1
|
Yalçın HT, Çakır DA, Yirün A, Sanajou S, Işık G, Bozdemir Ö, Özçelik İ, Güdül Bacanlı M, Zeybek ND, Baydar T, Erkekoğlu P. Comparative in vitro and in silico evaluation of the toxic effects of metformin and/or ascorbic acid, new treatment options in the treatment of Melasma. Toxicol Res (Camb) 2025; 14:tfaf025. [PMID: 40040652 PMCID: PMC11878769 DOI: 10.1093/toxres/tfaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Melasma is a chronic condition that leads to the buildup of melanin pigment in the epidermis and dermis due to active melanocytes. Even though it is considered a non-life-threatening condition, pigment disorders have a negative impact on quality of life. Since melasma treatment is not sufficient and complicated, new treatment options are sought. Research on metformin and ascorbic acid suggested that they might be used against melasma in the scope of "drug repositioning."The MNT-1 human melanoma cell line was used to assess the effects of metformin, ascorbic acid, and metformin+ascorbic acid combination on cytotoxicity and oxidative stress. Melanin, cAMP, L-3,4-dihydroxyphenylalanine (L-DOPA) and tyrosinase levels were determined by commercial ELISA kits and tyrosinase gene expression was analyzed with RT-qPCR. Cytopathological evaluations were performed by phase contrast microscopy. Tyrosinase expression was determined by immunofluorescence (IF) staining of MNT-1 cells. The online service TargetNet was used for biological target screening. The parameters were not significantly altered by ascorbic acid applied at non-cytotoxic concentrations. On the contrary, metformin dramatically raised tyrosinase and intracellular ROS levels. Moreover, intracellular ROS levels and tyrosinase levels were found to be considerably elevated with the combined treatment. Also, potential metformin and ascorbic acid interactions were determined. According to the results, it can be said that these parameters were not significantly altered by ascorbic acid. On the contrary, metformin dramatically raised tyrosinase and intracellular oxidative stress levels. Moreover, intracellular oxidative stress and tyrosinase levels were elevated with the combined treatment. In conclusion, individual treatments of ascorbic acid or metformin may only provide a limited effect when treating melasma and extensive in vitro and in vivo research are required.
Collapse
Affiliation(s)
- Hülya Tezel Yalçın
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye Ankara 06100, Turkey
| | - Deniz Arca Çakır
- Hacettepe University Vaccine Institute, Department of Vaccine Technology, Sıhhiye Ankara 06100, Turkey
| | - Anıl Yirün
- Çukurova University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Balcalı Sarıçam 01250 Adana, Turkey
| | - Sonia Sanajou
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye Ankara 06100, Turkey
| | - Gözde Işık
- Hacettepe University Vaccine Institute, Department of Vaccine Technology, Sıhhiye Ankara 06100, Turkey
| | - Özlem Bozdemir
- Hacettepe University Faculty of Medicine, Department of Histology and Embryology, Sıhhiye Ankara 06100, Turkey
- Hacettepe University Graduate School of Health Sciences, Department of Stem Cell Sciences, Sıhhiye Ankara 06100, Turkey
| | - İbrahim Özçelik
- Faculty of Pharmacy, Department of Toxicology, Erzincan Binali Yildirim University, Yalnızbağ Erzincan 24002, Turkey
| | - Merve Güdül Bacanlı
- Faculty of Pharmacy, Department of Toxicology, Health Sciences University, Keçiören, Ankara 06010, Turkey
| | - Naciye Dilara Zeybek
- Hacettepe University Faculty of Medicine, Department of Histology and Embryology, Sıhhiye Ankara 06100, Turkey
| | - Terken Baydar
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye Ankara 06100, Turkey
| | - Pınar Erkekoğlu
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye Ankara 06100, Turkey
- Hacettepe University Vaccine Institute, Department of Vaccine Technology, Sıhhiye Ankara 06100, Turkey
| |
Collapse
|
2
|
Aydin Ö, Meijnikman AS, de Jonge PA, van Stralen K, Börger H, Okur K, Iqbal Z, Warmbrunn MV, Acherman YIZ, Bruin S, Winkelmeijer M, Schimmel AWM, Holst JJ, Poulsen SS, Bäckhed F, Nieuwdorp M, Groen AK, Gerdes VEA. Post-Bariatric Hypoglycemia: an Impaired Metabolic Response to a Meal. Obes Surg 2024; 34:3796-3806. [PMID: 39153140 PMCID: PMC11481667 DOI: 10.1007/s11695-024-07309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 08/19/2024]
Abstract
AIMS/HYPOTHESIS Post-bariatric hypoglycemia (PBH) is caused by postprandial hyperinsulinemia, due to anatomical alterations and changes in post-prandial metabolism after bariatric surgery. The mechanisms underlying the failing regulatory and compensatory systems are unclear. In this study, we investigated the differences in post-prandial hormones and metabolic profiles between patients with and without PBH. METHODS We performed a mixed meal test (MMT) in 63 subjects before and 1 year after Roux-en-Y gastric bypass (RYGB) surgery. Blood was withdrawn at 0, 10, 20, 30, 60, and 120 min after ingestion of a standardized meal. Glucose, insulin, GLP-1, FGF-19, and FGF-21 were measured and untargeted metabolomics analysis was performed on blood plasma to analyze which hormonal and metabolic systems were altered between patients with and without PBH. RESULTS Out of 63, a total of 21 subjects (33%) subjects developed PBH (glucose < 3.1 mmol/L) after surgery. Decreased glucose and increased insulin excursions during MMT were seen in PBH (p < 0.05). GLP-1, FGF-19, and FGF-21 were elevated after surgery (p < 0.001), but did not differ between PBH and non-PBH groups. We identified 20 metabolites possibly involved in carbohydrate metabolism which differed between the two groups, including increased carnitine and acylcholines in PBH. CONCLUSION Overall, 33% of the subjects developed PBH 1 year after RYGB surgery. While GLP-1, FGF-19, and FGF-21 were similar in PBH and non-PBH patients, metabolomics analysis revealed changes in carnitine and acyclcholines that are possibly involved in energy metabolism, which may play a role in the occurrence of PBH.
