1
|
Getsy PM, Coffee GA, Bates JN, Parran T, Hoffer L, Baby SM, MacFarlane PM, Knauss ZT, Damron DS, Hsieh YH, Bubier JA, Mueller D, Lewis SJ. The cell-permeant antioxidant D-thiol ester D-cysteine ethyl ester overcomes physical dependence to morphine in male Sprague Dawley rats. Front Pharmacol 2024; 15:1444574. [PMID: 39253377 PMCID: PMC11381264 DOI: 10.3389/fphar.2024.1444574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
The ability of morphine to decrease cysteine transport into neurons by inhibition of excitatory amino acid transporter 3 (EAA3) may be a key molecular mechanism underlying the acquisition of physical and psychological dependence to morphine. This study examined whether co-administration of the cell-penetrant antioxidant D-thiol ester, D-cysteine ethyl ester (D-CYSee), with morphine, would diminish the development of physical dependence to morphine in male Sprague Dawley rats. Systemic administration of the opioid receptor antagonist, naloxone (NLX), elicited pronounced withdrawal signs (e.g., wet-dog shakes, jumps, rears, circling) in rats that received a subcutaneous depot of morphine (150 mg/kg, SC) for 36 h and continuous intravenous infusion of vehicle (20 μL/h, IV). The NLX-precipitated withdrawal signs were reduced in rats that received an infusion of D-CYSee, but not D-cysteine, (both at 20.8 μmol/kg/h, IV) for the full 36 h. NLX elicited pronounced withdrawal signs in rats treated for 48 h with morphine (150 mg/kg, SC), plus continuous infusion of vehicle (20 μL/h, IV) that began at the 36 h timepoint of morphine treatment. The NLX-precipitated withdrawal signs were reduced in rats that received a 12 h infusion of D-CYSee, but not D-cysteine, (both at 20.8 μmol/kg/h, IV) that began at the 36 h timepoint of morphine treatment. These findings suggest that D-CYSee may attenuate the development of physical dependence to morphine and reverse established dependence to the opioid in male Sprague Dawley rats. Alternatively, D-CYSee may simply suppress the processes responsible for NLX-precipitated withdrawal. Nonetheless, D-CYSee and analogues may be novel therapeutics for the treatment of opioid use disorders.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Gregory A. Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - James N. Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Theodore Parran
- Center for Medical Education, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Lee Hoffer
- Department of Anthropology, Case Western Reserve University, Cleveland, OH, United States
| | - Santhosh M. Baby
- Section of Biology, Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Peter M. MacFarlane
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Zackery T. Knauss
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Derek S. Damron
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | | | - Devin Mueller
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
2
|
Gledhill LJ, Babey AM. Synthesis of the Mechanisms of Opioid Tolerance: Do We Still Say NO? Cell Mol Neurobiol 2021; 41:927-948. [PMID: 33704603 DOI: 10.1007/s10571-021-01065-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/12/2021] [Indexed: 10/21/2022]
Abstract
The use of morphine as a first-line agent for moderate-to-severe pain is limited by the development of analgesic tolerance. Initially opioid receptor desensitization in response to repeated stimulation, thought to underpin the establishment of tolerance, was linked to a compensatory increase in adenylate cyclase responsiveness. The subsequent demonstration of cross-talk between N-methyl-D-aspartate (NMDA) glutamate receptors and opioid receptors led to the recognition of a role for nitric oxide (NO), wherein blockade of NO synthesis could prevent tolerance developing. Investigations of the link between NO levels and opioid receptor desensitization implicated a number of events including kinase recruitment and peroxynitrite-mediated protein regulation. Recent experimental advances and the identification of new cellular constituents have expanded the potential signaling candidates to include unexpected, intermediary compounds not previously linked to this process such as zinc, histidine triad nucleotide-binding protein 1 (HINT1), micro-ribonucleic acid (mi-RNA) and regulator of G protein signaling Z (RGSZ). A further complication is a lack of consistency in the protocols used to create tolerance, with some using acute methods measured in minutes to hours and others using days. There is also an emphasis on the cellular changes that are extant only after tolerance has been established. Although a review of the literature demonstrates a lack of spatio-temporal detail, there still appears to be a pivotal role for nitric oxide, as well as both intracellular and intercellular cross-talk. The use of more consistent approaches to verify these underlying mechanism(s) could provide an avenue for targeted drug development to rescue opioid efficacy.
Collapse
Affiliation(s)
- Laura J Gledhill
- CURA Pharmacy, St. John of God Hospital, Bendigo, VIC, 3550, Australia
| | - Anna-Marie Babey
- Faculty of Medicine and Health, University of New England, Armidale, NSW, 2351, Australia.
| |
Collapse
|
3
|
Food for Special Medical Purposes and Nutraceuticals for Pain: A Narrative Review. Pain Ther 2021; 10:225-242. [PMID: 33594594 PMCID: PMC8119521 DOI: 10.1007/s40122-021-00239-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/30/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction The present paper focuses on the possible contribution of food compounds to alleviate symptomatic pains. Chronic pain can more easily be linked to anticipatory signals such as thirst and hunger than it is to sensory perceptions as its chronicity makes it fall under the behavioural category rather than it does senses. In fact, pain often negatively affects one’s normal feeding behavioural patterns, both directly and indirectly, as it is associated with pain or because of its prostrating effects. Nutritional Compounds for Pain Several nutraceuticals and Foods for Special Medical Purposes (FSMPs) are reported to have significant pain relief efficacy with multiple antioxidant and anti-inflammatory properties. Apart from the aforementioned properties, amino acids, fatty acids, trace elements and vitamins may have a role in the modulation of pain signals to and within the nervous system. Conclusion In our opinion, this review could be of great interest to clinicians, as it offers a complementary perspective in the management of pain. Trials with well-defined patient and symptoms selection and a robust pharmacological design are pivotal points to let these promising compounds become better accepted by the medical community.
