1
|
Ontawong A, Duangjai A, Sukpondma Y, Tadpetch K, Muanprasat C, Rukachaisirikul V, Inchai J, Vaddhanaphuti CS. Cholesterol-Lowering Effects of Asperidine B, a Pyrrolidine Derivative from the Soil-Derived Fungus Aspergillus sclerotiorum PSU-RSPG178: A Potential Cholesterol Absorption Inhibitor. Pharmaceuticals (Basel) 2022; 15:ph15080955. [PMID: 36015103 PMCID: PMC9414821 DOI: 10.3390/ph15080955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Isolated secondary metabolites asperidine B (preussin) and asperidine C, produced by the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178, were found to exhibit inhibitory effects against 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase and oxidative stress in an in vitro assay. Whether or not the known pyrrolidine asperidine B and the recently isolated piperidine asperidine C have lipid-lowering effects remains unknown. Thus, this study aimed to investigate the hypocholesterolemic effects of asperidines B and C and identify the mechanisms involved in using in vitro, ex vivo, and in vivo models. The results show that both compounds interfered with cholesterol micelle formation by increasing bile acid binding capacity, similar to the action of the bile acid sequestrant drug cholestyramine. However, only asperidine B, but not asperidine C, was found to inhibit cholesterol uptake in Caco-2 cells by up-regulating LXRα without changing cholesterol transporter NPC1L1 protein expression. Likewise, reduced cholesterol absorption via asperidine-B-mediated activation of LXRα was also observed in isolated rat jejunal loops. Asperidine B consistently decreases plasma cholesterol absorption, similar to the effect of ezetimibe in rats. Therefore, asperidine B, the pyrrolidine derivative, has therapeutic potential to be developed into a type of cholesterol absorption inhibitor for the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Atcharaporn Ontawong
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.O.); (A.D.)
| | - Acharaporn Duangjai
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.O.); (A.D.)
| | - Yaowapa Sukpondma
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand; (Y.S.); (K.T.); (V.R.)
| | - Kwanruthai Tadpetch
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand; (Y.S.); (K.T.); (V.R.)
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10540, Thailand;
| | - Vatcharin Rukachaisirikul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand; (Y.S.); (K.T.); (V.R.)
| | - Jakkapong Inchai
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chutima S. Vaddhanaphuti
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Correspondence: ; Tel.:+66-533-935-362
| |
Collapse
|
2
|
Søgaard SB, Andersen SB, Taghavi I, Hoyos CAV, Christoffersen C, Hansen KL, Jensen JA, Nielsen MB, Sørensen CM. Super-Resolution Ultrasound Imaging Provides Quantification of the Renal Cortical and Medullary Vasculature in Obese Zucker Rats: A Pilot Study. Diagnostics (Basel) 2022; 12:diagnostics12071626. [PMID: 35885531 PMCID: PMC9318608 DOI: 10.3390/diagnostics12071626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a risk factor of chronic kidney disease (CKD), leading to alterations in the renal vascular structure. This study tested if renal vascular density and tortuosity was quantifiable in vivo in obese rats using microbubble-based super-resolution ultrasound imaging. The kidneys of two 11-week-old and two 20-week-old male obese Zucker rats were compared with age-matched male lean Zucker rats. The super-resolution ultrasound images were manually divided into inner medulla, outer medulla, and cortex, and each area was subdivided into arteries and veins. We quantified vascular density and tortuosity, number of detected microbubbles, and generated tracks. For comparison, we assessed glomerular filtration rate, albumin/creatinine ratio, and renal histology to evaluate CKD. The number of detected microbubbles and generated tracks varied between animals and significantly affected quantification of vessel density. In areas with a comparable number of tracks, density increased in the obese animals, concomitant with a decrease in glomerular filtration rate and an increase in albumin/creatinine ratio, but without any pathology in the histological staining. The results indicate that super-resolution ultrasound imaging can be used to quantify structural alterations in the renal vasculature. Techniques to generate more comparable number of microbubble tracks and confirmation of the findings in larger-scale studies are needed.
Collapse
Affiliation(s)
- Stinne Byrholdt Søgaard
- Department of Diagnostic Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.A.); (K.L.H.); (M.B.N.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (C.C.); (C.M.S.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| | - Sofie Bech Andersen
- Department of Diagnostic Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.A.); (K.L.H.); (M.B.N.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (C.C.); (C.M.S.)
| | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | | | - Christina Christoffersen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (C.C.); (C.M.S.)
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Kristoffer Lindskov Hansen
- Department of Diagnostic Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.A.); (K.L.H.); (M.B.N.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.A.); (K.L.H.); (M.B.N.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charlotte Mehlin Sørensen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (C.C.); (C.M.S.)
| |
Collapse
|
3
|
Ajiboye TO, Ajiboye TT, Marzouki R, Onwudiwe DC. The Versatility in the Applications of Dithiocarbamates. Int J Mol Sci 2022; 23:1317. [PMID: 35163241 PMCID: PMC8836150 DOI: 10.3390/ijms23031317] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Dithiocarbamate ligands have the ability to form stable complexes with transition metals, and this chelating ability has been utilized in numerous applications. The complexes have also been used to synthesize other useful compounds. Here, the up-to-date applications of dithiocarbamate ligands and complexes are extensively discussed. Some of these are their use as enzyme inhibitor and treatment of HIV and other diseases. The application as anticancer, antimicrobial, medical imaging and anti-inflammatory agents is examined. Moreover, the application in the industry as vulcanization accelerator, froth flotation collector, antifouling, coatings, lubricant additives and sensors is discussed. The various ways in which they have been employed in synthesis of other compounds are highlighted. Finally, the agricultural uses and remediation of heavy metals via dithiocarbamate compounds are comprehensively discussed.