Collapse
Affiliation(s)
- Ömrüm Aydin
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Abraham S Meijnikman
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Patrick A de Jonge
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Karlijn van Stralen
- Department of Scientific Research, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Hanneke Börger
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Kadriye Okur
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Zainab Iqbal
- Cardiometabolic Research, Vrije Universiteit, Amsterdam, the Netherlands
| | - Moritz V Warmbrunn
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Yair I Z Acherman
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Sjoerd Bruin
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Maaike Winkelmeijer
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Alinda W M Schimmel
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Steen S Poulsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Bäckhed
- Department of Cardiovascular and Metabolic Research, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Albert K Groen
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Victor E A Gerdes
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands.
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands.
- Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands.
| |
Collapse
|
3
|
Liu X, Yu Y, Zhang H, Zhang M, Liu Y. The Role of Muscarinic Acetylcholine Receptor M 3 in Cardiovascular Diseases. Int J Mol Sci 2024; 25:7560. [PMID: 39062802 PMCID: PMC11277046 DOI: 10.3390/ijms25147560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The muscarinic acetylcholine receptor M3 (M3-mAChR) is involved in various physiological and pathological processes. Owing to specific cardioprotective effects, M3-mAChR is an ideal diagnostic and therapeutic biomarker for cardiovascular diseases (CVDs). Growing evidence has linked M3-mAChR to the development of multiple CVDs, in which it plays a role in cardiac protection such as anti-arrhythmia, anti-hypertrophy, and anti-fibrosis. This review summarizes M3-mAChR's expression patterns, functions, and underlying mechanisms of action in CVDs, especially in ischemia/reperfusion injury, cardiac hypertrophy, and heart failure, opening up a new research direction for the treatment of CVDs.
Collapse
Affiliation(s)
- Xinxing Liu
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
| | - Yi Yu
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
| | - Haiying Zhang
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
| | - Min Zhang
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
| | - Yan Liu
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
- International Joint Research Center of Human–Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
- Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
4
|
Arcones AC, Vila-Bedmar R, Mirasierra M, Cruces-Sande M, Vallejo M, Jones B, Tomas A, Mayor F, Murga C. GRK2 regulates GLP-1R-mediated early phase insulin secretion in vivo. BMC Biol 2021; 19:40. [PMID: 33658023 PMCID: PMC7931601 DOI: 10.1186/s12915-021-00966-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Insulin secretion from the pancreatic β-cell is finely modulated by different signals to allow an adequate control of glucose homeostasis. Incretin hormones such as glucagon-like peptide-1 (GLP-1) act as key physiological potentiators of insulin release through binding to the G protein-coupled receptor GLP-1R. Another key regulator of insulin signaling is the Ser/Thr kinase G protein-coupled receptor kinase 2 (GRK2). However, whether GRK2 affects insulin secretion or if GRK2 can control incretin actions in vivo remains to be analyzed. RESULTS Using GRK2 hemizygous mice, isolated pancreatic islets, and model β-cell lines, we have uncovered a relevant physiological role for GRK2 as a regulator of incretin-mediated insulin secretion in vivo. Feeding, oral glucose gavage, or administration of GLP-1R agonists in animals with reduced GRK2 levels (GRK2+/- mice) resulted in enhanced early phase insulin release without affecting late phase secretion. In contrast, intraperitoneal glucose-induced insulin release was not affected. This effect was recapitulated in isolated islets and correlated with the increased size or priming efficacy of the readily releasable pool (RRP) of insulin granules that was observed in GRK2+/- mice. Using nanoBRET in β-cell lines, we found that stimulation of GLP-1R promoted GRK2 association to this receptor and that GRK2 protein and kinase activity were required for subsequent β-arrestin recruitment. CONCLUSIONS Overall, our data suggest that GRK2 is an important negative modulator of GLP-1R-mediated insulin secretion and that GRK2-interfering strategies may favor β-cell insulin secretion specifically during the early phase, an effect that may carry interesting therapeutic applications.
