1
|
Wang P, Gao R, Wu T, Zhang J, Sun X, Fan F, Wang C, Qian S, Li B, Zou Y, Huo Y, Fassett J, Chen Y, Ge J, Sun A. Accumulation of endogenous adenosine improves cardiomyocyte metabolism via epigenetic reprogramming in an ischemia-reperfusion model. Redox Biol 2023; 67:102884. [PMID: 37725888 PMCID: PMC10507380 DOI: 10.1016/j.redox.2023.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023] Open
Abstract
Adenosine kinase (ADK) plays the major role in cardiac adenosine metabolism, so that inhibition of ADK increases myocardial adenosine levels. While the cardioprotective actions of extracellular adenosine against ischemia/reperfusion (I/R) are well-established, the role of cellular adenosine in protection against I/R remains unknown. Here we investigated the role of cellular adenosine in epigenetic regulation on cardiomyocyte gene expression, glucose metabolism and tolerance to I/R. Evans blue/TTC staining and echocardiography were used to assess the extent of I/R injury in mice. Glucose metabolism was evaluated by positron emission tomography and computed tomography (PET/CT). Methylated DNA immunoprecipitation (MeDIP) and bisulfite sequencing PCR (BSP) were used to evaluate DNA methylation. Lentiviral/adenovirus transduction was used to overexpress DNMT1, and the OSI-906 was administered to inhibit IGF-1. Cardiomyocyte-specific ADK/IGF-1-knockout mice were used for mechanistic experiments.Cardiomyocyte-specific ADK knockout enhanced glucose metabolism and ameliorated myocardial I/R injury in vivo. Mechanistically, ADK deletion caused cellular adenosine accumulation, decreased DNA methyltransferase 1 (DNMT1) expression and caused hypomethylation of multiple metabolic genes, including insulin growth factor 1 (IGF-1). DNMT1 overexpression abrogated these beneficial effects by enhancing apoptosis and decreasing IGF-1 expression. Inhibition of IGF-1 signaling with OSI-906 or genetic knocking down of IGF-1 also abrogated the cardioprotective effects of ADK knockout, revealing the therapeutic potential of increasing IGF-1 expression in attenuating myocardial I/R injury. In conclusion, the present study demonstrated that cardiomyocyte ADK deletion ameliorates myocardial I/R injury via epigenetic upregulation of IGF-1 expression via the cardiomyocyte adenosine/DNMT1/IGF-1 axis.
Collapse
Affiliation(s)
- Peng Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Rifeng Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Cardiac Surgery Department, The Second Affiliated Hospital Zhejiang University School of Medicine, China
| | - Tingting Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinyan Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolei Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fan Fan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sanli Qian
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bingyu Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John Fassett
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Yingjie Chen
- Department of Physiology & Biophysics, University Mississippi Medical Center, MS, 39216, USA
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Ruan W, Li J, Choi S, Ma X, Liang Y, Nair R, Yuan X, Mills TW, Eltzschig HK. Targeting myocardial equilibrative nucleoside transporter ENT1 provides cardioprotection by enhancing myeloid Adora2b signaling. JCI Insight 2023; 8:e166011. [PMID: 37288658 PMCID: PMC10393224 DOI: 10.1172/jci.insight.166011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
Previous studies implicate extracellular adenosine signaling in attenuating myocardial ischemia and reperfusion injury (IRI). This extracellular adenosine signaling is terminated by its uptake into cells by equilibrative nucleoside transporters (ENTs). Thus, we hypothesized that targeting ENTs would function to increase cardiac adenosine signaling and concomitant cardioprotection against IRI. Mice were exposed to myocardial ischemia and reperfusion injury. Myocardial injury was attenuated in mice treated with the nonspecific ENT inhibitor dipyridamole. A comparison of mice with global Ent1 or Ent2 deletion showed cardioprotection only in Ent1-/- mice. Moreover, studies with tissue-specific Ent deletion revealed that mice with myocyte-specific Ent1 deletion (Ent1loxP/loxP Myosin Cre+ mice) experienced smaller infarct sizes. Measurements of cardiac adenosine levels demonstrated that postischemic elevations of adenosine persisted during reperfusion after targeting ENTs. Finally, studies in mice with global or myeloid-specific deletion of the Adora2b adenosine receptor (Adora2bloxP/loxP LysM Cre+ mice) implied that Adora2b signaling on myeloid-inflammatory cells in cardioprotection provided by ENT inhibition. These studies reveal a previously unrecognized role for myocyte-specific ENT1 in cardioprotection by enhancing myeloid-dependent Adora2b signaling during reperfusion. Extension of these findings implicates adenosine transporter inhibitors in cardioprotection against ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiwen Li
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
- Department of Cardiac Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Seungwon Choi
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Xinxin Ma
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Yafen Liang
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Ragini Nair
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Tingting W. Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
3
|
Strickland LN, Faraoni EY, Ruan W, Yuan X, Eltzschig HK, Bailey-Lundberg JM. The resurgence of the Adora2b receptor as an immunotherapeutic target in pancreatic cancer. Front Immunol 2023; 14:1163585. [PMID: 37187740 PMCID: PMC10175829 DOI: 10.3389/fimmu.2023.1163585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense desmoplastic stroma that impedes drug delivery, reduces parenchymal blood flow, and suppresses the anti-tumor immune response. The extracellular matrix and abundance of stromal cells result in severe hypoxia within the tumor microenvironment (TME), and emerging publications evaluating PDAC tumorigenesis have shown the adenosine signaling pathway promotes an immunosuppressive TME and contributes to the overall low survival rate. Hypoxia increases many elements of the adenosine signaling pathway, resulting in higher adenosine levels in the TME, further contributing to immune suppression. Extracellular adenosine signals through 4 adenosine receptors (Adora1, Adora2a, Adora2b, Adora3). Of the 4 receptors, Adora2b has the lowest affinity for adenosine and thus, has important consequences when stimulated by adenosine binding in the hypoxic TME. We and others have shown that Adora2b is present in normal pancreas tissue, and in injured or diseased pancreatic tissue, Adora2b levels are significantly elevated. The Adora2b receptor is present on many immune cells, including macrophages, dendritic cells, natural killer cells, natural killer T cells, γδ T cells, B cells, T cells, CD4+ T cells, and CD8+ T cells. In these immune cell types, adenosine signaling through Adora2b can reduce the adaptive anti-tumor response, augmenting immune suppression, or may contribute to transformation and changes in fibrosis, perineural invasion, or the vasculature by binding the Adora2b receptor on neoplastic epithelial cells, cancer-associated fibroblasts, blood vessels, lymphatic vessels, and nerves. In this review, we discuss the mechanistic consequences of Adora2b activation on cell types in the tumor microenvironment. As the cell-autonomous role of adenosine signaling through Adora2b has not been comprehensively studied in pancreatic cancer cells, we will also discuss published data from other malignancies to infer emerging therapeutic considerations for targeting the Adora2b adenosine receptor to reduce the proliferative, invasive, and metastatic potential of PDAC cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, Critical Care, and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
4
|
Hendy MS, Mowaka S, Elkady EF, El-Zaher A, Ayoub BM. The potential off-target neuroprotective effect of sister gliflozins suggests their repurposing despite not crossing the blood-brain barrier: From bioanalytical assay in rats into theory genesis. J Sep Sci 2023; 46:e2200921. [PMID: 36637096 DOI: 10.1002/jssc.202200921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Gliflozins are successfully marketed antidiabetic agents with a reported neuroprotective effect, and this study tests their blood-brain barrier crossing ability. Henceforward, a computational hypothesis interpreting their effects was reasonable after failure to cross into the brain. A chromatographic bioassay for canagliflozin, dapagliflozin, and empagliflozin was developed, validated, and applied to the rat's and rat's plasma and brain. HPLC method robustness was tested over two levels using Design of Experiment on MINITAB. It is the first method for gliflozins' detection in rats' brain tissue. The method was applied on 18 rats and six for each drug. Concentrations in plasma were determined but neither of them was detected in brain at the described chromatographic conditions. A computational study for the three drugs was endorsing two techniques. First, ligand-based target fishing reveals possible targets for gliflozins. They showed an ability to bind with human equilibrative nucleoside transporter 1, a regulator of adenosine extracellularly. Second, a docking study was carried out on this protein receptor. Results showed perfect alignment with a minimum of one hydrogen bond. Dapagliflozin achieved the lowest energy score with two hocking hydrogen bonds. This is proposing gliflozins ability to regulate equilibrative nucleoside transporter 1 receptors in peripheries, elevating the centrally acting neuroprotective adenosine.
