1
|
Witkamp RF, de Bus I, Albada B, Balvers MGJ. Analysis of Omega-3 Fatty Acid-Derived N-Acylethanolamines in Biological Matrices. Methods Mol Biol 2023; 2576:49-66. [PMID: 36152177 DOI: 10.1007/978-1-0716-2728-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The adequate quantification of endocannabinoids and related N-acylethanolamines can be complex due to their low endogenous levels, structural diversity, and metabolism. Therefore, advanced analytical approaches, involving LC-MS, are required to quantify these molecules in plasma, tissues, and other matrices. It has been shown that endocannabinoid congeners synthesized from n-3 poly-unsaturated fatty acids (n-3 PUFAs), such as docosahexaenoylethanolamide (DHEA) and eicosapentaenoylethanolamide (EPEA), have interesting immunomodulatory and tumor-inhibiting properties. Recent work has shown that DHEA and EPEA can be further enzymatically metabolized by cyclo-oxygenase 2 (COX-2), forming oxygenated metabolites. Here, an LC-MS-based method for the quantification of the n-3 PUFA-derived endocannabinoid congeners DHEA and EPEA is described, which is also suited to measure a wider spectrum of endocannabinoids. The chapter contains a step-by-step protocol for the analysis of (n-3) endocannabinoids in plasma, including sample collection and solid phase extraction, LC-MS analysis, and data processing. In addition, protocol modifications are provided to allow quantification of n-3 PUFA-derived endocannabinoids and their COX-2 metabolites in tissues and cell culture media. Finally, conditions that alter endocannabinoid concentrations are briefly discussed.
Collapse
Affiliation(s)
- Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Ian de Bus
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Yan S, Huang Y, Xiao Q, Su Z, Xia L, Xie J, Zhang F, Du Z, Hou X, Deng J, Hao E. Regulation of transient receptor potential channels by traditional Chinese medicines and their active ingredients. Front Pharmacol 2022; 13:1039412. [PMID: 36313301 PMCID: PMC9606675 DOI: 10.3389/fphar.2022.1039412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
In recent years, activation of thermal transient receptor potential (TRP) ion channels at a range of temperatures has received widespread attention as a target for traditional Chinese medicine (TCM) to regulate body temperature and relieve pain. Discovery of transient receptor potential vanilloid 1 (TRPV1) was awarded a Nobel Prize, reflecting the importance of these channels. Here, the regulatory effects of TCMs and their active ingredients on TRP ion channels are reviewed, and future directions for research on the cold, hot, warm, cool, and neutral natures of TCMs are considered. In herbs with cold, hot, warm, cool, and neutral natures, we found 29 TCMs with regulatory effects on TRP ion channels, including Cinnamomi Cortex, Capsici Fructus, Rhei Radix et Rhizoma, Macleayae cordatae Herba, Menthae Haplocalycis Herba, and Rhodiolae Crenulatae Radix et Rhizoma. Although some progress has been made in understanding the regulation of TRP ion channels by TCMs and their ingredients, the molecular mechanism by which TCMs have this effect remains to be further studied. We hope this review will provide a reference for further research on the cold, hot, warm, cool, and neutral natures of TCMs.
Collapse
Affiliation(s)
- Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yuchan Huang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Qian Xiao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zixia Su
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lei Xia
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- *Correspondence: Erwei Hao,
| |
Collapse
|
3
|
Sokabe T, Bradshaw HB, Tominaga M, Leishman E, Chandel A, Montell C. Endocannabinoids produced in photoreceptor cells in response to light activate Drosophila TRP channels. Sci Signal 2022; 15:eabl6179. [PMID: 36219683 PMCID: PMC9633101 DOI: 10.1126/scisignal.abl6179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Drosophila phototransduction is a model for signaling cascades that culminate in the activation of transient receptor potential (TRP) cation channels. TRP and TRPL are the canonical TRP (TRPC) channels that are regulated by light stimulation of rhodopsin and engagement of Gαq and phospholipase Cβ (PLC). Lipid metabolite(s) generated downstream of PLC are essential for the activation of the TRPC channels in photoreceptor cells. We sought to identify the key lipids produced subsequent to PLC stimulation that contribute to channel activation. Here, using genetics, lipid analysis, and Ca2+ imaging, we found that light increased the amount of an abundant endocannabinoid, 2-linoleoyl glycerol (2-LG), in vivo. The increase in 2-LG amounts depended on the PLC and diacylglycerol lipase encoded by norpA and inaE, respectively. This endocannabinoid facilitated TRPC-dependent Ca2+ influx in a heterologous expression system and in dissociated ommatidia from compound eyes. Moreover, 2-LG and mechanical stimulation cooperatively activated TRPC channels in ommatidia. We propose that 2-LG is a physiologically relevant endocannabinoid that activates TRPC channels in photoreceptor cells.
Collapse
Affiliation(s)
- Takaaki Sokabe
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara; California 93106, USA
- Division of Cell Signaling, National Institute for Physiological Sciences, and Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences; Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI; Okazaki, Aichi, 444-8787, Japan
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, Indiana University; Bloomington, Indiana, 47405, USA
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, and Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences; Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI; Okazaki, Aichi, 444-8787, Japan
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University; Bloomington, Indiana, 47405, USA
| | - Avinash Chandel
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara; California 93106, USA
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara; California 93106, USA
| |
Collapse
|
4
|
Beneficial effects of dietary capsaicin in gastrointestinal health and disease. Exp Cell Res 2022; 417:113227. [DOI: 10.1016/j.yexcr.2022.113227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022]
|
5
|
Serum metabolomic biomarkers of perceptual speed in cognitively normal and mildly impaired subjects with fasting state stratification. Sci Rep 2021; 11:18964. [PMID: 34556796 PMCID: PMC8460824 DOI: 10.1038/s41598-021-98640-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cognitive decline is associated with both normal aging and early pathologies leading to dementia. Here we used quantitative profiling of metabolites involved in the regulation of inflammation, vascular function, neuronal function and energy metabolism, including oxylipins, endocannabinoids, bile acids, and steroid hormones to identify metabolic biomarkers of mild cognitive impairment (MCI). Serum samples (n = 212) were obtained from subjects with or without MCI opportunistically collected with incomplete fasting state information. To maximize power and stratify the analysis of metabolite associations with MCI by the fasting state, we developed an algorithm to predict subject fasting state when unknown (n = 73). In non-fasted subjects, linoleic acid and palmitoleoyl ethanolamide levels were positively associated with perceptual speed. In fasted subjects, soluble epoxide hydrolase activity and tauro-alpha-muricholic acid levels were negatively associated with perceptual speed. Other cognitive domains showed associations with bile acid metabolism, but only in the non-fasted state. Importantly, this study shows unique associations between serum metabolites and cognitive function in the fasted and non-fasted states and provides a fasting state prediction algorithm based on measurable metabolites.