Collapse
Affiliation(s)
- Alba C Arcones
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CBMSO) UAM-CSIC; Instituto de Investigación Sanitaria Hospital Universitario La Princesa; CIBER de Enfermedades Cardiovasculares (CIBERCV), UNIVERSIDAD AUTONOMA DE MADRID and Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Vila-Bedmar
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Madrid, Spain
| | - Mercedes Mirasierra
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem), Madrid, Spain
| | - Marta Cruces-Sande
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CBMSO) UAM-CSIC; Instituto de Investigación Sanitaria Hospital Universitario La Princesa; CIBER de Enfermedades Cardiovasculares (CIBERCV), UNIVERSIDAD AUTONOMA DE MADRID and Instituto de Salud Carlos III, Madrid, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem), Madrid, Spain
| | - Ben Jones
- Section of Investigative Medicine, Imperial College London, London, W12 0NN, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, W12 0NN, UK
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CBMSO) UAM-CSIC; Instituto de Investigación Sanitaria Hospital Universitario La Princesa; CIBER de Enfermedades Cardiovasculares (CIBERCV), UNIVERSIDAD AUTONOMA DE MADRID and Instituto de Salud Carlos III, Madrid, Spain.
| | - Cristina Murga
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CBMSO) UAM-CSIC; Instituto de Investigación Sanitaria Hospital Universitario La Princesa; CIBER de Enfermedades Cardiovasculares (CIBERCV), UNIVERSIDAD AUTONOMA DE MADRID and Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Hu L, He F, Huang M, Zhao Q, Cheng L, Said N, Zhou Z, Liu F, Dai YS. SPARC promotes insulin secretion through down-regulation of RGS4 protein in pancreatic β cells. Sci Rep 2020; 10:17581. [PMID: 33067534 PMCID: PMC7567887 DOI: 10.1038/s41598-020-74593-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
SPARC-deficient mice have been shown to exhibit impaired glucose tolerance and insulin secretion, but the underlying mechanism remains unknown. Here, we showed that SPARC enhanced the promoting effect of Muscarinic receptor agonist oxotremorine-M on insulin secretion in cultured mouse islets. Overexpression of SPARC down-regulated RGS4, a negative regulator of β-cell M3 muscarinic receptors. Conversely, knockdown of SPARC up-regulated RGS4 in Min6 cells. RGS4 was up-regulated in islets from sparc -/- mice, which correlated with decreased glucose-stimulated insulin secretion (GSIS). Furthermore, inhibition of RGS4 restored GSIS in the islets from sparc -/- mice, and knockdown of RGS4 partially decreased the promoting effect of SPARC on oxotremorine-M-stimulated insulin secretion. Phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 abolished SPARC-induced down-regulation of RGS4. Taken together, our data revealed that SPARC promoted GSIS by inhibiting RGS4 in pancreatic β cells.
Collapse
Affiliation(s)
- Li Hu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fengli He
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meifeng Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zhao
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
| | - Lamei Cheng
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
| | - Neveen Said
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yan-Shan Dai
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Bristol-Myers Squibb Company, Princeton, NJ, USA.