Collapse
Affiliation(s)
- Moataz S Hendy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.,The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Shereen Mowaka
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.,The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.,Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, Egypt
| | - Ehab F Elkady
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa El-Zaher
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Bassam M Ayoub
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.,School of Arts and Sciences, Concordia University Irvine, Irvine, California, USA
| |
Collapse
|
5
|
Ruan W, Ma X, Bang IH, Liang Y, Muehlschlegel JD, Tsai KL, Mills TW, Yuan X, Eltzschig HK. The Hypoxia-Adenosine Link during Myocardial Ischemia-Reperfusion Injury. Biomedicines 2022; 10:1939. [PMID: 36009485 PMCID: PMC9405579 DOI: 10.3390/biomedicines10081939] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Despite increasing availability and more successful interventional approaches to restore coronary reperfusion, myocardial ischemia-reperfusion injury is a substantial cause of morbidity and mortality worldwide. During myocardial ischemia, the myocardium becomes profoundly hypoxic, thus causing stabilization of hypoxia-inducible transcription factors (HIF). Stabilization of HIF leads to a transcriptional program that promotes adaptation to hypoxia and cellular survival. Transcriptional consequences of HIF stabilization include increases in extracellular production and signaling effects of adenosine. Extracellular adenosine functions as a signaling molecule via the activation of adenosine receptors. Several studies implicated adenosine signaling in cardioprotection, particularly through the activation of the Adora2a and Adora2b receptors. Adenosine receptor activation can lead to metabolic adaptation to enhance ischemia tolerance or dampen myocardial reperfusion injury via signaling events on immune cells. Many studies highlight that clinical strategies to target the hypoxia-adenosine link could be considered for clinical trials. This could be achieved by using pharmacologic HIF activators or by directly enhancing extracellular adenosine production or signaling as a therapy for patients with acute myocardial infarction, or undergoing cardiac surgery.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinxin Ma
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - In Hyuk Bang
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yafen Liang
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jochen Daniel Muehlschlegel
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tingting W. Mills
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
6
|
Yuan X, Mills T, Doursout MF, Evans SE, Vidal Melo MF, Eltzschig HK. Alternative adenosine Receptor activation: The netrin-Adora2b link. Front Pharmacol 2022; 13:944994. [PMID: 35910389 PMCID: PMC9334855 DOI: 10.3389/fphar.2022.944994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
During hypoxia or inflammation, extracellular adenosine levels are elevated. Studies using pharmacologic approaches or genetic animal models pertinent to extracellular adenosine signaling implicate this pathway in attenuating hypoxia-associated inflammation. There are four distinct adenosine receptors. Of these, it is not surprising that the Adora2b adenosine receptor functions as an endogenous feedback loop to control hypoxia-associated inflammation. First, Adora2b activation requires higher adenosine concentrations compared to other adenosine receptors, similar to those achieved during hypoxic inflammation. Second, Adora2b is transcriptionally induced during hypoxia or inflammation by hypoxia-inducible transcription factor HIF1A. Studies seeking an alternative adenosine receptor activation mechanism have linked netrin-1 with Adora2b. Netrin-1 was originally discovered as a neuronal guidance molecule but also functions as an immune-modulatory signaling molecule. Similar to Adora2b, netrin-1 is induced by HIF1A, and has been shown to enhance Adora2b signaling. Studies of acute respiratory distress syndrome (ARDS), intestinal inflammation, myocardial or hepatic ischemia and reperfusion implicate the netrin-Adora2b link in tissue protection. In this review, we will discuss the potential molecular linkage between netrin-1 and Adora2b, and explore studies demonstrating interactions between netrin-1 and Adora2b in attenuating tissue inflammation.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott E. Evans
- Department of Pulmonology, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
7
|
Faraoni EY, Ju C, Robson SC, Eltzschig HK, Bailey-Lundberg JM. Purinergic and Adenosinergic Signaling in Pancreatobiliary Diseases. Front Physiol 2022; 13:849258. [PMID: 35360246 PMCID: PMC8964054 DOI: 10.3389/fphys.2022.849258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Adenosine 5'-triphosphate (ATP), other nucleotides, and the nucleoside analogue, adenosine, all have the capacity to modulate cellular signaling pathways. The cellular processes linked to extracellular purinergic signaling are crucial in the initiation, evolution, and resolution of inflammation. Injured or dying cells in the pancreatobiliary tract secrete or release ATP, which results in sustained purinergic signaling mediated through ATP type-2 purinergic receptors (P2R). This process can result in chronic inflammation, fibrosis, and tumor development. In contrast, signaling via the extracellular nucleoside derivative adenosine via type-1 purinergic receptors (P1R) is largely anti-inflammatory, promoting healing. Failure to resolve inflammation, as in the context of primary sclerosing cholangitis or chronic pancreatitis, is a risk factor for parenchymal and end-organ scarring with the associated risk of pancreatobiliary malignancies. Emerging immunotherapeutic strategies suggest that targeting purinergic and adenosinergic signaling can impact the growth and invasive properties of cancer cells, potentiate anti-tumor immunity, and also block angiogenesis. In this review, we dissect out implications of disordered purinergic responses in scar formation, end-organ injury, and in tumor development. We conclude by addressing promising opportunities for modulation of purinergic/adenosinergic signaling in the prevention and treatment of pancreatobiliary diseases, inclusive of cancer.