Collapse
Affiliation(s)
- Timothy O Ajiboye
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Titilope T Ajiboye
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Riadh Marzouki
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
- Chemistry Department, Faculty of Sciences of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Damian C Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
4
|
Xu X, Huang X, Zhang L, Huang X, Qin Z, Hua F. Adiponectin protects obesity-related glomerulopathy by inhibiting ROS/NF-κB/NLRP3 inflammation pathway. BMC Nephrol 2021; 22:218. [PMID: 34107901 PMCID: PMC8191043 DOI: 10.1186/s12882-021-02391-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Adiponectin is an adipocytokine that plays a key regulatory role in glucose and lipid metabolism in obesity. The prevalence of obesity has led to an increase in the incidence of obesity-related glomerulopathy (ORG). This study aimed to identify the protective role of adiponectin in ORG. METHODS Small-interfering RNA (siRNA) against the gene encoding adiponectin was transfected into podocytes. The oxidative stress level was determined using a fluorometric assay. Apoptosis was analyzed by flow cytometry. The expressions of podocyte markers and pyrin domain containing protein 3 (NLRP3) inflammasome-related proteins were measured by qRT-PCR, immunohistochemistry, and Western blot. RESULTS Podocytes treated with palmitic acid (PA) showed downregulated expressions of podocyte markers, increased apoptosis, upregulated levels of NLRP3 inflammasome-related proteins, increased production of inflammatory cytokines (IL-18 and IL-1β), and induced activation of NF-κB as compared to the vehicle-treated controls. Decreased adiponectin expression was observed in the serum samples from high fat diet (HFD)-fed mice. Decreased podocin expression and upregulated NLRP3 expression were observed in the kidney samples from high fat diet (HFD)-fed mice. Treatment with adiponectin or the NLRP3 inflammasome inhibitor, MCC950, protected cultured podocytes against podocyte apoptosis and inflammation. Treatment with adiponectin protected mouse kidney tissues against decreased podocin expression and upregulated NLRP3 expression. The knockout of adiponectin gene by siRNA increased ROS production, resulting in the activation of NLRP3 inflammasome and the phosphorylation of NF-κB in podocytes. Pyrrolidine dithiocarbamate, an NF-κB inhibitor, prevented adiponectin from ameliorating FFA-induced podocyte injury and NLRP3 activation. CONCLUSIONS Our study showed that adiponectin ameliorated PA-induced podocyte injury in vitro and HFD-induced injury in vivo via inhibiting the ROS/NF-κB/NLRP3 pathway. These data suggest the potential use of adiponectin for the prevention and treatment of ORG.
Collapse
Affiliation(s)
- Xiaohong Xu
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, No.185 Bureau Front Street, 213003, Changzhou City, China
- Department of Nephrology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian City, China
- Department of Nephrology, Suqian People's Hospital, Nanjing Drum Tower Hospital Group, Suqian City, China
| | - Xiaolin Huang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, No.185 Bureau Front Street, 213003, Changzhou City, China
| | - Liexiang Zhang
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian City, China
- Department of Neurosurgery, Suqian People's Hospital, Nanjing Drum Tower Hospital Group, Suqian City, China
| | - Xiaoli Huang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, No.185 Bureau Front Street, 213003, Changzhou City, China
| | - Zihan Qin
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, No.185 Bureau Front Street, 213003, Changzhou City, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, No.185 Bureau Front Street, 213003, Changzhou City, China.
| |
Collapse
|
5
|
Martinez RM, Ivan ALM, Vale DL, Campanini MZ, Ferreira VS, Steffen VS, Vicentini FTMC, Vilela FMP, Fonseca MJV, Baracat MM, Georgetti SR, Verri WA, Casagrande R. Topical emulsion containing pyrrolidine dithiocarbamate: effectiveness against ultraviolet B irradiation-induced injury of hairless mouse skin. J Pharm Pharmacol 2018; 70:1461-1473. [PMID: 30132896 DOI: 10.1111/jphp.12997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/21/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To evaluate the effects of a topical emulsion containing pyrrolidine dithiocarbamate (PDTC) (EcPDTC) in skin oxidative stress and inflammation triggered by ultraviolet B (UVB) irradiation (dose of 4.14 J/cm2 ). METHODS Hairless mouse received treatment with 0.5 g of EcPDTC or control emulsion (CTRLE) on the dorsal surface skin 12 h, 6 h and 5 min before and 6 h after the irradiation. Oxidative stress was evaluated by ferric reducing antioxidant power (FRAP), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS) scavenging capacity, reduced glutathione quantitation, catalase activity, superoxide anion production and lipid peroxidation products. Inflammation parameters were as follows: skin oedema, myeloperoxidase activity (neutrophil marker), matrix metalloproteinase-9 activity, collagen fibre damage, mast cell and sunburn cell counts, and cytokine production. KEY FINDINGS Topical treatment with EcPDTC protected from UVB-induced skin injury by maintaining the antioxidant capacity levels similar to non-irradiated control group. Furthermore, EcPDTC inhibited UVB irradiation-induced superoxide anion production, lipid peroxidation and reduced skin inflammation by inhibiting skin oedema, neutrophil recruitment, metalloproteinase-9 activity, collagen fibre damage, mast cell and sunburn cell counts, and cytokine (TNF-α and IL-1β) production. CONCLUSIONS Topical treatment with EcPDTC improves antioxidant systems and inhibits inflammation, protecting the skin from the damaging effects of UVB irradiation.
