1
|
Garcia CS, da Rocha MJ, Presa MH, Pires CS, Besckow EM, Penteado F, Gomes CS, Lenardão EJ, Bortolatto CF, Brüning CA. Exploring the antioxidant potential of chalcogen-indolizines throughout in vitro assays. PeerJ 2024; 12:e17074. [PMID: 38500528 PMCID: PMC10946399 DOI: 10.7717/peerj.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/18/2024] [Indexed: 03/20/2024] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are highly reactive molecules produced naturally by the body and by external factors. When these species are generated in excessive amounts, they can lead to oxidative stress, which in turn can cause cellular and tissue damage. This damage is known to contribute to the aging process and is associated with age-related conditions, including cardiovascular and neurodegenerative diseases. In recent years, there has been an increased interest in the development of compounds with antioxidant potential to assist in the treatment of disorders related to oxidative stress. In this way, compounds containing sulfur (S) and/or selenium (Se) have been considered promising due to the relevant role of these elements in the biosynthesis of antioxidant enzymes and essential proteins with physiological functions. In this context, studies involving heterocyclic nuclei have significantly increased, notably highlighting the indolizine nucleus, given that compounds containing this nucleus have been demonstrating considerable pharmacological properties. Thus, the objective of this research was to evaluate the in vitro antioxidant activity of eight S- and Se-derivatives containing indolizine nucleus and different substituents. The in vitro assays 1,1-diphenyl-2-picryl-hydrazil (DPPH) scavenger activity, ferric ion (Fe3+) reducing antioxidant power (FRAP), thiobarbituric acid reactive species (TBARS), and protein carbonylation (PC) were used to access the antioxidant profile of the compounds. Our findings demonstrated that all the compounds showed FRAP activity and reduced the levels of TBARS and PC in mouse brains homogenates. Some compounds were also capable of acting as DPPH scavengers. In conclusion, the present study demonstrated that eight novel organochalcogen compounds exhibit antioxidant activity.
Collapse
Affiliation(s)
- Cleisson Schossler Garcia
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila Simões Pires
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Evelyn Mianes Besckow
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Filipe Penteado
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Caroline Signorini Gomes
- Laboratory of Clean Organic Synthesis (LASOL), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Eder João Lenardão
- Laboratory of Clean Organic Synthesis (LASOL), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Bittencourt KC, Souza RRDE. Insecticidal activity of the organotellurium 2-Phenylethynyl-Butyltellurium on the Drosophila melanogaster model. AN ACAD BRAS CIENC 2023; 95:e20211486. [PMID: 36946808 DOI: 10.1590/0001-3765202320211486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/04/2022] [Indexed: 03/18/2023] Open
Abstract
2-Phenylethynyl-Butyltellurium (PEBT) is a synthetic organotellurium compound that has shown various pharmacological properties on mammals without any signs of toxicity, but its effects on insects have not been reported before. Therefore, the aim of this study was to assess whether acute exposure to PEBT would promote an insecticidal effect against Drosophila melanogaster. The flies were exposed to three concentrations of PEBT (0.325 µmol L-1, 1.300 µmol L-1, and 5.200 µmol L-1) and a control solution (vehicle), using 450 flies per treatment (three repetitions of 150 flies), for 48 hours. Negative geotaxis and open field tests were performed (in vivo) after 24 and 48h, and acetylcholinesterase (AChE) activity was assessed (ex vivo) after 48h. Also, the mortality rate, 50% Lethal Concentration (LC50), 80% Lethal Concentration (LC80), and 95% Lethal Concentration (LC95) were calculated. Our results show that PEBT presented insecticidal activity against Drosophila melanogaster at all tested concentrations, which caused locomotor impairment and increased acetylcholinesterase activity in the flies' heads.