Collapse
Affiliation(s)
- Erika Y. Faraoni
- Department of Anesthesiology, Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Cynthia Ju
- Department of Anesthesiology, Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Simon C. Robson
- Departments of Internal Medicine and Anesthesiology, Center for Inflammation Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Holger K. Eltzschig
- Department of Anesthesiology, Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
8
|
Mikdar M, González-Menéndez P, Cai X, Zhang Y, Serra M, Dembele AK, Boschat AC, Sanquer S, Chhuon C, Guerrera IC, Sitbon M, Hermine O, Colin Y, Le Van Kim C, Kinet S, Mohandas N, Xia Y, Peyrard T, Taylor N, Azouzi S. The equilibrative nucleoside transporter ENT1 is critical for nucleotide homeostasis and optimal erythropoiesis. Blood 2021; 137:3548-3562. [PMID: 33690842 PMCID: PMC8225918 DOI: 10.1182/blood.2020007281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/21/2021] [Indexed: 12/13/2022] Open
Abstract
The tight regulation of intracellular nucleotides is critical for the self-renewal and lineage specification of hematopoietic stem cells (HSCs). Nucleosides are major metabolite precursors for nucleotide biosynthesis and their availability in HSCs is dependent on their transport through specific membrane transporters. However, the role of nucleoside transporters in the differentiation of HSCs to the erythroid lineage and in red cell biology remains to be fully defined. Here, we show that the absence of the equilibrative nucleoside transporter (ENT1) in human red blood cells with a rare Augustine-null blood type is associated with macrocytosis, anisopoikilocytosis, an abnormal nucleotide metabolome, and deregulated protein phosphorylation. A specific role for ENT1 in human erythropoiesis was demonstrated by a defective erythropoiesis of human CD34+ progenitors following short hairpin RNA-mediated knockdown of ENT1. Furthermore, genetic deletion of ENT1 in mice was associated with reduced erythroid progenitors in the bone marrow, anemia, and macrocytosis. Mechanistically, we found that ENT1-mediated adenosine transport is critical for cyclic adenosine monophosphate homeostasis and the regulation of erythroid transcription factors. Notably, genetic investigation of 2 ENT1null individuals demonstrated a compensation by a loss-of-function variant in the ABCC4 cyclic nucleotide exporter. Indeed, pharmacological inhibition of ABCC4 in Ent1-/- mice rescued erythropoiesis. Overall, our results highlight the importance of ENT1-mediated nucleotide metabolism in erythropoiesis.
Collapse
Affiliation(s)
- Mahmoud Mikdar
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | - Pedro González-Menéndez
- Laboratoire d'Excellence (GR-Ex), Paris, France
- Institut de Génétique Moléculaire de Montpellier, Universite Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Xiaoli Cai
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School at Houston, Houston, TX
| | - Yujin Zhang
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School at Houston, Houston, TX
| | - Marion Serra
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | - Abdoul K Dembele
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | | | - Sylvia Sanquer
- INSERM UMR S1124, Université de Paris, Service de Biochimie Métabolomique et Protéomique, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Cerina Chhuon
- Université de Paris, Proteomics Platform 3P5-Necker, Structure Fédérative de Recherche Necker, INSERM US24/CNRS, Paris, France
| | - Ida Chiara Guerrera
- Université de Paris, Proteomics Platform 3P5-Necker, Structure Fédérative de Recherche Necker, INSERM US24/CNRS, Paris, France
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier, Universite Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Olivier Hermine
- Laboratoire d'Excellence (GR-Ex), Paris, France
- Université de Paris, UMR 8147, CNRS, Paris, France
| | - Yves Colin
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | - Caroline Le Van Kim
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | - Sandrina Kinet
- Laboratoire d'Excellence (GR-Ex), Paris, France
- Institut de Génétique Moléculaire de Montpellier, Universite Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | | | - Yang Xia
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School at Houston, Houston, TX
| | - Thierry Peyrard
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | - Naomi Taylor
- Laboratoire d'Excellence (GR-Ex), Paris, France
- Institut de Génétique Moléculaire de Montpellier, Universite Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD
| | - Slim Azouzi
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| |
Collapse
|
9
|
Lopes CR, Lourenço VS, Tomé ÂR, Cunha RA, Canas PM. Use of knockout mice to explore CNS effects of adenosine. Biochem Pharmacol 2020; 187:114367. [PMID: 33333075 DOI: 10.1016/j.bcp.2020.114367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
The initial exploration using pharmacological tools of the role of adenosine receptors in the brain, concluded that adenosine released as such acted on A1R to inhibit excitability and glutamate release from principal neurons throughout the brain and that adenosine A2A receptors (A2AR) were striatal-'specific' receptors controlling dopamine D2R. This indicted A1R as potential controllers of neurodegeneration and A2AR of psychiatric conditions. Global knockout of these two receptors questioned the key role of A1R and instead identified extra-striatal A2AR as robust controllers of neurodegeneration. Furthermore, transgenic lines with altered metabolic sources of adenosine revealed a coupling of ATP-derived adenosine to activate A2AR and a role of A1R as a hurdle to initiate neurodegeneration. Additionally, cell-selective knockout of A2AR unveiled the different roles of A2AR in different cell types (neurons/astrocytes) in different portions of the striatal circuits (dorsal versus lateral) and in different brain areas (hippocampus/striatum). Finally, a new transgenic mouse line with deletion of all adenosine receptors seems to indicate a major allostatic rather than homeostatic role of adenosine and may allow isolating P2R-mediated responses to unravel their role in the brain, a goal close to heart of Geoffrey Burnstock, to whom we affectionately dedicate this review.
Collapse
Affiliation(s)
- Cátia R Lopes
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Vanessa S Lourenço
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ângelo R Tomé
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Paula M Canas
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
10
|
Equilibrative Nucleoside Transporter 2: Properties and Physiological Roles. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5197626. [PMID: 33344638 PMCID: PMC7732376 DOI: 10.1155/2020/5197626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Equilibrative nucleoside transporter 2 (ENT2) is a bidirectional transporter embedded in the biological membrane and is ubiquitously found in most tissue and cell types. ENT2 mediates the uptake of purine and pyrimidine nucleosides and nucleobase besides transporting a variety of nucleoside-derived drugs, mostly in anticancer therapy. Since high expression of ENT2 has been correlated with advanced stages of different types of cancers, consequently, this has gained significant interest in the role of ENT2 as a potential therapeutic target. Furthermore, ENT2 plays critical roles in signaling pathway and cell cycle progression. Therefore, elucidating the physiological roles of ENT2 and its properties may contribute to a better understanding of ENT2 roles beyond their transportation mechanism. This review is aimed at highlighting the main roles of ENT2 and at providing a brief update on the recent research.
Collapse
|
11
|
Alarcón S, Toro MDLÁ, Villarreal C, Melo R, Fernández R, Ayuso Sacido A, Uribe D, San Martín R, Quezada C. Decreased Equilibrative Nucleoside Transporter 1 (ENT1) Activity Contributes to the High Extracellular Adenosine Levels in Mesenchymal Glioblastoma Stem-Like Cells. Cells 2020; 9:E1914. [PMID: 32824670 PMCID: PMC7463503 DOI: 10.3390/cells9081914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme is one of the most malignant types of cancer. This is mainly due to a cell subpopulation with an extremely aggressive potential, called glioblastoma stem-like cells (GSCs). These cells produce high levels of extracellular adenosine which has been associated with increased chemoresistance, migration, and invasion in glioblastoma. In this study, we attempted to elucidate the mechanisms that control extracellular adenosine levels in GSC subtypes. By using primary and U87MG-derived GSCs, we associated increased extracellular adenosine with the mesenchymal phenotype. [3H]-adenosine uptake occurred mainly through the equilibrative nucleoside transporters (ENTs) in GSCs, but mesenchymal GSCs have lower expression and ENT1-mediated uptake activity than proneural GSCs. By analyzing expression and enzymatic activity, we determined that ecto-5'-nucleotidase (CD73) is predominantly expressed in proneural GSCs, driving AMPase activity. While in mesenchymal GSCs, both CD73 and Prostatic Acid Phosphatase (PAP) contribute to the AMP (adenosine monophosphate) hydrolysis. We did not observe significant differences between the expression of proteins involved in the metabolization of adenosine among the GCSs subtypes. In conclusion, the lower expression and activity of the ENT1 transporter in mesenchymal GSCs contributes to the high level of extracellular adenosine that these GSCs present.