| |
Collapse
|
6
|
Borck PC, Leite NDC, Valcanaia AC, Rickli S, Alípio JCDL, Machado M, Vellosa JC, Mathias PCDF, Boschero AC, Grassiolli S. Swimming training reduces glucose‐amplifying pathway and cholinergic responses in islets from lean‐ and MSG‐obese rats. Clin Exp Pharmacol Physiol 2019; 47:286-293. [DOI: 10.1111/1440-1681.13197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Patricia C. Borck
- Department of Structural and Functional Biology Institute of Biology University of Campinas/UNICAMP Campinas Brazil
| | - Nayara de C. Leite
- Department of Structural and Functional Biology Institute of Biology University of Campinas/UNICAMP Campinas Brazil
| | - Ana C. Valcanaia
- Biologica Science and Health Center University of West Parana (UNIOESTE) Cascavel Brazil
| | - Sarah Rickli
- Department of Structural and Functional Biology Institute of Biology University of Campinas/UNICAMP Campinas Brazil
| | | | - Michael Machado
- Department of Nursing University of Ponta Grossa/UEPG Ponta Grossa Brazil
| | - Jose C. Vellosa
- Department of Pharmaceutical Sciences University of Ponta Grossa/UEPG Ponta Grossa Brazil
| | - Paulo C. de F. Mathias
- Department of Biotechnology, Genetics and Cell Biology University of Maringá/UEM Maringa Brazil
| | - Antonio C. Boschero
- Department of Structural and Functional Biology Institute of Biology University of Campinas/UNICAMP Campinas Brazil
- Biologica Science and Health Center University of West Parana (UNIOESTE) Cascavel Brazil
| | - Sabrina Grassiolli
- Biologica Science and Health Center University of West Parana (UNIOESTE) Cascavel Brazil
| |
Collapse
|
7
|
Jansson L, Carlsson PO. Pancreatic Blood Flow with Special Emphasis on Blood Perfusion of the Islets of Langerhans. Compr Physiol 2019; 9:799-837. [PMID: 30892693 DOI: 10.1002/cphy.c160050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pancreatic islets are more richly vascularized than the exocrine pancreas, and possess a 5- to 10-fold higher basal and stimulated blood flow, which is separately regulated. This is reflected in the vascular anatomy of the pancreas where islets have separate arterioles. There is also an insulo-acinar portal system, where numerous venules connect each islet to the acinar capillaries. Both islets and acini possess strong metabolic regulation of their blood perfusion. Of particular importance, especially in the islets, is adenosine and ATP/ADP. Basal and stimulated blood flow is modified by local endothelial mediators, the nervous system as well as gastrointestinal hormones. Normally the responses to the nervous system, especially the parasympathetic and sympathetic nerves, are fairly similar in endocrine and exocrine parts. The islets seem to be more sensitive to the effects of endothelial mediators, especially nitric oxide, which is a permissive factor to maintain the high basal islet blood flow. The gastrointestinal hormones with pancreatic effects mainly influence the exocrine pancreatic blood flow, whereas islets are less affected. A notable exception is incretin hormones and adipokines, which preferentially affect islet vasculature. Islet hormones can influence both exocrine and endocrine blood vessels, and these complex effects are discussed. Secondary changes in pancreatic and islet blood flow occur during several conditions. To what extent changes in blood perfusion may affect the pathogenesis of pancreatic diseases is discussed. Both type 2 diabetes mellitus and acute pancreatitis are conditions where we think there is evidence that blood flow may contribute to disease manifestations. © 2019 American Physiological Society. Compr Physiol 9:799-837, 2019.
Collapse
Affiliation(s)
- Leif Jansson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden
| | - Per-Ola Carlsson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden.,Uppsala University, Department of Medical Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
Pronin AN, Wang Q, Slepak VZ. Teaching an Old Drug New Tricks: Agonism, Antagonism, and Biased Signaling of Pilocarpine through M3 Muscarinic Acetylcholine Receptor. Mol Pharmacol 2017; 92:601-612. [PMID: 28893976 PMCID: PMC5635516 DOI: 10.1124/mol.117.109678] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/06/2017] [Indexed: 12/27/2022] Open
Abstract
Pilocarpine is a prototypical drug used to treat glaucoma and dry mouth and is classified as either a full or partial muscarinic agonist. Here, we report several unexpected results pertaining to its interaction with muscarinic M3 receptor (M3R). We found that pilocarpine was 1000 times less potent in stimulating mouse-eye pupil constriction than muscarinic agonists oxotremorin-M (Oxo-M) or carbachol (CCh), although all three ligands have similar Kd values for M3R. In contrast to CCh or Oxo-M, pilocarpine does not induce Ca2+ mobilization via endogenous M3R in human embryonic kidney cell line 293T (HEK293T) or mouse insulinoma (MIN6) cells. Pilocarpine also fails to stimulate insulin secretion and, instead, antagonizes the insulinotropic effect of Oxo-M and CCh-induced Ca2+ upregulation; however, in HEK293T or Chinese hamster ovary-K1 cells overexpressing M3R, pilocarpine induces Ca2+ transients like those recorded with another cognate G protein-coupled muscarinic receptor, M1R. Stimulation of cells overexpressing M1R or M3R with CCh resulted in a similar reduction in phosphatidylinositol 4,5-bisphosphate (PIP2). In contrast to CCh, pilocarpine stimulated PIP2 hydrolysis only in cells overexpressing M1R but not M3R. Moreover, pilocarpine blocked CCh-stimulated PIP2 hydrolysis in M3R-overexpressing cells, thus, it acted as an antagonist. Pilocarpine activates extracellular regulated kinase 1/2 in MIN6 cells. The stimulatory effect on extracellular regulated kinase (ERK1/2) was blocked by the Src family kinase inhibitor PP2, indicating that the action of pilocarpine on endogenous M3R is biased toward β-arrestin. Taken together, our findings show that pilocarpine can act as either an agonist or antagonist of M3R, depending on the cell type, expression level, and signaling pathway downstream of this receptor.
