1
|
Wang XY, Chen AQ, Huang J, Luo JH, Zou Q. A review on structure, bioactivity, mechanism, structure-activity relationship and application of anti-breast cancer polysaccharides. Int J Biol Macromol 2024; 282:137043. [PMID: 39476909 DOI: 10.1016/j.ijbiomac.2024.137043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Breast cancer (BC) is one of the most common female malignant tumors. BC treatment depends on the use of chemotherapeutic drugs, causing various adverse effects. Increasing evidence has shown that natural polysaccharides (NPs) are potential adjuvants or substitutes for anti-BC drugs. However, the information regarding anti-BC NPs remains scattered. Thus, the recent progress in the structure, bioactivity, mechanism and application of anti-BC NPs is comprehensively summarized in this review. Moreover, the structure-activity relationship is discussed. Additionally, the prospects for future work are proposed. Recent studies have shown that anti-BC NPs have diverse structural features, which are affected by the extraction and purification methods. NPs show anti-BC activities in cell and animal experiments as well as in clinical researches, and enhance anti-BC effects of chemotherapeutic drugs in cell and animal experiments. The anti-BC mechanisms of NPs include anti-proliferation, inducing apoptosis, anti-metastasis and anti-invasion, immunoenhancement, gut microbiota regulation and others. The anti-BC activities of NPs are influenced by molecular weight, monosaccharide composition, functional groups, glycosidic bond types, backbone and side chains. NPs-based nanoparticles, nanocarriers, drug delivery systems, nanocomposites and other materials can also be used in anti-BC. This review provides theoretical bases for future research and functional application of NPs in anti-BC.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Ganzhou, China.
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Jing Huang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Ganzhou, China.
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Ganzhou, China.
| |
Collapse
|
2
|
Luo Y, Chen H, Huang C, He S, Wen Q, Cai D. Structure Elucidation of a Novel Polysaccharide Isolated from Euonymus fortunei and Establishing Its Antioxidant and Anticancer Properties. Int J Anal Chem 2024; 2024:8871600. [PMID: 38827786 PMCID: PMC11142861 DOI: 10.1155/2024/8871600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
Euonymusfortunei polysaccharides (EFPs) have not been extensively investigated yet in terms of their extraction and biological activity. The orthogonal experimental design was employed in this study to evaluate the optimum yield of EFPs. A maximum yield of 2.63 ± 0.23% was attained using material-liquid ratios of 60 mL/g, extraction temperature of 80°C, ultrasonic power of 144 W, and extraction time of 75 mins. The polysaccharide content reached 53.47 ± 0.31% when deproteinized thrice. An analysis of monosaccharide composition revealed that these polysaccharides consist of Gal, Glc, Man, Fuc, and Rha with a molar ratio of 7.14 ∶ 23.99 ∶ 6.29 ∶ 6.55 ∶ 1.00, respectively, in EFPs. Subsequently, the in vitro scavenging capacities of 2,2-diphenylpicrylhydrazyl (DPPH) and ·OH and superoxide anion radicals, along with the reducing power of EFPs, were studied. Results revealed that EFPs have higher antioxidant activity, particularly ·OH scavenging, as well as reducing power, as compared to Astragalus polysaccharides (ASPs) and Lycium barbarum polysaccharides (LBPs). The Cell Counting Kit-8 (CCK-8) method was used to evaluate the effects of different concentrations of polysaccharides on SKOV3 cell proliferation, and the results revealed their inhibition at concentrations in the range of 200-800 μg/mL. In addition, findings from flow cytometry further confirmed that EFPs blocked the cell cycle at G0/G1 and S phases and induced SKOV3 cell apoptosis. In a word, EFPs could be exploited and used further based on the experimental results from this study.
Collapse
Affiliation(s)
- Yu Luo
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Nanning 530021, China
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Hongtao Chen
- Guangxi University of Chinese Medicine Bainianle Pharmaceutical Co., Ltd, Nanning 530000, China
| | - Chunxi Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shujia He
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Qilong Wen
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
| | - Danzhao Cai
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| |
Collapse
|
3
|
Ma L, Ai F, Xiao H, Wang F, Shi L, Bai X, Zhu Y, Ma W. Lycium barbarum polysaccharide reverses drug resistance in oxaliplatin-resistant colon cancer cells by inhibiting PI3K/AKT-dependent phosphomannose isomerase. Front Pharmacol 2024; 15:1367747. [PMID: 38576495 PMCID: PMC10991850 DOI: 10.3389/fphar.2024.1367747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Objective: Here, we aimed to explore the effect of LBP in combination with Oxaliplatin (OXA) on reversing drug resistance in colon cancer cells through in vitro and in vivo experiments. We also aimed to explore the possible mechanism underlying this effect. Finally, we aimed to determine potential targets of Lycium barbarum polysaccharide (LBP) in colon cancer (CC) through network pharmacology and molecular docking. Methods: The invasion ability of colon cancer cells was assessed using the invasion assay. The migration ability of these cells was assessed using the migration assay and wound healing assay. Cell cycle analysis was carried out using flow cytometry. The expression levels of phosphomannose isomerase (PMI) and ATP-binding cassette transport protein of G2 (ABCG2) proteins were determined using immunofluorescence and western blotting. The expression levels of phosphatidylinositol3-kinase (PI3K), protein kinase B (AKT), B-cell lymphoma 2 (Bcl-2), and BCL2-Associated X (Bax) were determined using western blotting. Forty BALB/c nude mice purchased from Weitong Lihua, Beijing, for the in vivo analyses. The mice were randomly divided into eight groups. They were administered HCT116 and HCT116-OXR cells to prepare colon cancer xenograft models and then treated with PBS, LBP (50 mg/kg), OXA (10 mg/kg), or LBP + OXA (50 mg/kg + 10 mg/kg). The tumor weight and volume of treated model mice were measured, and organ toxicity was evaluated using hematoxylin and eosin staining. The expression levels of PMI, ABCG2, PI3K, and AKT proteins were then assessed using immunohistochemistry. Moreover, PMI and ABCG2 expression levels were analyzed using immunofluorescence and western blotting. The active components and possible targets of LBP in colon cancer were explored using in silico analysis. GeneCards was used to identify CC targets, and an online Venn analysis tool was used to determine intersection targets between these and LBP active components. The PPI network for intersection target protein interactions and the PPI network for interactions between the intersection target proteins and PMI was built using STRING and Cytoscape. To obtain putative targets of LBP in CC, we performed GO function enrichment and KEGG pathway enrichment analyses. Results: Compared with the HCT116-OXR blank treatment group, both invasion and migration abilities of HCT116-OXR cells were inhibited in the LBP + OXA (2.5 mg/mL LBP, 10 μΜ OXA) group (p < 0.05). Cells in the LBP + OXA (2.5 mg/mL LBP, 10 μΜ OXA) group were found to arrest in the G1 phase of the cell cycle. Knockdown of PMI was found to downregulate PI3K, AKT, and Bcl-2 (p < 0.05), while it was found to upregulate Bax (p < 0.05). After treatment with L. barbarum polysaccharide, 40 colon cancer subcutaneous tumor models showed a decrease in tumor size. There was no difference in the liver index after LBP treatment (p > 0.05). However, the spleen index decreased in the OXA and LBP + OXA groups (p < 0.05), possibly as a side effect of oxaliplatin. Immunohistochemistry, immunofluorescence, and western blotting showed that LBP + OXA treatment decreased PMI and ABCG2 expression levels (p < 0.05). Moreover, immunohistochemistry showed that LBP + OXA treatment decreased the expression levels of PI3K and AKT (p < 0.05). Network pharmacology analysis revealed 45 active LBP components, including carotenoids, phenylpropanoids, quercetin, xanthophylls, and other polyphenols. It also revealed 146 therapeutic targets of LBP, including AKT, SRC, EGFR, HRAS, STAT3, and MAPK3. KEGG pathway enrichment analysis showed that the LBP target proteins were enriched in pathways, including cancer-related signaling pathways, PI3K/AKT signaling pathway, and IL-17 signaling pathways. Finally, molecular docking experiments revealed that the active LBP components bind well with ABCG2 and PMI. conclusion: Our in vitro experiments showed that PMI knockdown downregulated PI3K, AKT, and Bcl-2 and upregulated Bax. This finding confirms that PMI plays a role in drug resistance by regulating the PI3K/AKT pathway and lays a foundation to study the mechanism underlying the reversal of colon cancer cell drug resistance by the combination of LBP and OXA. Our in vivo experiments showed that LBP combined with oxaliplatin could inhibit tumor growth. LBP showed no hepatic or splenic toxicity. LBP combined with oxaliplatin could downregulate the expression levels of PMI, ABCG2, PI3K, and AKT; it may thus have positive significance for the treatment of advanced metastatic colon cancer. Our network pharmacology analysis revealed the core targets of LBP in the treatment of CC as well as the pathways they are enriched in. It further verified the results of our in vitro and in vivo experiments, showing the involvement of multi-component, multi-target, and multi-pathway synergism in the drug-reversing effect of LBP in CC. Overall, the findings of the present study provide new avenues for the future clinical treatment of CC.