Collapse
Affiliation(s)
- Karina Chertok Bittencourt
- Federal University of Santa Maria (UFSM), Department of Agronomic and Environmental Sciences, Linha 7 de Setembro, s/n, BR 386, Km 40, 98400-000 Frederico Westphalen, RS, Brazil
| | - Rafael Rodrigues DE Souza
- Federal University of Santa Maria (UFSM), Department of Plant Science, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
3
|
do Sacramento M, Menezes L, Goldani B, Perin G, Silva MS, Barcellos T, Alves D. Synthesis of alkynyltellurides mediated by K 3PO 4 and DMSO. NEW J CHEM 2019. [DOI: 10.1039/c9nj01995b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of diorganyl ditellurides with terminal alkynes is described using K3PO4 as a catalyst.
Collapse
Affiliation(s)
| | - Larissa Menezes
- Laboratório de Síntese Orgânica Limpa
- LASOL
- CCQFA
- Universidade Federal de Pelotas
- UFPel
| | - Bruna Goldani
- Laboratório de Síntese Orgânica Limpa
- LASOL
- CCQFA
- Universidade Federal de Pelotas
- UFPel
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa
- LASOL
- CCQFA
- Universidade Federal de Pelotas
- UFPel
| | - Marcio S. Silva
- Laboratório de Síntese Orgânica Limpa
- LASOL
- CCQFA
- Universidade Federal de Pelotas
- UFPel
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products
- University of Caxias do Sul
- Caxias do Sul
- Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa
- LASOL
- CCQFA
- Universidade Federal de Pelotas
- UFPel
| |
Collapse
|
4
|
Vogt AG, Voss GT, de Oliveira RL, Paltian JJ, Duarte LFB, Alves D, Jesse CR, Roman SS, Roehrs JA, Wilhelm EA, Luchese C. Organoselenium group is critical for antioxidant activity of 7-chloro-4-phenylselenyl-quinoline. Chem Biol Interact 2018; 282:7-12. [PMID: 29317251 DOI: 10.1016/j.cbi.2018.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/22/2017] [Accepted: 01/05/2018] [Indexed: 12/11/2022]
Abstract
The quinolone compounds have been reported for many biological properties, especially as potent antioxidants. This study investigated the antioxidant effect of 7-chloro-4-phenylselenyl-quinoline (PSQ), a quinolone derivative with organoselenium group, against oxidative stress induced by sodium nitroprusside (SNP) in brains of mice. A second objective was to verify the importance of phenylselenyl group presents at position 4 of the quinoline structure to antioxidant effect of compound. So, it was compared the antioxidant effect of PSQ with a quinoline without organoseleniun group (7-chloroquinoline [QN]). Swiss mice were used and received SNP (0.335 μmol/site, intracerebroventricular) 30 min after treatment with PSQ or QN, at the doses of 50 mg/kg (intragastrically). After 1 h, animals were sacrificed and the brains were removed to biochemistry analysis. Thiobarbituric acid reactive species (TBARS), protein carbonyl (PC) and non-protein thiol (NPSH) levels, as well as catalase (CAT), glutathione S transferase (GST) and δ -aminolevulinic acid (δ-ALA-D) activities were determined. SNP increased TBARS and PC levels, and reduced the enzymatic (CAT and GST activity) and non-enzymatic (NPSH levels) antioxidant defenses and inhibited the δ-ALA-D activity. PSQ avoided the increase in the lipid peroxidation and PC levels, as well as the decrease in the NPSH levels, CAT, GST and δ-ALA-D activities QN partially avoided the increase in lipid peroxidation, but it not protected against alterations induced by SNP. In conclusion, phenylselenyl group present in quinoline structure is critical for antioxidant activity of PSQ.
Collapse
Affiliation(s)
- Ane G Vogt
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Guilherme T Voss
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Renata L de Oliveira
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Jaini J Paltian
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Luis F B Duarte
- Programa de Pós-graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- Programa de Pós-graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Cristiano R Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Silvane S Roman
- Universidade Regional Integrada, Campus Erechim, CEP 99700-000, RS, Brazil
| | - Juliano A Roehrs
- Departamento de Química, Universidade Federal de Santa Catarina - UFSC Florianópolis, SC, CEP 88040-900, Brazil
| | - Ethel A Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil.