Collapse
Affiliation(s)
- Alexey N Pronin
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Qiang Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
9
|
Wang Q, Pronin AN, Levay K, Almaca J, Fornoni A, Caicedo A, Slepak VZ. Regulator of G-protein signaling Gβ5-R7 is a crucial activator of muscarinic M3 receptor-stimulated insulin secretion. FASEB J 2017; 31:4734-4744. [PMID: 28687610 DOI: 10.1096/fj.201700197rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022]
Abstract
In pancreatic β cells, muscarinic cholinergic receptor M3 (M3R) stimulates glucose-induced secretion of insulin. Regulator of G-protein signaling (RGS) proteins are critical modulators of GPCR activity, yet their role in β cells remains largely unknown. R7 subfamily RGS proteins are stabilized by the G-protein subunit Gβ5, such that the knockout of the Gnb5 gene results in degradation of all R7 subunits. We found that Gnb5 knockout in mice or in the insulin-secreting MIN6 cell line almost completely eliminates insulinotropic activity of M3R. Moreover, overexpression of Gβ5-RGS7 strongly promotes M3R-stimulated insulin secretion. Examination of this noncanonical mechanism in Gnb5-/- MIN6 cells showed that cAMP, diacylglycerol, or Ca2+ levels were not significantly affected. There was no reduction in the amplitude of free Ca2+ responses in islets from the Gnb5-/- mice, but the frequency of Ca2+ oscillations induced by cholinergic agonist was lowered by more than 30%. Ablation of Gnb5 impaired M3R-stimulated phosphorylation of ERK1/2. Stimulation of the ERK pathway in Gnb5-/- cells by epidermal growth factor restored M3R-stimulated insulin release to near normal levels. Identification of the novel role of Gβ5-R7 in insulin secretion may lead to a new therapeutic approach for improving pancreatic β-cell function.-Wang, Q., Pronin, A. N., Levay, K., Almaca, J., Fornoni, A., Caicedo, A., Slepak, V. Z. Regulator of G-protein signaling Gβ5-R7 is a crucial activator of muscarinic M3 receptor-stimulated insulin secretion.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; and
| | - Alexey N Pronin
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; and
| | - Konstantin Levay
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; and
| | - Joana Almaca
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Alessia Fornoni
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Alejandro Caicedo
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; and
| |
Collapse
|
10
|
Marshall-Gradisnik S, Johnston S, Chacko A, Nguyen T, Smith P, Staines D. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Int Med Res 2016; 44:1381-1394. [PMID: 27834303 PMCID: PMC5536760 DOI: 10.1177/0300060516671622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective The pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is unknown; however, a small subgroup of patients has shown muscarinic antibody positivity and reduced symptom presentation following anti-CD20 intervention. Given the important roles of calcium (Ca2+) and acetylcholine (ACh) signalling in B cell activation and potential antibody development, we aimed to identify relevant single nucleotide polymorphisms (SNPs) and genotypes in isolated B cells from CFS/ME patients. Methods A total of 11 CFS/ME patients (aged 31.82 ± 5.50 years) and 11 non-fatigued controls (aged 33.91 ± 5.06 years) were included. Flow cytometric protocols were used to determine B cell purity, followed by SNP and genotype analysis for 21 mammalian TRP ion channel genes and nine mammalian ACh receptor genes. SNP association and genotyping analysis were performed using ANOVA and PLINK analysis software. Results Seventy-eight SNPs were identified in nicotinic and muscarinic acetylcholine receptor genes in the CFS/ME group, of which 35 were in mAChM3. The remaining SNPs were identified in nAChR delta (n = 12), nAChR alpha 9 (n = 5), TRPV2 (n = 7), TRPM3 (n = 4), TRPM4 (n = 1) mAChRM3 2 (n = 2), and mAChRM5 (n = 3) genes. Nine genotypes were identified from SNPs in TRPM3 (n = 1), TRPC6 (n = 1), mAChRM3 (n = 2), nAChR alpha 4 (n = 1), and nAChR beta 1 (n = 4) genes, and were located in introns and 3′ untranslated regions. Odds ratios for these specific genotypes ranged between 7.11 and 26.67 for CFS/ME compared with the non-fatigued control group. Conclusion This preliminary investigation identified a number of SNPs and genotypes in genes encoding TRP ion channels and AChRs from B cells in patients with CFS/ME. These may be involved in B cell functional changes, and suggest a role for Ca2+ dysregulation in AChR and TRP ion channel signalling in the pathomechanism of CFS/ME.