Collapse
Affiliation(s)
- Lijun Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Ethnomedicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Fangfang Ai
- Key Laboratory of Ningxia Ethnomedicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hongyan Xiao
- People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Fang Wang
- People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Lei Shi
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xuehong Bai
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yongzhao Zhu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Wenping Ma
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| |
Collapse
|
4
|
Liu Q, Song B, Tong S, Yang Q, Zhao H, Guo J, Tian X, Chang R, Wu J. Research Progress on the Anticancer Activity of Plant Polysaccharides. Recent Pat Anticancer Drug Discov 2024; 19:573-598. [PMID: 37724671 DOI: 10.2174/1574892819666230915103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 09/21/2023]
Abstract
Tumor is a serious threat to human health, with extremely high morbidity and mortality rates. However, tumor treatment is challenging, and the development of antitumor drugs has always been a significant research focus. Plant polysaccharides are known to possess various biological activities. They have many pharmacological properties such as immunomodulation, antitumor, antiviral, antioxidative, antithrombotic, and antiradiation effects, reduction of blood pressure and blood sugar levels, and protection from liver injury. Among these effects, the antitumor effect of plant polysaccharides has been widely studied. Plant polysaccharides can inhibit tumor proliferation and growth by inhibiting tumor cell invasion and metastasis, inducing cell apoptosis, affecting the cell cycle, and regulating the tumor microenvironment. They also have the characteristics of safety, high efficiency, and low toxicity, which can alleviate, to a certain extent, the adverse reactions caused by traditional tumor treatment methods such as surgery, radiotherapy, and chemotherapy. Therefore, this paper systematically summarizes the direct antitumor effects of plant polysaccharides, their regulatory effects on the tumor microenvironment, and intervening many common high-incidence tumors in other ways. It also provides data support for the administration of plant polysaccharides in modern tumor drug therapy, enabling the identification of new targets and development of new drugs for tumor therapy.
Collapse
Affiliation(s)
- Qiaoyan Liu
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Bo Song
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Sen Tong
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qiuqiong Yang
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Huanhuan Zhao
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jia Guo
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xuexia Tian
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Renjie Chang
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Junzi Wu
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
5
|
Niu C, Liu Y, Yang Y, Wang R, Li T. Advances in sulfonated modification and bioactivity of polysaccharides. Int J Biol Macromol 2023; 253:126400. [PMID: 37611689 DOI: 10.1016/j.ijbiomac.2023.126400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Polysaccharides, as biological macromolecules, are widely found in plants, animals, fungi, and bacteria and exhibit various biological activities. However, many natural polysaccharides exhibit low or non-existent biological activities because of their high molecular weights and poor water solubility, limiting their application in many fields. Sulfonation is one of the most effective chemical modification methods to improve physicochemical properties and biological activities of natural polysaccharides or even impart natural polysaccharides with new biological activities. Therefore, sulfonated polysaccharides have attracted increasing attention because of their antioxidant, anticoagulant, antiviral, and immunomodulatory properties. This paper reviews the recent advances in the sulfonation of polysaccharides, including preparation, characterization, and biological activities of sulfonated polysaccharides, and provides a theoretical basis for wide applications of sulfonated polysaccharides.
Collapse
Affiliation(s)
- Chunmei Niu
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Yanan Liu
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Yuxuan Yang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Ruolin Wang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China.
| | - Tiantian Li
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China.
| |
Collapse
|
6
|
Salinas-Arellano ED, Castro-Dionicio IY, Jeyaraj JG, Mirtallo Ezzone NP, Carcache de Blanco EJ. Phytochemical Profiles and Biological Studies of Selected Botanical Dietary Supplements Used in the United States. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:1-162. [PMID: 37392311 DOI: 10.1007/978-3-031-26768-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Based on their current wide bioavailability, botanical dietary supplements have become an important component of the United States healthcare system, although most of these products have limited scientific evidence for their use. The most recent American Botanical Council Market Report estimated for 2020 a 17.3% increase in sales of these products when compared to 2019, for a total sales volume of $11,261 billion. The use of botanical dietary supplements products in the United States is guided by the Dietary Supplement Health and Education Act (DSHEA) from 1994, enacted by the U.S. Congress with the aim of providing more information to consumers and to facilitate access to a larger number of botanical dietary supplements available on the market than previously. Botanical dietary supplements may be formulated for and use only using crude plant samples (e.g., plant parts such as the bark, leaves, or roots) that can be processed by grinding into a dried powder. Plant parts can also be extracted with hot water to form an "herbal tea." Other preparations of botanical dietary supplements include capsules, essential oils, gummies, powders, tablets, and tinctures. Overall, botanical dietary supplements contain bioactive secondary metabolites with diverse chemotypes that typically are found at low concentration levels. These bioactive constituents usually occur in combination with inactive molecules that may induce synergy and potentiation of the effects observed when botanical dietary supplements are taken in their different forms. Most of the botanical dietary supplements available on the U.S. market have been used previously as herbal remedies or as part of traditional medicine systems from around the world. Their prior use in these systems also provides a certain level of assurance in regard to lower toxicity levels. This chapter will focus on the importance and diversity of the chemical features of bioactive secondary metabolites found in botanical dietary supplements that are responsible for their applications. Many of the active principles of botanical dietary substances are phenolics and isoprenoids, but glycosides and some alkaloids are also present. Biological studies on the active constituents of selected botanical dietary supplements will be discussed. Thus, the present chapter should be of interest for both members of the natural products scientific community, who may be performing development studies of the products available, as well as for healthcare professionals who are directly involved in the analysis of botanical interactions and evaluation of the suitability of botanical dietary supplements for human consumption.