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
5
|
Borges EL, Ignasiak MT, Velichenko Y, Perin G, Hutton CA, Davies MJ, Schiesser CH. Synthesis and antioxidant capacity of novel stable 5-tellurofuranose derivatives. Chem Commun (Camb) 2018; 54:2990-2993. [DOI: 10.1039/c8cc00565f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Novel stable tellurium-containing carbohydrates are prepared; these react very rapidly with two-electron oxidants and show promise as protective agents.
Collapse
Affiliation(s)
- Elton L. Borges
- Dept. of Biomedical Sciences
- University of Copenhagen
- Panum Institute
- Copenhagen
- Denmark
| | - Marta T. Ignasiak
- Dept. of Biomedical Sciences
- University of Copenhagen
- Panum Institute
- Copenhagen
- Denmark
| | - Yuliia Velichenko
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Australia
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa-LASOL
- Universidade Federal de Pelotas
- Pelotas
- Brazil
| | - Craig A. Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Australia
| | - Michael J. Davies
- Dept. of Biomedical Sciences
- University of Copenhagen
- Panum Institute
- Copenhagen
- Denmark
| | | |
Collapse
|
6
|
WILHELM ETHELA, FERREIRA ANATERESINHA, PINZ MIKAELAP, REIS ANGÉLICASDOS, VOGT ANEG, STEIN ANDREL, ZENI GILSON, LUCHESE CRISTIANE. Antioxidant effect of quinoline derivatives containing or not selenium: Relationship with antinociceptive action quinolines are antioxidant and antinociceptive. ACTA ACUST UNITED AC 2017; 89:457-467. [DOI: 10.1590/0001-3765201720160668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/13/2016] [Indexed: 11/22/2022]
|
7
|
Bonfanti G, Bitencourt PER, Bona KSD, Peroza LR, Cargnelutti LO, Borges RM, Pigatto AGS, Fachinetto R, Boligon AA, Athayde ML, Gonçalves TDL, Moretto MB. Safety assessment and behavioral effects of Solanum guaraniticum leaf extract in rats. BRAZ J PHARM SCI 2016. [DOI: 10.1590/s1984-82502016000100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
ABSTRACT Solanum guaraniticum is a medicinal plant traditionally used to treat gastric and liver diseases. However, there is no documented evidence corroborating its safety. The present study evaluated the potential toxicity of S. guaraniticum leaf extract after acute administration in rats. Single doses of the extract (1.250, 2.500, and 5.000 mg/kg) were administered by gavage, and the rats were then monitored for 48 h and/or 14 days. Mortality, acute signs of toxicity, and general activity in the open field test were assessed as well as hematological and biochemical parameters, enzymatic activity (δ-aminolevulinate dehydratase and acetylcholinesterase), and oxidative stress parameters (lipid peroxidation level, non-protein thiol content, tissue catalase activity, and serum ferrous reducing power). Phytochemical analysis was also performed by HPLC. The results showed that extract administration produced no deaths (LD50 > 5,000 mg/kg), and no significant adverse effects regarding food consumption, body weight gain, gross pathology, or other parameters. However, the open field tests showed a decrease in spontaneous activity (crossing and rearing) mainly at 48 h after treatment. The results suggest that S. guaraniticum extract is not acutely toxic, but causes alterations in central nervous system activity.