Collapse
|
4
|
Ilari S, Giancotti LA, Lauro F, Dagostino C, Gliozzi M, Malafoglia V, Sansone L, Palma E, Tafani M, Russo MA, Tomino C, Fini M, Salvemini D, Mollace V, Muscoli C. Antioxidant modulation of sirtuin 3 during acute inflammatory pain: The ROS control. Pharmacol Res 2020; 157:104851. [PMID: 32423865 DOI: 10.1016/j.phrs.2020.104851] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/11/2022]
Abstract
Oxidative stress induced post-translational protein modifications are associated with the development of inflammatory hypersensitivities. At least 90% of cellular reactive oxygen species (ROS) are produced in the mitochondria, where the mitochondrial antioxidant, manganese superoxide dismutase (MnSOD), is located. MnSOD's ability to reduce ROS is enhanced by the mitochondrial NAD+-dependent deacetylase sirtuin (SIRT3). SIRT3 can reduce ROS levels by deacetylating MnSOD and enhancing its ability to neutralize ROS or by enhancing the transcription of MnSOD and other oxidative stress-responsive genes. SIRT3 can be post-translationally modified through carbonylation which results in loss of activity. The contribution of post-translational SIRT3 modifications in central sensitization is largely unexplored. Our results reveal that SIRT3 carbonylation contributes to spinal MnSOD inactivation during carrageenan-induced thermal hyperalgesia in rats. Moreover, inhibiting ROS with natural and synthetic antioxidants, prevented SIRT3 carbonylation, restored the enzymatic activity of MnSOD, and blocked the development of thermal hyperalgesia. These results suggest that therapeutic strategies aimed at inhibiting post-translational modifications of SIRT3 may provide beneficial outcomes in pain states where ROS have been documented to play an important role in the development of central sensitization.
Collapse
Affiliation(s)
- Sara Ilari
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88201 Catanzaro, Italy
| | - Luigino Antonio Giancotti
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Filomena Lauro
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88201 Catanzaro, Italy; Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Concetta Dagostino
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88201 Catanzaro, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88201 Catanzaro, Italy
| | - Valentina Malafoglia
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88201 Catanzaro, Italy; Institute for Research on Pain, ISAL Foundation, Torre Pedrera, RN, Italy
| | - Luigi Sansone
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88201 Catanzaro, Italy
| | - Marco Tafani
- Department of Experimental Medicine, University of Rome "Sapienza", 00161 Rome, Italy
| | | | - Carlo Tomino
- Scientific Direction, IRCSS San Raffaele Pisana, 00163 Rome, Italy
| | - Massimo Fini
- Scientific Direction, IRCSS San Raffaele Pisana, 00163 Rome, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88201 Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88201 Catanzaro, Italy.
| |
Collapse
|
5
|
Basu P, Hornung RS, Averitt DL, Maier C. Euphorbia bicolor ( Euphorbiaceae) Latex Extract Reduces Inflammatory Cytokines and Oxidative Stress in a Rat Model of Orofacial Pain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8594375. [PMID: 31612077 PMCID: PMC6757321 DOI: 10.1155/2019/8594375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/10/2019] [Indexed: 12/26/2022]
Abstract
Recent studies have reported that the transient receptor potential V1 ion channel (TRPV1), a pain generator on sensory neurons, is activated and potentiated by NADPH oxidase-generated reactive oxygen species (ROS). ROS are increased by advanced oxidation protein products (AOPPs), which activate NADPH oxidase by upregulating Nox4 expression. Our previous studies reported that Euphorbia bicolor (Euphorbiaceae) latex extract induced peripheral analgesia, partly via TRPV1, in hindpaw-inflamed male and female rats. The present study reports that E. bicolor latex extract also can evoke analgesia via reduction of oxidative stress biomarkers and proinflammatory cytokines/chemokines in a rat model of orofacial pain. Male and female rats were injected with complete Freund's adjuvant (CFA) into the left vibrissal pad to induce orofacial inflammation, and mechanical allodynia was measured by the von Frey method. Twenty-four hours later, rats received one injection of E. bicolor latex extract or vehicle into the inflamed vibrissal pad. Mechanical sensitivity was reassessed at 1, 6, 24, and/or 72 hours. Trigeminal ganglia and trunk blood were collected at each time point. In the trigeminal ganglia, ROS were quantified using 2',7'-dichlorodihydrofluorescein diacetate dye, Nox4 protein was quantified by Western blots, and cytokines/chemokines were quantified using a cytokine array. AOPPs were quantified in trunk blood using a spectrophotometric assay. E. bicolor latex extract significantly reduced orofacial mechanical allodynia in male and female rats at 24 and 72 hours, respectively. ROS, Nox4, and proinflammatory cytokines/chemokines were significantly reduced in the trigeminal ganglia, and plasma AOPP was significantly reduced in the trunk blood of extract-treated compared to vehicle-treated rats. In vitro assays indicate that E. bicolor latex extract possessed antioxidant activities by scavenging free radicals. Together our data indicate that the phytochemicals in E. bicolor latex may serve as novel therapeutics for treating oxidative stress-induced pain conditions.