Collapse
Affiliation(s)
- Sebastián Alarcón
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
| | - María de los Ángeles Toro
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
| | - Carolina Villarreal
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
| | - Rómulo Melo
- Servicio de Neurocirugía, Instituto de Neurocirugía Dr. Asenjo, Santiago 7500691, Chile; (R.M.); (R.F.)
| | - Rodrigo Fernández
- Servicio de Neurocirugía, Instituto de Neurocirugía Dr. Asenjo, Santiago 7500691, Chile; (R.M.); (R.F.)
| | - Angel Ayuso Sacido
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain;
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Daniel Uribe
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
| | - Rody San Martín
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
| | - Claudia Quezada
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
- Instituto Milenio de Inmunología e Inmunoterapia, Santiago 8320000, Chile
| |
Collapse
|
12
|
Altaweraqi RA, Yao SYM, Smith KM, Cass CE, Young JD. HPLC reveals novel features of nucleoside and nucleobase homeostasis, nucleoside metabolism and nucleoside transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183247. [PMID: 32126230 DOI: 10.1016/j.bbamem.2020.183247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/31/2022]
Abstract
Humans possess three members of the cation-coupled concentrative nucleoside transporter CNT (SLC 28) family, hCNT1-3: hCNT1 is selective for pyrimidine nucleosides but also transports adenosine, hCNT2 transports purine nucleosides and uridine, and hCNT3 transports both pyrimidine and purine nucleosides. hCNT1/2 transport nucleosides using the transmembrane Na+ electrochemical gradient, while hCNT3 is both Na+- and H+-coupled. By producing recombinant hCNT3 in Xenopus laevis oocytes, we have used radiochemical high performance liquid chromatography (HPLC) analysis to investigate the metabolic fate of transported [3H] or [14C] pyrimidine and purine nucleosides once inside cells. With the exception of adenosine, transported nucleosides were generally subject to minimal intracellular metabolism. We also used radiochemical HPLC analysis to study the mechanism by which adenosine functions as a low Km, low Vmax permeant of hCNT1. hCNT1-producing oocytes were pre-loaded with [3H] uridine, after which efflux of accumulated radioactivity was measured in transport medium alone, or in the presence of extracellular non-radiolabelled adenosine or uridine. hCNT1-mediated [3H]-efflux was stimulated by extracellular uridine, but inhibited by extracellular adenosine, with >95% of the radioactivity exiting cells being unmetabolized uridine, consistent with a low transmembrane mobility of the hCNT1/adenosine complex. Humans also possess four members of the equilibrative nucleoside transporter ENT (SLC 29) family, hENT1-4. Of these, hENT1 and hENT2 transport both nucleosides and nucleobases into and out of cells, but their relative contributions to nucleoside and nucleobase homeostasis and, in particular, to adenosine signaling via purinoreceptors, are not known. We therefore used HPLC to determine plasma nucleoside and nucleobase concentrations in wild-type, mENT1-, mENT2- and mENT1/mENT2-knockout (KO) mice, and to compare the findings with knockout of mCNT3. Results demonstrated that ENT1 was more important than ENT2 or CNT3 in determining plasma adenosine concentrations, indicated modest roles of ENT1 in the homeostasis of other nucleosides, and suggested that none of the transporters is a major participant in handling of nucleobases.
Collapse
Affiliation(s)
- Reema A Altaweraqi
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Sylvia Y M Yao
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Kyla M Smith
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Carol E Cass
- Membrane Protein Disease Research Group, Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - James D Young
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
13
|
Yamaguchi H, Mano N. Analysis of membrane transport mechanisms of endogenous substrates using chromatographic techniques. Biomed Chromatogr 2019; 33:e4495. [PMID: 30661254 DOI: 10.1002/bmc.4495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023]
Abstract
Membrane transporters are expressed in various bodily tissues and play essential roles in the homeostasis of endogenous substances and the absortion, distribution and/or excretion of xenobiotics. For transporter assays, radioisotope-labeled compounds have been mainly used. However, commercially available radioisotope-labeled compounds are limited in number and relatively expensive. Chromatographic analyses such as high-performance liquid chromatography with ultraviolet absorptiometry and liquid chromatography with tandem mass spectrometry have also been applied for transport assays. To elucidate the transport properties of endogenous substrates, although there is no difficulty in performing assays using radioisotope-labeled probes, the endogenous background and the metabolism of the compound after its translocation across cell membranes must be considered when the intact compound is assayed. In this review, the current state of knowledge about the transport of endogenous substrates via membrane transporters as determined by chromatographic techniques is summarized. Chromatographic techniques have contributed to our understanding of the transport of endogenous substances including amino acids, catecholamines, bile acids, prostanoids and uremic toxins via membrane transporters.
