1
|
Lin X, Zhao Z, Cai Y, He Y, Wang J, Liu N, Qin Y, Wu Y. MyD88 deficiency in mammary epithelial cells attenuates lipopolysaccharide (LPS)-induced mastitis in mice. Biochem Biophys Res Commun 2024; 739:150569. [PMID: 39186869 DOI: 10.1016/j.bbrc.2024.150569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Lactation mastitis is a debilitating inflammatory mammary disease in postpartum animals. Myeloid differentiation primary response protein MyD88 is the key downstream adapter for innate pattern recognition receptor toll-like receptor 4 (TLR4), which plays an important role in inflammation. However, the specific role of MyD88 in mammary epithelial cells in the progression of mastitis has not been investigated. In this study, lipopolysaccharide (LPS)-induced mouse mastitis model was used and cytokines such as Tnf-α, Il-1β, Il-6, Cxcl1, Cxcl2 and Ccl2 were significantly increased in inflammatory mammary gland as shown by real time-qPCR. However, the mice with MyD88-deficienet in mammary epithelial cells (cKO) showed a reduction in the expression of Tnf-α, Il-1β, Il-6, Cxcl1 and Cxcl2 in mammary gland compared with control mice, when subjected to LPS induced mastitis. Immunohistochemical staining of cleaved caspase-3 showed that the cell apoptosis induced by inflammation were decreased in MyD88 cKO mice. Furthermore, there were significantly fewer infiltrating inflammatory cells in alveolar lumen of MyD88 cKO mice, including Ly6G-positive neutrophils and F4/80-positive macrophages. RNA-seq in LPS treated mammary glands showed that MyD88 cKO mice had significantly downregulated inflammation-related genes and upregulated genes related to anti-inflammation processes and lipid metabolism compared with control mice. Thus, these results demonstrate that MyD88 in mammary epithelial cells is essential for mastitis progression. And this study not only has important implications for understanding the innate immune response in mammary epithelial cells, but also potentially helps the development of new therapeutic drugs for treating mastitis.
Collapse
Affiliation(s)
- Xinyi Lin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhifeng Zhao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Cai
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yifeilong He
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jing Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Kwok CTK, Chow FWN, Cheung KYC, Zhang XY, Mok DKW, Kwan YW, Chan GHH, Leung GPH, Cheung KW, Lee SMY, Wang N, Li JJ, Seto SW. Medulla Tetrapanacis water extract alleviates inflammation and infection by regulating macrophage polarization through MAPK signaling pathway. Inflammopharmacology 2024; 32:393-404. [PMID: 37429999 DOI: 10.1007/s10787-023-01266-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/11/2023] [Indexed: 07/12/2023]
Abstract
Medulla Tetrapanacis (MT) is a commonly used herb to promote lactation and manage mastitis in lactating mothers. However, its anti-inflammatory and anti-bacterial effects are currently unknown. We hypothesized that MT water extract possesses anti-inflammatory and anti-bacterial effects by modulating macrophage polarization to reduce the release of inflammatory mediators and phagocytosis via inactivation of MAPKs pathways. The chemical composition of the MT water extract was analyzed by UPLC-Orbitrap-mass spectrometry. The anti-inflammatory and anti-bacterial properties of the MT water extract were examined using LPS-stimulated inflammation and Staphylococcus aureus infection model in RAW 264.7 cells, respectively. The underlying mechanism of action of the MT water extract was also investigated. We identified eight compounds by UPLC-Orbitrap-mass spectrometry that are abundant within the MT water extract. MT water extract significantly suppressed LPS-induced nitric oxide, TNF-α and IL-6 secretion in RAW 264.7 cells which was accompanied by the promotion of macrophage polarization from pro-inflammatory towards anti-inflammatory phenotypes. MT water extract significantly suppressed the LPS-induced MAPK activation. Finally, MT water extract decreased the phagocytic capacity of the RAW 264.7 cells against S. aureus infection. MT water extract could suppress LPS-induced inflammation by promoting macrophages towards an anti-inflammatory phenotype. In addition, MT also inhibited the growth of S. aureus.
Collapse
Affiliation(s)
- Carsten Tsun-Ka Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Franklin Wang-Ngai Chow
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Karry Yuen-Ching Cheung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiao-Yi Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Daniel Kam-Wah Mok
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China
| | - Yiu-Wa Kwan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gabriel Hoi-Huen Chan
- College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Ka-Wang Cheung
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, China
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Jing-Jing Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sai-Wang Seto
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China.
