23/2023]
Abstract
In Ayurveda, the age-old Indian traditional system of medicine, health is considered to be achieved as equilibrium of physical and mental wellbeing and brain related ailments are recognized as 'Vatavyadi'. Rasayana herbs were mainly used for pharmacological treatment of neurological diseases and Tinospora cordifolia is one of the popular Rasayana herbs of Ayurveda. The traditional claims of therapeutic activity of this herb for treatment of fever, diabetes, anxiety, immunodeficiency, memory deficit and psychological problems have been explored by different research groups using reverse pharmacology and advance technological approaches. The aim of current review is to compile and discuss the neurotherapeutic potential of T. cordifolia in the light of various preclinical and clinical studies from literature. This review summarizes the information about different extracts of this herb and decoctions used for various neuro-related problems such as neurodegenerative diseases, neuroinflammation, sleep disorders, neural cancers, memory and cognition deficits and psychological problems besides other potential activities. The review also provides the knowledge of underlying therapeutic mechanism of T. cordifolia and its active phytoconstituents.
Collapse
Affiliation(s)
- Anuradha Sharma
- Medical Biotechnology Laboratory, Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India; Current Address: Mood Disorders and Suicide Research Lab, Department of Psychiatry, University of Illinois at Chicago, Illinois, 60612, USA
| | - Payal Bajaj
- Medical Biotechnology Laboratory, Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Anmol Bhandari
- Medical Biotechnology Laboratory, Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Gurcharan Kaur
- Medical Biotechnology Laboratory, Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
33
|
Withametelin: a biologically active withanolide in cancer, inflammation, pain and depression. Saudi Pharm J 2020; 28:1526-1537. [PMID: 33424246 PMCID: PMC7783102 DOI: 10.1016/j.jsps.2020.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022] Open
Abstract
Withanolides are natural medicinal agents whose safety and therapeutic profiles make them valuable to mankind. Among multiple withanolides, withametelin is underexplored. The present study was aimed to create a general biological profile of isolated withametelin from Datura innoxia Mill. targeting different biological models. In-silico studies include drug-likeliness, pharmacokinetics, toxicity, molecular targets and cytotoxicity to cancer cell lines predictions. In silico directed preliminary in-vitro evaluation comprised of cancer/normal cell cytotoxicity, DPPH and protein kinase inhibition assays while in-vivo bioactivities include antiinflammatory, analgesic, antidepressant and anticoagulant assays. Pharmacological findings were strengthened by molecular docking studies to check interactions with various proteins and to propose the future path of studies. Results indicated compliance with Lipinski drug-likeliness rule (score −0.55). ADMET prediction showed strong plasma protein binding, GI absorption (Caco-2 cells permeability = 46.74 nm/s), blood brain barrier penetration (Cbrain/Cblood = 0.31), efflux by P-glycoprotein, metabolism by CYP1A2, CYP2C19 and CYP3A4, medium hERG inhibition and non-carcinogenicity in rodents. Predicted molecular targets included mainly receptors (glucocorticoid, kappa opioid, delta opioid, adrenergic and dopamine), oxidoreductase (arachidonate 5-lipoxygenase and cyclooxygenase-2), enzymes (HMG-CoA reductase) and kinase (NFκb). Withametelin was more cytotoxic to cancer cells (DU145 IC50 7.67 ± 0.54 µM) than normal lymphocytes (IC50 33.55 ± 1.31 µM). It also showed good antioxidant and protein kinase inhibition potentials. Furthermore, withametelin (20 mg/kg) significantly reduced inflammatory paw edema (68.94 ± 5.55%), heat-induced pain (78.94 ± 6.87%) and immobility time (50%) in animals. Molecular docking showed hydrogen bonding interactions (binding energies: −11.3 to −7.8 kcal/mol) with arachidonate 5 lipoxygenase, NFκb and glucocorticoid receptor. Withametelin has potential for advance investigations for its cytotoxic, anti-inflammatory, analgesic and antidepressant activities.