Collapse
Affiliation(s)
- Sonya Marshall-Gradisnik
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Samantha Johnston
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Anu Chacko
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Thao Nguyen
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Peter Smith
- 2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Donald Staines
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| |
Collapse
|
11
|
Checks and balances on cholinergic signaling in brain and body function. Trends Neurosci 2015; 38:448-58. [DOI: 10.1016/j.tins.2015.05.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/19/2015] [Accepted: 05/25/2015] [Indexed: 02/07/2023]
|
12
|
Liste MJV, Caltabiano G, Ward RJ, Alvarez-Curto E, Marsango S, Milligan G. The molecular basis of oligomeric organization of the human M3 muscarinic acetylcholine receptor. Mol Pharmacol 2015; 87:936-53. [PMID: 25769304 DOI: 10.1124/mol.114.096925] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/13/2015] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors, including the M3 muscarinic acetylcholine receptor, can form homo-oligomers. However, the basis of these interactions and the overall organizational structure of such oligomers are poorly understood. Combinations of site-directed mutagenesis and homogenous time-resolved fluorescence resonance energy transfer studies that assessed interactions between receptor protomers at the surface of transfected cells indicated important contributions of regions of transmembrane domains I, IV, V, VI, and VII as well as intracellular helix VIII to the overall organization. Molecular modeling studies based on both these results and an X-ray structure of the inactive state of the M3 receptor bound by the antagonist/inverse agonist tiotropium were then employed. The results could be accommodated fully by models in which a proportion of the cell surface M3 receptor population is a tetramer with rhombic, but not linear, orientation. This is consistent with previous studies based on spectrally resolved, multiphoton fluorescence resonance energy transfer. Modeling studies furthermore suggest an important role for molecules of cholesterol at the dimer + dimer interface of the tetramer, which is consistent with the presence of cholesterol at key locations in many G protein-coupled receptor crystal structures. Mutants that displayed disrupted quaternary organization were often poorly expressed and showed immature N-glycosylation. Sustained treatment of cells expressing such mutants with the muscarinic receptor inverse agonist atropine increased cellular levels and restored both cell surface delivery and quaternary organization to many of the mutants. These observations suggest that organization as a tetramer may occur before plasma membrane delivery and may be a key step in cellular quality control assessment.
Collapse
Affiliation(s)
- María José Varela Liste
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom (M.J.V.L., G.C., R.J.W., E.A.-C., S.M., G.M.), and Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain (G.C.)
| | - Gianluigi Caltabiano
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom (M.J.V.L., G.C., R.J.W., E.A.-C., S.M., G.M.), and Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain (G.C.)
| | - Richard J Ward
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom (M.J.V.L., G.C., R.J.W., E.A.-C., S.M., G.M.), and Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain (G.C.)
| | - Elisa Alvarez-Curto
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom (M.J.V.L., G.C., R.J.W., E.A.-C., S.M., G.M.), and Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain (G.C.)
| | - Sara Marsango
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom (M.J.V.L., G.C., R.J.W., E.A.-C., S.M., G.M.), and Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain (G.C.)
| | - Graeme Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom (M.J.V.L., G.C., R.J.W., E.A.-C., S.M., G.M.), and Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain (G.C.)