Collapse
Affiliation(s)
- Eric D Salinas-Arellano
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ines Y Castro-Dionicio
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jonathan G Jeyaraj
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Nathan P Mirtallo Ezzone
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Esperanza J Carcache de Blanco
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Li JA, Wei LJ, Bai DM, Liu BC. Lycium barbarum polysaccharide with potential anti-gastric cancer effects mediated by regulation of miR-202-5p/PIK3CA. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
8
|
Li X, Jiang F, Liu M, Qu Y, Lan Z, Dai X, Huang C, Yue X, Zhao S, Pan X, Zhang C. Synthesis, Characterization, and Bioactivities of Polysaccharide Metal Complexes: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6922-6942. [PMID: 35639848 DOI: 10.1021/acs.jafc.2c01349] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural polysaccharides are critical to a wide range of fields (e.g., medicine, food production, and cosmetics) for their various remarkable physical properties and biological activities. However, the bioactivities of naturally acquired polysaccharides may be unsatisfactory and limit their further applications. It is generally known that the chemical structure exhibited by polysaccharides lays the material basis for their biological activities. Accordingly, possible structural modifications should be conducted on polysaccharides for their enhancement. Recently, polysaccharides complexed with metal ions (e.g., Fe, Zn, Mg, Cr, and Pt) have been reported to be possibly used to improve their bioactivities. Moreover, since the properties exhibited by metal ions are normally conserved, polysaccharides may be endowed with new applications. In this review, the synthesis methods, characterization methods, and bioactivities of polysaccharide metal complexes are summarized specifically. Then, the application prospects and limitations of these complexes are analyzed and discussed.
Collapse
Affiliation(s)
- Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Fuchen Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Meiyan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Zhiqiong Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xiaolin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Chi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xuan Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xiaoli Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| |
Collapse
|
9
|
Guo M, Jin J, Zhao D, Rong Z, Cao LQ, Li AH, Sun XY, Jia LY, Wang YD, Huang L, Li YH, He ZJ, Li L, Ma RK, Lv YF, Shao KK, Cao HL. Research Advances on Anti-Cancer Natural Products. Front Oncol 2022; 12:866154. [PMID: 35646647 PMCID: PMC9135452 DOI: 10.3389/fonc.2022.866154] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Malignant tumors seriously threaten people's health and life worldwide. Natural products, with definite pharmacological effects and known chemical structures, present dual advantages of Chinese herbs and chemotherapeutic drug. Some of them exhibit favorable anti-cancer activity. Natural products were categorized into eight classes according to their chemical structures, including alkaloids, terpenoids and volatile oils, inorganic salts, phenylpropanoids, flavonoids and isoflavones, quinone, saponins and polysaccharides. The review focused on the latest advances in anti-cancer activity of representative natural products for every class. Additionally, anti-cancer molecular mechanism and derivatization of natural products were summarized in detail, which would provide new core structures and new insights for anti-cancer new drug development.
Collapse
Affiliation(s)
- Meng Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jie Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dong Zhao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Zheng Rong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lu-Qi Cao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ai-Hong Li
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., LTD, Xi’an, China
| | - Xiao-Ying Sun
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Li-Yi Jia
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yin-Di Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ling Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yi-Heng Li
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zhong-Jing He
- College of Life Sciences, Northwest University, Xi’an, China
| | - Long Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Rui-Kang Ma
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Yi-Fan Lv
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ke-Ke Shao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hui-Ling Cao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., LTD, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
10
|
DU X, Zhang J, Liu L, Xu B, Han H, Dai W, Pei X, Fu X, Hou S. A novel anticancer property of Lycium barbarum polysaccharide in triggering ferroptosis of breast cancer cells. J Zhejiang Univ Sci B 2022; 23:286-299. [PMID: 35403384 DOI: 10.1631/jzus.b2100748] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most malignant tumors and is associated with high mortality rates among women. Lycium barbarum polysaccharide (LBP) is an extract from the fruits of the traditional Chinese herb, L. barbarum. LBP is a promising anticancer drug, due to its high activity and low toxicity. Although it has anticancer properties, its mechanisms of action have not been fully established. Ferroptosis, which is a novel anticancer strategy, is a cell death mechanism that relies on iron-dependent lipid reactive oxygen species (ROS) accumulation. In this study, human breast cancer cells (Michigan Cancer Foundation-7 (MCF-7) and MD Anderson-Metastatic Breast-231 (MDA-MB-231)) were treated with LBP. LBP inhibited their viability and proliferation in association with high levels of ferroptosis. Therefore, we aimed to ascertain whether LBP reduced cell viability through ferroptosis. We found that the structure and function of mitochondria, lipid peroxidation, and expression of solute carrier family 7 member 11 (SLC7A11, also known as xCT, the light-chain subunit of cystine/glutamate antiporter system Xc-) and glutathione peroxidase 4 (GPX4) were altered by LBP. Moreover, the ferroptosis inhibitor, Ferrostatin-1 (Fer-1), rescued LBP-induced ferroptosis-associated events including reduced cell viability and glutathione (GSH) production, accumulation of intracellular free divalent iron ions and malondialdehyde (MDA), and down-regulation of the expression of xCT and GPX4. Erastin (xCT inhibitor) and RSL3 (GPX4 inhibitor) inhibited the expression of xCT and GPX4, respectively, which was lower after the co-treatment of LBP with Erastin and RSL3. These results suggest that LBP effectively prevents breast cancer cell proliferation and promotes ferroptosis via the xCT/GPX4 pathway. Therefore, LBP exhibits novel anticancer properties by triggering ferroptosis, and may be a potential therapeutic option for breast cancer.
Collapse
Affiliation(s)
- Xing DU
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Jingjing Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.,Department of Clinical Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Shaozhang Hou
- Department of Clinical Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China. ,
| |
Collapse
|
11
|
Qi Y, Duan G, Fan G, Peng N. Effect of Lycium barbarum polysaccharides on cell signal transduction pathways. Biomed Pharmacother 2022; 147:112620. [PMID: 35032768 DOI: 10.1016/j.biopha.2022.112620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
Lycium barbarum polysaccharide (LBP), is a major active ingredient Lycium barbarum (LB), which exhibits several beneficial effects through NF-κB, PI3K-Akt-mTOR, p38-MAPK, Wnt-β-catenin, PI3K-Akt-GSK-3β, and MyD88 signal pathway, including anti-oxidation, and anti-aging, hypolipidemic and hypoglycemic, radiation, anti-tumor, and neuroprotection. Today, many researching papers are published on the LBP in physiology and pathology; however, the review of the LBP taking part in the signal transduction pathway in physiology and pathology is rear searched. Therefore, this research topic is a collection of reviews and original research articles that focus on the methods of the LBP extraction and its effects on the signal transduction pathway. The aim of this study is to provide theoretical evidence for in-depth analysis of the mechanisms of LBP in clinical clinical research studies.