Collapse
Affiliation(s)
- Renata M Martinez
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| | - Ana L M Ivan
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| | - David L Vale
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| | - Marcela Z Campanini
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| | - Vitor S Ferreira
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| | - Vinicius S Steffen
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| | - Fabiana T M C Vicentini
- Department of Pharmaceutical Science, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Fernanda M P Vilela
- Department of Pharmaceutical Science, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Maria J V Fonseca
- Department of Pharmaceutical Science, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Marcela M Baracat
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| | - Sandra R Georgetti
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Biological Science Center, State University of Londrina, Londrina, Brazil
| | - Rúbia Casagrande
- Department of Pharmaceutical Science, Health Science Center, State University of Londrina, Londrina, Brazil
| |
Collapse
|
6
|
Jiang Y, Li Y, Ding Y, Dai X, Ma X, Bao L, Zhang Z, Li Y. Grape seed proanthocyanidin extracts prevent high glucose-induced endothelia dysfunction via PKC and NF-κB inhibition. Biosci Biotechnol Biochem 2015; 79:1493-503. [DOI: 10.1080/09168451.2014.991679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
In our study, it has been detected in vivo and in vitro that GSPE reversed high glucose-induced the increase of ICAM-1 and VCAM-1. It is shown that by western blotting detection, GSPE significantly inhibited the activation of NF-κB induced by high glucose while there was significant decrease of the expression of PKC with GSPE intervention. By adding the NF-κB blocker PDTC and the PKC inhibitor peptide 19–31(10−6 M), no significant difference was found in the levels of VCAM-1 and ICAM-1 among GSPE group, the PKC inhibitor peptide 19–31-added GSPE group and the PDTC-added GSPE group. So the conclusion could be drawn that PKC inhibition must be involved in GSPE decreasing the level of ICAM-1 and VCAM-1.We proved for the first time that GSPE prevented high glucose-induced the increase of ICAM-1 and VCAM-1 by PKC and NF-κB inhibition. These findings show a novel mechanism of the action GSPE preventing endothelial dysfunction, which may have clinical application values.
Collapse
Affiliation(s)
- Yanfei Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Yujie Li
- Center for Hygienic Assessment and Research, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Ye Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xiaoqian Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xiaotao Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Lei Bao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
7
|
Luo H, Wang X, Wang J, Chen C, Wang N, Xu Z, Chen S, Zeng C. Chronic NF-κB blockade improves renal angiotensin II type 1 receptor functions and reduces blood pressure in Zucker diabetic rats. Cardiovasc Diabetol 2015; 14:76. [PMID: 26055622 PMCID: PMC4465496 DOI: 10.1186/s12933-015-0239-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023] Open
Abstract
Background Both angiotensin II type 1 receptor (AT1R) and nuclear factor-kappa B (NF-κB) play significant roles in the pathogenesis of hypertension and type 2 diabetes. However, the role of NF-κB in perpetuating renal AT1 receptors dysfunction remains unclear. The aim of the present study to determine whether blockade of NF-κB, could reverse the exaggerated renal AT1R function, reduce inflammatory state and oxidative stress, lower blood pressure in Zucker diabetic fatty (ZDF) rats. Methods Pyrrolidine dithiocarbamate (PDTC), a NF-κB inhibitor (150 mg/kg in drinking water)or vehicle was administered orally to 12-weeks-old ZDF rats and their respective control lean Zucker (LZ) rats for 4 weeks. Blood pressure was measured weekly by tail-cuff method. AT1R functions were determined by measuring diuretic and natriuretic responses to AT1R antagonist (candesartan; 10 μg/kg/min iv). The mRNA and protein levels of NF-κB, oxidative stress maker and AT1R were determined using quantitative real-time PCR and Western blotting, respectively. The NF-κB-DNA binding activity in renal cortex was measured by Electrophoretic mobility shift assay (EMSA). Results As compared with LZ rats, ZDF rats had higher blood pressure, impaired natriuresis and diuresis, accompanied with higher levels of oxidative stress and inflammation. Furthermore, AT1R expression was higher in renal cortex from ZDF rats; candesartan induced natriresis and diuresis, which was augmented in ZDF rats. Treatment with PDTC lowered blood pressure and improved diuretic and natriuretic effects in ZDF rats; meanwhile, the increased oxidative stress and inflammation were reduced; the increased AT1R expression and augmented candesartan-mediated natriuresis and diuresis were recoverd in ZDF rats. Our further study investigated the mechanisms of PDTC on AT1R receptor expression. It resulted that PDTC inhibited NF-κB translocation from cytosol to nucleus, inhibited binding of NF-κB with AT1R promoter, therefore, reduced AT1R expression and function. Conclusions Our present study indicates blockade of NF-κB, via inhibition of binding of NF-κB with AT1R promoter, reduces renal AT1R expression and function, improves oxidative stress and inflammatory/anti-inflammatory balance, therefore, lowers blood pressure and recovers renal function in ZDF rats. Electronic supplementary material The online version of this article (doi:10.1186/s12933-015-0239-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Luo
- The Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China. .,Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Xinquan Wang
- The Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China. .,Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Jialiang Wang
- The Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China. .,Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Caiyu Chen
- The Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China. .,Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Na Wang
- The Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China. .,Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Zaicheng Xu
- The Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China. .,Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Shuo Chen
- The Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China. .,Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Chunyu Zeng
- The Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China. .,Chongqing Institute of Cardiology, Chongqing, PR China.