Collapse
Affiliation(s)
- Paramita Basu
- Department of Biology, Texas Woman's University, Denton, 76204 TX, USA
| | | | - Dayna L. Averitt
- Department of Biology, Texas Woman's University, Denton, 76204 TX, USA
| | - Camelia Maier
- Department of Biology, Texas Woman's University, Denton, 76204 TX, USA
| |
Collapse
|
6
|
Nadipelly J, Sayeli V, Kadhirvelu P, Shanmugasundaram J, Cheriyan BV, Subramanian V. Effect of certain trimethoxy flavones on paclitaxel - induced peripheral neuropathy in mice. Integr Med Res 2018; 7:159-167. [PMID: 29984177 PMCID: PMC6026363 DOI: 10.1016/j.imr.2018.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 02/19/2018] [Accepted: 03/28/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The anti - nociceptive effect of 7, 2', 3' - trimethoxy flavone, 7, 2', 4' - trimethoxy flavone, 7, 3', 4' - trimethoxy flavone and 7, 5, 4' - trimethoxy flavone against inflammatory, neurogenic and thermal pain in mice was reported earlier. The present study was designed to investigate the effect of the above trimethoxy flavones in amelioration of peripheral neuropathy induced by paclitaxel. METHODS Peripheral neuropathy was induced in mice by administration of a single i.p. dose (10 mg/kg) of paclitaxel. The manifestations of peripheral neuropathy such as tactile allodynia, cold allodynia and thermal hyperalgesia were assessed 24 h later by employing hair aesthesiometer test, acetone bubble test and hot water tail immersion test respectively. Further, the role of inflammatory cytokines like TNF - α, IL - 1β and free radicals in the action of trimethoxy flavones was investigated using in vitro assays. RESULTS The test compounds dose dependently attenuated paclitaxel - induced tactile allodynia, cold allodynia and thermal hyperalgesia in mice. The test compounds inhibited TNF - α, IL - 1β and free radicals in a concentration dependent manner. CONCLUSION The investigated trimethoxy flavones attenuated paclitaxel - induced peripheral neuropathy in mice. The inhibition of cytokines and free radicals in addition to many neuronal mechanisms reported earlier may contribute to this beneficial effect.
Collapse
Affiliation(s)
- Jagan Nadipelly
- Faculty of Medicine, Department of Pharmacology, Texila American University, Georgetown, Guyana
| | - Vijaykumar Sayeli
- Department of Pharmacology, Mamatha Medical College & Hospital, Khammam, India
| | - Parimala Kadhirvelu
- Department of Pharmacology, Meenakshi Medical College and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, India
| | - Jaikumar Shanmugasundaram
- Department of Pharmacology, Meenakshi Medical College and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, India
| | - Binoy Varghese Cheriyan
- Department of Pharmaceutical Chemistry, VISTAS, Vels School of Pharmaceutical Sciences, Chennai, India
| | - Viswanathan Subramanian
- Department of Pharmacology, Meenakshi Medical College and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, India
| |
Collapse
|
7
|
Pharmacological effect of a new idebenone formulation in a model of carrageenan-induced inflammatory pain. Pharmacol Res 2016; 111:767-773. [DOI: 10.1016/j.phrs.2016.07.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 01/12/2023]
|
8
|
Martins D, Turnes B, Cidral-Filho F, Bobinski F, Rosas R, Danielski L, Petronilho F, Santos A. Light-emitting diode therapy reduces persistent inflammatory pain: Role of interleukin 10 and antioxidant enzymes. Neuroscience 2016; 324:485-95. [DOI: 10.1016/j.neuroscience.2016.03.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/28/2022]
|
9
|
Janes K, Symons-Liguori AM, Jacobson KA, Salvemini D. Identification of A3 adenosine receptor agonists as novel non-narcotic analgesics. Br J Pharmacol 2016; 173:1253-67. [PMID: 26804983 DOI: 10.1111/bph.13446] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 11/09/2015] [Accepted: 11/22/2015] [Indexed: 12/26/2022] Open
Abstract
Chronic pain negatively impacts the quality of life in a variety of patient populations. The current therapeutic repertoire is inadequate in managing patient pain and warrants the development of new therapeutics. Adenosine and its four cognate receptors (A1 , A2A , A2B and A3 ) have important roles in physiological and pathophysiological states, including chronic pain. Preclinical and clinical studies have revealed that while adenosine and agonists of the A1 and A2A receptors have antinociceptive properties, their therapeutic utility is limited by adverse cardiovascular side effects. In contrast, our understanding of the A3 receptor is only in its infancy, but exciting preclinical observations of A3 receptor antinociception, which have been bolstered by clinical trials of A3 receptor agonists in other disease states, suggest pain relief without cardiovascular side effects and with sufficient tolerability. Our goal herein is to briefly discuss adenosine and its receptors in the context of pathological pain and to consider the current data regarding A3 receptor-mediated antinociception. We will highlight recent findings regarding the impact of the A3 receptor on pain pathways and examine the current state of selective A3 receptor agonists used for these studies. The adenosine-to-A3 receptor pathway represents an important endogenous system that can be targeted to provide safe, effective pain relief from chronic pain.
