1
|
de Castro GB, Pereira RRS, Diniz e Magalhães CO, Costa KB, Vieira ER, Cassilhas RC, Sampaio KH, Machado ART, Carvalho JDCL, Murata RM, Pereira LJ, Dias‐Peixoto MF, Andrade EF, Pardi V. Experimental Periodontitis Increases Anxious Behavior and Worsens Cognitive Aspects and Systemic Oxidative Stress in Wistar Rats. Clin Exp Dent Res 2024; 10:e70017. [PMID: 39497351 PMCID: PMC11534646 DOI: 10.1002/cre2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 11/08/2024] Open
Abstract
OBJECTIVES Periodontitis (PD) has the potential to induce systemic changes that affect both physical and behavioral aspects. These alterations may be associated with changes in both the inflammatory profile and the oxidative stress status of individuals with PD. Therefore, we aimed to evaluate the effects of PD on oxidative stress, as well as on behavioral parameters and cognitive impairment, in a preclinical model. MATERIAL AND METHODS Twenty-four male Wistar rats were randomly assigned to PD and sham groups. PD was induced by the ligature protocol for 14 days. Behavioral tests were initiated on the 9th day of the experiment to evaluate anxious behavior and cognition (learning and memory). After euthanasia, oxidative stress was evaluated in the gums, blood, hippocampus, and amygdala. Alveolar bone loss, bone microstructure, and elemental compositions of the mandibular bone were also assessed. RESULTS PD increased alveolar bone loss, reduced the calcium and phosphorus content in the mandibular bone, and increased anxiety-like behavior and cognitive decline (p < 0.05). Furthermore, PD significantly affected the redox balance, as evidenced by increased total antioxidant capacity (TAC) in the gingiva and hippocampus (p < 0.05). It also led to increased lipid peroxidation in the gingiva and erythrocytes (p < 0.05), decreased antioxidant defenses in erythrocytes (superoxide dismutase) and the hippocampus (catalase), and increased antioxidant activity (catalase) in the amygdala (p < 0.05). CONCLUSION PD resulted in cognitive alterations, including impairments in spatial learning and memory, as well as increased anxious behavior, likely due to redox imbalance in rats.
Collapse
Affiliation(s)
- Giselle B. de Castro
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Ramona R. S. Pereira
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Caíque O. Diniz e Magalhães
- Biological and Health Sciences DepartmentUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Karine B. Costa
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Etel R. Vieira
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Ricardo C. Cassilhas
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Kinulpe H. Sampaio
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Alan R. T. Machado
- Department of Exact SciencesUniversidade do Estado de Minas GeraisJoão MonlevadeMinas GeraisBrazil
| | | | - Ramiro M. Murata
- Department of Foundational Sciences, School of Dental MedicineEast Carolina University (ECU)GreenvilleNorth CarolinaUSA
| | - Luciano J. Pereira
- Department of Health SciencesUniversidade Federal de Lavras (UFLA)LavrasBrazil
| | - Marco F. Dias‐Peixoto
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Eric F. Andrade
- Department of Health SciencesUniversidade Federal de Lavras (UFLA)LavrasBrazil
| | - Vanessa Pardi
- Department of Foundational Sciences, School of Dental MedicineEast Carolina University (ECU)GreenvilleNorth CarolinaUSA
| |
Collapse
|
2
|
Cardenas Perez AS, Challis JK, Alcaraz AJ, Ji X, Ramirez AVV, Hecker M, Brinkmann M. Developing an Approach for Integrating Chemical Analysis and Transcriptional Changes to Assess Contaminants in Water, Sediment, and Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2252-2273. [PMID: 38801401 DOI: 10.1002/etc.5886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Pharmaceuticals in aquatic environments pose threats to aquatic organisms because of their continuous release and potential accumulation. Monitoring methods for these contaminants are inadequate, with targeted analyses falling short in assessing water quality's impact on biota. The present study advocates for integrated strategies combining suspect and targeted chemical analyses with molecular biomarker approaches to better understand the risks posed by complex chemical mixtures to nontarget organisms. The research aimed to integrate chemical analysis and transcriptome changes in fathead minnows to prioritize contaminants, assess their effects, and apply this strategy in Wascana Creek, Canada. Analysis revealed higher pharmaceutical concentrations downstream of a wastewater-treatment plant, with clozapine being the most abundant in fathead minnows, showing notable bioavailability from water and sediment sources. Considering the importance of bioaccumulation factor and biota-sediment accumulation factor in risk assessment, these coefficients were calculated based on field data collected during spring, summer, and fall seasons in 2021. Bioaccumulation was classified as very bioaccumulative with values >5000 L kg-1, suggesting the ability of pharmaceuticals to accumulate in aquatic organisms. The study highlighted the intricate relationship between nutrient availability, water quality, and key pathways affected by pharmaceuticals, personal care products, and rubber components. Prioritization of these chemicals was done through suspect analysis, supported by identifying perturbed pathways (specifically signaling and cellular processes) using transcriptomic analysis in exposed fish. This strategy not only aids in environmental risk assessment but also serves as a practical model for other watersheds, streamlining risk-assessment processes to identify environmental hazards and work toward reducing risks from contaminants of emerging concern. Environ Toxicol Chem 2024;43:2252-2273. © 2024 SETAC.