Collapse
|
6
|
Borkowski K, Pedersen TL, Seyfried NT, Lah JJ, Levey AI, Hales CM, Dammer EB, Blach C, Louie G, Kaddurah-Daouk R, Newman JW. Association of plasma and CSF cytochrome P450, soluble epoxide hydrolase, and ethanolamide metabolism with Alzheimer's disease. Alzheimers Res Ther 2021; 13:149. [PMID: 34488866 PMCID: PMC8422756 DOI: 10.1186/s13195-021-00893-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alzheimer's disease, cardiovascular disease, and other cardiometabolic disorders may share inflammatory origins. Lipid mediators, including oxylipins, endocannabinoids, bile acids, and steroids, regulate inflammation, energy metabolism, and cell proliferation with well-established involvement in cardiometabolic diseases. However, their role in Alzheimer's disease is poorly understood. Here, we describe the analysis of plasma and cerebrospinal fluid lipid mediators in a case-control comparison of ~150 individuals with Alzheimer's disease and ~135 healthy controls, to investigate this knowledge gap. METHODS Lipid mediators were measured using targeted quantitative mass spectrometry. Data were analyzed using the analysis of covariates, adjusting for sex, age, and ethnicity. Partial least square discriminant analysis identified plasma and cerebrospinal fluid lipid mediator discriminates of Alzheimer's disease. Alzheimer's disease predictive models were constructed using machine learning combined with stepwise logistic regression. RESULTS In both plasma and cerebrospinal fluid, individuals with Alzheimer's disease had elevated cytochrome P450/soluble epoxide hydrolase pathway components and decreased fatty acid ethanolamides compared to healthy controls. Circulating metabolites of soluble epoxide hydrolase and ethanolamides provide Alzheimer's disease predictors with areas under receiver operator characteristic curves ranging from 0.82 to 0.92 for cerebrospinal fluid and plasma metabolites, respectively. CONCLUSIONS Previous studies report Alzheimer's disease-associated soluble epoxide hydrolase upregulation in the brain and that endocannabinoid metabolism provides an adaptive response to neuroinflammation. This study supports the involvement of P450-dependent and endocannabinoid metabolism in Alzheimer's disease. The results further suggest that combined pharmacological intervention targeting both metabolic pathways may have therapeutic benefits for Alzheimer's disease.
Collapse
Affiliation(s)
- Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA, 95616, USA.
| | - Theresa L Pedersen
- Department of Food Science and Technology, University of California - Davis, Davis, CA, 95616, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - James J Lah
- Department of Neurology, Emory University, Atlanta, GA, 30329, USA
| | - Allan I Levey
- Department of Neurology, Emory University, Atlanta, GA, 30329, USA
| | - Chadwick M Hales
- Department of Neurology, Emory University, Atlanta, GA, 30329, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27708, USA
| | - Gregory Louie
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27708, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and Department of Medicine, Duke University, Durham, NC, 27708, USA
| | - John W Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA, 95616, USA
- Western Human Nutrition Research Center, United States Department of Agriculture - Agriculture Research Service, Davis, CA, 95616, USA
- Department of Nutrition, University of California - Davis, Davis, CA, 95616, USA
| |
Collapse
|
7
|
Achanta S, Jordt SE. Transient receptor potential channels in pulmonary chemical injuries and as countermeasure targets. Ann N Y Acad Sci 2020; 1480:73-103. [PMID: 32892378 PMCID: PMC7933981 DOI: 10.1111/nyas.14472] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
The lung is highly sensitive to chemical injuries caused by exposure to threat agents in industrial or transportation accidents, occupational exposures, or deliberate use as weapons of mass destruction (WMD). There are no antidotes for the majority of the chemical threat agents and toxic inhalation hazards despite their use as WMDs for more than a century. Among several putative targets, evidence for transient receptor potential (TRP) ion channels as mediators of injury by various inhalational chemical threat agents is emerging. TRP channels are expressed in the respiratory system and are essential for homeostasis. Among TRP channels, the body of literature supporting essential roles for TRPA1, TRPV1, and TRPV4 in pulmonary chemical injuries is abundant. TRP channels mediate their function through sensory neuronal and nonneuronal pathways. TRP channels play a crucial role in complex pulmonary pathophysiologic events including, but not limited to, increased intracellular calcium levels, signal transduction, recruitment of proinflammatory cells, neurogenic inflammatory pathways, cough reflex, hampered mucus clearance, disruption of the integrity of the epithelia, pulmonary edema, and fibrosis. In this review, we summarize the role of TRP channels in chemical threat agents-induced pulmonary injuries and how these channels may serve as medical countermeasure targets for broader indications.
Collapse
Affiliation(s)
- Satyanarayana Achanta
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
8
|
Battista N, Bari M, Bisogno T. N-Acyl Amino Acids: Metabolism, Molecular Targets, and Role in Biological Processes. Biomolecules 2019; 9:biom9120822. [PMID: 31817019 PMCID: PMC6995544 DOI: 10.3390/biom9120822] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
The lipid signal is becoming increasingly crowded as increasingly fatty acid amide derivatives are being identified and considered relevant therapeutic targets. The identification of N-arachidonoyl-ethanolamine as endogenous ligand of cannabinoid type-1 and type-2 receptors as well as the development of different–omics technologies have the merit to have led to the discovery of a huge number of naturally occurring N-acyl-amines. Among those mediators, N-acyl amino acids, chemically related to the endocannabinoids and belonging to the complex lipid signaling system now known as endocannabinoidome, have been rapidly growing for their therapeutic potential. Here, we review the current knowledge of the mechanisms for the biosynthesis and inactivation of the N-acyl amino acids, as well as the various molecular targets for some of the N-acyl amino acids described so far.