Collapse
|
8
|
Bis(phenylimidazoselenazolyl) diselenide as an antioxidant compound: An in vitro and in vivo study. Chem Biol Interact 2015; 233:14-24. [DOI: 10.1016/j.cbi.2015.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/03/2015] [Accepted: 03/18/2015] [Indexed: 01/04/2023]
|
9
|
Involvement of the serotonergic system in the anxiolytic-like effect of 2-phenylethynyl butyltellurium in mice. Behav Brain Res 2015; 277:221-7. [DOI: 10.1016/j.bbr.2014.05.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/15/2022]
|
10
|
Subash S, Essa MM, Al-Asmi A, Al-Adawi S, Vaishnav R, Braidy N, Manivasagam T, Guillemin GJ. Pomegranate from Oman Alleviates the Brain Oxidative Damage in Transgenic Mouse Model of Alzheimer's disease. J Tradit Complement Med 2014; 4:232-8. [PMID: 25379464 PMCID: PMC4220500 DOI: 10.4103/2225-4110.139107] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Oxidative stress may play a key role in Alzheimer's disease (AD) neuropathology. Pomegranates (石榴 Shí Liú) contain very high levels of antioxidant polyphenolic substances, as compared to other fruits and vegetables. Polyphenols have been shown to be neuroprotective in different model systems. Here, the effects of the antioxidant-rich pomegranate fruit grown in Oman on brain oxidative stress status were tested in the AD transgenic mouse. The 4-month-old mice with double Swedish APP mutation (APPsw/Tg2576) were purchased from Taconic Farm, NY, USA. Four-month-old Tg2576 mice were fed with 4% pomegranate or control diet for 15 months and then assessed for the influence of diet on oxidative stress. Significant increase in oxidative stress was found in terms of enhanced levels of lipid peroxidation (LPO) and protein carbonyls. Concomitantly, decrease in the activities of antioxidant enzymes was observed in Tg2576 mice treated with control diet. Supplementation with 4% pomegranate attenuated oxidative damage, as evidenced by decreased LPO and protein carbonyl levels and restoration in the activities of the antioxidant enzymes [superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione (GSH), and Glutathione S transferase (GST)]. The activities of membrane-bound enzymes [Na+ K+-ATPase and acetylcholinesterase (AChE)] were altered in the brain regions of Tg2576 mouse treated with control diet, and 4% pomegranate supplementation was able to restore the activities of enzymes to comparable values observed in controls. The results suggest that the therapeutic potential of 4% pomegranate in the treatment of AD might be associated with counteracting the oxidative stress by the presence of active phytochemicals in it.
Collapse
Affiliation(s)
- Selvaraju Subash
- Deparment of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Sultanate of Oman. ; Ageing and Dementia Research Group, Sultan Qaboos University, Sultanate of Oman
| | - Musthafa Mohamed Essa
- Deparment of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Sultanate of Oman. ; Ageing and Dementia Research Group, Sultan Qaboos University, Sultanate of Oman. ; Neuropharmacology group, MND and Neurodegenerative diseases Research Centre, Macquarie University, NSW, Australia
| | - Abdullah Al-Asmi
- Ageing and Dementia Research Group, Sultan Qaboos University, Sultanate of Oman. ; College of Medicine and Health Sciences, Sultan Qaboos University, Sultanate of Oman
| | - Samir Al-Adawi
- Ageing and Dementia Research Group, Sultan Qaboos University, Sultanate of Oman. ; College of Medicine and Health Sciences, Sultan Qaboos University, Sultanate of Oman
| | - Ragini Vaishnav
- Ageing and Dementia Research Group, Sultan Qaboos University, Sultanate of Oman
| | - Nady Braidy
- School of Medicine, University of New South Wales, Sydney, Australia
| | | | - Gilles J Guillemin
- Neuropharmacology group, MND and Neurodegenerative diseases Research Centre, Macquarie University, NSW, Australia
| |
Collapse
|
11
|
Ianiski FR, Alves CB, Bassaco MM, Silveira CC, Luchese C. Protective effect of ((4-tert-butylcyclohexylidene) methyl) (4-methoxystyryl) sulfide, a novel unsymmetrical divinyl sulfide, on an oxidative stress model induced by sodium nitroprusside in mouse brain: involvement of glutathione peroxidase activity. ACTA ACUST UNITED AC 2014; 66:1747-54. [PMID: 25131386 DOI: 10.1111/jphp.12300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 06/03/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVES In this study, the antioxidant action of ((4-tert-butylcyclohexylidene) methyl) (4-methoxystyryl) sulfide, a novel unsymmetrical divinyl sulfide, against oxidative damage induced by sodium nitroprusside (SNP) in brains of mice was investigated. METHODS Mice received SNP (0.335 μmol/site, intracerebroventricular) 30 min after administration of sulfide (10 mg/kg, intragastrically). After 1 h, animals were sacrificed and the brains were removed to biochemistry analysis. Thiobarbituric acid reactive species (TBARS), protein carbonyl (PC) and non-protein thiol (NPSH) levels, as well as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) activities were determined. KEY FINDINGS SNP increased TBARS and PC levels, CAT, GPx, GR and GST activities and reduced NPSH levels. Administration of the sulfide attenuated the changes produced by SNP and increased per se GPx activity in brains of mice. Toxicological parameters revealed that this compound did not cause acute renal or hepatic damage. CONCLUSIONS In conclusion, ((4-tert-butylcyclohexylidene) methyl) (4-methoxystyryl) sulfide protected against oxidative damage caused by SNP in mouse brain. GPx activity is involved, at least in part, in the cerebral antioxidant action of this compound.