Collapse
Affiliation(s)
- Youchao Qi
- Qinghai University, Xining 810016, China; College of Agriculture and Animal husbandry, Qinghai University, Xining 810016, China; Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, China
| | - Guozhen Duan
- Qinghai University, Xining 810016, China; Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China; Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, China.
| | - Guanghui Fan
- Qinghai University, Xining 810016, China; Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China; Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, China.
| | - Ning Peng
- Qinghai University, Xining 810016, China
| |
Collapse
|
12
|
Sanghavi A, Srivatsa A, Adiga D, Chopra A, Lobo R, Kabekkodu SP, Gadag S, Nayak U, Sivaraman K, Shah A. Goji berry (Lycium barbarum) inhibits the proliferation, adhesion, and migration of oral cancer cells by inhibiting the ERK, AKT, and CyclinD cell signaling pathways: an in-vitro study. F1000Res 2022; 11:1563. [PMID: 36761830 PMCID: PMC9887205 DOI: 10.12688/f1000research.129250.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Background: Lycium barbarum (L. barbarum), popularly referred to as Goji berry, is a promising herb known for its powerful anti-antioxidant, antibacterial, and anti-inflammatory properties. It is used in traditional Chinese medicine for treating inflammatory and infectious diseases. It has also shown good anti-cancer properties and has been tested against liver, colon, prostate, breast, and cervical cancers. However, no study has yet evaluated the role of goji berries against oral cancer. Hence, the present paper aims to evaluate the anticancer properties of L. barbarum against oral squamous cell carcinoma. Method: Ethanolic extract of L. barbarum (EELB) was tested for its anticancer properties by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, colony formation, cell proliferation, and scratch wound test. The impact of EELB on the signaling transduction pathways of Extracellular signal-regulated kinase (ERK1/2), protein kinase (AKT1), cyclin D1 and epithelial-mesenchymal transition (EMT) was also assessed by western blot. Results: The results showed that EELB can impede CAL-27 cell growth, proliferation and migration in-vitro. It even reduced the phosphorylation of ERK1/2 and AKT1 with concomitant downregulation of cyclin D1 (CCND1), cadherin 2 (CDH2), and vimentin (VIM) and upregulation of cadherin 1 (CDH1) expression suggesting its anti-proliferative and anti-EMT effects in oral cancer. Conclusion: Goji berry has good antiproliferative and anti-invasive properties. It affects potential EMT markers and signaling transduction pathways involved in oral cancers. Hence goji berry can be tried as a potential anticancer agent to manage oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Amee Sanghavi
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ananth Srivatsa
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Aditi Chopra
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Richard Lobo
- Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shivaprasada Gadag
- Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Nayak
- Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Karthik Sivaraman
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ashmeet Shah
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
13
|
Raza A, Iqbal J, Munir MU, Asif A, Ahmed A. Anticancer Potential of Polysaccharides. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
14
|
Zeaxanthin-Rich Extract from Superfood Lycium barbarum Selectively Modulates the Cellular Adhesion and MAPK Signaling in Melanoma versus Normal Skin Cells In Vitro. Molecules 2021; 26:molecules26020333. [PMID: 33440679 PMCID: PMC7827977 DOI: 10.3390/molecules26020333] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
The concern for implementing bioactive nutraceuticals in antioxidant-related therapies is of great importance for skin homeostasis in benign or malignant diseases. In order to elucidate some novel insights of Lycium barbarum (Goji berry) activity on skin cells, the present study focused on its active compound zeaxanthin. By targeting the stemness markers CD44 and CD105, with deep implications in skin oxidative stress mechanisms, we revealed, for the first time, selectivity in zeaxanthin activity. When applied in vitro on BJ human fibroblast cell line versus the A375 malignant melanoma cells, despite the moderate cytotoxicity, the zeaxanthin-rich extracts 1 and 2 were able to downregulate significantly the CD44 and CD105 membrane expression and extracellular secretion in A375, and to upregulate them in BJ cells. At mechanistic level, the present study is the first to demonstrate that the zeaxanthin-rich Goji extracts are able to influence selectively the mitogen-activated protein kinases (MAPK): ERK, JNK and p38 in normal BJ versus tumor-derived A375 skin cells. These results point out towards the applications of zeaxanthin from L. barbarum as a cytoprotective agent in normal skin and raises questions about its use as an antitumor prodrug alone or in combination with standard therapy.
Collapse
|
15
|
Lycium barbarum (goji berry), human breast cancer, and antioxidant profile. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
16
|
Chen ZY, Chen SH, Chen CH, Chou PY, Yang CC, Lin FH. Polysaccharide Extracted from Bletilla striata Promotes Proliferation and Migration of Human Tenocytes. Polymers (Basel) 2020; 12:polym12112567. [PMID: 33139654 PMCID: PMC7694129 DOI: 10.3390/polym12112567] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
Tendon healing after injury is relatively slow, mainly because of the weak activity and metabolic properties of tendon cells (tenocytes). Bletilla striata polysaccharide (BSP) has been reported to enhance cell proliferation. Here, we aimed to increase tendon cell proliferation by BSP treatment. We isolated tenocytes from the flexor tendon of human origin. Moreover, we improved the process of extracting BSP. When human tenocytes (HTs) were treated with 100 μg/mL BSP, the MEK/ERK1/2 and PI3K/Akt signaling pathways were activated, thereby enhancing the proliferation ability of tenocytes. BSP treatment also increased the migration of HTs and their ability to secrete the extracellular matrix (Col-I and Col-III). In conclusion, BSP was successfully extracted from a natural Chinese herbal extract and was shown to enhance tenocytes proliferation, migration and collagen release ability. This study is the first to demonstrate improved healing of tendons using BSP.
Collapse
Affiliation(s)
- Zhi-Yu Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan; (Z.-Y.C.); (S.-H.C.)
| | - Shih-Heng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan; (Z.-Y.C.); (S.-H.C.)
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 333, Taiwan; (C.-H.C.); (P.-Y.C.)
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 333, Taiwan; (C.-H.C.); (P.-Y.C.)
| | - Pang-Yun Chou
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 333, Taiwan; (C.-H.C.); (P.-Y.C.)
| | - Chun-Chen Yang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 100, Taiwan;
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan; (Z.-Y.C.); (S.-H.C.)
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 350, Taiwan
- Correspondence: ; Tel.: +886-928260400
| |
Collapse
|
17
|
Fakhfakh J, Athmouni K, Mallek-Fakhfakh H, Ayedi H, Allouche N. Polysaccharide from Lycium arabicum: Structural Features, in Vitro Antioxidant Activities and Protective Effect against Oxidative Damage in Human Erythrocytes. Chem Biodivers 2020; 17:e2000614. [PMID: 33084194 DOI: 10.1002/cbdv.202000614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/20/2020] [Indexed: 11/06/2022]
Abstract
In this research work, a water-soluble polysaccharide (LAP) isolated from the fruits of Lycium arabicum was investigated. LAP contains carbohydrates (82.45±1.23 %), protein (1.56±0.21 %), and uronic acids (3.56±0.34 %). The analysis of the monosaccharide composition revealed the presence of rhamnose, arabinose, galactose, glucose and mannose in a molar ratio of 4.7 : 1.5 : 1 : 8.7 : 16.4 : 5.6. The extracted polysaccharide (PS) was considered as heterogeneous and highly branched by interpreting its GC/MS, FT-IR and NMR data. Crystallinity of LAP was inferred from its X-ray diffractometry (XRD) and Scanning Electron Microscopy (SEM) analysis. LAP exhibited an interesting stability at high temperatures (∼254 °C) and in a wide range of pH (3-9) deduced, respectively, from its DSC and zeta potential analysis. LAP displayed a strong antioxidant activity at low concentrations evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging, ferric reducing activity power (FRAP), free radical scavenging ability, superoxide radical-scavenging and hydroxyl radical-scavenging abilities. Inhibition of erythrocyte hemolysis and lipid peroxidation was also assessed. In 5 h, LAP treatment allowed the protection of the damaged erythrocytes caused by AAPH (2,2-azobis(2-amidinopropane) dihydrochloride), to reduce the level of malondialdehyde (MDA) as well as to increase the reduced glutathione (GSH) level.