Collapse
|
34
|
Wang T, Yan YF, Yang L, Huang YZ, Duan XH, Su KH, Liu WL. Effects of Zuojin pill on depressive behavior and gastrointestinal function in rats with chronic unpredictable mild stress: Role of the brain-gut axis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112713. [PMID: 32109545 DOI: 10.1016/j.jep.2020.112713] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/27/2019] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zoujin pill (ZJP), a medication used to treat gastrointestinal disorders since the 15th Century in China, have been reported to exert anti-depressant effects in various models. STUDY AIM To assess the effects of ZJP on gastrointestinal function and depressive behavior in rats under chronic unpredictable mild stress (CUMS), and to examine the underlying mechanisms related to brain-gut axis. METHODS The rats suffered the stressor once daily for 5 weeks. ZJP (0.6 and 1.2 g/kg) and fluoxetine (15 mg/kg) as positive control were administered to the rats through gastric intubation once daily for 5 consecutive weeks. The anti-depression effects were compared by performing sucrose preference tests and open field tests. Gastrointestinal motility was investigated by determining the gastrointestinal transit rate and by electrogastrogram. The serum levels of the gastrointestinal hormone (GAS, MOT, VIP, SP), inflammatory cytokine (IL-1β, IL-6; , TNFα) and glucagon-like peptide-1 (GLP-1) were assayed by enzyme-linked immunosorbent assay. For monoamine neurotransmitters (NE, 5-HT, DA), the levels were determined by high-performance liquid chromatography and electrochemical detection in conjunction, which was applied on the samples taken from the hypothalamus, hippocampus, and striatum. RESULTS The depression-like symptoms among rats under CUMS were significantly relieved by ZJP administration (0.6 and 1.2 g/kg). Gastrointestinal motility was also improved by restoring gastric electrical rhythm and promoting gastrointestinal propulsion. The ZJP at 0.6 g/kg dosage obviously up-regulated 5-HT and DA levels in hippocampus. The ZJP at 1.2 g/kg dosage could increase 5-HT and DA levels in hypothalamus, striatum, and hippocampus, while down-regulated the NE level in hypothalamus and hippocampus. ZJP also reversed the alterations in serum gastrointestinal hormones. Furthermore, treatment with ZJP significantly reduced levels of IL-1β, IL-6 and TNF-α and increased serum GLP-1 compared with the CUMS group. Fluoxetine also exerted similar anti-depressant effects in the absence of effects on gastrointestinal motility and the levels of serum hormone, inflammatory cytokine and GLP-1. CONCLUSION ZJP imposed anti-depressant and gastrointestinal regulating functions in rats under CUMS, suggesting potential clinical application. .
Collapse
Affiliation(s)
- Tao Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yan-Feng Yan
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, 210014, PR China
| | - Lu Yang
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, 210014, PR China
| | - Yu-Zhen Huang
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, 210014, PR China
| | - Xin-Hui Duan
- Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Kun-Han Su
- Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Wan-Li Liu
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, 210014, PR China.
| |
Collapse
|
35
|
Qin XY, Fang H, Shan QH, Qi CC, Zhou JN. All-trans Retinoic Acid-induced Abnormal Hippocampal Expression of Synaptic Genes SynDIG1 and DLG2 is Correlated with Anxiety or Depression-Like Behavior in Mice. Int J Mol Sci 2020; 21:ijms21082677. [PMID: 32290523 PMCID: PMC7215843 DOI: 10.3390/ijms21082677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022] Open
Abstract
Clinical reports suggest a potential link between excess retinoids and development of depression. Although it has been shown that all-trans retinoic acid (ATRA) administration induces behavioral changes, further insight into how ATRA is involved is lacking. The hippocampus seems to be a major target of retinoids, and abnormal synaptic plasticity of the hippocampus is involved in depression. We examined two genes associated with synaptic function, discs large homolog 2 (DLG2), and synapse differentiation-inducing gene protein 1 (SynDIG1) in terms of hippocampal expression and correlation with behavior. Three different doses of ATRA were injected into young mice and 10 mg/kg ATRA was found to induce depression-like behavior. In the hippocampus, DLG2 mRNA was significantly decreased by ATRA. mRNA levels were positively correlated with central area duration and distance in the open-field test. Increased SynDIG1 mRNA levels were observed. There was a negative correlation between SynDIG1 mRNA levels and mobility time in the forced swimming test. Retinoic acid receptor γ mRNA was significantly positively correlated with DLG2 and negatively correlated with SynDIG1. To summarize, ATRA administration induced anxiety- and depression-like behavior accompanied by a decreased expression of DLG2 and an increased expression of SynDIG1. Moreover, DLG2 was correlated with anxiety-like behavior and SynDIG1 was correlated with depression-like behavior. These results might constitute a novel target underlying ATRA-induced anxiety- and depression-like behavior.