| |
Collapse
|
8
|
Hoseini SM, Kalantari A, Afarideh M, Noshad S, Behdadnia A, Nakhjavani M, Esteghamati A. Evaluation of plasma MMP-8, MMP-9 and TIMP-1 identifies candidate cardiometabolic risk marker in metabolic syndrome: results from double-blinded nested case-control study. Metabolism 2015; 64:527-38. [PMID: 25633268 DOI: 10.1016/j.metabol.2014.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/11/2014] [Accepted: 12/22/2014] [Indexed: 12/21/2022]
Abstract
AIMS Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are dysregulated in metabolic syndrome (MetS) and associated with atherosclerosis and cardiovascular disease (CVD). Previous studies on the association between MMPs/TIMPs and MetS are controversial. We aimed to evaluate circulating MMP-8, MMP-9 and TIMP-1 in a group of MetS individuals and healthy controls to find the potential marker associated with MetS and its components. METHODS 243 MetS individuals participated in a nested case-control design, of whom 63 were excluded (study subjects for analysis n=180; 87 MetS cases, 93 controls). We employed the International Diabetes Federation criteria using national waist circumference cutoffs for case definition. Anthropometric and biochemical measurements were done using standard methods. RESULTS Plasma MMP-8, TIMP-1, tumor necrosis factor-alpha (TNF-α), highly sensitive C-reactive protein (hs-CRP) and MMP-8/TIMP-1 ratio were significantly higher in MetS cases (P for all < 0.05). Each component of MetS except raised fasting plasma glucose positively correlated with MMP-8 and numbers of MetS components increased with higher MMP-8. In all regression models, MMP-8 was a significant predictor of MetS and in the final model the relationship persisted even after adjusting for pro-inflammatory cytokines hs-CRP and TNF-α (odds ratio=6.008, 95% confidence interval: 1.612-22.389, P=0.008). CONCLUSION Strong associations of MMP-8 with components of MetS in univariate, bivariate and multivariate models suggest plasma MMP-8 as a potential cardiometabolic risk marker for MetS. Higher MMP-8 in MetS is possibly mediated through mechanisms both dependent and independent of chronic low grade inflammation.
Collapse
Affiliation(s)
- Seyed Mehdi Hoseini
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Kalantari
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Afarideh
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sina Noshad
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Aram Behdadnia
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ta MHT, Rao P, Korgaonkar M, Foster SF, Peduto A, Harris DCH, Rangan GK. Pyrrolidine dithiocarbamate reduces the progression of total kidney volume and cyst enlargement in experimental polycystic kidney disease. Physiol Rep 2014; 2:2/12/e12196. [PMID: 25501440 PMCID: PMC4332200 DOI: 10.14814/phy2.12196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Heterocyclic dithiocarbamates have anti‐inflammatory and anti‐proliferative effects in rodent models of chronic kidney disease. In this study, we tested the hypothesis that pyrrolidine dithiocarbamate (PDTC) reduces the progression of polycystic kidney disease (PKD). Male Lewis polycystic kidney (LPK) rats (an ortholog of Nek8/NPHP9) received intraperitoneal injections of either saline vehicle or PDTC (40 mg/kg once or twice daily) from postnatal weeks 4 until 11. By serial magnetic resonance imaging at weeks 5 and 10, the relative within‐rat increase in total kidney volume and cyst volume were 1.3‐fold (P =0.01) and 1.4‐fold (P < 0.01) greater, respectively, in LPK + Vehicle compared to the LPK + PDTC(40 mg/kg twice daily) group. At week 11 in LPK rats, PDTC attenuated the increase in kidney weight to body weight ratio by 25% (P < 0.01) and proteinuria by 66% (P < 0.05 vs. LPK + Vehicle) but did not improve renal dysfunction. By quantitative whole‐slide image analysis, PDTC did not alter interstitial CD68+ cell accumulation, interstitial fibrosis, or renal cell proliferation in LPK rats at week 11. The phosphorylated form of the nuclear factor (NF)‐κB subunit, p105, was increased in cystic epithelial cells of LPK rats, but was not altered by PDTC. Moreover, PDTC did not significantly alter nuclear expression of the p50 subunit or NF‐κB (p65)‐DNA binding. Kidney enlargement in LPK rats was resistant to chronic treatment with a proteasome inhibitor, bortezomib. In conclusion, PDTC reduced renal cystic enlargement and proteinuria but lacked anti‐inflammatory effects in LPK rats. Lewis polycystic kidney rats were treated with pyrrolidine dithiocarbamate (PDTC) from weeks 4 to 11. Quantitative analysis of serial magnetic resonance images indicated that over time, the change in total kidney volume was 1.3‐fold higher in PDTC‐treated than in vehicle‐treated rats. PDTC treatment also decreased kidney weight to body weight ratio, renal cystic volume, and proteinuria.