Collapse
Affiliation(s)
- Francine R Ianiski
- Programa de Pós-Graduação em Nanociências, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | | | | | | | | |
Collapse
|
12
|
Stangherlin EC, Nogueira CW. Diphenyl ditelluride induces anxiogenic-like behavior in rats by reducing glutamate uptake. Biol Trace Elem Res 2014; 158:392-8. [PMID: 24715661 DOI: 10.1007/s12011-014-9960-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/26/2014] [Indexed: 01/22/2023]
Abstract
Anxiety-related disorders are a common public health issue. Several lines of evidence suggest that altered glutamatergic neurotransmission underlies anxiety. The present study evaluated the effect of diphenyl ditelluride [(PhTe)2] exposure on the behavioral performance of rats and examined whether the behavioral effects could be attributed to changes in the modulation of glutamatergic function. Rats were exposed to (PhTe)2 (subcutaneously) during 8 weeks-final dose one third LD50 (124 μg/kg). The testing schedule included elevated plus-maze, open-field, T-maze, rotorod, and Morris water maze tests. Synaptosomal basal [(3)H] glutamate release and uptake were also evaluated. The time spent in the open arm and the ratio of time spent in the open arm/total were decreased in the (PhTe)2 group. Furthermore, the [(3)H] glutamate uptake was decreased in this experimental group. The results suggest that exposure to (PhTe)2 did not change motor abilities whereas it may result in anxiogenic-like behavior, induced by changes in the glutamatergic system at the pre-synaptic level.
Collapse
Affiliation(s)
- Eluza Curte Stangherlin
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | | |
Collapse
|
13
|
Bonfanti G, Bona KSD, Lucca LD, Jantsch L, Pigatto AS, Boligon AA, Athayde ML, Moretto MB, Gonçalves TDL. Delta-ALA-D inhibitory potential and protective action of Syzygium jambos and Solanum guaraniticum leaf extracts on oxidatively stressed erythrocytes. Redox Rep 2014; 19:206-13. [PMID: 24725132 DOI: 10.1179/1351000214y.0000000092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the effect of the leaf extracts of Syzygium jambos and Solanum guaraniticum on the δ-aminolevulinate dehydratase (δ-ALA-D) activity, their antioxidant activity and potential protective action on oxidatively stressed erythrocytes, in order to demonstrate the safety or toxicity of the plant. METHODS In erythrocyte samples, the effect of both extracts on δ-ALA-D activity, H2O2-induced oxidative stress, and 2,2'azobis (2-amidinopropane) (AAPH)-induced hemolysis was evaluated, as well as some antioxidant mechanisms. RESULTS Both extracts inhibited δ-ALA-D activity (S. guaraniticum > S. jambos), and an involvement of the zinc ion of the δ-ALA-D structure on the inhibition of enzyme activity was verified. S. jambos leaf extract showed marked efficiency in countering H2O2-induced lipid peroxidation and in maintaining cellular integrity against AAPH-induced hemolysis. Furthermore, S. jambos exhibited greater H2O2 scavenging activity and stronger reduction power than S. guaraniticum. DISCUSSION Both extracts bear potent antioxidant property as an important beneficial effect. However, the inhibition of δ-ALA-D activity suggests a possible harmful effect of these vegetal preparations and indicates the need for further investigation regarding their toxicological properties. All together, these data represent a significant contribution to the knowledge of these plants, both to the scientific community and to the folk medicine.