Collapse
Affiliation(s)
- Jawhar Fakhfakh
- Laboratory of Organic Chemistry LR17ES08 (Natural Substances Section), Department of Chemistry, Faculty of Sciences, University of Sfax, Road of Soukra, Km 4.5, P.O. Box 1171, 3000, Sfax, Tunisia
| | - Khaled Athmouni
- Faculty of Sciences, Department of Life Sciences, Laboratory of Animal Ecophysiology, University of Sfax, P.O. Box 95, 3000, Sfax, Tunisia
| | - Hanen Mallek-Fakhfakh
- Laboratory of Organic Chemistry LR17ES08 (Natural Substances Section), Department of Chemistry, Faculty of Sciences, University of Sfax, Road of Soukra, Km 4.5, P.O. Box 1171, 3000, Sfax, Tunisia.,Laboratory of Molecular Biotechnology of Eucaryotes, Center of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sidi Mansour, 3018, Sfax, Tunisia
| | - Habib Ayedi
- Faculty of Sciences, Department of Life Sciences, Laboratory of Animal Ecophysiology, University of Sfax, P.O. Box 95, 3000, Sfax, Tunisia
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08 (Natural Substances Section), Department of Chemistry, Faculty of Sciences, University of Sfax, Road of Soukra, Km 4.5, P.O. Box 1171, 3000, Sfax, Tunisia
| |
Collapse
|
18
|
Li L, Thakur K, Cao YY, Liao BY, Zhang JG, Wei ZJ. Anticancerous potential of polysaccharides sequentially extracted from Polygonatum cyrtonema Hua in Human cervical cancer Hela cells. Int J Biol Macromol 2020; 148:843-850. [DOI: 10.1016/j.ijbiomac.2020.01.223] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/18/2019] [Accepted: 01/22/2020] [Indexed: 10/25/2022]
|
19
|
Chen J, Long L, Jiang Q, Kang B, Li Y, Yin J. Effects of dietary supplementation of Lycium barbarum polysaccharides on growth performance, immune status, antioxidant capacity and selected microbial populations of weaned piglets. J Anim Physiol Anim Nutr (Berl) 2019; 104:1106-1115. [PMID: 31746060 DOI: 10.1111/jpn.13247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/18/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Lycium barbarum polysaccharides (LBPs) are a complex mixture of highly branched and partially characterised polysaccharides and proteoglycans extracted from the goji berry. This mixture has great potential as a novel feed supplement for pigs. Two trials were conducted to evaluate the effects of supplementation with LBPs on the growth performance, immune status, antioxidant capacity and selected intestinal microbial populations in weaned piglets. In trial 1, a total of 400 weaned piglets [(Yorkshire × Landrace) × Duroc] with an average body weight (BW) of 6.34 ± 0.16 kg (21 days of age) were divided into five groups and fed a basal diet (control group) or a basal diet containing 1,000, 2,000, 4,000 or 6,000 mg/kg LBPs (supplemented at the expense of corn). Supplementation with 4,000 or 6,000 mg/kg LBPs for 2 weeks significantly increased the average daily gain (ADG) and average daily feed intake (ADFI) of the pigs compared with the control group (p < .05). In trial 2, thirty-two 21-days-old weaned piglets (BW: 6.33 ± 0.11 kg) were allotted to a control group (fed with a basal diet) or an experimental group (basal diet containing 4,000 mg/kg LBPs). The experiment lasted for 14 days. Pigs fed LBP diets exhibited an increased ADG and ADFI, and a decreased diarrhoeal incidence compared with those fed the basal diets (p < .05). Supplementation with LBPs increased the serum IgG and IgM levels (p < .05). Dietary LBPs effectively promoted antioxidant defence properties through enhancing the activities of serum, liver superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), in addition to decreasing the malondialdehyde (MDA) content (p < .05). The addition of LBPs increased the amounts of Bacteroidetes in the ileum and caecum and the caecal contents of Lactobacillus spp. and Bifidobacterium spp. (p < .05), while decreased the populations of Escherichia coli and Firmicutes in the ileum and caecum (p < .05) compared with the control group. Our results suggest that dietary supplementation with LBPs can enhance growth performance, immune status and antioxidant capacity, and improve the intestinal microbial populations of weaned piglets.
Collapse
Affiliation(s)
- Jiashun Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Lina Long
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Qian Jiang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Baoju Kang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yinghui Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
20
|
Deng Y, Liu Q, Dang T, Gong G, Chen X, Tang R, Sun J, Song S, Huang L, Wang Z. Preparation, structural characterization and bioactivity of 4-O-Methylglucuronoxylan from Artemisia sphaerocephala Krasch. Carbohydr Polym 2019; 222:115009. [DOI: 10.1016/j.carbpol.2019.115009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 01/19/2023]
|
21
|
Extraction, Structural Characterization, and Biological Functions of Lycium Barbarum Polysaccharides: A Review. Biomolecules 2019; 9:biom9090389. [PMID: 31438522 PMCID: PMC6770593 DOI: 10.3390/biom9090389] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Lycium barbarum polysaccharides (LBPs), as bioactive compounds extracted from L. barbarum L. fruit, have been widely explored for their potential health properties. The extraction and structural characterization methods of LBPs were reviewed to accurately understand the extraction method and structural and biological functions of LBPs. An overview of the biological functions of LBPs, such as antioxidant function, antitumor activity, neuroprotective effects, immune regulating function, and other functions, were summarized. This review provides an overview of LBPs and a theoretical basis for further studying and extending the applications of LBPs in the fields of medicine and food.
Collapse
|
22
|
Sławińska-Brych A, Zdzisińska B, Czerwonka A, Mizerska-Kowalska M, Dmoszyńska-Graniczka M, Stepulak A, Gagoś M. Xanthohumol exhibits anti-myeloma activity in vitro through inhibition of cell proliferation, induction of apoptosis via the ERK and JNK-dependent mechanism, and suppression of sIL-6R and VEGF production. Biochim Biophys Acta Gen Subj 2019; 1863:129408. [PMID: 31386885 DOI: 10.1016/j.bbagen.2019.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/13/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Xanthohumol (XN, a hop-derived prenylflavonoid) was found to exert anticancer effects on various cancer types. However, the mechanisms by which XN affects the survival of multiple myeloma cells (MM) are little known. Therefore, our study was undertaken to address this issue. METHODS Anti-proliferative activity of XN towards two phenotypically distinct MM cell lines U266 and RPMI8226 was evaluated with the MTT and BrdU assays. Cytotoxicity was determined with the LDH method, whereas apoptosis was assessed by flow cytometry and fluorescence staining. The expression of cell cycle- and apoptosis-related proteins and the activation status of signaling pathways were estimated by immunoblotting and ELISA assays. RESULTS XN reduced the viability of RPMI8226 cells more potently than in U266 cells. It blocked cell cycle progression through downregulation of cyclin D1 and increased p21 expression. The marked apoptosis induction in the XN-treated RPMI8226 cells was related to initiation of mitochondrial and extrinsic pathways, as indicated by the altered p53, Bax, and Bcl-2 protein expression, cleavage of procaspase 8 and 9, and elevated caspase-3 activity. The apoptotic process was probably mediated via ROS overproduction and MAPK (ERK and JNK) activation as N-acetylcysteine, or specific inhibitors of these kinases prevented the XN-induced caspase-3 activity and, hence, apoptosis. Moreover, XN decreased sIL-6R and VEGF production in the studied cells. CONCLUSIONS ERK and JNK signaling pathways are involved in XN-induced cytotoxicity against MM cells. GENERAL SIGNIFICANCE The advanced understanding of the molecular mechanisms of XN action can be useful in developing therapeutic strategies to treat multiple myeloma.