Collapse
Affiliation(s)
- Michelle H T Ta
- Michael Stern Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Padmashree Rao
- Michael Stern Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Mayuresh Korgaonkar
- Brain Dynamics Centre, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Sheryl F Foster
- Department of Radiology, Westmead Hospital and The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony Peduto
- Department of Radiology, Westmead Hospital and The University of Sydney, Sydney, New South Wales, Australia
| | - David C H Harris
- Michael Stern Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Gopala K Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Liu P, Feng Y, Dong C, Yang D, Li B, Chen X, Zhang Z, Wang Y, Zhou Y, Zhao L. Administration of BMSCs with muscone in rats with gentamicin-induced AKI improves their therapeutic efficacy. PLoS One 2014; 9:e97123. [PMID: 24824427 PMCID: PMC4019657 DOI: 10.1371/journal.pone.0097123] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 04/14/2014] [Indexed: 12/15/2022] Open
Abstract
The therapeutic action of bone marrow-derived mesenchymal stem cells (BMSCs) in acute kidney injury (AKI) has been reported by several groups. However, recent studies indicated that BMSCs homed to kidney tissues at very low levels after transplantation. The lack of specific homing of exogenously infused cells limited the effective implementation of BMSC-based therapies. In this study, we provided evidence that the administration of BMSCs combined with muscone in rats with gentamicin-induced AKI intravenously, was a feasible strategy to drive BMSCs to damaged tissues and improve the BMSC-based therapeutic effect. The effect of muscone on BMSC bioactivity was analyzed in vitro and in vivo. The results indicated that muscone could promote BMSC migration and proliferation. Some secretory capacity of BMSC still could be improved in some degree. The BMSC-based therapeutic action was ameliorated by promoting the recovery of biochemical variables in urine or blood, as well as the inhibition of cell apoptosis and inflammation. In addition, the up-regulation of CXCR4 and CXCR7 expression in BMSCs could be the possible mechanism of muscone amelioration. Thus, our study indicated that enhancement of BMSCs bioactivities with muscone could increase the BMSC therapeutic potential and further developed a new therapeutic strategy for the treatment of AKI.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Yetong Feng
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Chao Dong
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
| | - Dandan Yang
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Bo Li
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Xin Chen
- Department of Laboratory Medicine, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, P.R. China
| | - Zhongjun Zhang
- Department of Anesthesiology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, P.R. China
| | - Yi Wang
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
- * E-mail: (LZ); (YZ); (YW)
| | - Yulai Zhou
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
- * E-mail: (LZ); (YZ); (YW)
| | - Lei Zhao
- Department of Anesthesiology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, P.R. China
- * E-mail: (LZ); (YZ); (YW)
| |
Collapse
|
11
|
Protective effects of the nuclear factor kappa B inhibitor pyrrolidine dithiocarbamate in bladder ischemia–reperfusion injury in rats. Mol Biol Rep 2013; 40:5733-40. [DOI: 10.1007/s11033-013-2676-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 09/14/2013] [Indexed: 02/02/2023]
|
12
|
Effects of hydrophilic statins on renal tubular lipid accumulation in diet-induced obese mice. Obes Res Clin Pract 2013; 7:e342-52. [DOI: 10.1016/j.orcp.2013.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Study on therapeutic action of bone marrow derived mesenchymal stem cell combined with vitamin E against acute kidney injury in rats. Life Sci 2013; 92:829-37. [PMID: 23499556 DOI: 10.1016/j.lfs.2013.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/02/2013] [Accepted: 02/23/2013] [Indexed: 02/07/2023]
Abstract
AIMS The study aims to investigate the effect to treat acute kidney injury (AKI) with bone marrow derived mesenchymal stem cells (BMSCs) combined with vitamin E and to develop a new treatment mode for AKI preclinical study. MAIN METHODS BMSCs were separated from rat bone marrow. Gentamicin was used as a damage factor in the culture of renal tubular epithelial cells (RTECs) in vitro. After co-cultured with BMSCs and vitamin E, cell proliferation of each group was detected with CCK-8. In vivo, BMSCs (3.3×10(6)cells/kg) combined with vitamin E (80mg/kg) were administered in AKI rats induced by gentamicin intravenously. The pathological changes, biochemical parameters and apoptosis genes after treatment were investigated furthermore. KEY FINDINGS In co-cultured system, proliferating ability of RTECs was improved by BMSCs or vitamin E, especially for the combined group (P<0.05). The treated rats in combined group presented the lowest serum creatinine and the highest urea nitrogen compared to non-treated rats. The improvement in renal pathological changes was followed by less necrosis, degeneration and expansion of renal tubule. Under transmission electron microscope, unclear cell structure and reduction of endoplasmic reticulum in the cytoplasm of RTECs were ameliorated with the treatment. Most apoptosis genes were up-regulated in model group while down-regulated with the therapy. Further analysis showed that the two treatments may act independently with each other. SIGNIFICANCE Our data demonstrated that both BMSC and vitamin E hold therapeutic action to AKI induced by gentamicin. Especially, the combined treatment is better than BMSC or vitamin E alone.