Collapse
|
14
|
Wollenhaupt SGN, Soares AT, Salgueiro WG, Noremberg S, Reis G, Viana C, Gubert P, Soares FA, Affeldt RF, Lüdtke DS, Santos FW, Denardin CC, Aschner M, Avila DS. Seleno- and telluro-xylofuranosides attenuate Mn-induced toxicity in C. elegans via the DAF-16/FOXO pathway. Food Chem Toxicol 2013; 64:192-9. [PMID: 24296137 DOI: 10.1016/j.fct.2013.11.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/04/2013] [Accepted: 11/22/2013] [Indexed: 01/12/2023]
Abstract
Organochalcogens are promising pharmacological agents that possess significant biological activities. Nevertheless, because of the complexity of mammalian models, it has been difficult to determine the molecular pathways and specific proteins that are modulated in response to treatments with these compounds. The nematode worm Caenorhabditis elegans is an alternative experimental model that affords easy genetic manipulations, green fluorescent protein tagging and in vivo live analysis of toxicity. Abundant evidence points to oxidative stress in mediating manganese (Mn)-induced toxicity. In this study we challenged worms with Mn, and investigated the efficacy of inedited selenium- and tellurium-xylofuranosides in reversing and/or protecting the worms from Mn-induced toxicity. In addition, we investigated their putative mechanism of action. First, we determined the lethal dose 50% (LD50) and the effects of the xylofuranosides on various toxic parameters. This was followed by studies on the ability of xylofuranosides to afford protection against Mn-induced toxicity. Both Se- and Te-xylofuranosides increased the expression of superoxide dismutase (SOD-3). Furthermore, we observed that the xylofuranosides induced nuclear translocation of the transcription factor DAF-16/FOXO, which in the worm is known to regulate stress responsiveness, aging and metabolism. These findings suggest that xylofuranosides attenuate toxicity Mn-induced, by regulating the DAF-16/FOXO signaling pathway.
Collapse
Affiliation(s)
- Suzi G N Wollenhaupt
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Ana Thalita Soares
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Willian G Salgueiro
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Simone Noremberg
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Gabriel Reis
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Carine Viana
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Priscila Gubert
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Felix A Soares
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Ricardo F Affeldt
- Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Diogo S Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Francielli W Santos
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Cristiane C Denardin
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Michael Aschner
- Division of Clinical Pharmacology and Pediatric Toxicology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Daiana S Avila
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil.
| |
Collapse
|
15
|
Quines CB, Rosa SG, Neto JSS, Zeni G, Nogueira CW. Phenylethynyl-butyltellurium inhibits the sulfhydryl enzyme Na+, K+ -ATPase: an effect dependent on the tellurium atom. Biol Trace Elem Res 2013; 155:261-6. [PMID: 23955422 DOI: 10.1007/s12011-013-9781-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/05/2013] [Indexed: 01/08/2023]
Abstract
Organotellurium compounds are known for their toxicological effects. These effects may be associated with the chemical structure of these compounds and the oxidation state of the tellurium atom. In this context, 2-phenylethynyl-butyltellurium (PEBT) inhibits the activity of the sulfhydryl enzyme, δ-aminolevulinate dehydratase. The present study investigated on the importance of the tellurium atom in the PEBT ability to oxidize mono- and dithiols of low molecular weight and sulfhydryl enzymes in vitro. PEBT, at high micromolar concentrations, oxidized dithiothreitol (DTT) and inhibited cerebral Na(+), K(+)-ATPase activity, but did not alter the lactate dehydrogenase activity. The inhibition of cerebral Na(+), K(+)-ATPase activity was completely restored by DTT. By contrast, 2-phenylethynyl-butyl, a molecule without the tellurium atom, neither oxidized DTT nor altered the Na(+), K(+)-ATPase activity. In conclusion, the tellurium atom of PEBT is crucial for the catalytic oxidation of sulfhydryl groups from thiols of low molecular weight and from Na(+), K(+)-ATPase.