Collapse
Affiliation(s)
- Ana Sharelys Cardenas Perez
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jonathan K Challis
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alper James Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xiaowen Ji
- Division of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University, New York, New York, USA
| | - Alexis Valerio Valery Ramirez
- Grupo de investigación Agrícola y Ambiental, Universidad Nacional Experimental del Táchira, San Cristóbal, Venezuela
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Kavčič H, Jug U, Mavri J, Umek N. Antioxidant activity of lidocaine, bupivacaine, and ropivacaine in aqueous and lipophilic environments: an experimental and computational study. Front Chem 2023; 11:1208843. [PMID: 37408557 PMCID: PMC10318152 DOI: 10.3389/fchem.2023.1208843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction: Local anesthetics are widely recognized pharmaceutical compounds with various clinical effects. Recent research indicates that they positively impact the antioxidant system and they may function as free radical scavengers. We hypothesize that their scavenging activity is influenced by the lipophilicity of the environment. Methods: We assessed the free radical scavenging capacity of three local anesthetics (lidocaine, bupivacaine, and ropivacaine) using ABTS, DPPH, and FRAP antioxidant assays. We also employed quantum chemistry methods to find the most probable reaction mechanism. The experiments were conducted in an aqueous environment simulating extracellular fluid or cytosol, and in a lipophilic environment (n-octanol) simulating cellular membranes or myelin sheets. Results: All local anesthetics demonstrated ABTS˙+ radical scavenging activity, with lidocaine being the most effective. Compared to Vitamin C, lidocaine exhibited a 200-fold higher half-maximal inhibitory concentration. The most thermodynamically favorable and only possible reaction mechanism involved hydrogen atom transfer between the free radical and the -C-H vicinal to the carbonyl group. We found that the antioxidant activity of all tested local anesthetics was negligible in lipophilic environments, which was further confirmed by quantum chemical calculations. Conclusion: Local anesthetics exhibit modest free radical scavenging activity in aqueous environments, with lidocaine demonstrating the highest activity. However, their antioxidant activity in lipophilic environments, such as cellular membranes, myelin sheets, and adipose tissue, appears to be negligible. Our results thus show that free radical scavenging activity is influenced by the lipophilicity of the environment.
Collapse
Affiliation(s)
- H. Kavčič
- Clinical Department for Anesthesiology and Surgical Intensive Therapy, University Medical Center Ljubljana, Ljubljana, Slovenia
- Department of Anesthesiology and Reanimatology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - U. Jug
- Department of Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - J. Mavri
- Laboratory of Computational Biochemistry and Drug Design, National Institute of Chemistry, Ljubljana, Slovenia
| | - N. Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Serrano-Contreras JI, Meléndez-Camargo ME, Márquez-Flores YK, Soria-Serrano MP, Campos-Aldrete ME. Exploratory toxicology studies of 2,3-substituted imidazo[1,2- a]pyridines with antiparasitic and anti-inflammatory properties. Toxicol Res (Camb) 2022; 11:730-742. [PMID: 36337253 PMCID: PMC9618103 DOI: 10.1093/toxres/tfac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 09/08/2024] Open
Abstract
Background Trichomoniasis and amoebiasis are neglected diseases and still remain as a global health burden not only for developing countries, from where are endemic, but also for the developed world. Previously, we tested the antiparasitic activity of a number of imidazo[1,2-a]pyridine derivatives (IMPYs) on metronidazole-resistant strains of Entamoeba Hystolitica (HM1:IMSS), and Trichomonas Vaginalis (GT3). Their anti-inflammatory activity was also evaluated. Objective The present work is a part of a project whose aim is to find new alternatives to standard treatments for these maladies, and to address the current concern of emerging resistant parasite strains. Here we report a non-clinical study focused on exploratory toxicology assays of seven IMPYs that showed the best antiparasitic and/or anti-inflammatory properties. Methods Acute, and subacute toxicity tests were carried out. After 14-day oral treatment, liver and kidney functionality assays in combination with chemometric methods were implemented to detect hepatic and/or kidney damage. Results Some compounds produced off-target effects. Vehicle effects were also detected. However, no signs of hepatic or renal toxicity were observed for any IMPY. Conclusion These compounds can continue non-clinical evaluations, and if possible, clinical trials as new candidates to treat trichomoniasis and amoebiasis, and inflammatory diseases. Further studies are also needed to fully elucidate a proposed dual effect that may exert these molecules against trichomoniasis and amoebiasis, which may also signify a novel mechanism of action to treat these infections.
Collapse
Affiliation(s)
- José Iván Serrano-Contreras
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Delegación Miguel Hidalgo, Ciudad de México, México
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Unidad Profesional Adolfo López Mateos, Col. Nueva Industrial Vallejo, C.P. 07738, Delegación Gustavo A. Madero, Ciudad de México, México
| | - María Estela Meléndez-Camargo
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Unidad Profesional Adolfo López Mateos, Col. Nueva Industrial Vallejo, C.P. 07738, Delegación Gustavo A. Madero, Ciudad de México, México
| | - Yazmín Karina Márquez-Flores
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Unidad Profesional Adolfo López Mateos, Col. Nueva Industrial Vallejo, C.P. 07738, Delegación Gustavo A. Madero, Ciudad de México, México
| | - Martha Patricia Soria-Serrano
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Unidad Profesional Adolfo López Mateos, Col. Nueva Industrial Vallejo, C.P. 07738, Delegación Gustavo A. Madero, Ciudad de México, México
| | - María Elena Campos-Aldrete
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Delegación Miguel Hidalgo, Ciudad de México, México
| |
Collapse
|
5
|
Garcia-Pliego E, Franco-Colin M, Rojas-Franco P, Blas-Valdivia V, Serrano-Contreras JI, Pentón-Rol G, Cano-Europa E. Phycocyanobilin is the molecule responsible for the nephroprotective action of phycocyanin in acute kidney injury caused by mercury. Food Funct 2021; 12:2985-2994. [PMID: 33704296 DOI: 10.1039/d0fo03294h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
C-Phycocyanin (CPC) exerts therapeutic, antioxidant, anti-inflammatory and immunomodulatory actions. It prevents oxidative stress and acute kidney damage caused by HgCl2. However, the exact mechanism of the pharmacological action of C-phycocyanin is as yet unclear. Some proposals express that CPC metabolism releases the active compound phycocyanobilin (PCB) that is able to induce CPC's therapeutical effects as an antioxidant, anti-inflammatory and nephroprotective. This study is aimed to demonstrate that PCB is the molecule responsible for C-phycocyanin's nephroprotective action in the acute kidney injury model caused by HgCl2. PCB was purified from C-phycocyanin and characterized by spectroscopy and mass spectrometry methods. Thirty-six male mice were administrated with 0.75, 1.5, or 3 mg per kg per d of PCB 30 min before the 5 mg kg-1 HgCl2 administration. PCB was administered during the following five days, after which the mice were euthanized. Kidneys were dissected to determine oxidative stress and redox environment markers, first-line antioxidant enzymes, effector caspase activities, and kidney damage markers.The quality of purified PCB was evaluated by spectroscopy and mass spectrometry. All PCB doses prevented alterations in oxidative stress markers, antioxidant enzymes, and caspase 9 activities. However, only the dose of 3 mg per kg per d PCB avoided the redox environment disturbance produced by mercury. All doses of PCB partially prevented the down-expression of nephrin and podocin with a consequent reduction in the damage score in a dose-effect manner. In conclusion, it was proven that phycocyanobilin is the molecule responsible for C-phycocyanin's nephroprotective action on acute kidney injury caused by mercury.