Collapse
|
14
|
Zhu T, Zhao R, Zhang L, Bernier M, Liu J. Pyrrolidine dithiocarbamate enhances hepatic glycogen synthesis and reduces FoxO1-mediated gene transcription in type 2 diabetic rats. Am J Physiol Endocrinol Metab 2012; 302:E409-16. [PMID: 22127228 PMCID: PMC3774491 DOI: 10.1152/ajpendo.00453.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The aim of the present study was to examine the effects of pyrrolidine dithiocarbamate (PDTC) on hepatic glycogen synthesis and FoxO1 transcriptional activity in type 2 diabetic rats and the mechanism underlying these effects. Fasting blood glucose and glycogen deposition, together with expressions of two key genes related to gluconeogenesis, were studied in the liver of rats fed a normal diet (NC), high-fat diet (HFD)-induced insulin-resistant rats made type 2 diabetic by a single intraperitoneal injection of streptozotocin (DM), and a DM with intervention of PDTC (DM + PDTC) for 1 wk. The phosphorylation of Akt, GSK-3β, and FoxO1 was assessed in liver extracts of fasted rats by Western blot, whereas indirect immunofluorescence staining was performed to determine the cellular distribution of FoxO1. The DM rats exhibited obvious increases in fasting blood glucose as well as decreased hepatic glycogen content compared with the NC group. Activation of the Akt/GSK-3β pathway and inactivating phosphorylation of FoxO1 were reduced greatly in DM rat livers (P < 0.01). By contrast, PDTC treatment protected DM rats against high fasting blood glucose and hepatic glycogen deposition loss. PDTC also elicited an increase in Akt/GSK-3β signaling and subsequent inactivation and nuclear export of FoxO1 in DM rat livers, which translated into a significant reduction in the expression of two FoxO1 target genes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. This study suggests that PDTC enhances hepatic glycogen synthesis, whereas it reduces FoxO1 transcriptional activity in DM rats.
Collapse
Affiliation(s)
- Tienian Zhu
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang, China
| | | | | | | | | |
Collapse
|
15
|
Agarwal D, Elks CM, Reed SD, Mariappan N, Majid DS, Francis J. Chronic exercise preserves renal structure and hemodynamics in spontaneously hypertensive rats. Antioxid Redox Signal 2012; 16:139-52. [PMID: 21895524 PMCID: PMC3222098 DOI: 10.1089/ars.2011.3967] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/09/2011] [Accepted: 08/09/2011] [Indexed: 12/24/2022]
Abstract
AIMS Exercise training (ExT) is a recommended adjunct to many pharmaceutical antihypertensive therapies. The effects of chronic ExT on the development of hypertension-induced renal injury remain unknown. We examined whether ExT would preserve renal hemodynamics and structure in the spontaneously hypertensive rat (SHR), and whether these effects were mediated by improved redox status and decreased inflammation. Normotensive WKY rats and SHR underwent moderate-intensity ExT for 16 weeks. One group of SHR animals was treated with hydralazine to investigate the pressure-dependent/independent effects of ExT. Acute renal clearance experiments were performed prior to sacrifice. Tissue free radical production rates were measured by electron paramagnetic resonance; gene and protein expression were measured by real time RT-PCR and Western blot or immunofluorescence, respectively. Plasma angiotensin II levels and kidney antioxidants were assessed. Training efficacy was assessed by citrate synthase activity assay in hind-limb muscle. RESULTS ExT delayed hypertension, prevented oxidative stress and inflammation, preserved antioxidant status, prevented an increase in circulating AngII levels, and preserved renal hemodynamics and structure in SHR. In addition, exercise-induced effects, at least, in part, were found to be pressure-independent. INNOVATION This study is the first to provide mechanistic evidence for the renoprotective benefits of ExT in a model of hypertension. Our results demonstrate that initiation of ExT in susceptible patients can delay the development of hypertension and provide renoprotection at the functional and ultrastructural level. CONCLUSION Chronic ExT preserves renal hemodynamics and structure in SHR; these effects are partially mediated by improved redox status and decreased inflammation.