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia.
| |
Collapse
|
3
|
Liu T, Long W, Hu Z, Guan Y, Lei G, He J, Yang X, Yang J, Fu H. Rapid identification of the geographical origin of Eucommia ulmoides by using excitation-emission matrix fluorescence combined with chemometric methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121243. [PMID: 35468376 DOI: 10.1016/j.saa.2022.121243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Eucommia ulmoides is an important and valuable traditional Chinese medicine with various medical functions, and has been widely used as health food in China, Japan, South Korea and other Asian countries for many years. The efficacy and quality of E. ulmoides are closely associated with the geographical origin. In this work, the potential of excitation-emission matrix (EEMs) fluorescence coupled with chemometric methods was investigated for simple, rapid and accurate for identification E. ulmoides from different geographical origins. Parallel factor analysis (PARAFAC) was applied for characterizing the fluorescence fingerprints of E. ulmoides samples. Moreover, k-nearest neighbor (kNN), principal component analysis-linear discriminant analysis (PCA-LDA) and partial least squares discriminant analysis (PLS-DA) models were used for the classification of E. ulmoides samples according to their geographical origins. The results showed that kNN model was more suitable for identification of E. ulmoides samples from different provinces. The kNN model could identify E. ulmoides samples from eight different geographical origins with 100% accuracy on the training and test sets. Therefore, the proposed method was available for conveniently and accurately determining the geographical origin of E. ulmoides, which can expect to be an attractive alternative method for identifying the geographic origin of other traditional Chinese medicines.
Collapse
Affiliation(s)
- Tingkai Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Zikang Hu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yuting Guan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Guanghua Lei
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Jieling He
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Xiaolong Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
4
|
Luo Z, Huang J, Li E, He X, Meng Q, Huang X, Shen X, Yan C. An Integrated Pharmacology-Based Strategy to Investigate the Potential Mechanism of Xiebai San in Treating Pediatric Pneumonia. Front Pharmacol 2022; 13:784729. [PMID: 35237157 PMCID: PMC8885115 DOI: 10.3389/fphar.2022.784729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
Abstract
Xiebai San (XBS) is a traditional Chinese medicine (TCM) prescription that has been widely used to treat pediatric pneumonia since the Song dynasty. To reveal its underlying working mechanism, a network pharmacology approach was used to predict the active ingredients and potential targets of XBS in treating pediatric pneumonia. As a result, 120 active ingredients of XBS and 128 potential targets were screened out. Among them, quercetin, kaempferol, naringenin, licochalcone A and isorhamnetin showed to be the most potential ingredients, while AKT1, MAPK3, VEGFA, TP53, JUN, PTGS2, CASP3, MAPK8 and NF-κB p65 showed to be the most potential targets. IL-17 signaling pathway, TNF signaling pathway and PI3K-Akt signaling pathway, which are involved in anti-inflammation processes, immune responses and apoptosis, showed to be the most probable pathways regulated by XBS. UPLC-Q/Orbitrap HRMS analysis was then performed to explore the main components of XBS, and liquiritin, quercetin, kaempferol, licochalcone A and glycyrrhetinic acid were identified. Molecular docking analysis of the compounds to inflammation-associated targets revealed good binding abilities of quercetin, kaempferol, licochalcone A and liquiritin to NF-κB p65 and of quercetin and kaempferol to Akt1 or Caspase-3. Moreover, molecular dynamics (MD) simulation for binding of quercetin or kaempferol to NF-κB p65 revealed dynamic properties of high stability, high flexibility and lowbinding free energy. In the experiment with macrophages, XBS markedly suppressed the (Lipopolysaccharides) LPS-induced expression of NF-κB p65 and the production of pro-inflammatory cytokines IL-6 and IL-1β, supporting XBS to achieve an anti-inflammatory effect through regulating NF-κB p65. XBS also down-regulated the expression of p-Akt (Ser473)/Akt, Bax and Caspase-3 and up-regulated the expression of Bcl-2, indicating that regulating Akt1 and Caspase-3 to achieve anti-apoptotic effect is also the mechanism of XBS for treating pediatric pneumonia. Our study helped to reveal the pharmacodynamics material basis as well as the mechanism of XBS in treating pediatric pneumonia.