Collapse
Affiliation(s)
- Erick Garcia-Pliego
- Laboratorio de Metabolismo I, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | | | | | | | | | | | | |
Collapse
|
6
|
Rojas-Franco P, Franco-Colín M, Torres-Manzo AP, Blas-Valdivia V, Thompson-Bonilla MDR, Kandir S, Cano-Europa E. Endoplasmic reticulum stress participates in the pathophysiology of mercury-caused acute kidney injury. Ren Fail 2020; 41:1001-1010. [PMID: 31736398 PMCID: PMC6882499 DOI: 10.1080/0886022x.2019.1686019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Acute exposure to mercury chloride (HgCl2) causes acute kidney injury (AKI). Some metals interfere with protein folding, leading to endoplasmic reticulum stress (ERS), and the activation of cell death mechanisms, but in the case of mercury, there is no knowledge about whether the ERS mediates tubular damage. This study aimed to determinate if HgCl2 causes an AKI course with temporary activation of ERS and if this mechanism is involved in kidney cell death. Male mice were intoxicated with 5 mg/kg HgCl2 and sacrificed after 24, 48, 72, and 96 h of mercury administration. The kidneys of euthanized mice were used to assess the renal function, oxidative stress, redox environment, antioxidant enzymatic system, cell death, and reticulum stress markers (PERK, ATF-6, and IRE1α pathways). The results indicate temporary-dependent renal dysfunction, oxidative stress, and an increase of glutathione-dependent enzymes involved in the bioaccumulation process of mercury, as well as the enhancement of caspase 3 activity along with IRE1a, GADD-153, and caspase 12 expressions. Mercury activates the PERK/eIF2α branch during the first 48 h. Meanwhile, the activation of PERK/ATF-4 branch allowed for ATF-4, ATF-6, and IRE1α pathways to enhance GADD-153. It led to the activation of caspases 12 and 3, which mediated the deaths of the tubular and glomerular cells. This study revealed temporary-dependent ERS present during AKI caused by HgCl2, as well as how it plays a pivotal role in kidney cell damage.
Collapse
Affiliation(s)
- Plácido Rojas-Franco
- Laboratorio de Metabolismo I Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Margarita Franco-Colín
- Laboratorio de Metabolismo I Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Vanessa Blas-Valdivia
- Laboratorio de Neurobiología, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Sinan Kandir
- Department of Physiology, Ceyhan Faculty of Veterinary Medicine, Cukurova University, Adana, Turkey
| | - Edgar Cano-Europa
- Laboratorio de Metabolismo I Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
7
|
Xue Y, Wang AZ. DJ-1 plays a neuroprotective role in SH-SY5Y cells by modulating Nrf2 signaling in response to lidocaine-mediated oxidative stress and apoptosis. Kaohsiung J Med Sci 2020; 36:630-639. [PMID: 32363780 DOI: 10.1002/kjm2.12218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/23/2020] [Indexed: 01/04/2023] Open
Abstract
To investigate the effects of DJ-1 on lidocaine-induced cytotoxicity in neurons and the link with Nrf2 signaling, SH-SY5Y cells were treated with 1, 4, 8, and 16 mM lidocaine. Cell viability was measured by MTT assay, and apoptosis was measured by flow cytometry analysis. The mitochondrial membrane potential, reactive oxygen species (ROS) levels, lipid peroxidation (MDA), and GSH/GSSG ratio were determined with specific kits. Expression of DJ-1, Nrf2, and Nrf2 downstream signaling proteins (glutathione peroxidase [GPx], heme oxygenase-1 [HO-1], catalase [CAT], and glutathione reductase [GR]), was determined by western blot and qRT-PCR. The cell viability was dramatically decreased, while levels of apoptosis, ROS and Cys106-oxidized DJ-1 were significantly enhanced following treatment with lidocaine (concentration 4-16 mM), and increases were observed in a dose-dependent manner. After treatment with 8 mM lidocaine, DJ-1, and nuclear Nrf2, as well as antioxidative stress-related proteins, GPx, GR, HO-1, and CAT, were all significantly inhibited. Overexpression of DJ-1 suppressed lidocaine-induced apoptosis and oxidative stress in SH-SY5Y cells and activated Nrf2 signalling at the same time, and these effects were reversed by the inhibition of Nrf2. DJ-1 could protect SH-SY5Y cells from lidocaine-induced apoptosis through inhibition of oxidative stress via Nrf2 signaling.
Collapse
Affiliation(s)
- Ying Xue
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ai-Zhong Wang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Martínez MA, Ares I, Rodríguez JL, Martínez M, Roura-Martínez D, Castellano V, Lopez-Torres B, Martínez-Larrañaga MR, Anadón A. Pyrethroid insecticide lambda-cyhalothrin induces hepatic cytochrome P450 enzymes, oxidative stress and apoptosis in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1371-1382. [PMID: 29727961 DOI: 10.1016/j.scitotenv.2018.03.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/23/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to examine in rats the effects of the Type II pyrethroid lambda-cyhalothrin on hepatic microsomal cytochrome P450 (CYP) isoform activities, oxidative stress markers, gene expression of proinflammatory, oxidative stress and apoptosis mediators, and CYP isoform gene expression and metabolism phase I enzyme PCR array analysis. Lambda-cyhalothrin, at oral doses of 1, 2, 4 and 8mg/kg bw for 6days, increased, in a dose-dependent manner, hepatic activities of ethoxyresorufin O-deethylase (CYP1A1), methoxyresorufin O-demethylase (CYP1A2), pentoxyresorufin O-depentylase (CYP2B1/2), testosterone 7α- (CYP2A1), 16β- (CYP2B1), and 6β-hydroxylase (CYP3A1/2), and lauric acid 11- and 12-hydroxylase (CYP4A1/2). Similarly, lambda-cyhalothrin (4 and 8mg/kg bw, for 6days), in a dose-dependent manner, increased significantly hepatic CYP1A1, 1A2, 2A1, 2B1, 2B2, 2E1, 3A1, 3A2 and 4A1 mRNA levels and IL-1β, NFκB, Nrf2, p53, caspase-3 and Bax gene expressions. PCR array analysis showed from 84 genes examined (P<0.05; fold change>1.5), changes in mRNA levels in 18 genes: 13 up-regulated and 5 down-regulated. A greater fold change reversion than 3-fold was observed on the up-regulated ALDH1A1, CYP2B2, CYP2C80 and CYP2D4 genes. Ingenuity Pathway Analysis (IPA) groups the expressed genes into biological mechanisms that are mainly related to drug metabolism. In the top canonical pathways, Oxidative ethanol degradation III together with Fatty Acid α-oxidation may be significant pathways for lambda-cyhalothrin. Our results may provide further understanding of molecular aspects involved in lambda-cyhalothrin-induced liver injury.