Collapse
Affiliation(s)
- Deepmala Agarwal
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Carrie M. Elks
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Scott D. Reed
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Nithya Mariappan
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Dewan S.A. Majid
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| |
Collapse
|
16
|
Belfki H, Ben Ali S, Bougatef S, Ben Ahmed D, Haddad N, Jmal A, Abdennebi M, Ben Romdhane H. Relationship of C-reactive protein with components of the metabolic syndrome in a Tunisian population. Eur J Intern Med 2012; 23:e5-9. [PMID: 22153549 DOI: 10.1016/j.ejim.2011.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/08/2011] [Accepted: 10/19/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND C-reactive protein (CRP) is an independent risk factor of diabetes and cardiovascular disease and it is proposed as a component of metabolic syndrome (MS). This study was undertaken to investigate the relationship between CRP and various characteristics of the MS in a sample of the Tunisian population METHODS One hundred and forty nine patients with MS and 152 controls, aged 35-70 years were recruited. Waist circumference (WC), blood pressure, HDL-cholesterol (HDL-C), triglycerides (TG), glucose, insulin and CRP were measured. Insulin resistance was assessed by homeostasis model assessment of insulin resistance (HOMA-IR). MS was defined by NCEP-ATPIII report RESULTS CRP levels were significantly higher in MS group (4.41±3.73 mg/L vs. 2.68±2.59 mg/L, p<0.001) compared to without MS group. For both sexes, CRP increased as the number of MS components increased (p=0.015 for men and p<0.001) after adjustment for age, smoking, alcohol intake and, for women, menopause. There were statistically significant positive correlations for log CRP with WC, log TG, and log HOMA-IR in both sexes adjusted for confounding factors listed above. A significant negative correlation was found between HDL-C and log CRP only in women. In both sexes, WC was identified, by multiple linear regression models, as significant independent predictor of CRP level variability. HDL-C showed also a significant contribution only in women CONCLUSIONS The present study provides evidence that CRP levels are elevated in MS subjects. In addition, WC and HDL-C are significant predictors of the CRP elevation.
Collapse
Affiliation(s)
- Hanen Belfki
- Laboratory of Epidemiology and Prevention of Cardiovascular Disease, Faculty of Medicine, Tunis, Tunisia.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Elks CM, Reed SD, Mariappan N, Shukitt-Hale B, Joseph JA, Ingram DK, Francis J. A blueberry-enriched diet attenuates nephropathy in a rat model of hypertension via reduction in oxidative stress. PLoS One 2011; 6:e24028. [PMID: 21949690 PMCID: PMC3174132 DOI: 10.1371/journal.pone.0024028] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE AND BACKGROUND To assess renoprotective effects of a blueberry-enriched diet in a rat model of hypertension. Oxidative stress (OS) appears to be involved in the development of hypertension and related renal injury. Pharmacological antioxidants can attenuate hypertension and hypertension-induced renal injury; however, attention has shifted recently to the therapeutic potential of natural products as antioxidants. Blueberries (BB) have among the highest antioxidant capacities of fruits and vegetables. METHODS AND RESULTS Male spontaneously hypertensive rats received a BB-enriched diet (2% w/w) or an isocaloric control diet for 6 or 12 weeks or 2 days. Compared to controls, rats fed BB-enriched diet for 6 or 12 weeks exhibited lower blood pressure, improved glomerular filtration rate, and decreased renovascular resistance. As measured by electron paramagnetic resonance spectroscopy, significant decreases in total reactive oxygen species (ROS), peroxynitrite, and superoxide production rates were observed in kidney tissues in rats on long-term dietary treatment, consistent with reduced pathology and improved function. Additionally, measures of antioxidant status improved; specifically, renal glutathione and catalase activities increased markedly. Contrasted to these observations indicating reduced OS in the BB group after long-term feeding, similar measurements made in rats fed the same diet for only 2 days yielded evidence of increased OS; specifically, significant increases in total ROS, peroxynitrite, and superoxide production rates in all tissues (kidney, brain, and liver) assayed in BB-fed rats. These results were evidence of "hormesis" during brief exposure, which dissipated with time as indicated by enhanced levels of catalase in heart and liver of BB group. CONCLUSION Long-term feeding of BB-enriched diet lowered blood pressure, preserved renal hemodynamics, and improved redox status in kidneys of hypertensive rats and concomitantly demonstrated the potential to delay or attenuate development of hypertension-induced renal injury, and these effects appear to be mediated by a short-term hormetic response.
Collapse
Affiliation(s)
- Carrie M. Elks
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
- Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Scott D. Reed
- Neurosignaling Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Nithya Mariappan
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Barbara Shukitt-Hale
- United States Department of Agriculture-Agriculture Research Services, Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States of America
| | - James A. Joseph
- United States Department of Agriculture-Agriculture Research Services, Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States of America
| | - Donald K. Ingram
- Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
- * E-mail: (DKI) (DI); (JF)
| | - Joseph Francis
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
- * E-mail: (DKI) (DI); (JF)
| |
Collapse
|
18
|
Song S, Abdelmohsen K, Zhang Y, Becker KG, Gorospe M, Bernier M. Impact of pyrrolidine dithiocarbamate and interleukin-6 on mammalian target of rapamycin complex 1 regulation and global protein translation. J Pharmacol Exp Ther 2011; 339:905-13. [PMID: 21917559 DOI: 10.1124/jpet.111.185678] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine that exerts a wide range of cellular, physiological, and pathophysiological responses. Pyrrolidine dithiocarbamate (PDTC) antagonizes the cellular responsiveness to IL-6 through impairment in signal transducer and activator of transcription-3 activation and downstream signaling. To further elucidate the biological properties of PDTC, global gene expression profiling of human HepG2 hepatocellular carcinoma cells was carried out after treatment with PDTC or IL-6 for up to 8 h. Through an unbiased pathway analysis method, gene array analysis showed dramatic and temporal differences in expression changes in response to PDTC versus IL-6. A significant number of genes associated with metabolic pathways, inflammation, translation, and mitochondrial function were changed, with ribosomal protein genes and DNA damage-inducible transcript 4 protein (DDIT4) primarily up-regulated with PDTC but down-regulated with IL-6. Quantitative polymerase chain reaction and Western blot analyses validated the microarray data and showed the reciprocal expression pattern of the mammalian target of rapamycin (mTOR)-negative regulator DDIT4 in response to PDTC versus IL-6. Cell treatment with PDTC resulted in a rapid and sustained activation of Akt and subsequently blocked the IL-6-mediated increase in mTOR complex 1 function through up-regulation in DDIT4 expression. Conversely, down-regulation of DDIT4 with small interfering RNA dampened the capacity of PDTC to block IL-6-dependent mTOR activation. The overall protein biosynthetic capacity of the cells was severely blunted by IL-6 but increased in a rapamycin-independent pathway by PDTC. These results demonstrate a critical effect of PDTC on mTOR complex 1 function and provide evidence that PDTC can reverse IL-6-related signaling via induction of DDIT4.