Collapse
Affiliation(s)
- Adrianna Sławińska-Brych
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Barbara Zdzisińska
- Department of Virology and Immunology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Virology and Immunology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Magdalena Mizerska-Kowalska
- Department of Virology and Immunology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
23
|
Zhao XQ, Guo S, Yan H, Lu YY, Zhang F, Qian DW, Wang HQ, Duan JA. Analysis of phenolic acids and flavonoids in leaves of Lycium barbarum from different habitats by ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry. Biomed Chromatogr 2019; 33:e4552. [PMID: 30985939 DOI: 10.1002/bmc.4552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022]
Abstract
The leaves of Lycium barbarum (LLB) have been utilized as crude drugs and functional tea for human health in China and Southeast Asia for thousands of years. To control its quality, a rapid and sensitive ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry method was established and validated for the first time for simultaneous determination of 10 phenolic acids and flavonoids (including neochlorogenic acid, protocatechuic aldehyde, p-hydroxybenzoic acid, chlorogenic acid, cryptochlorogenic acid, caffeic acid, p-coumaric acid, ferulic acid, rutin and kaempferol-3-O-rutinoside) in LLB. The separation was performed on an Acquity UPLC C18 chromatographic column (100 × 2.1 mm internal diameter, 1.7 μm particle size) with 0.1% formic acid in water (A)-acetonitrile (B) as the mobile phase under gradient elution. Multiple reaction monitoring mode was adopted to simultaneously monitor the target components. The developed method was fully validated in terms of linearity (r2 ≥ 0.9860), precision (RSD ≤ 6.58%), repeatability (RSD ≤ 6.60%), stability (RSD ≤ 6.17%), recovery (95.56-108.06%, RSD ≤ 4.64%) and limit of detection (0.021-0.664 ng/mL) and limit of quantitation (0.069-2.210 ng/mL), and then successfully applied to evaluate the quality of 64 batches of LLB collected from 41 producing areas in four different provinces of China. The results showed that the LLB, especially collected from Inner Mongolia regions, were rich in the phenolic acids and flavonoids. Rutin, kaempferol-3-O-rutinoside and chlorogenic acid are the predominant compounds contained in LLB. The above findings will provide helpful information for the effective utilization of LLB.
Collapse
Affiliation(s)
- Xue-Qin Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - You-Yuan Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han-Qing Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
24
|
A Systematic Review of Potential Therapeutic Use of Lycium Barbarum Polysaccharides in Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4615745. [PMID: 30891458 PMCID: PMC6390233 DOI: 10.1155/2019/4615745] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/13/2019] [Accepted: 02/03/2019] [Indexed: 12/18/2022]
Abstract
Objective To evaluate the effect of Lycium barbarum polysaccharides in the treatment and/or prevention of diseases of different etiologies and systems. Methods We performed an Entrez PubMed literature search using keywords “lycium”, “barbarum”, “polysaccharides”, “anti-fibrotic”, “anti-apoptotic”, “anti-oxidizing”, “anti-aging”, “neuroprotection”, “metabolism”, “diabetes”, “hyperlipidemia”, “neuroprotection”, and “immunomodulation” on the 14th of August 2018, resulting in 207 papers, of which 20 were chosen after filtering for ‘English language' and ‘published within 10 years' as well as curation for relevance by the authors. Results The 20 selected papers included 2 randomized control trials (1 double-blinded RCT and 1 double-blinded placebo-controlled RCT), 11 in vivo studies, 5 in vitro studies, 1 study with both in vivo and in vitro results, and 1 chemical study. There is good evidence from existing studies on the antifibrotic, antioxidizing, neuroprotective, anticancer, and anti-inflammatory effects of Lycium barbarum polysaccharides. However, there is a need for further studies in the form of large-scale clinical trials to support its use in humans. There is also significant potential for LBP as a safe and effective topical treatment in ocular surface diseases, owing to promising in vitro results and a lack of demonstrated toxic effects to corneal epithelial cells. Conclusion Results from existing studies suggest that LBP is a promising therapeutic agent, particularly in the management of liver disease, hyperlipidemia, and diabetes. One major limitation of current research is a lack of standardization and quality control for the LBP used. The availability of research-grade LBP will inevitably promote future research in this field worldwide.
Collapse
|
25
|
Zhang H, Zheng L, Yuan Z. Lycium barbarum
polysaccharides promoted proliferation and differentiation in osteoblasts. J Cell Biochem 2018; 120:5018-5023. [PMID: 30417412 DOI: 10.1002/jcb.27777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Huiying Zhang
- School of Health Science, Wuhan University Wuhan China
| | - Lei Zheng
- Department of Cardiovascular Medicine, Shanxi Dayi Hospital Taiyuan China
| | - Zhanpeng Yuan
- School of Health Science, Wuhan University Wuhan China
| |
Collapse
|
26
|
Wu DT, Guo H, Lin S, Lam SC, Zhao L, Lin DR, Qin W. Review of the structural characterization, quality evaluation, and industrial application of Lycium barbarum polysaccharides. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Cumaoglu A, Bekci H, Ozturk E, Yerer MB, Baldemir A, Bishayee A. Goji Berry Fruit Extracts Suppress Proliferation of Triple-Negative Breast Cancer Cells by Inhibiting EGFR-Mediated ERK/MAPK and PI3K/Akt Signaling Pathways. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are only a few scientifically robust mechanistic studies with Lycium fruits, also known as Goji berry, that have addressed preventive or therapeutic intervention of breast cancer. In the present study, we aim to investigate the antiproliferative effects of both Lycium barbarum fruit (Goji berry red fruit) and Lycium ruthenicum (Goji berry black fruit) extracts against triple-negative MDA-MB-231 cells and explore the possible mechanisms of their anticancer effects. IC50 values were 87.0 and 79.4 μg/mL for goji berry black fruit extract and goji berry red fruit extract, respectively. Pretreatment with both extracts inhibited phosphorylation of epidermal growth factor receptor (EGFR)/extracellular signal–regulated kinases (ERK) in epidermal growth factor-treated MDA-MB-231 cells. The present study also examined whether the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt signaling pathway was involved in the regulation of Goji berry extract-induced cell death. Furthermore, treatment with Goji berry fruit extracts inhibited the expression of anti-apoptotic Bcl-2, but enhanced pro-apoptotic Bax expression at transcriptional levels and induced cancer cell apoptosis by activation of pro-apoptotic caspase-9 and caspase 3. Goji berry fruit extracts caused death of MDA-MB-231 breast cancer cells by inhibiting EGFR/ERK-mitogen activated protein kinases (MAPK) and PI3K/Akt signaling pathways. This study suggests that Goji berry fruit extracts might be beneficial for treating triple-negative breast cancer.
Collapse
Affiliation(s)
- Ahmet Cumaoglu
- Department of Biochemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Hatice Bekci
- Department of Food Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Ebru Ozturk
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Ayse Baldemir
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
28
|
Bo R, Sun Y, Zhou S, Ou N, Gu P, Liu Z, Hu Y, Liu J, Wang D. Simple nanoliposomes encapsulating Lycium barbarum polysaccharides as adjuvants improve humoral and cellular immunity in mice. Int J Nanomedicine 2017; 12:6289-6301. [PMID: 28894367 PMCID: PMC5584898 DOI: 10.2147/ijn.s136820] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The success of subunit vaccines has been hampered by the problems of weak or short-term immunity and the lack of availability of nontoxic, potent adjuvants. It would be desirable to develop safe and efficient adjuvants with the aim of improving the cellular immune response against the target antigen. In this study, the targeting and sustained release of simple nanoliposomes containing Lycium barbarum polysaccharides (LBP) as an efficacious immune adjuvant to improve immune responses were explored. LBP liposome (LBPL) with high entrapment efficiency (86%) were obtained using a reverse-phase evaporation method and then used to encapsulate the model antigen, ovalbumin (OVA). We demonstrated that the as-synthesized liposome loaded with OVA and LBP (LBPL-OVA) was stable for 45 days and determined the encapsulation stability of OVA at 4°C and 37°C and the release profile of OVA from LBPL-OVA was investigated in pH 7.4 and pH 5.0. Further in vivo investigation showed that the antigen-specific humoral response was correlated with antigen delivery to the draining lymph nodes. The LBPL-OVA were also associated with high levels of uptake by key dendritic cells in the draining lymph nodes and they efficiently stimulated CD4+ and CD8+ T cell proliferation in vivo, further promoting antibody production. These features together elicited a significant humoral and celluar immune response, which was superior to that produced by free antigen alone.