Collapse
Affiliation(s)
- Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
14
|
Veras MA, Tenn NA, Kuljanin M, Lajoie GA, Hammond JR, Dixon SJ, Séguin CA. Loss of ENT1 increases cell proliferation in the annulus fibrosus of the intervertebral disc. J Cell Physiol 2019; 234:13705-13719. [PMID: 31010267 DOI: 10.1002/jcp.28051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/07/2018] [Indexed: 01/02/2023]
Abstract
Mice lacking equilibrative nucleoside transporter 1 (ENT1 -/- ) demonstrate progressive calcification of spinal tissues including the annulus fibrosus (AF) of the intervertebral disc (IVD). We previously established ENT1 as the primary nucleoside transporter in the AF and demonstrated dysregulation of biomineralization pathways. To identify cellular pathways altered by loss of ENT1, we conducted microarray analysis of AF tissue from wild-type (WT) and ENT1 -/- mice before calcification (2 months of age) and associated with calcification (6 months of age). Bioinformatic analyses identified cell cycle dysregulation in ENT1 -/- AF tissues and implicated the E2f family of transcription factors as potential effectors. Quantitative polymerase chain reaction analysis confirmed increased expression of multiple E2f transcription factors and E2f interacting proteins ( Rb1 and Cdk2) in ENT1 -/- AF cells compared with WT at 6 months of age. At this time point, ENT1 -/- AF tissues showed increased JNK MAPK pathway activation, CDK1, minichromosome maintenance complex component 5 (Mcm5), and proliferating cell nuclear antigen (PCNA) protein expression, and PCNA-positive proliferating cells compared with WT controls. The current study demonstrates that loss of ENT1-mediated adenosine transport leads to increased cell proliferation in the AF of the IVD.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - Neil A Tenn
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - Miljan Kuljanin
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - James R Hammond
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - S Jeffrey Dixon
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
15
|
Best KA, Bone DB, Vilas G, Gros R, Hammond JR. Changes in aortic reactivity associated with the loss of equilibrative nucleoside transporter 1 (ENT1) in mice. PLoS One 2018; 13:e0207198. [PMID: 30408123 PMCID: PMC6224178 DOI: 10.1371/journal.pone.0207198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/26/2018] [Indexed: 01/23/2023] Open
Abstract
Slc29a1 encodes for equilibrative nucleoside transporter subtype 1 (ENT1), the primary mechanism of adenosine transfer across cell membranes. Previous studies showed that tissues isolated from Slc29a1-null mice are relatively resistant to injury caused by vascular ischemia-reperfusion. To determine if there are similar changes in the microvasculature, and investigate underlying mechanism, we examined aortas isolated from wildtype and Slc29a1-null mice. Aorta macrostructure and gene expression were examined histologically and by qPCR, respectively. Wire myography was used to assess the contractile properties of isolated thoracic aortic rings and their response to adenosine under both normoxic and hypoxic conditions. In vivo haemodynamic parameters were assessed using the tail-cuff method. Slc29a1-null mice had significantly (P<0.05) increased plasma adenosine (2.75-fold) and lower blood pressure (~15% ↓) than wild-type mice. Aortas from Slc29a1-null mice were stiffer with a smaller circumference (11% ↓), and had an enhanced contractile response to KCl and receptor-mediated stimuli. Blockade of ENT1 with nitrobenzylthioinosine significantly enhanced (by ~3.5-fold) the response of aorta from wild-type mice to phenylephrine, but had minimal effect on aortas from Slc29a1-null mice. Adenosine enhanced phenylephrine-mediated constriction in the wild-type tissue under both normoxic (11.7-fold) and hypoxic (3.6-fold) conditions, but had no effect on the Slc29a1-null aortic aorta. In conclusion, aortas from Slc29a1-null mice respond to hypoxic insult in a manner comparable to wild-type tissues that have been pharmacologically preconditioned with adenosine. These data also support a role for ENT1 in the regulation of the protective effects of adenosine on contractile function in elastic conduit arteries such as thoracic aorta.
Collapse
Affiliation(s)
- K. Arielle Best
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Derek B. Bone
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Gonzalo Vilas
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Gros
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Molecular Medicine Research Group, Robarts Research Institute, London, Ontario, Canada
| | - James R. Hammond
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Li M, Mulkey F, Jiang C, O'Neil BH, Schneider BP, Shen F, Friedman PN, Momozawa Y, Kubo M, Niedzwiecki D, Hochster HS, Lenz HJ, Atkins JN, Rugo HS, Halabi S, Kelly WK, McLeod HL, Innocenti F, Ratain MJ, Venook AP, Owzar K, Kroetz DL. Identification of a Genomic Region between SLC29A1 and HSP90AB1 Associated with Risk of Bevacizumab-Induced Hypertension: CALGB 80405 (Alliance). Clin Cancer Res 2018; 24:4734-4744. [PMID: 29871907 PMCID: PMC6168379 DOI: 10.1158/1078-0432.ccr-17-1523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/07/2017] [Accepted: 05/31/2018] [Indexed: 12/15/2022]
Abstract
Purpose: Bevacizumab is a VEGF-specific angiogenesis inhibitor indicated as an adjunct to chemotherapy for the treatment of multiple cancers. Hypertension is commonly observed during bevacizumab treatment, and high-grade toxicity can limit therapy or lead to cardiovascular complications. The factors that contribute to interindividual variability in blood pressure rise during bevacizumab treatment are not well understood.Experimental Design: To identify genomic regions associated with bevacizumab-induced hypertension risk, sequencing of candidate genes and flanking regulatory regions was performed on 61 patients treated with bevacizumab (19 cases developed early-onset grade 3 hypertension and 42 controls had no reported hypertension in the first six cycles of treatment). SNP-based tests for common variant associations and gene-based tests for rare variant associations were performed in 174 candidate genes.Results: Four common variants in independent linkage disequilibrium blocks between SLC29A1 and HSP90AB1 were among the top associations. Validation in larger bevacizumab-treated cohorts supported association between rs9381299 with early grade 3+ hypertension (P = 0.01; OR, 2.4) and systolic blood pressure >180 mm Hg (P = 0.02; OR, 2.1). rs834576 was associated with early grade 3+ hypertension in CALGB 40502 (P = 0.03; OR, 2.9). These SNP regions are enriched for regulatory elements that may potentially increase gene expression. In vitro overexpression of SLC29A1 in human endothelial cells disrupted adenosine signaling and reduced nitric oxide levels that were further lowered upon bevacizumab exposure.Conclusions: The genomic region between SLC29A1 and HSP90AB1 and its role in regulating adenosine signaling are key targets for further investigation into the pathogenesis of bevacizumab-induced hypertension. Clin Cancer Res; 24(19); 4734-44. ©2018 AACR.
Collapse
Affiliation(s)
- Megan Li
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Flora Mulkey
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Chen Jiang
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Bert H O'Neil
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bryan P Schneider
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Fei Shen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paula N Friedman
- Department of Medicine, University of Chicago Comprehensive Cancer, Chicago, Illinois
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Donna Niedzwiecki
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Howard S Hochster
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Heinz-Josef Lenz
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - James N Atkins
- Southeast Clinical Oncology Research Consortium, Winston-Salem, North Carolina
| | - Hope S Rugo
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Susan Halabi
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - William Kevin Kelly
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Howard L McLeod
- DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, Florida
| | - Federico Innocenti
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mark J Ratain
- Department of Medicine, University of Chicago Comprehensive Cancer, Chicago, Illinois
| | - Alan P Venook
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Kouros Owzar
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California.