| |
Collapse
|
13
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
14
|
Potvin S, Zhornitsky S, Stip E. Antipsychotic-induced changes in blood levels of leptin in schizophrenia: a meta-analysis. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2015; 60:S26-34. [PMID: 25886677 PMCID: PMC4418620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/01/2014] [Indexed: 03/07/2023]
Abstract
OBJECTIVES Weight gain is a major side effect of antipsychotics (APs), which contributes to poor treatment adherence and significant morbidity. The mechanisms involved in AP-induced weight gain are incompletely understood. Recently, it has been proposed that changes in leptin, an cadipocyte-derived hormone exerting anorexigenic effects, may be involved in AP-induced weight gain. Thus far, studies on leptin changes during AP treatment have produced inconsistent results, prompting our group to perform a meta-analysis. METHOD A search of the literature was performed using PubMed and Embase. Studies were included only if reporting peripheral levels of leptin before and after AP treatment in schizophrenia. Effect size estimates were calculated with Hedges g and were aggregated using a random effects model as results were heterogeneous (P<0.10). Meta-regression analyses were performed using study length and changes in body mass index (BMI) as moderator variables. RESULTS Twenty-eight studies were retrieved, including 39 comparisons. A moderate and positive effect size was observed across studies. Olanzapine, clozapine, and quetiapine produced moderate leptin elevations, whereas haloperidol and risperidone were associated with small (nonsignificant) leptin changes. Across studies, BMI changes were significantly associated with increases in leptin levels. There was no effect of sex on AP-induced changes in leptin. CONCLUSIONS A physiological role of leptin in AP-induced weight gain is supported because the most significant leptin increases were observed with APs inducing the most weight gain and because of the observed association between leptin increases and BMI changes. The overall increase in leptin levels suggests that leptin acts as a negative feedback signal in the event of fat increase.
Collapse
Affiliation(s)
- Stéphane Potvin
- Researcher, Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Quebec; Associate Research Professor, Department of Psychiatry, University of Montreal, Montreal, Quebec
| | - Simon Zhornitsky
- Postdoctoral Fellow, Multiple Sclerosis Research Program, Foothills Medical Centre, Calgary, Alberta; Postdoctoral Fellow, Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, Calgary, Alberta
| | - Emmanuel Stip
- Psychiatrist and Professor, Department of Psychiatry, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec; Chair, Department of Psychiatry, Faculty of Medicine, University of Montreal, Montreal, Quebec; Eli Lilly Chair of Schizophrenia, University of Montreal, Montreal, Quebec
| |
Collapse
|
15
|
Somm E, Guérardel A, Maouche K, Toulotte A, Veyrat-Durebex C, Rohner-Jeanrenaud F, Maskos U, Hüppi PS, Schwitzgebel VM. Concomitant alpha7 and beta2 nicotinic AChR subunit deficiency leads to impaired energy homeostasis and increased physical activity in mice. Mol Genet Metab 2014; 112:64-72. [PMID: 24685552 DOI: 10.1016/j.ymgme.2014.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 12/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated cation channels well characterized in neuronal signal transmission. Moreover, recent studies have revealed nAChR expression in nonneuronal cell types throughout the body, including tissues involved in metabolism. In the present study, we screen gene expression of nAChR subunits in pancreatic islets and adipose tissues. Mice pancreatic islets present predominant expression of α7 and β2 nAChR subunits but at a lower level than in central structures. Characterization of glucose and energy homeostasis in α7β2nAChR(-/-) mice revealed no major defect in insulin secretion and sensitivity but decreased glycemia apparently unrelated to gluconeogenesis or glycogenolysis. α7β2nAChR(-/-) mice presented an increase in lean and bone body mass and a decrease in fat storage with normal body weight. These observations were associated with elevated spontaneous physical activity in α7β2nAChR(-/-) mice, mainly due to elevation in fine vertical (rearing) activity while their horizontal (ambulatory) activity remained unchanged. In contrast to α7nAChR(-/-) mice presenting glucose intolerance and insulin resistance associated to excessive inflammation of adipose tissue, the present metabolic phenotyping of α7β2nAChR(-/-) mice revealed a metabolic improvement possibly linked to the increase in spontaneous physical activity related to central β2nAChR deficiency.