Collapse
Affiliation(s)
- Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Correspondence: (N.B.); (M.B.); (T.B.)
| | - Monica Bari
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (N.B.); (M.B.); (T.B.)
| | - Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
- Correspondence: (N.B.); (M.B.); (T.B.)
| |
Collapse
|
9
|
Serasanambati M, Broza YY, Haick H. Volatile Compounds Are Involved in Cellular Crosstalk and Upregulation. ACTA ACUST UNITED AC 2019; 3:e1900131. [PMID: 32648725 DOI: 10.1002/adbi.201900131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/16/2019] [Indexed: 12/14/2022]
Abstract
Cell-cell cross talk is of great importance in cancer research due to its major role in proliferation, differentiation, migration, and influence on the apoptotic pathway. Different cell-cell communication mechanisms have come mainly from proteomic and genomic approaches. In this paper, a new route is reported for cross talk between cancer cells that occurs, even when they are far away from each other. Single-cell and culture analysis shows that upregulation of cancer cells emits hundreds of volatile organic compounds (VOCs) into their headspace. Part of the VOCs remains without any change, disregarding the biological environment around it. The other part of the VOCs is exchanged between monocultures of the cells as well as between co-cultures of the cells with no physical contact between them, leading to different changes in growth than when left on their own. The chemical nature and composition of these VOCs have been determined and are discussed herein. Cell-to-cell cross talk has the advantage of being suitable for transfer/diffusion over relatively long distances. It would thus be expected to serve as a shuttling pad toward the development of advanced approaches that could enable very early detection of cancer and/or monitoring of metastasis and related cancer therapy.
Collapse
Affiliation(s)
- Mamatha Serasanambati
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Yoav Y Broza
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Hossam Haick
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel.,Russell Berries Nanotechnology Institute, Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel.,Technion Integrated Cancer Center, The Ruth and Bruce Rappaport Faculty of Medicine, 1-Efron St. Bat Galim, Haifa, 3525433, Israel
| |
Collapse
|
10
|
Huang R, Wang F, Yang Y, Ma W, Lin Z, Cheng N, Long Y, Deng S, Li Z. Recurrent activations of transient receptor potential vanilloid-1 and vanilloid-4 promote cellular proliferation and migration in esophageal squamous cell carcinoma cells. FEBS Open Bio 2019; 9:206-225. [PMID: 30761248 PMCID: PMC6356177 DOI: 10.1002/2211-5463.12570] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/19/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
Some members of the transient receptor potential vanilloid (TRPV) subfamily of cation channels are thermosensitive. Earlier studies have revealed the distribution and functions of these thermo‐TRPVs (TRPV1–4) in various organs, but their expression and function in the human esophagus are not fully understood. Here, we probed for the expression of the thermo‐TRPVs in one nontumor human esophageal squamous cell line and two esophageal squamous cell carcinoma (ESCC) cell lines. TRPV1, TRPV2, and TRPV4 proteins were found to be upregulated in ESCC cells, while TRPV3 was not detectable in any of these cell lines. Subsequently, channel function was evaluated via monitoring of Ca2+ transients by Ca2+ imaging and nonselective cation channel currents were recorded by whole‐cell patch clamp. We found that TRPV4 was activated by heat at 28 °C–35 °C, whereas TRPV1 and TRPV2 were activated by higher, noxious temperatures (44 °C and 53 °C, respectively). Furthermore, TRPV1 was activated by capsaicin (EC50 = 20.32 μm), and this effect was antagonized by AMG9810; TRPV2 was activated by a newly developed cannabinoid compound, O1821, and inhibited by tranilast. In addition, TRPV4 was activated by hypotonic solutions (220 m Osm), and this effect was abolished by ruthenium red. The effects of TRPV1 and TRPV4 on ESCC were also explored. Our data, for the first time, showed that the overactivation of TRPV1 and TRPV4 promoted the proliferation and/or migration of ESCC cells. In summary, TRPV1, TRPV2, and TRPV4 were functionally expressed in human esophageal squamous cells, and thermo‐TRPVs might play an important role in the development of ESCC.
Collapse
Affiliation(s)
- Rongqi Huang
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China.,University of Chinese Academy of Sciences Beijing China
| | - Fei Wang
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Yuchen Yang
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Wenbo Ma
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Zuoxian Lin
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Na Cheng
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China.,Department of Anatomy and Neurobiology Xiangya School of Medicine Central South University Changsha China
| | - Yan Long
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Sihao Deng
- Department of Anatomy and Neurobiology Xiangya School of Medicine Central South University Changsha China
| | - Zhiyuan Li
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China.,University of Chinese Academy of Sciences Beijing China.,Department of Anatomy and Neurobiology Xiangya School of Medicine Central South University Changsha China.,GZMU-GIBH Joint School of Life Sciences Guangzhou Medical University China
| |
Collapse
|
11
|
Leishman E, Kunkler PE, Hurley JH, Miller S, Bradshaw HB. Bioactive Lipids in Cancer, Inflammation and Related Diseases : Acute and Chronic Mild Traumatic Brain Injury Differentially Changes Levels of Bioactive Lipids in the CNS Associated with Headache. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:193-217. [PMID: 31562631 DOI: 10.1007/978-3-030-21735-8_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Headache is a common complaint after mild traumatic brain injury (mTBI). Changes in the CNS lipidome were previously associated with acrolein-induced headache in rodents. mTBI caused similar headache-like symptoms in rats; therefore, we tested the hypothesis that mTBI might likewise alter the lipidome. Using a stereotaxic impactor, rats were given either a single mTBI or a series of 4 mTBIs 48 h apart. 72 h later for single mTBI and 7 days later for repeated mTBI, the trigeminal ganglia (TG), trigeminal nucleus (TNC), and cerebellum (CER) were isolated. Using HPLC/MS/MS, ~80 lipids were measured in each tissue and compared to sham controls. mTBI drove widespread alterations in lipid levels. Single mTBI increased arachidonic acid and repeated mTBI increased prostaglandins in all 3 tissue types. mTBI affected multiple TRPV agonists, including N-arachidonoyl ethanolamine (AEA), which increased in the TNC and CER after single mTBI. After repeated mTBI, AEA increased in the TG, but decreased in the TNC. Common to all tissue types in single and repeated mTBI was an increase the AEA metabolite, N-arachidonoyl glycine, a potent activator of microglial migration. Changes in the CNS lipidome associated with mTBI likely play a role in headache and in long-term neurodegenerative effects of repeated mTBI.