| |
Collapse
|
17
|
Pastor-Anglada M, Urtasun N, Pérez-Torras S. Intestinal Nucleoside Transporters: Function, Expression, and Regulation. Compr Physiol 2018; 8:1003-1017. [PMID: 29978890 DOI: 10.1002/cphy.c170039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The gastrointestinal tract is the absorptive organ for nutrients found in foods after digestion. Nucleosides and, to a lesser extent nucleobases, are the late products of nucleoprotein digestion. These metabolites are absorbed by nucleoside (and nucleobase) transporter (NT) proteins. NTs are differentially distributed along the gastrointestinal tract showing also polarized expression in epithelial cells. Concentrative nucleoside transporters (CNTs) are mainly located at the apical side of enterocytes, whereas equilibrative nucleoside transporters (ENTs) facilitate the basolateral efflux of nucleosides and nucleobases to the bloodstream. Moreover, selected nucleotides and the bioactive nucleoside adenosine act directly on intestinal cells modulating purinergic signaling. NT-polarized insertion is tightly regulated. However, not much is known about the modulation of intestinal NT function in humans, probably due to the lack of appropriate cell models retaining CNT functional expression. Thus, the possibility of nutritional regulation of intestinal NTs has been addressed using animal models. Besides the nutrition-related role of NT proteins, orally administered drugs also need to cross the intestinal barrier, this event being a major determinant of drug bioavailability. In this regard, NT proteins might also play a role in pharmacology, thereby allowing the absorption of nucleoside- and nucleobase-derived drugs. The relative broad selectivity of these membrane transporters also suggests clinically relevant drug-drug interactions when using combined therapies. This review focuses on all these physiological and pharmacological aspects of NT protein biology. © 2017 American Physiological Society. Compr Physiol 8:1003-1017, 2018.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Nerea Urtasun
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Sandra Pérez-Torras
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
18
|
Pastor-Anglada M, Pérez-Torras S. Who Is Who in Adenosine Transport. Front Pharmacol 2018; 9:627. [PMID: 29962948 PMCID: PMC6010718 DOI: 10.3389/fphar.2018.00627] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
Extracellular adenosine concentrations are regulated by a panel of membrane transporters which, in most cases, mediate its uptake into cells. Adenosine transporters belong to two gene families encoding Equilibrative and Concentrative Nucleoside Transporter proteins (ENTs and CNTs, respectively). The lack of appropriate pharmacological tools targeting every transporter subtype has introduced some bias on the current knowledge of the role of these transporters in modulating adenosine levels. In this regard, ENT1, for which pharmacology is relatively well-developed, has often been identified as a major player in purinergic signaling. Nevertheless, other transporters such as CNT2 and CNT3 can also contribute to purinergic modulation based on their high affinity for adenosine and concentrative capacity. Moreover, both transporter proteins have also been shown to be under purinergic regulation via P1 receptors in different cell types, which further supports its relevance in purinergic signaling. Thus, several transporter proteins regulate extracellular adenosine levels. Moreover, CNT and ENT proteins are differentially expressed in tissues but also in particular cell types. Accordingly, transporter-mediated fine tuning of adenosine levels is cell and tissue specific. Future developments focusing on CNT pharmacology are needed to unveil transporter subtype-specific events.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases – CIBER ehd, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Sandra Pérez-Torras
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases – CIBER ehd, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
19
|
Kao YH, Lin MS, Chen CM, Wu YR, Chen HM, Lai HL, Chern Y, Lin CJ. Targeting ENT1 and adenosine tone for the treatment of Huntington's disease. Hum Mol Genet 2017; 26:467-478. [PMID: 28069792 DOI: 10.1093/hmg/ddw402] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/21/2016] [Indexed: 11/14/2022] Open
Abstract
Huntington's disease (HD) is caused by an abnormal CAG expansion in the exon 1 of huntingtin gene. The treatment of HD is an unmet medical need. Given the important role of adenosine in modulating brain activity, in this study, levels of adenosine and adenine nucleotides in the cerebral spinal fluid of patients with HD and in the brain of two mouse models of HD (R6/2 and Hdh150Q) were analysed. The expression and activity of ENT1 in the striatum of mice with HD were measured. Targeting adenosine tone for treating HD was examined in R6/2 mice by genetic removal of ENT1 and by giving an ENT1 inhibitor, respectively. The results showed that the adenosine homeostasis is dysregulated in the brain of patients and mice with HD. In patients, the ratio of adenosine/ATP in the cerebral spinal fluid was negatively correlated with the disease duration, and tended to have a positive correlation with independence scale and functional capacity. In comparison to controls, mRNA level of ENT1 was higher in the striatum of R6/2 and Hdh150Q mice. Intrastriatal administration of ENT1 inhibitors increased extracellular level of adenosine in the striatum of R6/2 mice to a much higher level than controls. Chronic inhibition of ENT1 or by genetic removal of ENT1 enhanced the survival of R6/2 mice. Collectively, adenosine homeostasis and ENT1 expression are altered in HD. The inhibition of ENT1 can enhance extracellular adenosine level and be a potential therapeutic approach for treating HD.
Collapse
Affiliation(s)
- Yu-Han Kao
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Meng-Syuan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsing-Lin Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Strazzulla LC, Cronstein BN. Regulation of bone and cartilage by adenosine signaling. Purinergic Signal 2016; 12:583-593. [PMID: 27473363 PMCID: PMC5124004 DOI: 10.1007/s11302-016-9527-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/14/2016] [Indexed: 12/28/2022] Open
Abstract
There is growing recognition that bone serves important endocrine and immunologic functions that are compromised in several disease states. While many factors are known to affect bone metabolism, recent attention has focused on investigating the role of purinergic signaling in bone formation and regulation. Adenosine is a purine nucleoside produced intracellularly and extracellularly in response to stimuli such as hypoxia and inflammation, which then interacts with P1 receptors. Numerous studies have suggested that these receptors play a pivotal role in osteoblast, osteoclast, and chondrocyte differentiation and function. This review discusses the various ways by which adenosine signaling contributes to bone and cartilage homeostasis, while incorporating potential therapeutic applications of these signaling pathways.
Collapse
Affiliation(s)
- Lauren C Strazzulla
- Department of Medicine, School of Medicine, New York University , New York, NY, 10016, USA
| | - Bruce N Cronstein
- Divisions of Rheumatology and Translational Medicine, Department of Medicine, School of Medicine, New York University, 550 First Avenue, MSB251, New York, NY, 10016, USA.
| |
Collapse
|
21
|
Boswell-Casteel RC, Hays FA. Equilibrative nucleoside transporters-A review. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 36:7-30. [PMID: 27759477 DOI: 10.1080/15257770.2016.1210805] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Equilibrative nucleoside transporters (ENTs) are polytopic integral membrane proteins that mediate the transport of nucleosides, nucleobases, and therapeutic analogs. The best-characterized ENTs are the human transporters hENT1 and hENT2. However, non-mammalian eukaryotic ENTs have also been studied (e.g., yeast, parasitic protozoa). ENTs are major pharmaceutical targets responsible for modulating the efficacy of more than 30 approved drugs. However, the molecular mechanisms and chemical determinants of ENT-mediated substrate recognition, binding, inhibition, and transport are poorly understood. This review highlights findings on the characterization of ENTs by surveying studies on genetics, permeant and inhibitor interactions, mutagenesis, and structural models of ENT function.
Collapse
Affiliation(s)
- Rebba C Boswell-Casteel
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Franklin A Hays
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA.,b Stephenson Cancer Center , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA.,c Harold Hamm Diabetes Center , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
22
|
Ezura Y, Lin X, Hatta A, Izu Y, Noda M. Interleukin-1β Suppresses the Transporter Genes Ank and Ent1 Expression in Stromal Progenitor Cells Retaining Mineralization. Calcif Tissue Int 2016; 99:199-208. [PMID: 27086348 DOI: 10.1007/s00223-016-0139-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/02/2016] [Indexed: 01/16/2023]
Abstract
Heterotopic ossification (HO) in various tissues evokes clinical problems. Inflammatory responses of the stromal progenitor cells may be involved in its etiology. Previous report indicated that pro-inflammatory cytokines including IL-1β enhanced the in vitro calcification of human mesenchymal stem cells (MSCs), by suppressing the expression of ectonucleotide pyrophosphatase/phosphodiesterase-1 gene (ENPP1). However, possible contribution of other related factors had not been investigated. Here, we investigated the expression of regulators of extracellular pyrophosphate and nucleosides including Enpp1, Nt5e, Ank, Enptds, and Ent1, examining various connective tissue stromal progenitor cells, including bone marrow stromal cells and synovium derived cells from mouse, or bone marrow MSCs from human. Consistent with previous studies, we observed characteristic suppression of the osteoblastic marker genes by IL-1β during the osteogenic culture for 20 days. In addition, we observed a reduced expression of the important transporter genes, Ank and Ent1, whereas the alteration in Enpp1 and Nt5e levels was not always consistent among the cell types. Our results suggest that IL-1β suppresses not only the osteoblastic but also the negative regulators of soft-tissue calcification, including Ank and Ent1 in stromal progenitor cells, which may contribute to the mechanisms of HO in various disorders.