Collapse
Affiliation(s)
- K Janes
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - A M Symons-Liguori
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - K A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - D Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Pandurangan K, Krishnappan V, Subramanian V, Subramanyan R. Anti-inflammatory effect of certain dimethoxy flavones. Inflammopharmacology 2015; 23:307-17. [PMID: 26248971 DOI: 10.1007/s10787-015-0242-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/29/2015] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate the anti-inflammatory effect of four dimethoxy flavone derivatives; 7,2'-dimethoxy flavone, 7,3'-dimethoxy flavone, 7,4'-dimethoxy flavone and 7,8,-dimethoxy flavone and to investigate the possible cellular mechanisms involved. MATERIALS AND METHODS The acute anti-inflammatory effect of dimethoxy flavones was investigated by carrageenan induced hind paw oedema in rats. Further, the effect of dimethoxy flavones on certain mediators of pain and inflammation like cyclooxygenases (COX-1 and COX-2), pro-inflammatory cytokines (IL-1β and TNF-α) and free radical scavenging activity (NO and LPO) were investigated by using in vitro tests. RESULTS The investigated dimethoxy flavones produced a significant, dose and time dependent reduction of carrageenan induced paw oedema in rats with a maximum inhibition of 52.4% observed for 7,4'-dimethoxy flavone. Although, the test compounds inhibited both the isoforms of cyclooxygenase, a higher degree of inhibition on COX-2 was evident. A concentration dependent inhibition of other inflammatory cytokines like tumor necrosis factor-α and interleukin-1β was identified in the present study. 7,4'-dimethoxy flavone was found to be maximally effective in inhibiting nitrite ion free radical generation and 7,8-dimethoxy flavone was more active in inhibiting lipid peroxidation than the other compounds. CONCLUSION The results of the present study reveal the anti-inflammatory action of the investigated dimethoxy flavones. Inhibition of cyclooxygenases, cytokines and reactive oxygen species, observed in subsequent experiments may be suggested as possible mechanisms involved in the action of these compounds.
Collapse
Affiliation(s)
- Kamalakannan Pandurangan
- Department of Pharmacology, Meenakshi Medical College and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, 631 552, India.
| | | | - Viswanathan Subramanian
- Department of Pharmacology, Meenakshi Medical College and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, 631 552, India
| | - Ramaswamy Subramanyan
- Department of Pharmacology, Sri Lakshminarayana Institute of Medical Sciences, Pondicherry, 605 502, India
| |
Collapse
|
11
|
Chiorazzi A, Semperboni S, Marmiroli P. Current View in Platinum Drug Mechanisms of Peripheral Neurotoxicity. TOXICS 2015; 3:304-321. [PMID: 29051466 PMCID: PMC5606682 DOI: 10.3390/toxics3030304] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/22/2015] [Accepted: 07/31/2015] [Indexed: 02/06/2023]
Abstract
Peripheral neurotoxicity is the dose-limiting factor for clinical use of platinum derivatives, a class of anticancer drugs which includes cisplatin, carboplatin, and oxaliplatin. In particular cisplatin and oxaliplatin induce a severe peripheral neurotoxicity while carboplatin is less neurotoxic. The mechanisms proposed to explain these drugs' neurotoxicity are dorsal root ganglia alteration, oxidative stress involvement, and mitochondrial dysfunction. Oxaliplatin also causes an acute and reversible neuropathy, supposed to be due by transient dysfunction of the voltage-gated sodium channels of sensory neurons. Recent studies suggest that individual genetic variation may play a role in the pathogenesis of platinum drug neurotoxicity. Even though all these mechanisms have been investigated, the pathogenesis is far from clearly defined. In this review we will summarize the current knowledge and the most up-to-date hypotheses on the mechanisms of platinum drug-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Alessia Chiorazzi
- Experimental Neurology Unit and Milan Center for Neuroscience, Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza (MB) 20900, Italy.
| | - Sara Semperboni
- Experimental Neurology Unit and Milan Center for Neuroscience, Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza (MB) 20900, Italy.