Collapse
Affiliation(s)
- Shaoming Song
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
19
|
ROS-induced ZNF580 expression: a key role for H2O2/NF-κB signaling pathway in vascular endothelial inflammation. Mol Cell Biochem 2011; 359:183-91. [PMID: 21830064 DOI: 10.1007/s11010-011-1013-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/27/2011] [Indexed: 01/14/2023]
Abstract
ZNF580, a newly found C2H2 zinc finger transcription factor, was first described by Zhang (GenBank ID: AF184939). Emerging evidence has suggested that reactive oxygen species (ROS) play an important role in redox-sensitive signal transduction, and the vascular endothelium plays a critical role in the vascular inflammatory response. In this communication, we present evidence for the potential role of ZNF580 in hydrogen peroxide (H2O2)-regulated inflammation-related signaling pathways. In a human endothelial cell hybridoma line (EA.hy926), ZNF580 levels were markedly upregulated with H2O2 stimulation in different concentrations (0-400 μM) and at different time-points (0-6 h). H2O2 promoted the rapid translocation of p65 from the cytoplasm into the nucleus according to immunocytochemistry staining. In subsequent research, inhibition of NF-κB by pyrrolidine dithiocarbamate (PDTC, a selective chemical inhibitor of NF-κB) was shown to block the upregulated expression of ZNF580 that was induced by H2O2. Furthermore, transient transfection of ZNF580 resulted in an increase of the pro-inflammatory cytokine interleukin-8 (IL-8) 3.01±0.05 folds according to real-time RT-PCR and ELISA assays, which also showed significantly enhanced motility of human acute monocytic leukemia cells (THP-1). These results suggest that H2O2 upregulates the expression of ZNF580 via the NF-κB signaling pathway, and overexpression of ZNF580 plays a critical role in augmenting the release of pro-inflammatory cytokine IL-8.
Collapse
|
20
|
|
21
|
Mariappan N, Elks CM, Sriramula S, Guggilam A, Liu Z, Borkhsenious O, Francis J. NF-kappaB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes. Cardiovasc Res 2010; 85:473-83. [PMID: 19729361 PMCID: PMC2860708 DOI: 10.1093/cvr/cvp305] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/28/2009] [Accepted: 09/01/2009] [Indexed: 12/17/2022] Open
Abstract
AIMS Inflammatory molecules and their transcription factor, nuclear factor kappa-B (NF-kappaB), are thought to play important roles in diabetes-induced cardiac dysfunction. Here, we investigated the effects of pyrrolidine dithiocarbamate (PDTC), a NF-kappaB inhibitor, in diabetic mice. METHODS AND RESULTS Obese db/db mice and heterozygous lean mice (n = 8) were allowed free access to drinking water (control) or water containing PDTC (100 mg/kg) for 20 weeks. Left ventricular (LV) function was measured using echocardiography at baseline and at study end. Mice were sacrificed and LV removed for gene expression, biochemical, immunofluorescence, and mitochondrial assays. LV and mitochondrial reactive oxygen species (ROS), superoxide and peroxynitrite were measured using electron spin resonance spectroscopy. Enhanced NF-kappaB activity in db/db mice was associated with increased oxidative stress as demonstrated by increased ROS, superoxide, and peroxynitrite production, and increased NF-kappaB, gp91phox, and Nox1 expression; PDTC ameliorated these effects. Mitochondrial free radical production and structural damage were higher in the db/db group than in the control, db/db PDTC, and PDTC-treated heterozygous animal groups. CONCLUSION This study demonstrates that NF-kappaB blockade with PDTC mitigates oxidative stress and improves mitochondrial structural integrity directly, through down-regulation of increased oxygen-free radicals, thereby increasing ATP synthesis and thus restoring cardiac function in type II diabetes.
Collapse
Affiliation(s)
- Nithya Mariappan
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Carrie M. Elks
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Srinivas Sriramula
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Anuradha Guggilam
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zhizhen Liu
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Olga Borkhsenious
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|