Collapse
Affiliation(s)
- Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 5-45 1-Chome, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Xin Lin
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 5-45 1-Chome, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Arina Hatta
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 5-45 1-Chome, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Yayoi Izu
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 5-45 1-Chome, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 5-45 1-Chome, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
23
|
Hinton DJ, McGee-Lawrence ME, Lee MR, Kwong HK, Westendorf JJ, Choi DS. Aberrant bone density in aging mice lacking the adenosine transporter ENT1. PLoS One 2014; 9:e88818. [PMID: 24586402 PMCID: PMC3929493 DOI: 10.1371/journal.pone.0088818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/17/2014] [Indexed: 12/20/2022] Open
Abstract
Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1) is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months) compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP), an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density.
Collapse
Affiliation(s)
- David J. Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Meghan E. McGee-Lawrence
- Department of Orthopedic Surgery and Orthopedic Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Moonnoh R. Lee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Hoi K. Kwong
- Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Jennifer J. Westendorf
- Department of Orthopedic Surgery and Orthopedic Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
24
|
Hinton DJ, Lee MR, Jang JS, Choi DS. Type 1 equilibrative nucleoside transporter regulates astrocyte-specific glial fibrillary acidic protein expression in the striatum. Brain Behav 2014; 4:903-14. [PMID: 25365803 PMCID: PMC4178301 DOI: 10.1002/brb3.283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/30/2014] [Accepted: 08/26/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Adenosine signaling has been implicated in several neurological and psychiatric disorders. Previously, we found that astrocytic excitatory amino acid transporter 2 (EAAT2) and aquaporin 4 (AQP4) are downregulated in the striatum of mice lacking type 1 equilibrative nucleoside transporter (ENT1). METHODS To further investigate the gene expression profile in the striatum, we preformed Illumina Mouse Whole Genome BeadChip microarray analysis of the caudate-putamen (CPu) and nucleus accumbens (NAc) in ENT1 null mice. Gene expression was validated by RT-PCR, Western blot, and immunofluorescence. Using transgenic mice expressing enhanced green fluorescence protein (EGFP) under the control of the glial fibrillary acidic protein (GFAP) promoter, we examined EGFP expression in an ENT1 null background. RESULTS Glial fibrillary acidic protein was identified as a top candidate gene that was reduced in ENT1 null mice compared to wild-type littermates. Furthermore, EGFP expression was significantly reduced in GFAP-EGFP transgenic mice in an ENT1 null background in both the CPu and NAc. Finally, pharmacological inhibition or siRNA knockdown of ENT1 in cultured astrocytes also reduced GFAP mRNA levels. CONCLUSIONS Overall, our findings demonstrate that ENT1 regulates GFAP expression and possibly astrocyte function.
Collapse
Affiliation(s)
- David J Hinton
- Department of Psychiatry and Psychology, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905 ; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905 ; Neurobiology of Disease Program, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905
| | - Moonnoh R Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905
| | - Jin Sung Jang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905
| | - Doo-Sup Choi
- Department of Psychiatry and Psychology, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905 ; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905 ; Neurobiology of Disease Program, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905
| |
Collapse
|
25
|
The adenosine transporter, ENT1, in cardiomyocytes is sensitive to inhibition by ethanol in a kinase-dependent manner: implications for ethanol-dependent cardioprotection and nucleoside analog drug cytotoxicity. Purinergic Signal 2013; 10:305-12. [PMID: 24163005 DOI: 10.1007/s11302-013-9391-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/08/2013] [Indexed: 01/03/2023] Open
Abstract
The adenosine transporter 1 (ENT1) transports nucleosides, such as adenosine, and cytotoxic nucleoside analog drugs. ENT1 is well established to play a role in adenosinergic signaling in the cardiovascular system by modulating adenosine levels. Moderate ethanol consumption is cardioprotective and underlying mechanisms of action are not clear although adenosinergic signaling has been implicated. Here, we show that ethanol (5-200 mM) significantly reduces ENT1-dependent [(3)H] 2-chloroadenosine uptake (by up to 27 %) in the cardiomyocyte cell line, HL-1. Inhibition or absence of ENT1 is known to be cardioprotective, suggesting that the interaction of ethanol with ENT1 may promote adenosinergic cardioprotective pathways in the cardiovasculature.Ethanol sensitivity of adenosine uptake is altered by pharmacological activation of PKA and PKC. Primary cardiomyocytes from PKCε-null mice have significantly greater sensitivity to inhibition (by approximately 37 %) of adenosine uptake by ethanol than controls. These data suggest that the presence of ethanol may compromise ENT1-dependent nucleoside analog drug cytotoxicity, and indeed, ethanol (5 mM) reduces the cytotoxic effects of gemcitabine (2 nM), an anti-cancer drug, in the human cancer cell line, HTB2. Thus, the pharmacological inhibition of ENT1 by ethanol may contribute to ethanol-dependent cardioprotection but compromise gemcitabine cytotoxicity.
Collapse
|
26
|
Robin E, Sabourin J, Marcillac F, Raddatz E. Involvement of CD73, equilibrative nucleoside transporters and inosine in rhythm and conduction disturbances mediated by adenosine A1 and A2A receptors in the developing heart. J Mol Cell Cardiol 2013; 63:14-25. [DOI: 10.1016/j.yjmcc.2013.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
27
|
Pardo F, Arroyo P, Salomón C, Westermeier F, Salsoso R, Sáez T, Guzmán-Gutiérrez E, Leiva A, Sobrevia L. Role of equilibrative adenosine transporters and adenosine receptors as modulators of the human placental endothelium in gestational diabetes mellitus. Placenta 2013; 34:1121-7. [PMID: 24119573 DOI: 10.1016/j.placenta.2013.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/27/2013] [Accepted: 09/13/2013] [Indexed: 01/13/2023]
Abstract
Gestational diabetes mellitus (GDM) is a diseases that alters human placenta macro and microvascular reactivity as a result of endothelial dysfunction. The human placenta is a highly vascularized organ which lacks innervation, so blood flux is governed by locally released vasoactive molecules, including the endogenous nucleoside adenosine and the free radical nitric oxide (NO). Altered adenosine metabolism and uptake by the endothelium leads to increased NO synthesis which then turns-off the expression of genes coding for a family of nucleoside membrane transporters belonging to equilibrative nucleoside transporters, particularly isoforms 1 (hENT1) and 2 (hENT2). This mechanism leads to increased extracellular adenosine and, as a consequence, activation of adenosine receptors to further sustain a tonic activation of NO synthesis. This is a phenomenon that seems operative in the placental macro and microvascular endothelium in GDM. We here summarize the findings available in the literature regarding these mechanisms in the human feto-placental circulation. This phenomenon is altered in the feto-placental vasculature, which could be crucial for understanding GDM deleterious effects in fetal growth and development.