Collapse
Affiliation(s)
- María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José-Luis Rodríguez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - David Roura-Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Victor Castellano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
9
|
Martínez-Ruiz EB, Martínez-Jerónimo F. Exposure to the herbicide 2,4-D produces different toxic effects in two different phytoplankters: A green microalga (Ankistrodesmus falcatus) and a toxigenic cyanobacterium (Microcystis aeruginosa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1566-1578. [PMID: 29070448 DOI: 10.1016/j.scitotenv.2017.10.145] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
The extensive use of 2,4-dichlorophenoxiacetic acid (2,4-D) in agriculture is an important source of pollution to water and soil. Toxicity of commonly used herbicides to non-target, planktonic photosynthetic organisms has not been described completely yet. Therefore, we determined the effect of subinhibitory 2,4-D concentrations on the Chlorophycean alga Ankistrodesmus falcatus and on a toxigenic strain of the cyanobacterium Microcystis aeruginosa. Population growth, photosynthetic pigments, macromolecular biomarkers (carbohydrates, lipids, and protein), and antioxidant enzymes (catalase [CAT], glutathione peroxidase [GPx], and superoxide dismutase [SOD]) were quantified, and the integrated biomarker response (IBR) was calculated. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations were also performed. The 96-h median inhibitory concentration (IC50) for 2,4-D was 1353.80 and 71.20mgL-1 for the alga and the cyanobacterium, respectively. Under 2,4-D stress, both organisms increased pigments and macromolecules concentration, modified the activity of all the evaluated enzymes, and exhibited ultrastructural alterations. M. aeruginosa also increased microcystins production, and A. falcatus showed external morphological alterations. The green alga was tolerant to high concentrations of the herbicide, whereas the cyanobacterium exhibited sensitivity comparable to other phytoplankters. Both organisms were tolerant to comparatively high concentrations of the herbicide; however, negative effects on the assessed biomarkers and cell morphology were significant. Moreover, stimulation of the production of cyanotoxins under chemical stress could increase the risk for the biota in aquatic environments, related to herbicides pollution in eutrophic freshwater ecosystems.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico
| | - Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico.
| |
Collapse
|
10
|
Hypothyroidism Causes Endoplasmic Reticulum Stress in Adult Rat Hippocampus: A Mechanism Associated with Hippocampal Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2089404. [PMID: 29743975 PMCID: PMC5884203 DOI: 10.1155/2018/2089404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/14/2018] [Accepted: 03/01/2018] [Indexed: 01/15/2023]
Abstract
Thyroid hormones (TH) are essential for hippocampal neuronal viability in adulthood, and their deficiency causes hypothyroidism, which is related to oxidative stress events and neuronal damage. Also, it has been hypothesized that hypothyroidism causes a glucose deprivation in the neuron. This study is aimed at evaluating the temporal participation of the endoplasmic reticulum stress (ERE) in hippocampal neurons of adult hypothyroid rats and its association with the oxidative stress events. Adult Wistar male rats were divided into euthyroid and hypothyroid groups. Thyroidectomy with parathyroid gland reimplementation caused hypothyroidism at three weeks postsurgery. Oxidative stress, redox environment, and antioxidant enzyme markers, as well as the expression of the ERE through the pathways of PERK, ATF6, and IRE1, were evaluated at the 3rd and 4th weeks postsurgery. We found a rise in ROS and nitrite production; also, catalase increased and glutathione peroxidase diminished their activities. These events promote an enhancement of the lipoperoxidation, as well as of γ-GT, myeloperoxidase, and caspase 3 activities. With respect to ERE, there were ATF6, IRE1, and GADD153 overexpressions with a reduction in mitochondrial activity and GSH2/GSSG ratio. We conclude that the endoplasmic reticulum stress might play a pivotal role in the activation of hypothyroidism-induced hippocampal cell death.
Collapse
|
11
|
Carbajal-Hernández AL, Valerio-García RC, Martínez-Ruíz EB, Jarquín-Díaz VH, Martínez-Jerónimo F. Maternal-embryonic metabolic and antioxidant response of Chapalichthys pardalis (Teleostei: Goodeidae) induced by exposure to 3,4-dichloroaniline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17534-17546. [PMID: 28597380 DOI: 10.1007/s11356-017-9340-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
Chapalichthys pardalis is a viviparous fish, microendemic to the Tocumbo Region in the state of Michoacán, Mexico. Despite the peculiar type of reproduction of goodeid fish and their mother-embryo interaction, the effects on embryos induced by maternal exposure to aquatic xenobiotics are still unknown. The objective of the present work was to determine the maternal-embryonic metabolic and antioxidant response of C. pardalis exposed to 3,4-dichloroaniline (3,4-DCA), a compound considered highly noxious to the environment because of its high toxicity and persistence, which has been used as reference toxicant in toxicological bioassays. We determined the median lethal concentration (LC50, 96 h) and then exposed pregnant females to 3.3, 2.5, and 0.5 mg L-1 of 3,4-DCA (equivalent to LC1, LC0.01, and LC50/10, respectively) during 21 days. We assessed the activity of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), macromolecules content (proteins, lipids, carbohydrates), glucose, and lactate concentration, as well as the oxidative damage, by measuring thiobarbituric acid reactive substances, and protein oxidation. To interpret results, we used the integrated biomarker response (IBRv2). The average LC50 was of 5.18 mg L-1 (4.8-5.5 mg L-1; p = 0.05). All females exposed to concentrations of 3.3 and 2.5 mg L-1 lost 100% of the embryos during the bioassay, whereas those exposed to 0.5 mg L-1 showed alterations in the antioxidant activity and oxidative damage, being the embryos and the maternal liver the most affected, with IBRv2 values of 10.09 and 9.21, respectively. Damage to macromolecules was greater in embryos and the maternal liver, with IBRv2 of 16.14 and 8.40, respectively. We conclude that exposure to xenobiotics, like 3,4-DCA, in species with a marked maternal-embryonic interaction represents a potential risk for the development and survival of the descendants, thereby, potentially affecting the future of the population.