Collapse
Affiliation(s)
- Zhuohui Luo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Honz Pharmaceutical Co., Ltd., Haikou, China
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ennian Li
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinqian He
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiqi Meng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinan Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoling Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | |
Collapse
|
5
|
Ghahramani N, Shodja J, Rafat SA, Panahi B, Hasanpur K. Integrative Systems Biology Analysis Elucidates Mastitis Disease Underlying Functional Modules in Dairy Cattle. Front Genet 2021; 12:712306. [PMID: 34691146 PMCID: PMC8531812 DOI: 10.3389/fgene.2021.712306] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mastitis is the most prevalent disease in dairy cattle and one of the most significant bovine pathologies affecting milk production, animal health, and reproduction. In addition, mastitis is the most common, expensive, and contagious infection in the dairy industry. Methods: A meta-analysis of microarray and RNA-seq data was conducted to identify candidate genes and functional modules associated with mastitis disease. The results were then applied to systems biology analysis via weighted gene coexpression network analysis (WGCNA), Gene Ontology, enrichment analysis for the Kyoto Encyclopedia of Genes and Genomes (KEGG), and modeling using machine-learning algorithms. Results: Microarray and RNA-seq datasets were generated for 2,089 and 2,794 meta-genes, respectively. Between microarray and RNA-seq datasets, a total of 360 meta-genes were found that were significantly enriched as "peroxisome," "NOD-like receptor signaling pathway," "IL-17 signaling pathway," and "TNF signaling pathway" KEGG pathways. The turquoise module (n = 214 genes) and the brown module (n = 57 genes) were identified as critical functional modules associated with mastitis through WGCNA. PRDX5, RAB5C, ACTN4, SLC25A16, MAPK6, CD53, NCKAP1L, ARHGEF2, COL9A1, and PTPRC genes were detected as hub genes in identified functional modules. Finally, using attribute weighting and machine-learning methods, hub genes that are sufficiently informative in Escherichia coli mastitis were used to optimize predictive models. The constructed model proposed the optimal approach for the meta-genes and validated several high-ranked genes as biomarkers for E. coli mastitis using the decision tree (DT) method. Conclusion: The candidate genes and pathways proposed in this study may shed new light on the underlying molecular mechanisms of mastitis disease and suggest new approaches for diagnosing and treating E. coli mastitis in dairy cattle.
Collapse
Affiliation(s)
- Nooshin Ghahramani
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Jalil Shodja
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Abbas Rafat
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
6
|
Li F, Song L, Chen J, Chen Y, Li Y, Huang M, Zhao W. Effect of genipin-1-β-d-gentiobioside on diabetic nephropathy in mice by activating AMP-activated protein kinase/silencing information regulator-related enzyme 1/ nuclear factor-κB pathway. J Pharm Pharmacol 2021; 73:1201-1211. [PMID: 33792721 DOI: 10.1093/jpp/rgab041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/16/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Genipin-1-β-d-gentiobioside (GG) is a kind of compound extracted from Gardenia jasminoides Ellis. The chemical structure of GG is similar to that of geniposide and has antidiabetic effects. We aimed to investigate the efficacy of GG on diabetic nephropathy (DN) in vivo and in vitro experiments and explore its potential mechanism. METHODS For high-fat diet/streptozotocin-induced DN mice used in our study, the general features of mice were analysed after GG treatment. Oxidative stress parameters and inflammatory factors were also measured by commercial kits. Kidney damage was assessed using hematoxylin and eosin (H&E), periodic acid-Schiff (PAS) and Masson staining, respectively. In vitro, podocyte injury was assessed by TUNEL and flow cytometric analyses. AMP-activated protein kinase/silencing information regulator related enzyme 1 (AMPK/SIRT1)/nuclear factor-κB (NF-κB) pathway-related proteins were detected by AMPK-siRNA intervention and western blotting. KEY FINDINGS Treatment of GG could increase cell survival and attenuated kidney damage. Despite the presence of inflammatory and oxidative stress, when GG retained the expression of AMPK/SIRT1, it could be observed that the downstream NLRP3 inflammatory-related proteins were inhibited. CONCLUSIONS Results showed that the protective efficacy of GG on DN works together with hypoglycemia and suppressing oxidative stress and inflammation, which at least partly involved in APMK/SIRT1/NF-κB-dependent pathway.
Collapse
Affiliation(s)
- Fengtao Li
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, PR China
| | - Lijun Song
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, PR China
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, PR China
| | - Jing Chen
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Yu Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, PR China
| | - Yongjun Li
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, PR China
| | - Meizi Huang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, PR China
| | - Wenchang Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, PR China
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, PR China
| |
Collapse
|
7
|
Hao R, Ge J, Ren Y, Song X, Jiang Y, Sun-Waterhouse D, Li F, Li D. Caffeic acid phenethyl ester mitigates cadmium-induced hepatotoxicity in mice: Role of miR-182-5p/TLR4 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111578. [PMID: 33254423 DOI: 10.1016/j.ecoenv.2020.111578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd), an environmental pollutant, is evidenced to cause hepatotoxicity. In this study, the potential protective effect of caffeic acid phenethyl ester (CAPE) on cadmium-induced liver damage was investigated. Forty male mice were treated daily with either CdCl2 (1.5 mg/kg body weight (b.w.), gavage) or CAPE (10 μmol/kg b.w., gavage) or both for 4 weeks. CAPE administration significantly reduced Cd level and liver and body weight, and increased AST, ALT and ALP level. Moreover, CAPE prevented CdCl2-induced oxidative stress via PI3K/Akt/mTOR pathway and inhibited apoptosis by regulating apoptosis markers. CAPE also suppressed the CdCl2-induced inflammation by reducing the inflammatory mediators, including TNF-α, IL-6 and IL-1β. Furthermore, CAPE alleviated CdCl2-induced reduction of TLR4. It should be noted that this effect was achieved by targeting miR-182-5p, and CAPE improved miR-182-5p level. The improvement of the liver tissue histopathology by CAPE confirmed the biochemical data. These results show for the first time that miR-182-5p/TLR4 axis involved in CAPE's protection against CdCl2-induced hepatotoxicity, and may provide novel insights into the treatment of cadmium-related diseases.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, People's Republic of China
| | - Junlin Ge
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, People's Republic of China
| | - Yongfeng Ren
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, People's Republic of China
| | - Xinyu Song
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, People's Republic of China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, People's Republic of China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, People's Republic of China; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, People's Republic of China.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, People's Republic of China.