Collapse
Affiliation(s)
- Xin-Ya Qin
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; (X.-Y.Q.); (H.F.); (Q.-H.S.)
| | - Hui Fang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; (X.-Y.Q.); (H.F.); (Q.-H.S.)
| | - Qing-Hong Shan
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; (X.-Y.Q.); (H.F.); (Q.-H.S.)
| | - Cong-Cong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai 200000, China;
| | - Jiang-Ning Zhou
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; (X.-Y.Q.); (H.F.); (Q.-H.S.)
- Correspondence:
| |
Collapse
|
36
|
Singh AK, Singh SK, Nandi MK, Mishra G, Maurya A, Rai A, Rai GK, Awasthi R, Sharma B, Kulkarni GT. Berberine: A Plant-derived Alkaloid with Therapeutic Potential to Combat Alzheimer's disease. Cent Nerv Syst Agents Med Chem 2020; 19:154-170. [PMID: 31429696 DOI: 10.2174/1871524919666190820160053] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Berberine (a protoberberine isoquinoline alkaloid) has shown promising pharmacological activities, including analgesic, anti-inflammatory, anticancer, antidiabetic, anti-hyperlipidemic, cardioprotective, memory enhancement, antidepressant, antioxidant, anti-nociceptive, antimicrobial, anti- HIV and cholesterol-lowering effects. It is used in the treatment of the neurodegenerative disorder. It has strong evidence to serve as a potent phytoconstituent in the treatment of various neurodegenerative disorders such as AD. It limits the extracellular amyloid plaques and intracellular neurofibrillary tangles. It has also lipid-glucose lowering ability, hence can be used as a protective agent in atherosclerosis and AD. However, more detailed investigations along with safety assessment of berberine are warranted to clarify its role in limiting various risk factors and AD-related pathologies. This review highlights the pharmacological basis to control oxidative stress, neuroinflammation and protective effect of berberine in AD, which will benefit to the biological scientists in understanding and exploring the new vistas of berberine in combating Alzheimer's disease.
Collapse
Affiliation(s)
- Anurag K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Santosh K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Manmath K Nandi
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Gaurav Mishra
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Anand Maurya
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arati Rai
- Hygia Institute of Pharmaceutical Education & Research, Lucknow-226020, Uttar Pradesh, India
| | - Gopal K Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| | - Giriraj T Kulkarni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| |
Collapse
|
37
|
Li Y, Wu L, Chen C, Wang L, Guo C, Zhao X, Zhao T, Wang X, Liu A, Yan Z. Serum Metabolic Profiling Reveals the Antidepressive Effects of the Total Iridoids of Valeriana jatamansi Jones on Chronic Unpredictable Mild Stress Mice. Front Pharmacol 2020; 11:338. [PMID: 32265710 PMCID: PMC7099651 DOI: 10.3389/fphar.2020.00338] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
Background Depression is a long-term complex psychiatric disorder, and its etiology remains largely unknown. Valeriana jatamansi Jones ex Roxb (V. jatamansi) is used in the clinic for the treatment of depression, but there are insufficient reports of its antidepressive mechanisms and a poor understanding of its endogenous substance-related metabolism. The objective of this study was to identify biomarkers related to depression in serum samples and evaluate the antidepressive effects of the iridoid-rich fraction of V. jatamansi (IRFV) in a chronic unpredictable mild stress (CUMS) mouse model. Methods Here, CUMS was used to establish a mouse model of depression. Behavioral and biochemical indicators were investigated to evaluate the pharmacodynamic effects. A comprehensive serum metabolomics study by nuclear magnetic resonance (NMR) approach was applied to investigate the pharmacological mechanism of IRFV in CUMS mouse. Subsequently, we used multivariate statistical analysis to identify metabolic markers, such as principal component analysis (PCA) and orthogonal projection to latent structure with discriminant analysis (OPLS-DA), to distinguish between the CUMS mouse and the control group. Results After IRFV treatment, the immobility time, sucrose preference, and monoamine neurotransmitter were improved. PCA scores showed clear differences in metabolism between the CUMS group and control group. The PLS-DA or OPLS-DA model exhibited 26 metabolites as biomarkers to distinguish between the CUMS mice and the control mouse. Moreover, IRFV could significantly return 21 metabolites to normal levels. Conclusion The results confirmed that IRFV exerted an antidepressive effect by regulating multiple metabolic pathways, including the tricarboxylic acid cycle, the synthesis of neurotransmitters, and amino acid metabolism. These findings provide insights into the antidepressive mechanisms of IRFV.