Collapse
Affiliation(s)
- Ana Laura Carbajal-Hernández
- Escuela Nacional de Ciencias Biológicas, Lab. de Hidrobiología Experimental, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Col. Santo Tomás, Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Roberto Carlos Valerio-García
- Escuela Nacional de Ciencias Biológicas, Lab. de Hidrobiología Experimental, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Col. Santo Tomás, Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Erika Berenice Martínez-Ruíz
- Escuela Nacional de Ciencias Biológicas, Lab. de Hidrobiología Experimental, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Col. Santo Tomás, Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Víctor Hugo Jarquín-Díaz
- Escuela Nacional de Ciencias Biológicas, Lab. de Hidrobiología Experimental, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Col. Santo Tomás, Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Fernando Martínez-Jerónimo
- Escuela Nacional de Ciencias Biológicas, Lab. de Hidrobiología Experimental, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Col. Santo Tomás, Miguel Hidalgo, 11340, Mexico City, Mexico.
| |
Collapse
|
12
|
Martínez-Ruiz EB, Martínez-Jerónimo F. How do toxic metals affect harmful cyanobacteria? An integrative study with a toxigenic strain of Microcystis aeruginosa exposed to nickel stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:36-46. [PMID: 27400062 DOI: 10.1016/j.ecoenv.2016.06.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Nickel (Ni) is an essential metal for some organisms, but also a common toxic pollutant released into the water. Toxicity of Ni has not been completely established for cyanobacteria; for this reason, we evaluated the effect of sub-inhibitory Ni concentrations on a toxigenic strain of Microcystis aeruginosa and on microcystins production. Population growth, photosynthetic pigments concentration, biomarkers, including antioxidant enzymes (catalase [CAT], glutathione peroxidase [GPx], and superoxide dismutase [SOD]), as well as macromolecules (proteins, carbohydrates and lipids) were quantified; SEM and TEM observations were also performed. Population growth was affected starting at 3µgL(-1), and at 24µgL(-1) growth was completely inhibited; the 96-h Ni(2+) IC50 was 3.7µgL(-1). Ni exposure increased pigments concentration, augmented all the macromolecules, and increased activities of CAT and GPx; alterations on the internal cell structure were also observed. The integrated biomarker response revealed that Ni(2+) augmented the antioxidant response and the macromolecules content. Ni stress also increased microcystins production. M. aeruginosa was affected by Ni at very low concentrations, even lower than those established as safe limit to protect aquatic biota. Aside from the toxic effects produced in this cyanobacterium, stimulation to produce toxins could potentiate the environmental risks associated with water pollution and eutrophication.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico, D.F. 11340, Mexico
| | - Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico, D.F. 11340, Mexico.
| |
Collapse
|
13
|
Xia X, Zhang X, Zhou D, Bao Y, Li H, Zhai Y. Importance of suspended sediment (SPS) composition and grain size in the bioavailability of SPS-associated pyrene to Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:440-448. [PMID: 27112726 DOI: 10.1016/j.envpol.2016.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 06/05/2023]
Abstract
Hydrophobic organic compounds (HOCs) tend to associate with suspended sediment (SPS) in aquatic environments; the composition and grain size of SPS will affect the bioavailability of SPS-associated HOCs. However, the bioavailability of HOCs sorbed on SPS with different compositions and grain sizes is not well understood. In this work, passive dosing devices were made to control the freely dissolved concentration of pyrene, a typical HOC, in the exposure systems. The effect of pyrene associated with amorphous organic carbon (AOC), black carbon (BC), and minerals of SPS with grain sizes of 0-50 μm and 50-100 μm on the immobilization and enzymatic activities of Daphnia magna was investigated to quantify the bioavailability of pyrene sorbed on SPS with different grain sizes and compositions. The results showed that the contribution of AOC-, BC-, and mineral-associated pyrene to the total bioavailability of SPS-associated pyrene was approximately 50%-60%, 10%-29%, and 20%-30%, respectively. The bioavailable fraction of pyrene sorbed on the three components of SPS was ordered as AOC (22.4%-67.3%) > minerals (20.1%-46.0%) > BC (9.11%-16.8%), and the bioavailable fraction sorbed on SPS of 50-100 μm grain size was higher than those of 0-50 μm grain size. This is because the SPS grain size will affect the ingestion of SPS and the SPS composition will affect the desorption of SPS-associated pyrene in Daphnia magna. According to the results obtained in this study, a model has been developed to calculate the bioavailability of HOCs to aquatic organisms in natural waters considering both SPS grain size and composition.
Collapse
Affiliation(s)
- Xinghui Xia
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Key Laboratory of Water and Sediment Sciences of Ministry of Education, Beijing 100875, China.
| | - Xiaotian Zhang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Dong Zhou
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Key Laboratory of Water and Sediment Sciences of Ministry of Education, Beijing 100875, China
| | - Yimeng Bao
- Department of Biotechnology, Delft University of Technology, Delft 2624BC, Netherlands
| | - Husheng Li
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Key Laboratory of Water and Sediment Sciences of Ministry of Education, Beijing 100875, China
| | - Yawei Zhai
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Key Laboratory of Water and Sediment Sciences of Ministry of Education, Beijing 100875, China
| |
Collapse
|
14
|
Boone CHT, Grove RA, Adamcova D, Braga CP, Adamec J. Revealing oxidative damage to enzymes of carbohydrate metabolism in yeast: An integration of 2D DIGE, quantitative proteomics, and bioinformatics. Proteomics 2016; 16:1889-903. [PMID: 27193513 DOI: 10.1002/pmic.201500546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/19/2016] [Accepted: 05/16/2016] [Indexed: 12/17/2022]
Abstract
Clinical usage of lidocaine, a pro-oxidant has been linked with severe, mostly neurological complications. The mechanism(s) causing these complications is independent of the blockade of voltage-gated sodium channels. The budding yeast Saccharomyces cerevisiae lacks voltage-gated sodium channels, thus provides an ideal system to investigate lidocaine-induced protein and pathway alterations. Whole-proteome alterations leading to these complications have not been identified. To address this, S. cerevisiae was grown to stationary phase and exposed to an LC50 dose of lidocaine. The differential proteomes of lidocaine treatment and control were resolved 6 h post exposure using 2D DIGE. Amine reactive dyes and carbonyl reactive dyes were used to assess protein abundance and protein oxidation, respectively. Quantitative analysis of these dyes (⩾ 1.5-fold alteration, p ⩽ 0.05) revealed a total of 33 proteoforms identified by MS differing in abundance and/or oxidation upon lidocaine exposure. Network analysis showed enrichment of apoptotic proteins and cell wall maintenance proteins, while the abundance of proteins central to carbohydrate metabolism, such as triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase, and redox proteins superoxide dismutase and peroxiredoxin were significantly decreased. Enzymes of carbohydrate metabolism, such as phosphoglycerate kinase and enolase, the TCA cycle enzyme aconitase, and multiple ATP synthase subunits were found to be oxidatively modified. Also, the activity of aconitase was found to be decreased. Overall, these data suggest that toxic doses of lidocaine induce significant disruption of glycolytic pathways, energy production, and redox balance, potentially leading to cell malfunction and death.