| |
Collapse
|
8
|
Zhang H, Liu T, Li B, Zhang K, Wang D, Liu Y, Ge L, Jiang Y, Su F. Establishment of a Stable β-Casein Protein-Secreted Laoshan Dairy Goat Mammary Epithelial Cell Line. Front Vet Sci 2020; 7:501. [PMID: 32903554 PMCID: PMC7438409 DOI: 10.3389/fvets.2020.00501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Mammary epithelial cells are widely used as models in mastitis research and as tools for mammalian bioreactors; however, the short lifespan of these cells limits their utility. Several mammal epithelial cell line models have been established; however, the secretion capacity and the bacterial sensitivity of these lines have not been effectively evaluated. In this study, a stable immortalized goat mammary epithelial cell (GMEC) line was constructed by transfection with the SV40 gene. The monoclonal cells were then passaged through more than 50 generations after puromycin selection. The GMEC line was evaluated by reverse transcriptase polymerase chain reaction, the cell cycle, karyotype analysis, detection of apoptosis, Western blotting, and β-casein (CSN2) inducible assays. The GMEC line had a strong proliferation capacity relative to the primary GMECs. GMECs had the same karyotype as the primary cells. The GMEC lines maintained basic biological properties and had estrogen, prolactin, and progesterone receptors as same the primary cells. Additionally, the cells and the cell line could synthesize and secrete β-casein proteins. Finally, the rate of apoptosis of the transfected cells suggested that the cell line could provide a useful tool for signal research and mammary gland bioreactors.
Collapse
Affiliation(s)
- Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Tianzhen Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Boyu Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Kang Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Dong Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Ying Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Lijiang Ge
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Feng Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
9
|
Geniposide alleviates diabetic nephropathy of mice through AMPK/SIRT1/NF-κB pathway. Eur J Pharmacol 2020; 886:173449. [PMID: 32758570 DOI: 10.1016/j.ejphar.2020.173449] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
Geniposide (GE) can effectively inhibit diabetic nephropathy (DN), but its mechanism is unclear. The objective of this study was to explore the antidiabetic nephropathy effects of GE both in high fat diet/streptozotocin-induced DN mice and in high glucose-induced podocyte model. Renal function in DN mice was evaluated by levels of serum creatinine (Scr) and blood urea nitrogen (BUN). Renal inflammation was appraised by pro-inflammatory cytokines: Tumor necrosis factor α (TNF-α), Interleukin 6 (IL-6) and IL-1β via ELISA assay. Renal histopathology analysis was conducted via hematoxylin and eosin, Masson and periodic acid-silver metheramine staining. Cellular viability was measured by Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. Moreover, the related proteins p-NF-κB, ASC, Cleave-IL-1β, NLRP3, Cleave-Caspase-1 and GSDMD-N in AMPK/SIRT1/NF-κB pathway were assayed by Western blotting. In order to further investigate the effects of GE on podocytes, we also assessed these protein levels in AMPK/SIRT1/NF-κB pathway after siRNA-AMPK intervention by Western blotting. GE alleviated renal dysfunction as evidenced by decreased levels of Scr, BUN, TNF-α, IL-6 and IL-1β. Histological examination revealed GE effectively attenuated kidney damage, including glomerular basement membrane thickening and inflammatory cells infiltration. AMPK, p-AMPK and SIRT1 levels were obviously decreased both in DN mice and in podocyte model, but GE reversed these changes. The protein expressions in APMK/SIRT1/NF-κB pathway were significantly decreased by GE treatment. These results suggested that GE could efficiently block oxidative stress and inflammatory responses accompanied with pyroptosis, thus inhibiting the development of DN, and its mechanism might be related to APMK/SIRT1/NF-κB pathway.