Collapse
Affiliation(s)
- Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Phillip E Kunkler
- Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joyce H Hurley
- Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sally Miller
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
12
|
Lakk M, Young D, Baumann JM, Jo AO, Hu H, Križaj D. Polymodal TRPV1 and TRPV4 Sensors Colocalize but Do Not Functionally Interact in a Subpopulation of Mouse Retinal Ganglion Cells. Front Cell Neurosci 2018; 12:353. [PMID: 30386208 PMCID: PMC6198093 DOI: 10.3389/fncel.2018.00353] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/20/2018] [Indexed: 01/23/2023] Open
Abstract
Retinal ganglion cells (RGCs) are projection neurons that transmit the visual signal from the retina to the brain. Their excitability and survival can be strongly influenced by mechanical stressors, temperature, lipid metabolites, and inflammatory mediators but the transduction mechanisms for these non-synaptic sensory inputs are not well characterized. Here, we investigate the distribution, functional expression, and localization of two polymodal transducers of mechanical, lipid, and inflammatory signals, TRPV1 and TRPV4 cation channels, in mouse RGCs. The most abundant vanilloid mRNA species was Trpv4, followed by Trpv2 and residual expression of Trpv3 and Trpv1. Immunohistochemical and functional analyses showed that TRPV1 and TRPV4 channels are expressed as separate molecular entities, with TRPV1-only (∼10%), TRPV4-only (∼40%), and TRPV1 + TRPV4 (∼10%) expressing RGC subpopulations. The TRPV1 + TRPV4 cohort included SMI-32-immunopositive alpha RGCs, suggesting potential roles for polymodal signal transduction in modulation of fast visual signaling. Arguing against obligatory heteromerization, optical imaging showed that activation and desensitization of TRPV1 and TRPV4 responses evoked by capsaicin and GSK1016790A are independent of each other. Overall, these data predict that RGC subpopulations will be differentially sensitive to mechanical and inflammatory stressors.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Derek Young
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Jackson M Baumann
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States.,Department of Bioengineering, University of Utah, Salt Lake City, UT, United States
| | - Andrew O Jo
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States.,Department of Bioengineering, University of Utah, Salt Lake City, UT, United States.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
13
|
Di Marzo V. New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov 2018; 17:623-639. [DOI: 10.1038/nrd.2018.115] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Affiliation(s)
- Naghum Alfulaij
- Laboratory of Experimental Medicine, Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI
| | - Franziska Meiners
- Laboratory of Experimental Medicine, Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI
| | - Justin Michalek
- Laboratory of Experimental Medicine, Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI
- Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI
| | | | - Helen C Turner
- Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI
| | - Alexander J Stokes
- Laboratory of Experimental Medicine, Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI
- Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI
- Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI
| |
Collapse
|
15
|
Gómez E, Carrocera S, Martin D, Herrero P, Canela N, Muñoz M. Differential release of cell-signaling metabolites by male and female bovine embryos cultured in vitro. Theriogenology 2018; 114:180-184. [PMID: 29649720 DOI: 10.1016/j.theriogenology.2018.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/09/2018] [Accepted: 03/29/2018] [Indexed: 02/03/2023]
Abstract
Male and female early bovine embryos show dimorphic transcription that impacts metabolism. Individual release of metabolites was examined in a 24h single culture medium from Day-6 male and female morulae that developed to Day-7 expanded blastocysts. Embryos were produced in vitro, fertilized with a single bull and cultured in SOFaaci+6 g/L BSA. The embryonic sex was identified (amelogenin gene amplification). Embryos (N = 10 males and N = 10 females) and N = 6 blank samples (i.e. SOFaaci+6 g/L BSA incubated with no embryos) were collected from 3 replicates. Metabolome was analyzed by UHPLC-TOF-MS in spent culture medium. After tentative identification, N = 13 metabolites significantly (P < 0.05; ANOVA) differed in their concentrations between male and female embryos, although N = 10 of these metabolites showed heterogeneity (Levene's test; P > 0.05). LysoPC(15:0) was the only metabolite found at higher concentration in females (fold change [FC] male to female = 0.766). FC of metabolites more abundant in male culture medium (N = 12) varied from 1.069 to 1.604. Chemical taxonomy grouped metabolites as amino-acids and related compounds (DL-2 aminooctanoic acid, arginine, 5-hydroxy-l-tryptophan, and palmitoylglycine); lipids (2-hexenoylcarnitine; Lauroyl diethanolamide; 5,6 dihydroxyprostaglandin F1a; LysoPC(15:0); DG(14:0/14:1(9Z)/0:0) and triterpenoid); endogenous amine ((S)-N-Methylsalsolinol/(R)-N-Methylsalsolinol); n-acyl-alpha-hexosamine (N-acetyl-alpha-d-galactosamine 1-phosphate); and dUMP, a product of pyrimidine metabolism. Among the compounds originally contained in CM, female embryos significantly depleted more arginine than males and blank controls (P < 0.001). Male and female embryos induce different concentrations of metabolites with potential signaling effects. The increased abundance of metabolites released from males is consistent with the higher metabolic activity attributed to such blastocysts.
Collapse
Affiliation(s)
- E Gómez
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394, Gijón, Spain.
| | - S Carrocera
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - D Martin
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - P Herrero
- Centre for OMIC Sciences, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - N Canela
- Centre for OMIC Sciences, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - M Muñoz
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394, Gijón, Spain
| |
Collapse
|
16
|
ANDERSON RYANL, MERKLER DAVIDJ. N-FATTY ACYLGLYCINES: UNDERAPPRECIATED ENDOCANNABINOID-LIKE FATTY ACID AMIDES? JOURNAL OF BIOLOGY AND NATURE 2018; 8:156-165. [PMID: 29607420 PMCID: PMC5878051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Long-chain N-fatty acylglycines, R-CO-NH-CH2-COOH (where "R" refers to an unsaturated or saturated alkyl chain of at least 14 carbons) are found in mammals and insects and are structurally related to the cell-signaling, lipid-like, N-fatty acylethanolamines, R-CO-NH-CH2-CH2-OH (where "R" refers to an alkyl chain of at least 14 carbons). Accumulating evidence demonstrates that the N-fatty acylglycines have important cellular functions, but much work remains in order to fully appreciate and understand these biomolecules including: (a) more work on their functions in vivo, (b) measuring their concentrations in the cell, (c) defining the pathways for the biosynthesis and degradation, and (d) understanding the metabolic interconversion(s) between the N-fatty acylglycines and other fatty acid amides. The purpose of reviewing the current state-of-knowledge about the N-fatty acylglycines is to stimulate future research about this intriguing family of biomolecules.