Collapse
Affiliation(s)
- Caroline B Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP, 97105-900, RS, Brazil
| | | | | | | | | |
Collapse
|
16
|
2-Phenylethynyl-butyltellurium enhances learning and memory impaired by scopolamine in mice. Behav Pharmacol 2013; 24:249-54. [DOI: 10.1097/fbp.0b013e32836353a5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Syzygium jambos and Solanum guaraniticum show similar antioxidant properties but induce different enzymatic activities in the brain of rats. Molecules 2013; 18:9179-94. [PMID: 23912272 PMCID: PMC6269761 DOI: 10.3390/molecules18089179] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/09/2013] [Accepted: 07/22/2013] [Indexed: 01/24/2023] Open
Abstract
Syzygium jambos and Solanum guaraniticum are both employed in Brazil as medicinal plants, even though their potential toxicity is not well established and they are frequently misused. The aim of this study was investigate the effect of the aqueous leaf extracts of both plants on δ-aminolevulinate dehydratase (δ-ALA-D) and acetylcholinesterase (AChE) activities and the antioxidant action against oxidative damage induced by sodium nitroprusside in rats, using in vitro assays. In addition, the presence of gallic, caffeic and chlorogenic acids, as well as rutin, quercetin and kaempferol as bioactive compounds in the extracts was identified by HPLC and their levels quantified. The antioxidant activities of both extracts were assessed by their capabilities to scavenge nitric oxide and to inhibit lipid peroxidation. Only Syzygium jambos presented thiol-peroxidase-like activity. Although neither extract affected the AChE activity, the aqueous extract of Solanum guaraniticum inhibited brain δ-ALA-D activity, suggesting a possible impairment effect on the central nervous system. Our results showed that both extracts exhibited efficient free radical scavenger activity and are an interesting source of bioactive compounds, justifying their use in folk medicine, although Solanum guaraniticum extract could have neurotoxicity properties and we therefore suggest that its use should be restricted to ensure the health of the population.
Collapse
|
18
|
Souza ACG, Sari MHM, Pinton S, Luchese C, Neto JSS, Nogueira CW. 2-Phenylethynyl-butyltellurium attenuates amyloid-β peptide(25-35)-induced learning and memory impairments in mice. J Neurosci Res 2013; 91:848-53. [DOI: 10.1002/jnr.23211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Ana Cristina Guerra Souza
- Departamento de Química; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria; Brasil
| | | | - Simone Pinton
- Departamento de Química; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria; Brasil
| | - Cristiane Luchese
- Mestrado em Nanociências; Centro de Ciências Tecnológicas; Centro Universitário Franciscano; Santa Maria; Brazil
| | - José Sebastião Santos Neto
- Departamento de Química; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria; Brasil
| | - Cristina Wayne Nogueira
- Departamento de Química; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria; Brasil
| |
Collapse
|
19
|
Luchese C, Brandão R, Acker CI, Nogueira CW. 2,2′-Dipyridyl diselenide is a better antioxidant than other disubstituted diaryl diselenides. Mol Cell Biochem 2012; 367:153-63. [DOI: 10.1007/s11010-012-1328-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
|
20
|
Souza ACG, Acker CI, Gai BM, Neto JSDS, Nogueira CW. 2-Phenylethynyl-butyltellurium improves memory in mice. Neurochem Int 2012; 60:409-14. [DOI: 10.1016/j.neuint.2012.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/19/2011] [Accepted: 01/11/2012] [Indexed: 01/10/2023]
|
21
|
Rocha JBT, Saraiva RA, Garcia SC, Gravina FS, Nogueira CW. Aminolevulinate dehydratase (δ-ALA-D) as marker protein of intoxication with metals and other pro-oxidant situations. Toxicol Res (Camb) 2012. [DOI: 10.1039/c2tx20014g] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Ndhlala AR, Moyo M, Van Staden J. Natural antioxidants: fascinating or mythical biomolecules? Molecules 2010; 15:6905-30. [PMID: 20938402 PMCID: PMC6259562 DOI: 10.3390/molecules15106905] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/09/2010] [Accepted: 09/14/2010] [Indexed: 02/07/2023] Open
Abstract
Research on the use, properties, characteristics and sources of antioxidants especially phenolic compounds, flavonoids, vitamins, synthetic chemicals and some micronutrients began in the late 18th century. Since then antioxidant research has received considerable attention and over a hundred thousand papers have been published on the subject. This has led to a rampant use of antioxidants in order to try to obtain and preserve optimal health. A number of nutraceuticals and food supplements are frequently fortified with synthetic or natural antioxidants. However, some research outcomes have led to the belief that antioxidants exist as mythical biomolecules. This review provides a critical evaluation of some common in vitro antioxidant capacity methods, and a discussion on the role and controversies surrounding non-enzymatic biomolecules, in particular phenolic compounds and non-phenolic compounds, in oxidative processes in an attempt of stemming the tidal wave that is threatening to swamp the concept of natural antioxidants.