Collapse
Affiliation(s)
- Yongbiao Li
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanlan Wu
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liwen Wang
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China
| | - Cong Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoqin Zhao
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China
| | - Tingting Zhao
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - An Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China
| |
Collapse
|
38
|
Tripathi PK, Gupta S, Rai S, Shrivatava A, Tripathi S, Singh S, Khopade AJ, Kesharwani P. Curcumin loaded poly (amidoamine) dendrimer-plamitic acid core-shell nanoparticles as anti-stress therapeutics. Drug Dev Ind Pharm 2020; 46:412-426. [PMID: 32011185 DOI: 10.1080/03639045.2020.1724132] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite poor bioavailability of the drug and in vivo stability, curcumin has been reported for many pharmacological activities. Considering the potential of dendrimers as a drug delivery system, current research work is focused on the formulation and characterization of G4 PAMAM dendrimer-Palmitic acid core-shell nanoparticle-containing curcumin as antistress therapeutics to maximize the bioavailability of curcumin. Various formulations were prepared using different concentrations of palmitic acid and an optimized ratio of dendrimer and curcumin. All formulations were investigated for evaluation of physicochemical parameters, encapsulation efficiency, and in vitro release. Particle size, PDI, zeta-potential, and encapsulation efficiency of final formulation was found to be 257.9 ± 0.365 nm, 0.10 ± 0.004, 3.59 ± 0.167 mV, and 80.87%, respectively. In vitro release studies have shown that 53.62 ± 2.431% of the drug was released after 24 h. In vivo studies pharmacokinetic parameters, drug distribution, pharmacological, and toxicological were also estimated using swiss albino mice. The findings have shown the selected formulation is better than plain curcumin formulation.
Collapse
Affiliation(s)
- Pushpendra Kumar Tripathi
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Shraddha Gupta
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Suruchi Rai
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Ankur Shrivatava
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Shalini Tripathi
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Sima Singh
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ajay J Khopade
- Sun Pharma Advanced Research Company Limited, Mumbai, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
39
|
Lin L, Li C, Zhang D, Yuan M, Chen CH, Li M. Synergic Effects of Berberine and Curcumin on Improving Cognitive Function in an Alzheimer's Disease Mouse Model. Neurochem Res 2020; 45:1130-1141. [PMID: 32080784 DOI: 10.1007/s11064-020-02992-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and no effective therapies have been found to prevent or cure AD to date. Berberine and curcumin are extracts from traditional Chinese herbs that have a long history of clinical benefits for AD. Here, using a transgenic AD mouse model, we found that the combined berberine and curcumin treatment had a much better effect on improving the cognitive function of mice than the single-drug treatment, suggesting synergic effects of the combined berberine and curcumin treatment. In addition, we found that the combined berberine and curcumin treatment had significant synergic effects on reducing soluble amyloid-β-peptide(1-42) production. Furthermore, the combination treatment also had remarkable synergic effects on decreasing inflammatory responses and oxidative stress in both the cortex and hippocampus of AD mice. We also found that the combination treatment performed much better than the single drugs in reducing the APP and BACE1 levels and increasing AMPKα phosphorylation and cell autophagy, which might be the underlying mechanism of the synergic effects. Taken together, the result of this study reveal the synergic effects and potential underlying mechanisms of the combined berberine and curcumin treatment in improving the symptoms of AD in mice. This study sheds light on a new strategy for exploring new phytotherapies for AD and also emphasizes that more research should focus on the synergic effects of herbal drugs in the future.