- PhD Program in Neuroscience, University of Milano-Bicocca, Monza (MB) 20900, Italy.
| | - Paola Marmiroli
- Experimental Neurology Unit and Milan Center for Neuroscience, Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza (MB) 20900, Italy.
| |
Collapse
|
12
|
Peripheral Oxidative Stress Blood Markers in Patients With Chronic Back or Neck Pain Treated With High-Velocity, Low-Amplitude Manipulation. J Manipulative Physiol Ther 2015; 38:119-29. [DOI: 10.1016/j.jmpt.2014.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 12/21/2022]
|
13
|
Oxaliplatin neurotoxicity involves peroxisome alterations. PPARγ agonism as preventive pharmacological approach. PLoS One 2014; 9:e102758. [PMID: 25036594 PMCID: PMC4103888 DOI: 10.1371/journal.pone.0102758] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/23/2014] [Indexed: 02/07/2023] Open
Abstract
The development of neuropathic syndromes is an important, dose limiting side effect of anticancer agents like platinum derivates, taxanes and vinca alkaloids. The causes of neurotoxicity are still unclear but the impairment of the oxidative equilibrium is strictly related to pain. Two intracellular organelles, mitochondria and peroxisomes cooperate to the maintaining of the redox cellular state. Whereas a relationship between chemotherapy-dependent mitochondrial alteration and neuropathy has been established, the role of peroxisome is poor explored. In order to study the mechanisms of oxaliplatin-induced neurotoxicity, peroxisomal involvement was evaluated in vitro and in vivo. In primary rat astrocyte cell culture, oxaliplatin (10 µM for 48 h or 1 µM for 5 days) increased the number of peroxisomes, nevertheless expression and functionality of catalase, the most important antioxidant defense enzyme in mammalian peroxisomes, were significantly reduced. Five day incubation with the selective Peroxisome Proliferator Activated Receptor-γ (PPAR-γ) antagonist G3335 (30 µM) induced a similar peroxisomal impairment suggesting a relationship between PPARγ signaling and oxaliplatin neurotoxicity. The PPARγ agonist rosiglitazone (10 µM) reduced the harmful effects induced both by G3335 and oxaliplatin. In vivo, in a rat model of oxaliplatin induced neuropathy, a repeated treatment with rosiglitazone (3 and 10 mg kg−1 per os) significantly reduced neuropathic pain evoked by noxious (Paw pressure test) and non-noxious (Cold plate test) stimuli. The behavioral effect paralleled with the prevention of catalase impairment induced by oxaliplatin in dorsal root ganglia. In the spinal cord, catalase protection was showed by the lower rosiglitazone dosage without effect on the astrocyte density increase induced by oxaliplatin. Rosiglitazone did not alter the oxaliplatin-induced mortality of the human colon cancer cell line HT-29. These results highlight the role of peroxisomes in oxaliplatin-dependent nervous damage and suggest PPARγ stimulation as a candidate to counteract oxaliplatin neurotoxicity.
Collapse
|
14
|
Ge Y, Wu F, Sun X, Xiang Z, Yang L, Huang S, Lu Z, Sun Y, Yu WF. Intrathecal infusion of hydrogen-rich normal saline attenuates neuropathic pain via inhibition of activation of spinal astrocytes and microglia in rats. PLoS One 2014; 9:e97436. [PMID: 24857932 PMCID: PMC4032255 DOI: 10.1371/journal.pone.0097436] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/17/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Reactive oxygen and nitrogen species are key molecules that mediate neuropathic pain. Although hydrogen is an established antioxidant, its effect on chronic pain has not been characterized. This study was to investigate the efficacy and mechanisms of hydrogen-rich normal saline induced analgesia. METHODOLOGY/PRINCIPAL FINDINGS In a rat model of neuropathic pain induced by L5 spinal nerve ligation (L5 SNL), intrathecal injection of hydrogen-rich normal saline relieved L5 SNL-induced mechanical allodynia and thermal hyperalgesia. Importantly, repeated administration of hydrogen-rich normal saline did not lead to tolerance. Preemptive treatment with hydrogen-rich normal saline prevented development of neuropathic pain behavior. Immunofluorochrome analysis revealed that hydrogen-rich normal saline treatment significantly attenuated L5 SNL-induced increase of 8-hydroxyguanosine immunoreactive cells in the ipsilateral spinal dorsal horn. Western blot analysis of SDS/PAGE-fractionated tyrosine-nitrated proteins showed that L5 SNL led to increased expression of tyrosine-nitrated Mn-containing superoxide dismutase (MnSOD) in the spinal cord, and hydrogen-rich normal saline administration reversed the tyrosine-nitrated MnSOD overexpression. We also showed that the analgesic effect of hydrogen-rich normal saline was associated with decreased activation of astrocytes and microglia, attenuated expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the spinal cord. CONCLUSION/SIGNIFICANCE Intrathecal injection of hydrogen-rich normal saline produced analgesic effect in neuropathic rat. Hydrogen-rich normal saline-induced analgesia in neuropathic rats is mediated by reducing the activation of spinal astrocytes and microglia, which is induced by overproduction of hydroxyl and peroxynitrite.