Collapse
|
10
|
Bacterial Endotoxin Induces Oxidative Stress and Reduces Milk Protein Expression and Hypoxia in the Mouse Mammary Gland. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3894309. [PMID: 32273941 PMCID: PMC7128054 DOI: 10.1155/2020/3894309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/19/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
Abstract
The aim of this study was to investigate the mechanisms underlying the reduced milk production during mastitis. We hypothesized that bacterial endotoxin induces hypoxia, oxidative stress, and cell apoptosis while inhibiting milk gene expression in the mammary gland. To test this hypothesis, the left and right sides of the 4th pair of mouse mammary glands were alternatively injected with either lipopolysaccharide (LPS, E. coli 055: B5, 100 μL of 0.2 mg/mL) or sterile PBS through the teat meatus 3 days postpartum. At 10.5 and 22.5 h postinjection, pimonidazole HCl, a hypoxyprobe, was injected intraperitoneally. At 12 or 24 h after the LPS injection, the 4th glands were individually collected (n = 8) and analyzed. LPS treatment induced mammary inflammation at both 12 and 24 h but promoted cell apoptosis only at 12 h. Consistently, H2O2 content was increased at 12 h (P < 0.01), but dropped dramatically at 24 h (P < 0.01) in the LPS-treated gland. Nevertheless, the total antioxidative capacity in tissue tended to be decreased by LPS at both 12 and 24 h (P = 0.07 and 0.06, respectively). In agreement with these findings, LPS increased or tended to increase the mRNA expression of antioxidative genes Nqo1 at 12 h (P = 0.05) and SLC7A11 at 24 h (P = 0.08). In addition, LPS inhibited mammary expression of Csn2 and Lalba across time and protein expression of Csn1s1 at 24 h (P < 0.05). Furthermore, hypoxyprobe staining intensity was greater in the alveoli of the PBS-treated gland than the LPS-treated gland at both 12 and 24 h, demonstrating a rise in oxygen tension by LPS treatment. In summary, our observations indicated that while intramammary LPS challenge incurs inflammation, it induces oxidative stress, increases cell apoptosis and oxygen tension, and differentially inhibits the milk protein expression in the mammary gland.
Collapse
|
11
|
Zeng M, Cao Y, Xu R, Wu Y, Wang Y, Zhang Y, Zheng X, Feng W. Oleanolic acid derivative isolated fromGardenia jasminoidesvar.radicansalleviates LPS-induced acute kidney injury in mice by reducing oxidative stress and inflammatory responsesviathe TLR4/NF-κB/NLRP3 signaling pathway. NEW J CHEM 2020. [DOI: 10.1039/c9nj05294a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute kidney injury (AKI) is a frequent complication of sepsis with hallmarks including inflammation and oxidative stress.
Collapse
Affiliation(s)
- Mengnan Zeng
- Department of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province
| | - Yangang Cao
- Department of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province
| | - Ruiqi Xu
- Department of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province
| | - Yuanyuan Wu
- Department of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province
| | - Yangyang Wang
- Department of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province
| | - Yanli Zhang
- Department of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province
| | - Xiaoke Zheng
- Department of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province
| | - Weisheng Feng
- Department of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province
| |
Collapse
|
12
|
Li P, Ye J, Zeng S, Yang C. Florfenicol alleviated lipopolysaccharide (LPS)-induced inflammatory responses in Ctenopharyngodon idella through inhibiting toll / NF-κB signaling pathways. FISH & SHELLFISH IMMUNOLOGY 2019; 94:479-484. [PMID: 31472264 DOI: 10.1016/j.fsi.2019.08.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