Collapse
Affiliation(s)
- Lin Lin
- Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Cheng Li
- Department of Public Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Deyi Zhang
- Department of Anesthesiology, Mianyang People's Hospital, Mianyang, 621000, Sichuan, China
| | - Mingxiang Yuan
- Department of Gynaecology and Obstetrics, Mianyang People's Hospital, Mianyang, 621000, Sichuan, China
| | - Chun-Hai Chen
- Department of Occupational Health, Amy Medical University, Chongqing, 400038, China.
| | - Maoquan Li
- Affiliated Traditional Chinese Medicine Hospital of Chengdu Medical College, Chengdu, 610300, Sichuan, China. .,Chengdu Qingbaijiang District Traditional Chinese Medicine Hospital, Chengdu, 610300, Sichuan, China. .,Department of Public Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
40
|
Chen Y, Chen Y, Liang Y, Chen H, Ji X, Huang M. Berberine mitigates cognitive decline in an Alzheimer's Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearance. Biomed Pharmacother 2020; 121:109670. [PMID: 31810131 DOI: 10.1016/j.biopha.2019.109670] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/28/2019] [Accepted: 10/14/2019] [Indexed: 01/08/2023] Open
Abstract
Berberine is a natural isoquinoline alkaloid isolated from the Rhizoma coptidis. Recent advances in research throw more lights of its beneficial role towards Alzheimer's disease (AD), including promoting β-amyloid (Aβ) clearance, as well as inhibiting Aβ production in the triple-transgenic mouse model of Alzheimer's disease (3×Tg AD). However, it remains unclarified if berberine has an effect on tau pathology. According to our study, berberine did not only significantly improve 3×Tg AD mice's spatial learning capacity and memory retentions, but also attenuated the hyperphosphorylation of tau. via modulating the activity of Akt/glycogen synthase kinase-3β and protein phosphatase 2A. Moreover, berberine reduced the level of tau through an autophagy-based route. It promoted autophagic clearance of tau by enhancing the activity of autophagy via the class III PI3K/beclin-1 pathway. Thus, our results suggest that berberine could mitigate cognitive decline by simultaneously targeting the hyperphosphorylation of tau and the autophagic clearance of tau in AD mice. These findings strongly support berberine as a potential drug candidate for AD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuling Chen
- School of Mechanics and Engineering Sciences of Zhengzhou University, Zhengzhou, China
| | - Yubin Liang
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongda Chen
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoying Ji
- Department of Respiration, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Min Huang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
41
|
Avasarala H, Dinakaran SK, Kakaraparthy R, Jayanti VR. Self-emulsifying drug delivery system for enhanced solubility of asenapine maleate: design, characterization, in vitro, ex vivo and in vivo appraisal. Drug Dev Ind Pharm 2019; 45:548-559. [DOI: 10.1080/03639045.2019.1567758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Harani Avasarala
- Department of Pharmaceutical Technology, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
- Aditya Pharmacy College, Surampalem, India
| | | | | | - Vijaya Ratna Jayanti
- Department of Pharmaceutical Technology, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| |
Collapse
|
42
|
Fan J, Zhang K, Jin Y, Li B, Gao S, Zhu J, Cui R. Pharmacological effects of berberine on mood disorders. J Cell Mol Med 2018; 23:21-28. [PMID: 30450823 PMCID: PMC6307759 DOI: 10.1111/jcmm.13930] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
Berberine, a natural isoquinoline alkaloid, is used in herbal medicine and has recently been shown to have efficacy in the treatment of mood disorders. Furthermore, berberine modulates neurotransmitters and their receptor systems within the central nervous system. However, the detailed mechanisms of its action remain unclear. This review summarizes the pharmacological effects of berberine on mood disorders. Therefore, it may be helpful for potential application in the treatment of mood disorders.