Collapse
Affiliation(s)
- RYAN L. ANDERSON
- Department of Chemistry, University of South Florida, Tampa FL33620, USA
| | - DAVID J. MERKLER
- Department of Chemistry, University of South Florida, Tampa FL33620, USA
| |
Collapse
|
17
|
Kunkler PE, Zhang L, Johnson PL, Oxford GS, Hurley JH. Induction of chronic migraine phenotypes in a rat model after environmental irritant exposure. Pain 2018; 159:540-549. [PMID: 29200178 PMCID: PMC5812801 DOI: 10.1097/j.pain.0000000000001124] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Air pollution is linked to increased emergency department visits for headache and migraine patients frequently cite chemicals or odors as headache triggers, but the association between air pollutants and headache is not well understood. We previously reported that chronic environmental irritant exposure sensitizes the trigeminovascular system response to nasal administration of environmental irritants. Here, we examine whether chronic environmental irritant exposure induces migraine behavioral phenotypes. Male rats were exposed to acrolein, a transient receptor potential channel ankyrin-1 (TRPA1) agonist, or room air by inhalation for 4 days before meningeal blood flow measurements, periorbital cutaneous sensory testing, or other behavioral testing. Touch-induced c-Fos expression in trigeminal nucleus caudalis was compared in animals exposed to room air or acrolein. Spontaneous behavior and olfactory discrimination was examined in open-field testing. Acrolein inhalation exposure produced long-lasting potentiation of blood flow responses to a subsequent TRPA1 agonist and sensitized cutaneous responses to mechanical stimulation. C-Fos expression in response to touch was increased in trigeminal nucleus caudalis in animals exposed to acrolein compared with room air. Spontaneous activity in an open-field and scent preference behavior was different in acrolein-exposed compared with room air-exposed animals. Sumatriptan, an acute migraine treatment blocked acute blood flow changes in response to TRPA1 or transient receptor potential vanilloid receptor-1 agonists. Pretreatment with valproic acid, a prophylactic migraine treatment, attenuated the enhanced blood flow responses observed after acrolein inhalation exposures. Environmental irritant exposure yields an animal model of chronic migraine in which to study mechanisms for enhanced headache susceptibility after chemical exposure.
Collapse
Affiliation(s)
- Phillip Edward Kunkler
- Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| | - LuJuan Zhang
- Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Philip Lee Johnson
- Department of Anatomy and Cell Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gerry Stephen Oxford
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Joyce Harts Hurley
- Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
18
|
Abstract
The adequate quantification of endocannabinoids can be complex due to their low endogenous levels and structural diversity. Therefore, advanced analytical approaches, such as LC-MS, are used to measure endocannabinoids in plasma, tissues, and other matrices. Recent work has shown that endocannabinoids that are synthesized from n-3 fatty acids, such as docosahexaenoylethanolamide (DHEA) and eicosapentaenoylethanolamide (EPEA), have anti-inflammatory and anti-tumorigenic properties and stimulate synapse formation in neurites. Here, an LC-MS based method for the quantification of n-3 endocannabinoids DHEA and EPEA which is also suited to measure a wider spectrum of endocannabinoids is described. The chapter contains a step-by-step protocol for the analysis of n-3 endocannabinoids in plasma, including sample collection and solid phase extraction, LC-MS analysis, and data processing. Modifications to the protocol that allow quantifying n-3 endocannabinoids in tissues and cell culture media will also be discussed. Finally, conditions that alter endocannabinoid concentrations are briefly discussed.
Collapse
|
19
|
Oz M, El Nebrisi EG, Yang KHS, Howarth FC, Al Kury LT. Cellular and Molecular Targets of Menthol Actions. Front Pharmacol 2017; 8:472. [PMID: 28769802 PMCID: PMC5513973 DOI: 10.3389/fphar.2017.00472] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/03/2017] [Indexed: 02/04/2023] Open
Abstract
Menthol belongs to monoterpene class of a structurally diverse group of phytochemicals found in plant-derived essential oils. Menthol is widely used in pharmaceuticals, confectionary, oral hygiene products, pesticides, cosmetics, and as a flavoring agent. In addition, menthol is known to have antioxidant, anti-inflammatory, and analgesic effects. Recently, there has been renewed awareness in comprehending the biological and pharmacological effects of menthol. TRP channels have been demonstrated to mediate the cooling actions of menthol. There has been new evidence demonstrating that menthol can significantly influence the functional characteristics of a number of different kinds of ligand and voltage-gated ion channels, indicating that at least some of the biological and pharmacological effects of menthol can be mediated by alterations in cellular excitability. In this article, we examine the results of earlier studies on the actions of menthol with voltage and ligand-gated ion channels.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates.,Department of Basic Medical Sciences, College of Medicine, Qatar UniversityDoha, Qatar
| | - Eslam G El Nebrisi
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Keun-Hang S Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman UniversityOrange, CA, United States
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Lina T Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed UniversityAbu Dhabi, United Arab Emirates
| |
Collapse
|
20
|
Abstract
Classifications and characterizations of specific proteins, such as enzymes, not only allow us to understand biosynthetic and metabolic pathways but they also help to drive our understanding of protein structure and function. How those characterizations are evaluated, however, may change our interpretations and lead us into broader and novel directions in research. Here, we will make the argument that using lipidomics as a tool for characterizing enzymatic function over more traditional toolkit options allows for these types of revelations. Using lipidomics techniques on specific brain regions with a series of enzyme knockout and disease models, we have generated a novel set of analyses from which to view protein function. Through these data, we have demonstrated that NAPE-PLD, MAG lipase, and FAAH all have broader roles throughout the brain than previously thought. Much like the data on how the extinction of specific species within an ecosystem has unpredicted outcomes, so too does the elimination of these enzymes affect the brain lipidome. From a purely biochemical standpoint, it is a fascinating story of how one change in a system can have exponential effects; however, from a drug-target standpoint, it may prove to be a cautionary tale.