The present study was conducted to evaluate the anti-inflammatory activity of florfenicol (FFC) against lipopolysaccharide (LPS)-induced inflammatory responses in Ctenopharyngodon idella in vivo and in vitro. Head-kidney (HK) macrophages were pre-treated with 10 μg/mL LPS and then exposed to different concentrations of FFC to determine its in vitro anti-inflammatory activity. Inhibitory effect of FFC on inflammatory mediators TNF-α, IL-6 and IL-1β, as well as LPS-induced nitric oxide (NO) and prostaglandin E 2 (PGE 2) production were assayed by ELISA. The expression level of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were investigated by RT-PCR. Expression level of TLR-related genes (TLR1, TLR2, TLR4, TLR7, TLR8) expression, tumor necrosis factor receptor-associated factor 6 (TRAF6), transforming growth factor-b-activated kinase 1 (TAK1), Myeloid differentiation factor 88 (MyD88), nucleus p65, NF-κBα (IκBα) were measured by RT-PCR after grass carp were treated with 50, 100 and 200 mg FFC/kg body weight for 3 days. Results from in vitro tests demonstrated that FFC dose-dependently inhibited LPS-induced inflammatory cytokines TNF-α, IL-6 and IL-1β, inflammatory factors NO and PGE 2 production in macrophages. In addition, iNOS and COX-2 expression levels decreased significantly as compared with LPS treated group. In vivo test demonstrated that treatment with FFC prevented the LPS-induced upregulation of TNF-α, IL-6, IL-1β, NO and PGE 2. The expression level of iNOS, and COX-2 in FFC-treated grass carp were also downregulated as compared with LPS treated fish. Besides, FFC blocked the expression of Toll-like receptor 2 (TLR2) and then suppressed the phosphorylation of nuclear transcription factor-kappa B (NF-κB) p65 and degradation inhibitor of IκBα. Furthermore, administration of FFC inhibited the up-regulation of IRAK4, TRAF6 and TAK1 induced by LPS. These results suggest that the anti-inflammatory properties of FFC might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1β, and TNF-α expressions through the down-regulation of Toll/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Pei Li
- Center for Food Quality Supervision and Testing (Zhanjiang)Ministry of Agriculture and Rural Affairs PR China, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 52400, China; Institute for Fisheries Sciences, Guangxi University, Nanning, 53000, China
| | - Jianzhi Ye
- Center for Food Quality Supervision and Testing (Zhanjiang)Ministry of Agriculture and Rural Affairs PR China, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 52400, China
| | - Shaodong Zeng
- Center for Food Quality Supervision and Testing (Zhanjiang)Ministry of Agriculture and Rural Affairs PR China, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 52400, China
| | - Chunliang Yang
- Center for Food Quality Supervision and Testing (Zhanjiang)Ministry of Agriculture and Rural Affairs PR China, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 52400, China.
| |
Collapse
|
13
|
SIRT7 Regulates Lipopolysaccharide-Induced Inflammatory Injury by Suppressing the NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3187972. [PMID: 31285783 PMCID: PMC6594283 DOI: 10.1155/2019/3187972] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/06/2019] [Accepted: 05/16/2019] [Indexed: 11/18/2022]
Abstract
Mastitis has severely affected the cattle industry worldwide and has resulted in decreased dairy production and cattle reproduction. Although prevention and treatment methods have been implemented for decades, cattle mastitis is still an intractable disease. Sirtuin 7 (SIRT7) is an NAD+-dependent deacetylase that is involved in various biological processes, including ribosomal RNA synthesis and protein synthesis, DNA damage response, metabolism, and tumorigenesis. However, whether SIRT7 participates in inflammation remains unknown. Our results revealed that SIRT7 is downregulated in tissue samples from mastitic cattle. Therefore, we isolated dairy cow mammary epithelial cells (DCMECs) from breast tissues and developed an in vitro model of lipopolysaccharide- (LPS-) induced inflammation to examine SIRT7 function and its potential role in inflammation. We showed that SIRT7 was significantly downregulated in LPS-treated DCMECs. SIRT7 knockdown significantly increased the LPS-stimulated production of inflammatory mediators, like reactive oxygen and nitric oxide, and upregulated TAB1 and TLR4. In addition, SIRT7 knockdown significantly increased the phosphorylation of TAK1 and NF-κBp65 in LPS-treated DCMECs. Moreover, SIRT7 knockdown promoted the translocation of NF-κBp-p65 to the cell nucleus and then increased the secretion of inflammatory cytokines (IL-1β and IL-6). In contrast, SIRT7 overexpression had the opposite effects when compared to SIRT7 knockdown in LPS-treated DCMECs. In addition, SIRT7 overexpression attenuated LPS-induced DCMEC apoptosis. Taken together, our results indicate that SIRT7 can suppress LPS-induced inflammation and apoptosis via the NF-κB signaling pathway. Therefore, SIRT7 may be considered as a potential pharmacological target for clinical mastitis therapy.