Collapse
Affiliation(s)
- Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjini Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Shuohui Gao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaming Zhu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Duan Y, Liu T, Zhou Y, Dou T, Yang Q. Glycoside hydrolase family 18 and 20 enzymes are novel targets of the traditional medicine berberine. J Biol Chem 2018; 293:15429-15438. [PMID: 30135205 DOI: 10.1074/jbc.ra118.004351] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/03/2018] [Indexed: 02/01/2023] Open
Abstract
Berberine is a traditional medicine that has multiple medicinal and agricultural applications. However, little is known about whether berberine can be a bioactive molecule toward carbohydrate-active enzymes, which play numerous vital roles in the life process. In this study, berberine and its analogs were discovered to be competitive inhibitors of glycoside hydrolase family 20 β-N-acetyl-d-hexosaminidase (GH20 Hex) and GH18 chitinase from both humans and the insect pest Ostrinia furnacalis Berberine and its analog SYSU-1 inhibit insect GH20 Hex from O. furnacalis (OfHex1), with Ki values of 12 and 8.5 μm, respectively. Co-crystallization of berberine and its analog SYSU-1 in complex with OfHex1 revealed that the positively charged conjugate plane of berberine forms π-π stacking interactions with Trp490, which are vital to its inhibitory activity. Moreover, the 1,3-dioxole group of berberine binds an unexplored pocket formed by Trp322, Trp483, and Val484, which also contributes to its inhibitory activity. Berberine was also found to be an inhibitor of human GH20 Hex (HsHexB), human GH18 chitinase (HsCht and acidic mammalian chitinase), and insect GH18 chitinase (OfChtI). Besides GH18 and GH20 enzymes, berberine was shown to weakly inhibit human GH84 O-GlcNAcase (HsOGA) and Saccharomyces cerevisiae GH63 α-glucosidase I (ScGluI). By analyzing the published crystal structures, berberine was revealed to bind with its targets in an identical mechanism, namely via π-π stacking and electrostatic interactions with the aromatic and acidic residues in the binding pockets. This paper reports new molecular targets of berberine and may provide a berberine-based scaffold for developing multitarget drugs.
Collapse
Affiliation(s)
- Yanwei Duan
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024
| | - Tian Liu
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024,
| | - Yong Zhou
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024
| | - Tongyi Dou
- the School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, and
| | - Qing Yang
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, .,the Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
44
|
Huanglian-Wendan Decoction Inhibits NF- κB/NLRP3 Inflammasome Activation in Liver and Brain of Rats Exposed to Chronic Unpredictable Mild Stress. Mediators Inflamm 2018; 2018:3093516. [PMID: 29853787 PMCID: PMC5949167 DOI: 10.1155/2018/3093516] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
Depression is a common mental disorder in modern society. A traditional Chinese medicine Huanglian-Wendan decoction with potential anti-inflammation is used as a clinical antidepressant. Our previous study showed central and peripheral inflammatory responses in a rat model of depression developed by chronic unpredictable mild stress (CUMS). Here, we investigated the anti-inflammatory activity and mechanism of Huanglian-Wendan decoction in CUMS rats. LC-MS/MS and HPLC were performed to determine the major compounds in water extract of this decoction. This study showed that Huanglian-Wendan decoction significantly increased sucrose consumption and reduced serum levels of interleukin-1 beta (IL-1β), IL-6, and alanine aminotransferase (ALT) in CUMS rats. Moreover, this decoction inhibited nuclear entry of nuclear factor-kappa B (NF-κB) with the reduction of phosphorylated protein of NF-κB (p-NF-κB) and inhibitor of NF-κB alpha (p-IκBα) and downregulated protein of nod-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC), cysteinyl aspartate-specific proteinase-1 (Caspase-1), and IL-1β in liver and brain regions of CUMS rats. These findings demonstrated that Huanglian-Wendan decoction had antidepressant activity with hepatoprotection in CUMS rats coinciding with its anti-inflammation in both periphery and central. The inhibitory modulation of NF-κB and NLRP3 inflammasome activation by Huanglian-Wendan decoction may mediate its antidepressant action.