Collapse
|
21
|
Piscitelli F, Bradshaw HB. Endocannabinoid Analytical Methodologies: Techniques That Drive Discoveries That Drive Techniques. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:1-30. [PMID: 28826532 DOI: 10.1016/bs.apha.2017.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Identification of the two major endogenous cannabinoid ligands, known as endocannabinoids, N-arachidonoyl-ethanolamine (anandamide, AEA) and 2-arachidonoyl-glycerol (2-AG), opened the way for the identification and isolation of other lipid congeners, all derivatives of fatty acids and related to the Endocannabinoid System. The nomenclature of this anandamide-type class of lipids is evolving as new species are discovered all the time. However, they each fall under the larger umbrella of lipids that are a conjugation of a fatty acid with an amine through and amide bond, which we will refer to as lipoamines. Specific subspecies of lipoamines that have been discovered are the N-acyl-ethanolamides (including AEA), N-acyl-dopamines, N-acyl-serotonins, N-acyl-GABA, N-acyl-taurines, and a growing number of N-acyl amino acids. Emerging data from multiple labs also show that monoacylglycerols (including 2-AG), COX-2 metabolites, and fatty acid esters of hydroxyl fatty acids are interconnected with these lipoamines at both the biosynthetic and metabolic levels. Understanding the molecular relatedness of these lipids is important for studying how they act as signaling molecules; however, a first step in this process hinges on advances in being able to accurately measure them.
Collapse
Affiliation(s)
- Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare-Consiglio Nazionale delle Ricerche (ICB-CNR), Pozzuoli, Italy.
| | | |
Collapse
|
22
|
Dietrich A, Steinritz D, Gudermann T. Transient receptor potential (TRP) channels as molecular targets in lung toxicology and associated diseases. Cell Calcium 2017; 67:123-137. [PMID: 28499580 DOI: 10.1016/j.ceca.2017.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/24/2022]
Abstract
The lungs as the gateways of our body to the external environment are essential for gas exchange. They are also exposed to toxicants from two sides, the airways and the vasculature. Apart from naturally produced toxic agents, millions of human made chemicals were produced since the beginning of the industrial revolution whose toxicity still needs to be determined. While the knowledge about toxic substances is increasing only slowly, a paradigm shift regarding the proposed mechanisms of toxicity at the plasma membrane emerged. According to their broad-range chemical reactivity, the mechanism of lung injury evoked by these agents has long been described as rather unspecific. Consequently, therapeutic options are still restricted to symptomatic treatment. The identification of molecular down-stream effectors in cells was a major step forward in the mechanistic understanding of the action of toxic chemicals and will pave the way for more causal and specific toxicity testing as well as therapeutic options. In this context, the involvement of Transient Receptor Potential (TRP) channels as chemosensors involved in the detection and effectors of toxicant action is an attractive concept intensively discussed in the scientific community. In this review we will summarize recent evidence for an involvement of TRP channels (TRPA1, TRPC4, TRPC6, TRPV1, TRPV4, TRPM2 and TRPM8) expressed in the lung in pathways of toxin sensing and as mediators of lung inflammation and associated diseases like asthma, COPD, lung fibrosis and edema formation. Specific modulators of these channels may offer new therapeutic options in the future and will endorse strategies for a causal, specifically tailored treatment based on the mechanistic understanding of molecular events induced by lung-toxic agents.
Collapse
Affiliation(s)
- Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU Munich, Germany.
| | - Dirk Steinritz
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU Munich, Germany; Bundeswehr-Institute of Pharmacology and Toxicology, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU Munich, Germany
| |
Collapse
|
23
|
Leishman E, Kunkler PE, Manchanda M, Sangani K, Stuart JM, Oxford GS, Hurley JH, Bradshaw HB. Environmental Toxin Acrolein Alters Levels of Endogenous Lipids, Including TRP Agonists: A Potential Mechanism for Headache Driven by TRPA1 Activation. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2017; 1:28-36. [PMID: 29430557 PMCID: PMC5802349 DOI: 10.1016/j.ynpai.2017.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 06/08/2023]
Abstract
Exposure to airborne toxins can trigger headaches, but the mechanisms are not well understood. Some environmental toxins, such as acrolein, activate transient receptor potential ankyrin 1 (TRPA1), a receptor involved in pain sensation that is highly expressed in the trigeminovascular system. It has been shown in rat models that repeated exposure to acrolein induces trigeminovascular sensitization to both TRPA1 and TRP vanilloid 1 (TRPV1) agonists, a phenomenon linked to headache. In this study, we test the hypothesis that the sensitization of trigeminovascular responses in rats after acrolein exposure via inhalation is associated with changes in levels of endogenous lipids, including TRPV1 agonists, in the trigeminal ganglia, trigeminal nucleus, and cerebellum. Lipidomics analysis of 80 lipids was performed on each tissue after acute acrolein, chronic acrolein, or room air control. Both acute and chronic acrolein exposure drove widespread alterations in lipid levels. After chronic acrolein exposure, levels of all 6 N-acyl ethanolamines in the screening library, including the endogenous cannabinoid and TRPV1 agonist, N-arachidonoyl ethanolamine, were elevated in trigeminal tissue and in the cerebellum. This increase in TRPV1 ligands by acrolein exposure may indicate further downstream signaling, in that we also show here that a combination of these TRPV1 endogenous agonists increases the potency of the individual ligands in TRPV1-HEK cells. In addition to these TRPV1 agonists, 3 TRPV3 antagonists, 4 TRPV4 agonists, and 25 orphan lipids were up and down regulated after acrolein exposure. These data support the hypothesis that lipid signaling may represent a mechanism by which repeated exposure to the TRPA1 agonist and environmental toxin, acrolein, drives trigeminovascular sensitization.