Collapse
Affiliation(s)
- Ruonan Bo
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Yaqin Sun
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Shuzhen Zhou
- Foshan City Nanhai Eastern Along Pharmaceutical Co., Ltd, Foshan, China
| | - Ning Ou
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| |
Collapse
|
29
|
Skenderidis P, Petrotos K, Giavasis I, Hadjichristodoulou C, Tsakalof A. Optimization of ultrasound assisted extraction of of goji berry (Lycium barbarum) fruits and evaluation of extracts' bioactivity. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12522] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prodromos Skenderidis
- Department of Biosystems Engineering; Technological Educational Institute of Thessaly, Ring Road of Larisa-Trikala; Larisa 41110 Greece
- Department of Medicine, Lab of Hygiene and Epidemiology; University of Thessaly, Papakyriazi 22; Larisa 41222 Greece
| | - Kostantinos Petrotos
- Department of Biosystems Engineering; Technological Educational Institute of Thessaly, Ring Road of Larisa-Trikala; Larisa 41110 Greece
| | - Ioannis Giavasis
- Department of Food Technology, end of N. Temponera Street; Technological Educational Institute of Thessaly; Karditsa 43100 Greece
| | - Christos Hadjichristodoulou
- Department of Medicine, Lab of Hygiene and Epidemiology; University of Thessaly, Papakyriazi 22; Larisa 41222 Greece
| | - Andreas Tsakalof
- Department of Medicine, Lab of Hygiene and Epidemiology; University of Thessaly, Papakyriazi 22; Larisa 41222 Greece
| |
Collapse
|
30
|
Chen Y, Yao F, Ming K, Wang D, Hu Y, Liu J. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules 2016; 21:E1705. [PMID: 27983593 PMCID: PMC6273901 DOI: 10.3390/molecules21121705] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangke Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
31
|
Xie JH, Tang W, Jin ML, Li JE, Xie MY. Recent advances in bioactive polysaccharides from Lycium barbarum L., Zizyphus jujuba Mill, Plantago spp., and Morus spp.: Structures and functionalities. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.03.030] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Wawruszak A, Czerwonka A, Okła K, Rzeski W. Anticancer effect of ethanol Lycium barbarum (Goji berry) extract on human breast cancer T47D cell line. Nat Prod Res 2015; 30:1993-6. [PMID: 26525080 DOI: 10.1080/14786419.2015.1101691] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The anticancer activity of ethanol extract isolated from Goji berry (EEGB) on T47D human breast cancer cell line has been reported. Cell viability and cell proliferation were examined with the use of BrdU, MTT and NR methods. Induction of apoptosis was assessed by propidium iodide and Hoechst 33342 staining. Expression of genes involved in cell proliferation, apoptosis, cell cycle control and regulation of transcription was estimated using Western blotting analysis. EEGB inhibited the proliferation of breast cancer cells in a time-, and dose-dependent manner. The study confirmed the lack of EEGB cytotoxic activity to normal human skin fibroblasts. Western blot analysis demonstrated an increase in pro-apoptotic and a decrease in anti-apoptotic proteins' expression in cells treated with the extract. Anticancer activity and lack of toxicity against normal cells indicate a chemopreventive potential of Goji berries in breast cancer treatment.
Collapse
Affiliation(s)
- Anna Wawruszak
- a Department of Virology and Immunology , Maria Curie-Skłodowska University , Lublin , Poland.,b Department of Biochemistry and Molecular Biology , Medical University of Lublin , Lublin , Poland
| | - Arkadiusz Czerwonka
- a Department of Virology and Immunology , Maria Curie-Skłodowska University , Lublin , Poland
| | - Karolina Okła
- c Department of Oncological Gynaecology and Gynaecology , Medical University of Lublin , Lublin , Poland
| | - Wojciech Rzeski
- a Department of Virology and Immunology , Maria Curie-Skłodowska University , Lublin , Poland.,d Department of Medical Biology , Institute of Agricultural Medicine , Lublin , Poland
| |
Collapse
|
33
|
Cheng J, Zhou ZW, Sheng HP, He LJ, Fan XW, He ZX, Sun T, Zhang X, Zhao RJ, Gu L, Cao C, Zhou SF. An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 9:33-78. [PMID: 25552899 PMCID: PMC4277126 DOI: 10.2147/dddt.s72892] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lycium barbarum berries, also named wolfberry, Fructus lycii, and Goji berries, have been used in the People’s Republic of China and other Asian countries for more than 2,000 years as a traditional medicinal herb and food supplement. L. barbarum polysaccharides (LBPs) are the primary active components of L. barbarum berries and have been reported to possess a wide array of pharmacological activities. Herein, we update our knowledge on the main pharmacological activities and possible molecular targets of LBPs. Several clinical studies in healthy subjects show that consumption of wolfberry juice improves general wellbeing and immune functions. LBPs are reported to have antioxidative and antiaging properties in different models. LBPs show antitumor activities against various types of cancer cells and inhibit tumor growth in nude mice through induction of apoptosis and cell cycle arrest. LBPs may potentiate the efficacy of lymphokine activated killer/interleukin-2 combination therapy in cancer patients. LBPs exhibit significant hypoglycemic effects and insulin-sensitizing activity by increasing glucose metabolism and insulin secretion and promoting pancreatic β-cell proliferation. They protect retinal ganglion cells in experimental models of glaucoma. LBPs protect the liver from injuries due to exposure to toxic chemicals or other insults. They also show potent immunoenhancing activities in vitro and in vivo. Furthermore, LBPs protect against neuronal injury and loss induced by β-amyloid peptide, glutamate excitotoxicity, ischemic/reperfusion, and other neurotoxic insults. LBPs ameliorate the symptoms of mice with Alzheimer’s disease and enhance neurogenesis in the hippocampus and subventricular zone, improving learning and memory abilities. They reduce irradiation- or chemotherapy-induced organ toxicities. LBPs are beneficial to male reproduction by increasing the quality, quantity, and motility of sperm, improving sexual performance, and protecting the testis against toxic insults. Moreover, LBPs exhibit hypolipidemic, cardioprotective, antiviral, and antiinflammatory activities. There is increasing evidence from preclinical and clinical studies supporting the therapeutic and health-promoting effects of LBPs, but further mechanistic and clinical studies are warranted to establish the dose–response relationships and safety profiles of LBPs.