Collapse
Affiliation(s)
- F Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang Y, Huang K, Deng Y, Zhao Y, Wu B, Xu K, Ren H. Evaluation of the toxic effects of municipal wastewater effluent on mice using omic approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9470-9477. [PMID: 23883474 DOI: 10.1021/es401615y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Municipal wastewater effluents (MWWE) contain a lot of trace organic pollutants, which will be a threat to environmental health. However, little information is available for the mixed toxicity of MWWE on mammals. In the present study, male mice were exposed to MWWE for 90 days, and then, histopathology and clinical biochemistry determination and transcriptomic and metabolomic profiling were conducted. The results showed that MWWE exposure resulted in injuries in liver and kidney. Combined transcriptomic and metabolomic data demonstrated that MWWE exposure induced perturbations of metabolism, including lipid, nucleotide, amino acid, and energy metabolism. Furthermore, dysregulation of signal transduction processes were also identified based on differentially expressed genes. These results suggested that chronic exposure to MWWE could induce hepatotoxicity and nephrotoxicity in mice and omic approaches are of practical value to evaluate the complex toxicity of MWWE.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Warraich S, Bone DBJ, Quinonez D, Ii H, Choi DS, Holdsworth DW, Drangova M, Dixon SJ, Séguin CA, Hammond JR. Loss of equilibrative nucleoside transporter 1 in mice leads to progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis in humans. J Bone Miner Res 2013. [PMID: 23184610 DOI: 10.1002/jbmr.1826] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Diffuse idiopathic skeletal hyperostosis (DISH) is a noninflammatory spondyloarthropathy, characterized by ectopic calcification of spinal tissues. Symptoms include spine pain and stiffness, and in severe cases dysphagia and spinal cord compression. The etiology of DISH is unknown and there are no specific treatments. Recent studies have suggested a role for purine metabolism in the regulation of biomineralization. Equilibrative nucleoside transporter 1 (ENT1) transfers hydrophilic nucleosides, such as adenosine, across the plasma membrane. In mice lacking ENT1, we observed the development of calcified lesions resembling DISH. By 12 months of age, ENT1(-/-) mice exhibited signs of spine stiffness, hind limb dysfunction, and paralysis. Micro-computed tomography (µCT) revealed ectopic mineralization of paraspinal tissues in the cervical-thoracic region at 2 months of age, which extended to the lumbar and caudal regions with advancing age. Energy-dispersive X-ray microanalysis of lesions revealed a high content of calcium and phosphorus with a ratio similar to that of cortical bone. At 12 months of age, histological examination of ENT1(-/-) mice revealed large, irregular accumulations of eosinophilic material in paraspinal ligaments and entheses, intervertebral discs, and sternocostal articulations. There was no evidence of mineralization in appendicular joints or blood vessels, indicating specificity for the axial skeleton. Plasma adenosine levels were significantly greater in ENT1(-/-) mice than in wild-type, consistent with loss of ENT1--a primary adenosine uptake pathway. There was a significant reduction in the expression of Enpp1, Ank, and Alpl in intervertebral discs from ENT1(-/-) mice compared to wild-type mice. Elevated plasma levels of inorganic pyrophosphate in ENT1(-/-) mice indicated generalized disruption of pyrophosphate homeostasis. This is the first report of a role for ENT1 in regulating the calcification of soft tissues. Moreover, ENT1(-/-) mice may be a useful model for investigating pathogenesis and evaluating therapeutics for the prevention of mineralization in DISH and related disorders.
Collapse
Affiliation(s)
- Sumeeta Warraich
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chu S, Xiong W, Zhang D, Soylu H, Sun C, Albensi BC, Parkinson FE. Regulation of adenosine levels during cerebral ischemia. Acta Pharmacol Sin 2013; 34:60-6. [PMID: 23064722 DOI: 10.1038/aps.2012.127] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adenosine is a neuromodulator with its level increasing up to 100-fold during ischemic events, and attenuates the excitotoxic neuronal injury. Adenosine is produced both intracellularly and extracellularly, and nucleoside transport proteins transfer adenosine across plasma membranes. Adenosine levels and receptor-mediated effects of adenosine are regulated by intracellular ATP consumption, cellular release of ATP, metabolism of extracellular ATP (and other adenine nucleotides), adenosine influx, adenosine efflux and adenosine metabolism. Recent studies have used genetically modified mice to investigate the relative contributions of intra- and extracellular pathways for adenosine formation. The importance of cortical or hippocampal neurons as a source or a sink of adenosine under basal and hypoxic/ischemic conditions was addressed through the use of transgenic mice expressing human equilibrative nucleoside transporter 1 (hENT1) under the control of a promoter for neuron-specific enolase. From these studies, we conclude that ATP consumption within neurons is the primary source of adenosine in neuronal cultures, but not in hippocampal slices or in vivo mice exposed to ischemic conditions.
Collapse
|
31
|
Li L, Mizel D, Huang Y, Eisner C, Hoerl M, Thiel M, Schnermann J. Tubuloglomerular feedback and renal function in mice with targeted deletion of the type 1 equilibrative nucleoside transporter. Am J Physiol Renal Physiol 2012; 304:F382-9. [PMID: 23269643 DOI: 10.1152/ajprenal.00581.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A(1) adenosine receptors (A1AR) are required for the modulation of afferent arteriolar tone by changes in luminal NaCl concentration implying that extracellular adenosine concentrations need to change in synchrony with NaCl. The present experiments were performed in mice with a null mutation in the gene for the major equilibrative nucleoside transporter ENT1 to test whether interference with adenosine disposition by cellular uptake of adenosine may modify TGF characteristics. Responses of stop flow pressure (P(SF)) to maximum flow stimulation were measured in mice with either C57Bl/6 or SWR/J genetic backgrounds. Maximum flow stimulation reduced P(SF) in ENT1(-/-) compared with wild-type (WT) mice by 1.6 ± 0.4 mmHg (n = 28) and 5.8 ± 1.1 mmHg (n = 17; P < 0.001) in C57Bl/6 and by 1.4 ± 0.4 mmHg (n = 15) and 9 ± 1.5 mmHg (n = 9; P < 0.001) in SWR/J. Plasma concentrations of adenosine and inosine were markedly higher in ENT1(-/-) than WT mice (ado: 1,179 ± 78 and 225 ± 48 pmol/ml; ino: 179 ± 24 and 47.5 ± 9 pmol/ml). Renal mRNA expressions of the four adenosine receptors, ENT2, and adenosine deaminase were not significantly different between WT and ENT1(-/-) mice. No significant differences of glomerular filtration rate or mean arterial blood pressure were found while plasma renin concentration, and heart rates were significantly lower in ENT1(-/-) animals. In conclusion, TGF responsiveness is significantly attenuated in the absence of ENT1, pointing to a role of nucleoside transport in the NaCl-synchronous changes of extracellular adenosine levels in the juxtaglomerular apparatus interstitium.
Collapse
Affiliation(s)
- Lingli Li
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|