Collapse
Affiliation(s)
- Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10 Street, Bloomington, IN 47405, USA
| | - Phillip E. Kunkler
- Stark Neurosciences Institute, Indiana University School of Medicine, 320 West 15 Street, Indianapolis, IN 46202, USA
| | - Meera Manchanda
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10 Street, Bloomington, IN 47405, USA
| | - Kishan Sangani
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10 Street, Bloomington, IN 47405, USA
| | - Jordyn M. Stuart
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10 Street, Bloomington, IN 47405, USA
| | - Gerry S. Oxford
- Stark Neurosciences Institute, Indiana University School of Medicine, 320 West 15 Street, Indianapolis, IN 46202, USA
| | - Joyce H. Hurley
- Stark Neurosciences Institute, Indiana University School of Medicine, 320 West 15 Street, Indianapolis, IN 46202, USA
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10 Street, Bloomington, IN 47405, USA
| |
Collapse
|
24
|
Leishman E, Cornett B, Spork K, Straiker A, Mackie K, Bradshaw HB. Broad impact of deleting endogenous cannabinoid hydrolyzing enzymes and the CB1 cannabinoid receptor on the endogenous cannabinoid-related lipidome in eight regions of the mouse brain. Pharmacol Res 2016; 110:159-172. [PMID: 27109320 DOI: 10.1016/j.phrs.2016.04.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE The enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) hydrolyze endogenous cannabinoids (eCBs), N-arachidonoyl ethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG), respectively. These enzymes also metabolize eCB analogs such as lipoamines and 2-acyl glycerols, most of which are not ligands at CB1. To test the hypothesis that deleting eCB hydrolyzing enzymes and CB1 shifts lipid metabolism more broadly and impacts more families of eCB structural analogs, targeted lipidomics analyses were performed on FAAH KO, MAGL KO, and CB1 KO mice and compared to WT controls in 8 brain regions. EXPERIMENTAL APPROACH Methanolic extracts of discrete brain regions (brainstem, cerebellum, cortex, hippocampus, hypothalamus, midbrain, striatum and thalamus) were partially purified on C-18 solid-phase extraction columns. Over 70 lipids per sample were then analyzed with HPLC/MS/MS. KEY RESULTS AEA and 2-AG were unaffected throughout the brain in CB1 KO mice; however, there was an increase in the arachidonic acid (AA) metabolite, PGE2 in the majority of brain areas. By contrast, PGE2 and AA levels were significantly reduced throughout the brain in the MAGL KO corresponding to significant increases in 2-AG. No changes in AA or PGE2 were seen throughout in the FAAH KO brain, despite significant increases in AEA, suggesting AA liberated by FAAH does not contribute to steady state levels of AA or PGE2. Changes in the lipidome were not confined to the AA derivatives and showed regional variation in each of the eCB KO models. CONCLUSIONS AND IMPLICATIONS AEA and 2-AG hydrolyzing enzymes and the CB1 receptor link the eCB system to broader lipid signaling networks in contrasting ways, potentially altering neurotransmission and behavior independently of cannabinoid receptor signaling.
Collapse
Affiliation(s)
- Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - Ben Cornett
- Gill Center for Biomolecular Neuroscience, Indiana University, 702 N. Walnut Grove Avenue, Bloomington, IN, 47405, USA
| | - Karl Spork
- Gill Center for Biomolecular Neuroscience, Indiana University, 702 N. Walnut Grove Avenue, Bloomington, IN, 47405, USA
| | - Alex Straiker
- Gill Center for Biomolecular Neuroscience, Indiana University, 702 N. Walnut Grove Avenue, Bloomington, IN, 47405, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA; Gill Center for Biomolecular Neuroscience, Indiana University, 702 N. Walnut Grove Avenue, Bloomington, IN, 47405, USA
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
| |
Collapse
|
25
|
Leishman E, Mackie K, Luquet S, Bradshaw HB. Lipidomics profile of a NAPE-PLD KO mouse provides evidence of a broader role of this enzyme in lipid metabolism in the brain. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:491-500. [PMID: 26956082 DOI: 10.1016/j.bbalip.2016.03.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/13/2022]
Abstract
A leading hypothesis of N-acyl ethanolamine (NAE) biosynthesis, including the endogenous cannabinoid anandamide (AEA), is that it depends on hydrolysis of N-acyl-phosphatidylethanolamines (NAPE) by a NAPE-specific phospholipase D (NAPE-PLD). Thus, deletion of NAPE-PLD should attenuate NAE levels. Previous analyses of two different NAPE-PLD knockout (KO) strains produced contradictory data on the importance of NAPE-PLD to AEA biosynthesis. Here, we examine this hypothesis with a strain of NAPE-PLD KO mice whose lipidome is uncharacterized. Using HPLC/MS/MS, over 70 lipids, including the AEA metabolite, N-arachidonoyl glycine (NAGly), the endocannabinoid 2-arachidonyl glycerol (2-AG) and prostaglandins (PGE(2) and PGF(2α)), and over 60 lipoamines were analyzed in 8 brain regions of KO and wild-type (WT) mice. Lipidomics analysis of this third NAPE-PLD KO strain shows a broad range of lipids that were differentially affected by lipid species and brain region. Importantly, all 6 NAEs measured were significantly reduced, though the magnitude of the effect varied by fatty acid saturation length and brain region. 2-AG levels were only impacted in the brainstem, where levels were significantly increased in KO mice. Correspondingly, levels of arachidonic acid were significantly decreased exclusively in brainstem. NAGly levels were significantly increased in 4 brain regions and levels of PGE(2) increased in 6 of 8 brain regions in KO mice. These data indicate that deletion of NAPE-PLD has far broader effects on the lipidome than previously recognized. Therefore, behavioral characteristics of suppressing NAPE-PLD activity may be due to a myriad of effects on lipids and not simply due to reduced AEA biosynthesis.
Collapse
Affiliation(s)
- Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Neuroscience, Indiana University, Bloomington, IN, USA
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
26
|
Fatty acids, endocannabinoids and inflammation. Eur J Pharmacol 2015; 785:96-107. [PMID: 26325095 DOI: 10.1016/j.ejphar.2015.08.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/01/2015] [Accepted: 08/26/2015] [Indexed: 01/08/2023]
Abstract
From their phylogenetic and pharmacological classification it might be inferred that cannabinoid receptors and their endogenous ligands constitute a rather specialised and biologically distinct signalling system. However, the opposite is true and accumulating data underline how much the endocannabinoid system is intertwined with other lipid and non-lipid signalling systems. Endocannabinoids per se have many structural congeners, and these molecules exist in dynamic equilibria with different other lipid-derived mediators, including eicosanoids and prostamides. With multiple crossroads and shared targets, this creates a versatile system involved in fine-tuning different physiological and metabolic processes, including inflammation. A key feature of this 'expanded' endocannabinoid system, or 'endocannabinoidome', is its subtle orchestration based on interactions between a relatively small number of receptors and multiple ligands with different but partly overlapping activities. Following an update on the role of the 'endocannabinoidome' in inflammatory processes, this review continues with possible targets for intervention at the level of receptors or enzymes involved in formation or breakdown of endocannabinoids and their congeners. Although its pleiotropic character poses scientific challenges, the 'expanded' endocannabinoid system offers several opportunities for prevention and therapy of chronic diseases. In this respect, successes are more likely to come from 'multiple-target' than from 'single-target' strategies.