Collapse
Affiliation(s)
- Yanhu Ge
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Changhai Hospital, Second Military Medical University, Shanghai, China
- Department of Anesthesiology, 309th Hospital of CPLA, Beijing, China
| | - Feixiang Wu
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xuejun Sun
- Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Zhenghua Xiang
- Department of Neurobiology, Second Military Medical University, Shanghai, China
| | - Liqun Yang
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shengdong Huang
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhijie Lu
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuming Sun
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Changhai Hospital, Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
15
|
Lozano-Ondoua AN, Symons-Liguori AM, Vanderah TW. Cancer-induced bone pain: Mechanisms and models. Neurosci Lett 2013; 557 Pt A:52-9. [PMID: 24076008 DOI: 10.1016/j.neulet.2013.08.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/19/2013] [Accepted: 08/01/2013] [Indexed: 12/13/2022]
Abstract
Cancerous cells can originate in a number of different tissues such as prostate, breast and lung, but often go undetected and are non-painful. Many types of cancers have a propensity to metastasize to the bone microenvironment first. Tumor burden within the bone causes excruciating breakthrough pain with properties of ongoing pain that is inadequately managed with current analgesics. Part of this failure is due to the poor understanding of the etiology of cancer pain. Animal models of cancer-induced bone pain (CIBP) have revealed that the neurochemistry of cancer has features distinctive from other chronic pain states. For example, preclinical models of metastatic cancer often result in the positive modulation of neurotrophins, such as NGF and BDNF, that can lead to nociceptive sensitization. Preclinical cancer models also demonstrate nociceptive neuronal expression of acid-sensing receptors, such as ASIC1 and TRPV1, which respond to cancer-induced acidity within the bone. CIBP is correlated with a significant increase in pro-inflammatory mediators acting peripherally and centrally, contributing to neuronal hypersensitive states. Finally, cancer cells generate high levels of oxidative molecules that are thought to increase extracellular glutamate concentrations, thus activating primary afferent neurons. Knowledge of the unique neuro-molecular profile of cancer pain will ultimately lead to the development of novel and superior therapeutics for CIBP.
Collapse
Affiliation(s)
- A N Lozano-Ondoua
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|
16
|
Evaluation of antinociceptive and antioxidant properties of 3-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-dihydrofuran-2-one in mice. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:493-505. [PMID: 23494125 PMCID: PMC3651825 DOI: 10.1007/s00210-013-0847-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/28/2013] [Indexed: 01/05/2023]
Abstract
The aim of this study was to evaluate the influence of 3-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-dihydrofuran-2-one (LPP1) on nociceptive thresholds in mouse models of persistent pain. Influence of LPP1 on motor coordination and its antioxidant capacity in mouse brain tissue homogenates were also assessed. Pain sensitivity thresholds in animals treated with LPP1 were established using 5 % formalin solution in normoglycemic mice and in streptozotocin (STZ)-treated diabetic mice in the von Frey, hot plate, innocuous, and noxious cold water tests (water at 10 °C and 4 °C, respectively). Motor deficits were assessed in the rotarod test, whereas antioxidant capacities were evaluated using ferric reducing ability of plasma (FRAP) assay, catalase (CAT), and superoxide dismutase (SOD) activities. LPP1was antinociceptive in both phases of the formalin test, in particular, in the late phase (at doses 0.9-30 mg/kg for 66-99 % vs. control normoglycemic mice) and in a statistically significant manner increased nociceptive thresholds in response to mechanical, heat, and noxious cold stimulation in neuropathic mice (at 30 mg/kg for 274, 192, and 316 %, respectively vs. diabetic control). LPP1 did not impair motor coordination of mice in the rotarod revolving at 6 or 18 rpm. In brain tissue homogenates, it demonstrated antioxidant capacity in FRAP assay and increased SOD activity for 63 % (acute administration) and 28 % (chronic administration) vs. control. No influence on CAT activity was observed. LPP1 has significant antinociceptive properties in the formalin model and elevates pain thresholds in neuropathic mice. It has antioxidant capacity and is devoid of negative influence on animals' motor coordination.
Collapse
|
17
|
Janes K, Neumann WL, Salvemini D. Anti-superoxide and anti-peroxynitrite strategies in pain suppression. Biochim Biophys Acta Mol Basis Dis 2011; 1822:815-21. [PMID: 22200449 DOI: 10.1016/j.bbadis.2011.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 02/08/2023]
Abstract
Superoxide (SO, O(2)·(-)) and its reaction product peroxynitrite (PN, ONOO(-)) have been shown to be important in the development of pain of several etiologies. While significant progress has been made in teasing out the relative contribution of SO and PN peripherally, spinally, and supraspinally during the development and maintenance of central sensitization and pain, there is still a considerable void in our understanding. Further research is required in order to develop improved therapeutic strategies for selectively eliminating SO and/or PN. Furthermore, it may be that PN is a more attractive target, in that unlike SO it has no currently known beneficial role. Our group has been at the forefront of research concerning the role of SO and PN in pain, and our current findings have led to the development of two new classes of orally active catalysts which are selective for PN decomposition while sparing SO. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- Kali Janes
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | |
Collapse
|
18
|
Rausaria S, Ghaffari MME, Kamadulski A, Rodgers K, Bryant L, Chen Z, Doyle T, Shaw MJ, Salvemini D, Neumann WL. Retooling manganese(III) porphyrin-based peroxynitrite decomposition catalysts for selectivity and oral activity: a potential new strategy for treating chronic pain. J Med Chem 2011; 54:8658-69. [PMID: 22082008 DOI: 10.1021/jm201233r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Redox-active metalloporphyrins represent the most well-characterized class of catalysts capable of attenuating oxidative stress in vivo through the direct interception and decomposition of superoxide and peroxynitrite. While many interesting pharmacological probes have emerged from these studies, few catalysts have been developed with pharmaceutical properties in mind. Herein, we describe our efforts to identify new Mn(III)-porphyrin systems with enhanced membrane solubilizing properties. To this end, seven new Mn(III)-tetracyclohexenylporphyin (TCHP) analogues, 7, 10, 12, 15, and 16a-c, have been prepared in which the beta-fused cyclohexenyl rings provide a means to shield the charged metal center from the membrane during passive transport. Compounds 7, 15, and 16a-c have been shown to be orally active and potent analgesics in a model of carrageenan-induced thermal hyperalgesia. In addition, oral administration of compound 7 (10-100 mg/kg, n=5) has been shown to dose dependently reverse mechano-allodynia in the CCI model of chronic neuropathic pain.