Collapse
|
45
|
The Ameliorating Effect of Berberine-Rich Fraction against Gossypol-Induced Testicular Inflammation and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1056173. [PMID: 29849861 PMCID: PMC5903196 DOI: 10.1155/2018/1056173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/17/2018] [Indexed: 01/07/2023]
Abstract
This study was aimed at evaluating the efficacy of berberine-rich fraction (BF) as a protective and/or a therapeutic agent against inflammation and oxidative stress during male infertility. Sexually mature Sprague-Dawley male rats were divided into five groups treated with either corn oil, BF (100 mg/kg BW, orally, daily for 30 days), gossypol acetate (5 mg/kg BW, i.p.) eight times for 16 days, BF alone for 14 days then coadministered with gossypol acetate for the next 16 days (protected group), or gossypol acetate for 16 days then treated with BF for 30 days (treated group). All animals completed the experimental period (46 days) without obtaining any treatments in the gap period. Sperm parameters, oxidative index, and inflammatory markers were measured. Gossypol injection significantly decreased the semen quality and testosterone level that resulted from the elevation of testicular reactive oxygen and nitrogen species (TBARS and NO), TNF-α, TNF-α-converting enzyme, and interleukins (IL-1β, IL-6, and IL-18) by 230, 180, 12.5, 97.9, and 300%, respectively, while interleukin-12 and tissue inhibitors of metalloproteinases-3 were significantly decreased by 59 and 66%, respectively. BF (protected and treated groups) significantly improved the semen quality, oxidative stress, and inflammation associated with male infertility. It is suitable to use more advanced studies to validate these findings.
Collapse
|
46
|
Roostaei A, Vaezi G, Nasehi M, Haeri-Rohani A, Zarrindast MR. Study of the Role of Dopamine Receptors in Streptozotocin-Induced Depressive-Like Behavior Using the Forced Swim Test Model. Galen Med J 2018; 7:e954. [PMID: 34466420 PMCID: PMC8344037 DOI: 10.22086/gmj.v0i0.954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 07/29/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022] Open
Abstract
Background: Diabetes is one of the most common endocrine diseases characterized by hyperglycemia. It is caused by an absolute or relative insulin deficiency or an insulin function deficiency. It is one of the major risk factors of depression, with the rate of depression in diabetic patients amounting to as high as 30%. This study examined the role of dopamine receptors in streptozotocin (STZ)-induced depressive-like behavior using the forced swim test (FST). Materials and Methods: This study was performed on 56 Wistar male rats. STZ at doses of 30 and 60 mg/kg body weight was administered via intraperitoneal (IP) route to induce diabetes and depression in rats. Thereafter, by using halobenzazepine (SCH23390) (D1 dopamine receptor antagonist) and sulpiride (D2 receptor dopamine receptor antagonist), the role of dopamine receptors in STZ-induced depression was studied. The one-way analysis of variance technique, Tukey’s range test, and t-test were used to analyze the data. The P-value less than 0.05 was regarded as statistically significant. Results: Our study showed that STZ at doses of 30 and 60 mg/kg, two weeks after injection, caused prolonged immobility in FST, indicating depressive-like behavior (P<0.05 and P<0.01, respectively). SCH23390 (0.001 mg/mL/kg) and sulpiride (0.1 mg/mL/kg) did not change the variables of depression in animals that received STZ (at doses of 30 and 60 mg/mL/kg) two weeks before (P>0.05). Conclusion: According to our study, STZ has a depressive-like behavior two weeks after injection, and dopamine receptors do not play a role in depression associated with STZ use.
Collapse
Affiliation(s)
- Afshin Roostaei
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Ali Haeri-Rohani
- Department of Animal Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
47
|
Li HY, Wang XC, Xu YM, Luo NC, Luo S, Hao XY, Cheng SY, Fang JS, Wang Q, Zhang SJ, Chen YB. Berberine Improves Diabetic Encephalopathy Through the SIRT1/ER Stress Pathway in db/db Mice. Rejuvenation Res 2017; 21:200-209. [PMID: 28782427 DOI: 10.1089/rej.2017.1972] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The association between diabetes and dementia has been well demonstrated by epidemiologic studies. Berberine (BBR) has been reported to ameliorate diabetes and diabetic encephalopathy (DE). However, the mechanism is still unknown. In this study, we employ a diabetic model, db/db mice, to explore whether BBR could protect DE through the SIRT1/endoplasmic reticulum (ER) stress pathway. Behavioral results (Morris water maze, Y-maze spontaneous alternation test, and fear conditioning test) showed that oral administration of BBR (50 mg/kg) improved the learning and memory ability. Furthermore, BBR promoted lipid metabolism and decreased fasting glucose in db/db mice. Moreover, western blot analysis revealed that BBR increased the synapse- and nerve-related protein expression (PSD95, SYN, and NGF) and decreased the protein expression of inflammatory factors (TNF-α and NF-κB) in the hippocampus of db/db mice. BBR also increased the protein expression of SIRT1 and downregulated ER stress-associated proteins (PERK, IRE-1α, eIF-2α, PDI, and CHOP) in the hippocampus of db/db mice. Taken together, the present results suggest that the SIRT1/ER stress pathway might be a crucial mechanism in the neuroprotective effect of BBR against DE.