Collapse
Affiliation(s)
- Emmanuel Somm
- Division of Development and Growth, Department of Paediatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Audrey Guérardel
- Division of Development and Growth, Department of Paediatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kamel Maouche
- Université Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptative), CNRS UMR 8251, Paris, France
| | - Audrey Toulotte
- Division of Development and Growth, Department of Paediatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christelle Veyrat-Durebex
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Françoise Rohner-Jeanrenaud
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Uwe Maskos
- Département de Neuroscience, Institut Pasteur, Unité Neurobiologie intégrative des systèmes cholinergiques, Paris, France
| | - Petra S Hüppi
- Division of Development and Growth, Department of Paediatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valérie M Schwitzgebel
- Division of Development and Growth, Department of Paediatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Sathananthan M, Ikramuddin S, Swain JM, Shah M, Piccinini F, Dalla Man C, Cobelli C, Rizza RA, Camilleri M, Vella A. The effect of vagal nerve blockade using electrical impulses on glucose metabolism in nondiabetic subjects. Diabetes Metab Syndr Obes 2014; 7:305-12. [PMID: 25050073 PMCID: PMC4103924 DOI: 10.2147/dmso.s65733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Vagal interruption causes weight loss in humans and decreases endogenous glucose production in animals. However, it is unknown if this is due to a direct effect on glucose metabolism. We sought to determine if vagal blockade using electrical impulses alters glucose metabolism in humans. PATIENTS AND METHODS We utilized a randomized, cross-over study design where participants were studied after 2 weeks of activation or inactivation of vagal nerve blockade (VNB). Seven obese subjects with impaired fasting glucose previously enrolled in a long-term study to examine the effect of VNB on weight took part. We used a standardized triple-tracer mixed meal to enable measurement of the rate of meal appearance, endogenous glucose production, and glucose disappearance. The 550 kcal meal was also labeled with (111)In-diethylene triamine pentaacetic acid (DTPA) to measure gastrointestinal transit. Insulin action and β-cell responsivity indices were estimated using the minimal model. RESULTS Integrated glucose, insulin, and glucagon concentrations did not differ between study days. This was also reflected in a lack of effect on β-cell responsivity and insulin action. Furthermore, fasting and postprandial endogenous glucose production, integrated meal appearance, and glucose disposal did not differ in the presence or absence of VNB. Similarly, gastric emptying and colonic transit were unchanged by VNB. CONCLUSION In this pilot study in nondiabetic humans, electrical vagal blockade had no acute effects on glucose metabolism, insulin secretion and action, or gastric emptying. It remains to be determined if more pronounced effects would be observed in diabetic subjects.
Collapse
Affiliation(s)
- Matheni Sathananthan
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sayeed Ikramuddin
- Division of General Surgery, University of Minnesota, Minneapolis, MN, USA
| | - James M Swain
- Division of General Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
- Scottsdale Healthcare Bariatric Center, Scottsdale, AZ, USA
| | - Meera Shah
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Chiara Dalla Man
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Claudio Cobelli
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Robert A Rizza
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Michael Camilleri
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Adrian Vella
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
- Correspondence: Adrian Vella, Endocrine Research Unit, Mayo Clinic College of Medicine, 200 First St SW, 5-194 Joseph Rochester, MN 55905, USA, Tel +1 507 255 6515, Fax +1 507 255 4828, Email
| |
Collapse
|
17
|
Abstract
Second generation antipsychotics (SGAs) are widely prescribed to treat various disorders, most notably schizophrenia and bipolar disorder; however, SGAs can cause abnormal glucose metabolism that can lead to insulin-resistance and type 2 diabetes mellitus side-effects by largely unknown mechanisms. This review explores the potential candidature of the acetylcholine (ACh) muscarinic M3 receptor (M3R) as a prime mechanistic and possible therapeutic target of interest in SGA-induced insulin dysregulation. Studies have identified that SGA binding affinity to the M3R is a predictor of diabetes risk; indeed, olanzapine and clozapine, SGAs with the highest clinical incidence of diabetes side-effects, are potent M3R antagonists. Pancreatic M3Rs regulate the glucose-stimulated cholinergic pathway of insulin secretion; their activation on β-cells stimulates insulin secretion, while M3R blockade decreases insulin secretion. Genetic modification of M3Rs causes robust alterations in insulin levels and glucose tolerance in mice. Olanzapine alters M3R density in discrete nuclei of the hypothalamus and caudal brainstem, regions that regulate glucose homeostasis and insulin secretion through vagal innervation of the pancreas. Furthermore, studies have demonstrated a dynamic sensitivity of hypothalamic and brainstem M3Rs to altered glucometabolic status of the body. Therefore, the M3R is in a prime position to influence glucose homeostasis through direct effects on pancreatic β-cells and by potentially altering signalling in the hypothalamus and brainstem. SGA-induced insulin dysregulation may be partly due to blockade of central and peripheral M3Rs, causing an initial disruption to insulin secretion and glucose homeostasis that can progressively lead to insulin resistance and diabetes during chronic treatment.
Collapse
|
18
|
Heng BC, Aubel D, Fussenegger M. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol Adv 2013; 31:1676-94. [DOI: 10.1016/j.biotechadv.2013.08.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 12/23/2022]
|
19
|
Nicotinic Cholinergic Signaling in Adipose Tissue and Pancreatic Islets Biology: Revisited Function and Therapeutic Perspectives. Arch Immunol Ther Exp (Warsz) 2013; 62:87-101. [DOI: 10.1007/s00005-013-0266-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/14/2013] [Indexed: 12/14/2022]
|
20
|
Grando SA, Kawashima K, Kirkpatrick CJ, Meurs H, Wessler I. The non-neuronal cholinergic system: Basic science, therapeutic implications and new perspectives. Life Sci 2012; 91:969-72. [DOI: 10.1016/j.lfs.2012.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|