Collapse
Affiliation(s)
- Cory H T Boone
- Redox Biology Center, Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Ryan A Grove
- Redox Biology Center, Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Dana Adamcova
- Redox Biology Center, Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Camila P Braga
- Redox Biology Center, Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, NE, USA.,Department of Chemistry and Biochemistry, Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
| | - Jiri Adamec
- Redox Biology Center, Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, NE, USA
| |
Collapse
|
15
|
Lee YJ, Kim SA, Lee SH. Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro by inhibiting the p53-dependent mitochondrial apoptotic pathway. Acta Pharmacol Sin 2016; 37:664-73. [PMID: 27041463 DOI: 10.1038/aps.2015.151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/20/2015] [Indexed: 11/09/2022] Open
Abstract
AIM Intra-articular injection of local anesthetics (LAs) is a common procedure for therapeutic purposes. However, LAs have been found toxic to articular cartilage, and hyaluronan may attenuate this toxicity. In this study we investigated whether hyaluronan attenuated lidocaine-induced chondrotoxicity, and if so, to elucidate the underlying mechanisms. METHODS Human chondrocyte cell line SW1353 and newly isolated murine chondrocytes were incubated in culture medium containing hyaluronan and/or lidocaine for 72 h. Cell viability was evaluated using MTT assay. Cell apoptosis was detected with DAPI staining, caspase 3/7 activity assay and flow cytometry. Cell cycle distributions, ROS levels and mitochondrial membrane potential (ΔΨm) were determined using flow cytometry. The expression of p53 and p53-regulated gene products was measured with Western blotting. RESULTS Lidocaine (0.005%-0.03%) dose-dependently decreased the viability of SW1353 cells. This local anesthetic (0.015%, 0.025%) induced apoptosis, G2/M phase arrest and loss of ΔΨm, and markedly increased ROS production in SW1353 cells. Hyaluronan (50-800 μg/mL) alone did not affect the cell viability, but co-treatment with hyaluronan (200 μg/mL) significantly attenuated lidocaine-induced apoptosis and other abnormalities in SW1353 cells. Furthermore, co-treatment with lidocaine and hyaluronan significantly decreased the levels of p53 and its transcription targets Bax and p21 in SW1353 cells, although treatment with lidocaine alone did not significantly change these proteins. Similar results were obtained in ex vivo cultured murine chondrocytes. CONCLUSION Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro through inhibiting the p53-dependent mitochondrial apoptotic pathway.
Collapse
|
16
|
Martínez-Ruiz EB, Martínez-Jerónimo F. Nickel has biochemical, physiological, and structural effects on the green microalga Ankistrodesmus falcatus: An integrative study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:27-36. [PMID: 26513220 DOI: 10.1016/j.aquatox.2015.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
In recent years, the release of chemical pollutants to water bodies has increased due to anthropogenic activities. Ni(2+) is an essential metal that causes damage to aquatic biota at high concentrations. Phytoplankton are photosynthesizing microscopic organisms that constitute a fundamental community in aquatic environments because they are primary producers that sustain the aquatic food web. Nickel toxicity has not been characterized in all of the affected levels of biological organization. For this reason, the present study evaluated the toxic effects of nickel on the growth of a primary producer, the green microalga Ankistrodesmus falcatus, and on its biochemical, enzymatic, and structural levels. The IC50 (96h) was determined for Ni(2+). Based on this result, five concentrations were determined for additional tests, in which cell density was evaluated daily. At the end of the assay, pigments and six biomarkers, including antioxidant enzymes (catalase [CAT], glutathione peroxidase [GPx], superoxide dismutase [SOD]), and macromolecules (proteins, carbohydrates and lipids), were quantified; the integrated biomarker response (IBR) was determined also. The microalgae were observed by SEM and TEM. Population growth was affected starting at 7.5 μg L(-1) (0.028 μM), and at 120 μg L(-1) (0.450 μM), growth was inhibited completely; the determined IC50 was 17 μg L(-1). Exposure to nickel reduced the concentration of pigments, decreased the content of all of the macromolecules, inhibited of SOD activity, and increased CAT and GPx activities. The IBR revealed that Ni(2+) increased the antioxidant response and diminished the macromolecules concentration. A. falcatus was affected by nickel at very low concentrations; negative effects were observed at the macromolecular, enzymatic, cytoplasmic, and morphological levels, as well as in population growth. Ni(2+) toxicity could result in environmental impacts with consequences on the entire aquatic community. Current regulations should be revised to protect primary producers.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico, D.F. 11340, Mexico
| | - Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico, D.F. 11340, Mexico.