Collapse
Affiliation(s)
- Jiang Cheng
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China ; Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Hui-Ping Sheng
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Lan-Jie He
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Xue-Wen Fan
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Tao Sun
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Ruan Jin Zhao
- Center for Traditional Chinese Medicine, Sarasota, FL, USA
| | - Ling Gu
- School of Biology and Chemistry, University of Pu'er, Pu'er, Yunnan, People's Republic of China
| | - Chuanhai Cao
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Shu-Feng Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
34
|
Wang Z, Liu Y, Sun Y, Mou Q, Wang B, Zhang Y, Huang L. Structural characterization of LbGp1 from the fruits of Lycium barbarum L. Food Chem 2014; 159:137-42. [DOI: 10.1016/j.foodchem.2014.02.171] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/24/2014] [Accepted: 02/28/2014] [Indexed: 11/15/2022]
|
35
|
Mocan A, Vlase L, Vodnar DC, Bischin C, Hanganu D, Gheldiu AM, Oprean R, Silaghi-Dumitrescu R, Crișan G. Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. leaves. Molecules 2014; 19:10056-73. [PMID: 25014533 PMCID: PMC6271913 DOI: 10.3390/molecules190710056] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/16/2014] [Accepted: 07/04/2014] [Indexed: 01/14/2023] Open
Abstract
This study was performed to evaluate the in vitro antioxidant and antimicrobial activities and the polyphenolic content of Lycium barbarum L. and L. chinense Mill. leaves. The different leave extracts contain important amounts of flavonoids (43.73 ± 1.43 and 61.65 ± 0.95 mg/g, respectively) and showed relevant antioxidant activity, as witnessed by the quoted methods. Qualitative and quantitative analyses of target phenolic compounds were achieved using a HPLC-UV-MS method. Rutin was the dominant flavonoid in both analysed species, the highest amount being registered for L. chinense. An important amount of chlorogenic acid was determined in L. chinense and L. barbarum extracts, being more than twice as high in L. chinense than in L. barbarum. Gentisic and caffeic acids were identified only in L. barbarum, whereas kaempferol was only detected in L. chinense. The antioxidant activity was evaluated by DPPH, TEAC, hemoglobin ascorbate peroxidase activity inhibition (HAPX) and inhibition of lipid peroxidation catalyzed by cytochrome c assays revealing a better antioxidant activity for the L. chinense extract. Results obtained in the antimicrobial tests revealed that L. chinense extract was more active than L. barbarum against both Gram-positive and Gram-negative bacterial strains. The results suggest that these species are valuable sources of flavonoids with relevant antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, 12 I. Creangă Street, Cluj-Napoca 400010, Romania.
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hațieganu University of Medicine and Pharmacy, 12 I. Creangă Street, Cluj-Napoca 400010, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manăştur Street, Cluj-Napoca 400372, Romania.
| | - Cristina Bischin
- Department of Chemistry and Chemical Engineering Babeș-Bolyai University, 11 A. Janos Street, Cluj-Napoca 400028, Romania.
| | - Daniela Hanganu
- Department of Pharmacognosy, Iuliu Hațieganu University of Medicine and Pharmacy, 12 I. Creangă Street, Cluj-Napoca 400010, Romania.
| | - Ana-Maria Gheldiu
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hațieganu University of Medicine and Pharmacy, 12 I. Creangă Street, Cluj-Napoca 400010, Romania.
| | - Radu Oprean
- Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 L. Pasteur Street, Cluj-Napoca 400010, Romania.
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry and Chemical Engineering Babeș-Bolyai University, 11 A. Janos Street, Cluj-Napoca 400028, Romania.
| | - Gianina Crișan
- Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, 12 I. Creangă Street, Cluj-Napoca 400010, Romania.
| |
Collapse
|
36
|
Wang T, Li Y, Wang Y, Zhou R, Ma L, Hao Y, Jin S, Du J, Zhao C, Sun T, Yu J. Lycium barbarum polysaccharide prevents focal cerebral ischemic injury by inhibiting neuronal apoptosis in mice. PLoS One 2014; 9:e90780. [PMID: 24595452 PMCID: PMC3940937 DOI: 10.1371/journal.pone.0090780] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/04/2014] [Indexed: 01/06/2023] Open
Abstract
AIMS OF THE STUDY To investigate the neuroprotective effect of Lycium barbarum polysaccharide (LBP) on focal cerebral ischemic injury in mice and to explore its possible mechanism. MATERIALS AND METHODS Male ICR mice were used to make the model of middle cerebral artery occlusion (MCAO) after intragastric administration with LBP (10, 20 and 40 mg/kg) and Nimodipine (0.4 mg/kg) for seven successive days. After 24 h of reperfusion, neurological scores were estimated and infarct volumes were measured by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. Morphological changes in ischemic brains were performed for hematoxylin-eosin (HE) staining. The number of apoptotic neurons was detected by TUNEL staining. The Bax, Bcl-2 protein expression and CytC, Caspase-3, -9 and cleaved PARP-1 activation were investigated by immunofluorescence and western-blot analysis. RESULTS LBP (10, 20 and 40 mg/kg) treatment groups significantly reduced infract volume and neurological deficit scores. LBP also relieved neuronal morphological damage and attenuated the neuronal apoptosis. LBP at the dose of 40 mg/kg significantly suppressed overexpression of Bax, CytC, Caspase-3, -9 and cleaved PARP-1, and inhibited the reduction of Bcl-2 expression. CONCLUSIONS Based on these findings we propose that LBP protects against focal cerebral ischemic injury by attenuating the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Tengfei Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yuxiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yongsheng Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Ru Zhou
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Lin Ma
- Key Lab of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yinju Hao
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Shaoju Jin
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Juan Du
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Chengjun Zhao
- Key Laboratory of Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Tao Sun
- Key Lab of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jianqiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China
- Ningxia Hui Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, People's Republic of China
- * E-mail:
| |
Collapse
|
37
|
Xia G, Xin N, Liu W, Yao H, Hou Y, Qi J. Inhibitory effect of Lycium barbarum polysaccharides on cell apoptosis and senescence is potentially mediated by the p53 signaling pathway. Mol Med Rep 2014; 9:1237-41. [PMID: 24549741 DOI: 10.3892/mmr.2014.1964] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/03/2014] [Indexed: 11/06/2022] Open
Abstract
Lycium barbarum (L. barbarum) fruit or extract has been regarded as a superior-grade Chinese medicine, used to modulate body immunity and for anti-aging purposes. However, the underlying molecular mechanisms behind these effects remain unclear. In the present study, L. barbarum polysaccharides (LBPs), considered a major contributor of L. barbarum effects, were used to elucidate its mechanism of action by phenotypic and senescence associated-β-galactosidase (SA-β-gal) assays, evaluation of survival rates in vivo and expression profiling of genes related to the p53 signaling pathway in a zebrafish model. Zebrafish embryos were continuously exposed to various concentrations of LBPs (1.0, 2.0, 3.0 and 4.0 mg/ml) for 3 days. The results of fluorescent acridine orange and SA-β-gal staining indicated that cell apoptosis and senescence mainly occur in the head at 24 hours post fertilization (hpf) and 72 hpf. In addition, resistance to replicative senescence was observed at low doses of LBPs, especially at the 3.0 mg/ml concentration. Furthermore, the expression of genes that relate to aging, such as p53, p21 and Bax, was decreased, while that of Mdm2 and TERT genes was increased after treatment with LBPs. The results demonstrated that the effects of LBPs on cell apoptosis and aging might be mediated by the p53-mediated pathway.
Collapse
Affiliation(s)
- Guangqing Xia
- College of Life Science, Tonghua Normal University, Tonghua, Jilin 134002, P.R. China
| | - Nian Xin
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, P.R. China
| | - Wei Liu
- College of Life Science, Tonghua Normal University, Tonghua, Jilin 134002, P.R. China
| | - Huimin Yao
- College of Life Science, Tonghua Normal University, Tonghua, Jilin 134002, P.R. China
| | - Yi Hou
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, P.R. China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, P.R. China
| |
Collapse
|