Collapse
|
27
|
Effects of monoterpenes on ion channels of excitable cells. Pharmacol Ther 2015; 152:83-97. [PMID: 25956464 DOI: 10.1016/j.pharmthera.2015.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022]
Abstract
Monoterpenes are a structurally diverse group of phytochemicals and a major constituent of plant-derived 'essential oils'. Monoterpenes such as menthol, carvacrol, and eugenol have been utilized for therapeutical purposes and food additives for centuries and have been reported to have anti-inflammatory, antioxidant and analgesic actions. In recent years there has been increasing interest in understanding the pharmacological actions of these molecules. There is evidence indicating that monoterpenes can modulate the functional properties of several types of voltage and ligand-gated ion channels, suggesting that some of their pharmacological actions may be mediated by modulations of ion channel function. In this report, we review the literature concerning the interaction of monoterpenes with various ion channels.
Collapse
|
28
|
Janero DR, Makriyannis A. Terpenes and lipids of the endocannabinoid and transient-receptor-potential-channel biosignaling systems. ACS Chem Neurosci 2014; 5:1097-106. [PMID: 24866555 DOI: 10.1021/cn5000875] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Endocananbnoid-system G-protein coupled receptors (GPCRs) and transient receptor potential (TRP) cation channels are critical components of cellular biosignaling networks. These plasma-membrane proteins are pleiotropic in their ability to interact with and engage structurally diverse ligands. The endocannabinoid and TRP signaling systems overlap in their recognition properties with respect to select naturally occurring plant-derived ligands that belong to the terpene and lipid chemical classes, the overlap establishing a physiological connectivity between these two ubiquitous cell-signaling systems. Identification and pharmacological profiling of phytochemicals engaged by cannabinoid GPCRs and/or TRP channels has inspired the synthesis of novel designer ligands that interact with cannabinoid receptors and/or TRP channels as xenobiotics. Functional interplay between the endocannabinoid and TRP-channel signaling systems is responsible for the antinocifensive action of some synthetic cananbinoids (WIN55,212-2 and AM1241), vasorelaxation by the endocannabinoid N-arachidonylethanolamide (anandamide), and the pain-relief afforded by the synthetic anandamide analogue N-arachidonoylaminophenol (AM404), the active metabolite of the widely used nonprescription analgesic and antipyretic acetaminophen (paracetamol). The biological actions of some plant-derived cannabinoid-receptor (e.g., Δ(9)-tetrahydrocannabinol) or TRP-channel (e.g,, menthol) ligands either carry abuse potential themselves or promote the use of other addictive substances, suggesting the therapeutic potential for modulating these signaling systems for abuse-related disorders. The pleiotropic nature of and therapeutically relevant interactions between cananbinergic and TRP-channel signaling suggest the possibility of dual-acting ligands as drugs.
Collapse
Affiliation(s)
- David R. Janero
- Center for Drug Discovery and Departments of Chemistry
and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry
and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115-5000, United States
- King Abdulaziz University, Jeddah, 22254, Saudi Arabia
| |
Collapse
|
29
|
Raboune S, Stuart JM, Leishman E, Takacs SM, Rhodes B, Basnet A, Jameyfield E, McHugh D, Widlanski T, Bradshaw HB. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation. Front Cell Neurosci 2014; 8:195. [PMID: 25136293 PMCID: PMC4118021 DOI: 10.3389/fncel.2014.00195] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/24/2014] [Indexed: 12/30/2022] Open
Abstract
A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide), and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: (1) Additional N-acyl amides will have activity at TRPV1-4, (2) Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and (3) N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting) TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation.
Collapse
Affiliation(s)
- Siham Raboune
- Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, USA
| | - Jordyn M Stuart
- Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, USA
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, USA
| | - Sara M Takacs
- Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, USA
| | - Brandon Rhodes
- Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, USA
| | - Arjun Basnet
- Department of Chemistry, Indiana University Bloomington IN, USA
| | - Evan Jameyfield
- Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, USA
| | - Douglas McHugh
- Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, USA
| | | | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, USA
| |
Collapse
|
30
|
Balakrishna S, Song W, Achanta S, Doran SF, Liu B, Kaelberer MM, Yu Z, Sui A, Cheung M, Leishman E, Eidam HS, Ye G, Willette RN, Thorneloe KS, Bradshaw HB, Matalon S, Jordt SE. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 307:L158-72. [PMID: 24838754 DOI: 10.1152/ajplung.00065.2014] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function.
Collapse
Affiliation(s)
- Shrilatha Balakrishna
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Weifeng Song
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Satyanarayana Achanta
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Stephen F Doran
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Boyi Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Melanie M Kaelberer
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Zhihong Yu
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aiwei Sui
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Mui Cheung
- Heart Failure Discovery Performance Unit-Metabolic Pathways and Cardiovascular Therapy Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana; and
| | - Hilary S Eidam
- Heart Failure Discovery Performance Unit-Metabolic Pathways and Cardiovascular Therapy Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania
| | - Guosen Ye
- Heart Failure Discovery Performance Unit-Metabolic Pathways and Cardiovascular Therapy Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania
| | - Robert N Willette
- Heart Failure Discovery Performance Unit-Metabolic Pathways and Cardiovascular Therapy Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania
| | - Kevin S Thorneloe
- Heart Failure Discovery Performance Unit-Metabolic Pathways and Cardiovascular Therapy Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana; and
| | - Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sven-Eric Jordt
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut;
| |
Collapse
|
31
|
Divito EB, Cascio M. Metabolism, physiology, and analyses of primary fatty acid amides. Chem Rev 2013; 113:7343-53. [PMID: 23927536 DOI: 10.1021/cr300363b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Erin B Divito
- Department of Chemistry and Biochemistry, Duquesne University , 308 Mellon Hall, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282-1530, United States
| | | |
Collapse
|