Collapse
|
14
|
Sharifi S, Pakdel A, Ebrahimie E, Aryan Y, Ghaderi Zefrehee M, Reecy JM. Prediction of key regulators and downstream targets of E. coli induced mastitis. J Appl Genet 2019; 60:367-373. [DOI: 10.1007/s13353-019-00499-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/02/2019] [Accepted: 05/21/2019] [Indexed: 01/04/2023]
|
15
|
Diverse Pharmacological Activities and Potential Medicinal Benefits of Geniposide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4925682. [PMID: 31118959 PMCID: PMC6500620 DOI: 10.1155/2019/4925682] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Abstract
Geniposide is a well-known iridoid glycoside compound and is an essential component of a wide variety of traditional phytomedicines, for example, Gardenia jasminoides Elli (Zhizi in Chinese), Eucommia ulmoides Oliv. (Duzhong in Chinese), Rehmannia glutinosa Libosch. (Dihuang in Chinese), and Achyranthes bidentata Bl. (Niuxi in Chinese). It is also the main bioactive component of Gardeniae Fructus, the dried ripe fruit of Gardenia jasminoides Ellis. Increasing pharmacological evidence supports multiple medicinal properties of geniposide including neuroprotective, antidiabetic, hepatoprotective, anti-inflammatory, analgesic, antidepressant-like, cardioprotective, antioxidant, immune-regulatory, antithrombotic, and antitumoral effects. It has been proposed that geniposide may be a drug or lead compound for the prophylaxis and treatment of several diseases, such as Alzheimer's disease, Parkinson's disease, diabetes and diabetic complications, ischemia and reperfusion injury, and hepatic disorders. The aim of the present review is to give a comprehensive summary and analysis of the pharmacological properties of geniposide, supporting its use as a medicinal agent.
Collapse
|
16
|
Cui Y, Wang Q, Wang M, Jia J, Wu R. Gardenia Decoction Prevent Intestinal Mucosal Injury by Inhibiting Pro-inflammatory Cytokines and NF-κB Signaling. Front Pharmacol 2019; 10:180. [PMID: 30983991 PMCID: PMC6447716 DOI: 10.3389/fphar.2019.00180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Gardenia jasminoides Ellis, which belongs to the Rubiaceae family, is a widely used traditional Chinese medicine. Although effect of Gardenia jasminoides Ellis has been widely reported, its anti-inflammatory role in intestinal mucosal injury induced by LPS remains unclear. In the present study, we investigated the effects of decoction extracted from Gardenia jasminoides on the morphology and intestinal antioxidant capacity of duodenum induced by LPS in mice. Further analysis was carried out in the expression of inflammatory and anti-inflammatory cytokines. Nuclear factor-kappa B (NF-κB) was determined by Western blot. Gardenia jasminoides water extract was qualitative analyzed by high-performance liquid chromatography coupled with electro spray ionization quadrupole time-of-flight mass spectrometry. The results showed that Gardenia decoction markedly inhibited the LPS-induced Tumor necrosis factor (TNF)-α, Interleukin (IL)-6, IL-8, and IL-1 production. It was also observed that Gardenia decoction attenuated duodenum histopathology changes in the mouse models. Furthermore, Gardenia decoction inhibited the expression of NF-κB in LPS stimulated mouse duodenum. These results suggest that Gardenia decoction exerts an anti-inflammatory and antioxidant property by up-regulating the activities of the total antioxidant capacity (T-AOC), the total superoxide dismutase (T-SOD), and glutathione peroxidase (GSH-Px). Gardenia decoction is highly effective in inhibiting intestinal mucosal damage and may be a promising potential therapeutic reagent for intestinal mucosal damage treatment.
Collapse
Affiliation(s)
- Yizhe Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiuju Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mengzhu Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Junfeng Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
17
|
Zheng H, Guo Q, Duan X, Xu Z, Wang Q. l-arginine inhibited apoptosis of fish leukocytes via regulation of NF-κB-mediated inflammation, NO synthesis, and anti-oxidant capacity. Biochimie 2019; 158:62-72. [DOI: 10.1016/j.biochi.2018.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023]
|
18
|
Ma J, Ding Y. Geniposide suppresses growth, migration and invasion of MKN45 cells by down-regulation of lncRNA HULC. Exp Mol Pathol 2018; 105:252-259. [PMID: 30176223 DOI: 10.1016/j.yexmp.2018.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022]
Abstract
Gastric cancer (GC) is a serious disease with high incidence rate and high mortality. Geniposide (GEN) exhibits multiple biological properties including anti-tumor function. However, effect of GEN on GC is not well studied. Hence, the effects of GEN on GC were investigated in our study. HULC expression in GC tissue and GC cell lines (MKN45, SGC-7901, MKN28, AGS) was detected by qRT-PCR. Cell viability, colony formation, migration, invasion and cell apoptosis were examined by CCK-8 assay, survival fraction assay, modified two-chamber migration assay, Millicell Hanging Cell Culture and flow cytometry analysis, respectively. The expression of matrix metalloproteinase (MMP)-2/9 and vimentin was detected by qRT-PCR and western blot, respectively. The expression of PI3K/AKT and JNK was measured by western blot. The expression of HULC was up-regulated both in GC tissue and cell lines (P < .05, P < .01 or P < .001). GEN negatively regulated the expression of HULC in MKN45 cells (P < .05 or P < .01). GEN decreased cell viability (P < .05), colony formation (P < .01), migration (P < .05) and invasion (P < .05) while HULC overexpression led to the opposite results in GEN-treated cells. The expression of phosphatidylinositol 3' -kinase (PI3K)/ protein kinase B (AKT) and c-Jun N-terminal kinase (JNK) was down-regulated by GEN (all P < .05) while reversed by HULC overexpression. HULC was up-regulated in GC. GEN inhibited MNK45 cell viability, colony formation, migration and invasion while induced cell apoptosis by down-regulation of HULC in MKN45 cells. GEN inactivated PI3K/AKT and JNK signal pathways through down-regulation of HULC.