| |
Collapse
|
17
|
Blas-Valdivia V, Cano-Europa E, Martinez-Perez Y, Lezama-Palacios R, Franco-Colin M, Ortiz-Butron R. Hypothyroidism minimizes the effects of acute hepatic failure caused by endoplasmic reticulum stress and redox environment alterations in rats. Acta Histochem 2015; 117:811-9. [PMID: 26238033 DOI: 10.1016/j.acthis.2015.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate if a protective effect from hypothyroidism in acute liver failure resulted from reduced endoplasmic reticulum stress and changes to the redox environment. Twenty male Sprague-Dawley rats were divided in four groups: (1) euthyroid (sham surgery), (2) hypothyroid, (3) euthyroid (sham surgery)+thioacetamide and (4) hypothyroid+thioacetamide. Hypothyroidism was confirmed two weeks after thyroidectomy, and thioacetamide (TAA) (400mg/kg, ip) was administrated to the appropriate groups for three days with supportive therapy. Grades of encephalopathy in all animals were determined using behavioral tests. Animals were decapitated and their blood was obtained to assess liver function. The liver was dissected: the left lobe was used for histology and the right lobe was frozen for biochemical assays. Body weight, rectal temperature and T4 concentration were lower in hypothyroid groups. When measurements of oxidative stress markers, redox environment, γ-glutamylcysteine synthetase and glutathione-S-transferase were determined, we observed that hypothyroid animals with TAA compensated better with oxidative damage than euthyroid animals treated with TAA. Furthermore, we measured reduced expressions of GADD34, caspase-12 and GRP78 and subsequently less hypothyroidism-induced cellular damage in hypothyroid animals. We conclude that hypothyroidism protects against hepatic damage caused by TAA because it reduces endoplasmic reticulum stress and changes to the redox environment.
Collapse
|
18
|
Mejia-Carmona GE, Gosselink KL, Pérez-Ishiwara G, Martínez-Martínez A. Oxidant/antioxidant effects of chronic exposure to predator odor in prefrontal cortex, amygdala, and hypothalamus. Mol Cell Biochem 2015; 406:121-9. [PMID: 25981530 PMCID: PMC4502319 DOI: 10.1007/s11010-015-2430-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/05/2015] [Indexed: 01/18/2023]
Abstract
The incidence of anxiety-related diseases is increasing these days, hence there is a need to understand the mechanisms that underlie its nature and consequences. It is known that limbic structures, mainly the prefrontal cortex and amygdala, are involved in the processing of anxiety, and that projections from prefrontal cortex and amygdala can induce activity of the hypothalamic–pituitary–adrenal axis with consequent cardiovascular changes, increase in oxygen consumption, and ROS production. The compensatory reaction can include increased antioxidant enzymes activities, overexpression of antioxidant enzymes, and genetic shifts that could include the activation of antioxidant genes. The main objective of this study was to evaluate the oxidant/antioxidant effect that chronic anxiogenic stress exposure can have in prefrontal cortex, amygdala, and hypothalamus by exposition to predator odor. Results showed (a) sensitization of the HPA axis response, (b) an enzymatic phase 1 and 2 antioxidant response to oxidative stress in amygdala, (c) an antioxidant stability without elevation of oxidative markers in prefrontal cortex, (d) an elevation in phase 1 antioxidant response in hypothalamus. Chronic exposure to predator odor has an impact in the metabolic REDOX state in amygdala, prefrontal cortex, and hypothalamus, with oxidative stress being prevalent in amygdala as this is the principal structure responsible for the management of anxiety.
Collapse
Affiliation(s)
- G E Mejia-Carmona
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del Pronaf y Estocolmo S/N, Zona Pronaf, C.P. 32315, Ciudad Juárez, Chihuahua, Mexico
| | | | | | | |
Collapse
|
19
|
Malet A, Faure MO, Deletage N, Pereira B, Haas J, Lambert G. The Comparative Cytotoxic Effects of Different Local Anesthetics on a Human Neuroblastoma Cell Line. Anesth Analg 2015; 120:589-596. [DOI: 10.1213/ane.0000000000000562] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Mejia-Carmona GE, Gosselink KL, de la Rosa LA, Pérez-Ishiwara G, Martínez-Martínez A. Evaluation of antioxidant enzymes in response to predator odor stress in prefrontal cortex and amygdala. NEUROCHEM J+ 2014. [DOI: 10.1134/s181971241402007x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Zhang X, Xia X, Dong J, Bao Y, Li H. Enhancement of toxic effects of phenanthrene to Daphnia magna due to the presence of suspended sediment. CHEMOSPHERE 2014; 104:162-169. [PMID: 24275150 DOI: 10.1016/j.chemosphere.2013.10.086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 06/02/2023]
Abstract
In the present work, the influences of suspended sediment (SPS) on the toxic effects of phenanthrene (PHE), one kind of polycyclic aromatic hydrocarbons, to Daphnia magna was studied using a dialysis bag simulation system, which equalized the freely dissolved concentration of PHE between outside the dialysis bag in the presence of SPS and inside the dialysis bag in the absence of SPS. The immobilization and total superoxide dismutase (T-SOD) activity of Daphnia magna caused by PHE (0-0.8 mg L(-1)) were investigated under the influence of different SPS concentrations (0, 1, 3, 5 g L(-1)) during a 96 h-exposure. The results showed that, compared to the absence of SPS, the presence of SPS (1-5 g L(-1)) increased the immobilization of Daphnia magna by 1.6-2.7 times when the freely dissolved concentration of PHE was identical in both systems. The inhibition of T-SOD activity of Daphnia magna by PHE was significantly greater in the presence of SPS than in the absence of SPS (p<0.01). This infers that the PHE sorbed on SPS might be bioavailable and enhanced the toxic effect of PHE to Daphnia magna. The bioavailable fraction of PHE sorbed on SPS ranged from 10.1% to 22.7%, and the contribution of PHE sorbed on SPS to the immobilization caused by total PHE in the exposure system increased with SPS concentration, with the contribution ratio increasing from 36.7% to 57.7% when SPS concentration increased from 1 to 5 g L(-1). This study suggests that only considering the concentrations of hydrophobic organic compounds in the water phase may underestimate their toxicity; and the hydrophobic organic compounds sorbed on SPS should not be ignored in assessment of water quality and the establishment of water quality standard in the future.