Collapse
Affiliation(s)
- Smita Rausaria
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University, Edwardsville, Illinois 62026, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Peroxynitrite and Nitroxidative Stress: Detection Probes and Micro-Sensors. A Case of a Nanostructured Catalytic Film. ACTA ACUST UNITED AC 2011. [DOI: 10.1021/bk-2011-1083.ch011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
20
|
Salvemini D, Little JW, Doyle T, Neumann WL. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 2011; 51:951-66. [PMID: 21277369 PMCID: PMC3134634 DOI: 10.1016/j.freeradbiomed.2011.01.026] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 02/07/2023]
Abstract
Peroxynitrite (PN; ONOO⁻) and its reactive oxygen precursor superoxide (SO; O₂•⁻) are critically important in the development of pain of several etiologies including pain associated with chronic use of opiates such as morphine (also known as opiate-induced hyperalgesia and antinociceptive tolerance). This is now an emerging field in which considerable progress has been made in terms of understanding the relative contributions of SO, PN, and nitroxidative stress in pain signaling at the molecular and biochemical levels. Aggressive research in this area is poised to provide the pharmacological basis for development of novel nonnarcotic analgesics that are based upon the unique ability to selectively eliminate SO and/or PN. As we have a better understanding of the roles of SO and PN in pathophysiological settings, targeting PN may be a better therapeutic strategy than targeting SO. This is because, unlike PN, which has no currently known beneficial role, SO may play a significant role in learning and memory. Thus, the best approach may be to spare SO while directly targeting its downstream product, PN. Over the past 15 years, our team has spearheaded research concerning the roles of SO and PN in pain and these results are currently leading to the development of solid therapeutic strategies in this important area.
Collapse
Affiliation(s)
- Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | | | | | | |
Collapse
|
21
|
Rausaria S, Kamadulski A, Rath NP, Bryant L, Chen Z, Salvemini D, Neumann WL. Manganese(III) complexes of bis(hydroxyphenyl)dipyrromethenes are potent orally active peroxynitrite scavengers. J Am Chem Soc 2011; 133:4200-3. [PMID: 21370860 DOI: 10.1021/ja110427e] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report a new series of biscyclohexano-fused Mn(III) complexes of bis(hydroxyphenyl)dipyrromethenes, 4a-c, as potent and orally active peroxynitrite scavengers. Complexes 4a-c are shown to reduce peroxynitrite through a two-electron mechanism, thereby forming the corresponding Mn(V)O species, which were characterized by UV, NMR, and LC-MS methods. Mn(III) complex 4b and its strained BODIPY analogue 9b were analyzed by X-ray crystallography. Finally, complex 4a is shown to be an orally active and potent analgesic in a model carrageenan-induced hyperalgesia known to be driven by the overproduction of peroxynitrite.
Collapse
Affiliation(s)
- Smita Rausaria
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Doyle T, Finley A, Chen Z, Salvemini D. Role for peroxynitrite in sphingosine-1-phosphate-induced hyperalgesia in rats. Pain 2011; 152:643-648. [PMID: 21239112 DOI: 10.1016/j.pain.2010.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/05/2010] [Accepted: 12/06/2010] [Indexed: 12/22/2022]
Abstract
Sphingosine-1-phosphate (S1P) is an important mediator of inflammation recently shown in in vitro studies to increase the excitability of small-diameter sensory neurons, at least in part, via activation of the S1P(1) receptor subtype. Activation of S1PR(1) has been reported to increase the formation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived superoxide (O(2)(·-)) and nitric oxide synthase (NOS)-derived nitric oxide (NO). This process favors the formation of peroxynitrite (ONOO(-) [PN]), a potent mediator of hyperalgesia associated with peripheral and central sensitization. The aims of our study were to determine whether S1P causes peripheral sensitization and thermal hyperalgesia via S1PR(1) activation and PN formation. Intraplantar injection of S1P in rats led to a time-dependent development of thermal hyperalgesia that was blocked by the S1PR(1) antagonist W146, but not its inactive enantiomer W140. The hyperalgesic effects of S1P were mimicked by intraplantar injection of the well-characterized S1PR(1) agonist SEW2871. The development of S1P-induced hyperalgesia was blocked by apocynin, a NADPH oxidase inhibitor; N(G)-nitro-l-arginine methyl ester, a nonselective NOS inhibitor; and by the potent PN decomposition catalysts (FeTM-4-PyP(5+) and MnTE-2-PyP(5+)). Our findings provide mechanistic insight into the signaling pathways engaged by S1P in the development of hyperalgesia and highlight the contribution of the S1P(1) receptor-to-PN signaling in this process. Sphingosine-1-phosphate (S1P)-induced hyperalgesia is mediated by S1P1 receptor activation and mitigated by inhibition or decomposition of peroxynitrite, providing a target pathway for novel pain management strategies.