Collapse
Affiliation(s)
- Hong-Ying Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine , Guangzhou, China
| | - Xin-Chen Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine , Guangzhou, China
| | - Yu-Min Xu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine , Guangzhou, China
| | - Na-Chuan Luo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine , Guangzhou, China
| | - Si Luo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine , Guangzhou, China
| | - Xu-Yi Hao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine , Guangzhou, China
| | - Shu-Yi Cheng
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine , Guangzhou, China
| | - Jian-Song Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine , Guangzhou, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine , Guangzhou, China
| | - Shi-Jie Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine , Guangzhou, China
| | - Yun-Bo Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine , Guangzhou, China
| |
Collapse
|
48
|
Liu YM, Niu L, Wang LL, Bai L, Fang XY, Li YC, Yi LT. Berberine attenuates depressive-like behaviors by suppressing neuro-inflammation in stressed mice. Brain Res Bull 2017; 134:220-227. [DOI: 10.1016/j.brainresbull.2017.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/10/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022]
|
49
|
Antidepressant-like effects of ginsenoside Rg2 in a chronic mild stress model of depression. Brain Res Bull 2017; 134:211-219. [DOI: 10.1016/j.brainresbull.2017.08.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/22/2017] [Accepted: 08/16/2017] [Indexed: 12/30/2022]
|
50
|
Fan J, Li B, Ge T, Zhang Z, Lv J, Zhao J, Wang P, Liu W, Wang X, Mlyniec K, Cui R. Berberine produces antidepressant-like effects in ovariectomized mice. Sci Rep 2017; 7:1310. [PMID: 28465511 PMCID: PMC5431015 DOI: 10.1038/s41598-017-01035-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/23/2017] [Indexed: 01/08/2023] Open
Abstract
Berberine has been reports to have antidepressant-like effects. However, it is seldom known whether berberine produces antidepressant-like effects in ovariectomized mice, which exhibit depressive-like responses. To examine the antidepressant-like effects of berberine in ovariectomized mice, behavioral tests were conducted, including the forced swimming test and the open field test. To elucidate the mechanisms, levels of BDNF, phosphorylated CREB and phosphorylated eEF2 were analyzed by western blotting, and c-Fos induction was examined by immunohistochemistry. In the forced swimming test, berberine decreased the immobility time in a dose-dependent manner, reversing the depressive-like effect observed in ovariectomized mice, and this effect was blocked by the 5-HT2 antagonist ketanserin. In addition, western blotting indicated that BDNF and peEF2 in the hippocampus, but not pCREB/CREB in the frontal cortex, were affected by berberine treatment. Furthermore, immunohistochemistry demonstrated that the reduction in c-Fos induced by ovariectomy were greater after berberine treatment. Ketanserin also antagonized the effect of berberine on the c-Fos expression. Our findings suggest that berberine exerts antidepressant-like effects in ovariectomized mice, and 5-HT2 receptor activation may be partially related to the antidepressant-like effects of the berberine by BDNF-CREB and eEF2 pathways.
Collapse
Affiliation(s)
- Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Zhuo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University 126 Xiantai Street, Nanguan District, Changchun, 13033, China
| | - Jiayin Lv
- Department of Orthopedics, China-Japan Union Hospital of Jilin University 126 Xiantai Street, Nanguan District, Changchun, 13033, China
| | - Jing Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Pu Wang
- School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wei Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Xuefeng Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688, Krakow, Poland
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| |
Collapse
|