Collapse
Affiliation(s)
| | | | - Johannes Van Staden
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +27 33 260 5130; Fax: +27 33 260 5897
| |
Collapse
|
23
|
Gay BM, Luchese C, Nogueira CW, Wendler P, Macedo A, Dos Santos AA. Antioxidant effect of functionalized alkyl-organotellurides: a studyin vitro. J Enzyme Inhib Med Chem 2010; 25:467-75. [DOI: 10.3109/14756360903257892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Bibiana M. Gay
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cristiane Luchese
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cristina W. Nogueira
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - P. Wendler
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Alexandra Macedo
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | | |
Collapse
|
24
|
Pinton S, da Rocha JT, Zeni G, Nogueira CW. Organoselenium improves memory decline in mice: Involvement of acetylcholinesterase activity. Neurosci Lett 2010; 472:56-60. [DOI: 10.1016/j.neulet.2010.01.057] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/16/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
|
25
|
Avila DS, Colle D, Gubert P, Palma AS, Puntel G, Manarin F, Noremberg S, Nascimento PC, Aschner M, Rocha JBT, Soares FAA. A possible neuroprotective action of a vinylic telluride against Mn-induced neurotoxicity. Toxicol Sci 2010; 115:194-201. [PMID: 20133376 DOI: 10.1093/toxsci/kfq036] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Manganese (Mn) is a metal required by biological systems. However, environmental or occupational exposure to high levels of Mn can produce a neurological disorder called manganism, which has similarities to Parkinson's disease. Diethyl-2-phenyl-2-tellurophenyl vinylphosphonate (DPTVP) is an organotellurium compound with a high antioxidant activity, especially in the brain. The present study was designed to investigate the effects of long-term low-dose exposure to Mn in drinking water on behavioral and biochemical parameters in rats and to determine the effectiveness of vinylic telluride in attenuating the effects of Mn. After 4 months of treatment with MnCl(2) (13.7 mg/kg), rats exhibited clear signs of neurobehavioral toxicity, including a decrease in the number of rearings in the open field and altered motor performance in rotarod. The administration of DPTVP (0.150 micromol/kg, ip, 2 weeks) improved the motor performance of Mn-treated rats, indicating that the compound could be reverting Mn neurotoxicity. Ex vivo, we observed that Mn concentrations in the Mn-treated group were highest in the striatum, consistent with a statistically significant decrease in mitochondrial viability and [(3)H]glutamate uptake, and increased lipid peroxidation. Mn levels in the hippocampus and cortex were indistinguishable from controls, and no significant differences were noted in the ex vivo assays in these areas. Treatment with DPTVP fully reversed the biochemical parameters altered by Mn. Furthermore, DPTVP treatment was also associated with a reduction in striatal Mn levels. Our results demonstrate that DPTVP has neuroprotective activity against Mn-induced neurotoxicity, which may be attributed to its antioxidant activity and/or its effect on striatal Mn transport.
Collapse
Affiliation(s)
- Daiana S Avila
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|