Collapse
Affiliation(s)
- Tim Doyle
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The clinical efficacy of opiates for pain control is severely limited by analgesic tolerance and hyperalgesia. Herein we show that chronic morphine upregulates both the sphingolipid ceramide in spinal astrocytes and microglia, but not neurons, and spinal sphingosine-1-phosphate (S1P), the end-product of ceramide metabolism. Coadministering morphine with intrathecal administration of pharmacological inhibitors of ceramide and S1P blocked formation of spinal S1P and development of hyperalgesia and tolerance in rats. Our results show that spinally formed S1P signals at least in part by (1) modulating glial function because inhibiting S1P formation blocked increased formation of glial-related proinflammatory cytokines, in particular tumor necrosis factor-α, interleukin-1βα, and interleukin-6, which are known modulators of neuronal excitability, and (2) peroxynitrite-mediated posttranslational nitration and inactivation of glial-related enzymes (glutamine synthetase and the glutamate transporter) known to play critical roles in glutamate neurotransmission. Inhibitors of the ceramide metabolic pathway may have therapeutic potential as adjuncts to opiates in relieving suffering from chronic pain.
Collapse
|
24
|
Doyle T, Bryant L, Muscoli C, Cuzzocrea S, Esposito E, Chen Z, Salvemini D. Spinal NADPH oxidase is a source of superoxide in the development of morphine-induced hyperalgesia and antinociceptive tolerance. Neurosci Lett 2010; 483:85-9. [PMID: 20637262 DOI: 10.1016/j.neulet.2010.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/02/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
Abstract
The role of superoxide and its active byproduct peroxynitrite as mediators of nociceptive signaling is emerging. We have recently reported that nitration and inactivation of spinal mitochondrial superoxide dismutase (MnSOD) provides a critical source of these reactive oxygen and nitrogen species during central sensitization associated with the development of morphine-induced hyperalgesia and antinociceptive tolerance. In this study, we demonstrate that activation of spinal NADPH oxidase is another critical source for superoxide generation. Indeed, the development of morphine-induced hyperalgesia and antinociceptive tolerance was associated with increased activation of NADPH oxidase and superoxide release. Co-administration of morphine with systemic delivery of two structurally unrelated NADPH oxidase inhibitors namely apocynin or diphenyleneiodonium (DPI), blocked NADPH oxidase activation and the development of hyperalgesia and antinociceptive tolerance at doses devoid of behavioral side effects. These results suggest that activation of spinal NADPH oxidase contributes to the development of morphine-induced hyperalgesia and antinociceptive tolerance. The role of spinal NADPH oxidase was confirmed by showing that intrathecal delivery of apocynin blocked these events. Our results are the first to implicate the contribution of NADPH oxidase as an enzymatic source of superoxide and thus peroxynitrite in the development of central sensitization associated with morphine-induced hyperalgesia and antinociceptive tolerance. These results continue to support the critical role of these reactive oxygen and nitrogen species in pain while advancing our knowledge of their biomolecular sources.
Collapse
Affiliation(s)
- Tim Doyle
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Reactive nitroxidative species and nociceptive processing: determining the roles for nitric oxide, superoxide, and peroxynitrite in pain. Amino Acids 2010; 42:75-94. [PMID: 20552384 DOI: 10.1007/s00726-010-0633-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 05/15/2010] [Indexed: 12/12/2022]
Abstract
Pain is a multidimensional perception and is modified at distinct regions of the neuroaxis. During enhanced pain, neuroplastic changes occur in the spinal and supraspinal nociceptive modulating centers and may result in a hypersensitive state termed central sensitization, which is thought to contribute to chronic pain states. Central sensitization culminates in hyperexcitability of dorsal horn nociceptive neurons resulting in increased nociceptive transmission and pain perception. This state is associated with enhanced nociceptive signaling, spinal glutamate-mediated N-methyl-D: -aspartate receptor activation, neuroimmune activation, nitroxidative stress, and supraspinal descending facilitation. The nitroxidative species considered for their role in nociception and central sensitization include nitric oxide (NO), superoxide ([Formula: see text]), and peroxynitrite (ONOO(-)). Nitroxidative species are implicated during persistent but not normal nociceptive processing. This review examines the role of nitroxidative species in pain through a discussion of their contributions to central sensitization and the underlying mechanisms. Future directions for nitroxidative pain research are also addressed. As more selective pharmacologic agents are developed to target nitroxidative species, the exact role of nitroxidative species in pain states will be better characterized and should offer promising alternatives to available pain management options.
Collapse
|