Collapse
Affiliation(s)
- Xiaotian Zhang
- State Key Laboratory of Water Environment Simulation/School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation/School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Jianwei Dong
- State Key Laboratory of Water Environment Simulation/School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yimeng Bao
- State Key Laboratory of Water Environment Simulation/School of Environment, Beijing Normal University, Beijing 100875, China
| | - Husheng Li
- State Key Laboratory of Water Environment Simulation/School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
22
|
Phycobiliproteins or C-phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl2-caused oxidative stress and renal damage. Food Chem 2012; 135:2359-65. [DOI: 10.1016/j.foodchem.2012.07.063] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/22/2012] [Accepted: 07/09/2012] [Indexed: 01/13/2023]
|
23
|
Arzate-Cárdenas MA, Martínez-Jerónimo F. Energy reserve modification in different age groups of Daphnia schoedleri (Anomopoda: Daphniidae) exposed to hexavalent chromium. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:106-116. [PMID: 22481114 DOI: 10.1016/j.etap.2012.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/29/2012] [Accepted: 03/03/2012] [Indexed: 05/31/2023]
Abstract
Caloric content is a reliable biomaker of effect since it is modified by exposure to toxicants that can alter basal metabolism. Since organisms' age modifies how energy resources are allocated and modifies the activity of antioxidant enzymes, the response to toxic agents could be altered with age. Seven age groups of Daphnia schoedleri (0, 3, 5, 7, 14, 21, and 28-day-old) were exposed for 24h to two sublethal concentrations of Cr(VI): 1/25 and 1/5 of the 48 h EC(50) of each age group, to determine the age at which susceptibility to Cr(VI) is highest. To evaluate energy content, carbohydrate, protein and lipid reserves were quantified and antioxidant enzymes activity was assessed (SOD, CAT, GPx, and GR). Furthermore, an integrative approach was applied to evaluate both sets of responses and interpret them as a whole in a simply visual way, achieved by the integrated biomarker response approach. Results indicate that Cr(VI) induced significant differences in all age groups. Seven and 14-day-old organisms were exposed to the highest concentrations (based on their EC50) and showed greater tolerance to this metal. Susceptibility to the toxicant was highest in younger specimens in which energy requirements are greater due to high growth rates (basal metabolism), as a result of which more energy reserves are expended to satisfy demands in terms of growth and response to toxicants.
Collapse
Affiliation(s)
- Mario Alberto Arzate-Cárdenas
- Laboratorio de Hidrobiología Experimental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Col. Santo Tomás, Mexico, DF, Mexico
| | | |
Collapse
|
24
|
Estévez-Carmona MM, Meléndez-Camargo E, Ortiz-Butron R, Pineda-Reynoso M, Franco-Colin M, Cano-Europa E. Hypothyroidism maintained reactive oxygen species-steady state in the kidney of rats intoxicated with ethylene glycol: effect related to an increase in the glutathione that maintains the redox environment. Toxicol Ind Health 2012; 29:555-66. [PMID: 22491722 DOI: 10.1177/0748233712442710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our objective was to determine whether hypothyroidism protects against ethylene glycol (EG)-induced renal damage and whether the redox environment participates in the protection process. We used 36 male Wistar rats divided into four groups: (1) euthyroid, (2) euthyroid + 0.75% EG, (3) hypothyroid, and (4) hypothyroid + 0.75% EG. Hypothyroidism occurred 2 weeks after thyroidectomy. The parathyroid gland was reimplanted. EG was administrated for 21 days in drinking water. On day 21, the renal function was assessed and then the rats were decapitated. The left kidney was processed for histology, and the right kidney was used to determine the redox environment, oxidative stress, and the testing of the antioxidant enzymatic system. EG in euthyroid rats reduced the hydric and electrolytic balance and it also caused oxidative stress and renal damage. Hypothyroidism per se modifies the renal function causing a low osmolal and potassium clearance and the filtered load of potassium and sodium. In addition, there was an enhanced redox state because hypothyroidism increases the reduced glutathione concentration caused by a high activity of γ-glutamylcysteine synthase. Hypothyroidism is a protective state against EG because the changes in the renal function were smaller than in the euthyroid state. The oxidative stress and cellular damage were ameliorated by the hypothyroid condition. Also, the hypothyroidism-enhanced redox environment protects against EG-induced oxidative stress, renal damage, and renal dysfunction.
Collapse
Affiliation(s)
- María Mirian Estévez-Carmona
- Laboratorio de Toxicología Hepática y Renal, Departamento de Farmacía, Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
25
|
Moniczewski A, Librowski T, Lochyński S, Strub D. Evaluation of the irritating influence of carane derivatives and their antioxidant properties in a deoxyribose degradation test. Pharmacol Rep 2011; 63:120-9. [PMID: 21441619 DOI: 10.1016/s1734-1140(11)70406-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/15/2010] [Indexed: 01/18/2023]
Abstract
Previous studies of the propranolol monoterpene derivative (-)-4-[2-hydroxy-3-(N-isopropylamino)-propoxyimino]-cis-carane hydrochloride (KP-23) and its diastereoisomers, KP-23R and KP-23S, demonstrated different effects on the cyclic AMP generating system as well as anti-inflammatory, analgesic, antihistaminic and antioxidant activity. The present study examined the influence of KP-23 and its diastereoisomers KP-23R and KP-23S on the skin-irritating activity and the mucous membrane-irritating activity as well as their influence on a late-type contact allergy in the in vivo tests. The hydroxyl radical scavenging potential of the three analogues was evaluated using their ability to inhibit Fe(II)/H2O2-induced oxidative degradation of 2-deoxyribose (2-DR) in the in vitro tests. The results obtained indicated that the hydroxyamine carane derivative did not evoke irritative changes and did not induce a late-type contact allergy in the guinea-pig. Diastereoisomers of KP-23 exhibit antioxidant properties in a dose-dependent manner and protected against OH-radicals generated from the Fenton reaction.
Collapse
Affiliation(s)
- Andrzej Moniczewski
- Department of Toxicology, Jagiellonian University, Medical College, Faculty of Pharmacy, Medyczna 9, PL 30-688 Kraków, Poland
| | | | | | | |
Collapse
|
26
|
Ortiz-ButrÓn R, Blas-Valdivia V, Franco-Colin M, Pineda-Reynoso M, Cano-Europa E. An increase of oxidative stress markers and the alteration of the antioxidant enzymatic system are associated with spleen damage caused by methimazole-induced hypothyroidism. Drug Chem Toxicol 2011; 34:180-8. [DOI: 10.3109/01480545.2010.495391] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Librowski T, Moniczewski A. Strong antioxidant activity of carane derivatives. Pharmacol Rep 2010; 62:178-84. [DOI: 10.1016/s1734-1140(10)70255-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 01/22/2010] [Indexed: 10/25/2022]
|