Collapse
Affiliation(s)
- Ji Ma
- Department of Endoscopy, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China
| | - Yong Ding
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
19
|
Peng Y, Dong M, Zou J, Liu Z. Analysis of the HPLC Fingerprint and QAMS for Sanhuang Gypsum Soup. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:5890973. [PMID: 30079260 PMCID: PMC6051103 DOI: 10.1155/2018/5890973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
A valid and encyclopaedic evaluation method for assessing the quality of Sanhuang Gypsum Soup (SGS) has been set up based on analysis of high-performance liquid chromatography (HPLC) fingerprint combined with the quantitative analysis of multicomponents by single marker (QAMS) method, hierarchical cluster analysis (HCA), and similarity analysis. 20 peaks of the common model were obtained and used for the similarity analysis and HCA analysis. Berberine was selected as an internal reference, and the relative correction factors of mangiferin, geniposide, liquiritin, epiberberine, coptisine, baicalin, palmatine, harpagosid, wogonoside, cinnamic acid, cinnamic aldehyde, baicalein, glycyrrhizic acid, and wogonin were established. The accuracy of quantitative analysis of multicomponents by the single-marker method was verified by comparing the contents of the fourteen components calculated by the external standard method with those of the quantitative analysis of multicomponents by the single-marker method. No significant difference was found in the quantitative results of the established quantitative analysis of multicomponents by a single-marker method and an external standard method. In summary, these methods were applied to evaluate the quality of SGS successfully. As a result, these evaluation methods have great potential to be widely used in the quality control of traditional Chinese medicines (TCM).
Collapse
Affiliation(s)
- Yi Peng
- Department of Pharmacy, Nanjing University of Traditional Chinese Medicine Affiliated Hospital, Nanjing 210029, China
| | - Minghui Dong
- Department of Pharmacy, Nanjing University of Traditional Chinese Medicine Affiliated Hospital, Nanjing 210029, China
| | - Jing Zou
- Department of Pharmacy, Nanjing University of Traditional Chinese Medicine Affiliated Hospital, Nanjing 210029, China
| | - Zhihui Liu
- Department of Pharmacy, Nanjing University of Traditional Chinese Medicine Affiliated Hospital, Nanjing 210029, China
| |
Collapse
|
20
|
Chang G, Yan J, Ma N, Liu X, Dai H, Bilal MS, Shen X. Dietary Sodium Butyrate Supplementation Reduces High-Concentrate Diet Feeding-Induced Apoptosis in Mammary Cells in Dairy Goats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2101-2107. [PMID: 29446933 DOI: 10.1021/acs.jafc.7b05882] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Eighteen lactating goats (38.86 ± 2.06 kg) were randomly allocated to three groups. One group was fed a low-concentrate (LC) diet (forage:concentrate = 6:4), while the other two groups were fed a high-concentrate (HC) diet (forage:concentrate = 4:6) or an HC diet supplemented with sodium butyrate (BHC) for 20 weeks. Samples of ruminal fluid, milk, hepatic blood plasma, and mammary gland tissue were prepared for the experimental analysis. The lipopolysaccharide (LPS) concentration, caspase-3 and -8 enzymatic activity, caspase-3 and -8 mRNA expression, and NF-κB (p65), phosphorylated-p65, bax, cytochrome c, and caspase-3 protein expression were higher in the HC group than those in the LC group; however, the levels of these parameters were lower in the BHC group than those in the HC group. Moreover, bcl-2 mRNA and protein expression was higher in the BHC group than that in the HC or LC groups, and no significant difference was observed between the HC and LC groups. Thus, feeding lactating goats an HC diet induces apoptosis in mammary cells, and supplementing the diet with sodium butyrate reduces the concentrations of LPS and proinflammatory cytokines, subsequently attenuating the activation of NF-κB and caspase-3 and eventually inhibiting apoptosis in mammary cells.
Collapse
Affiliation(s)
- Guangjun Chang
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Jinyu Yan
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Nana Ma
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Xinxin Liu
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Hongyu Dai
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Muhammad Shaid Bilal
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Xiangzhen Shen
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| |
Collapse
|
21
|
Shan M, Yu S, Yan H, Guo S, Xiao W, Wang Z, Zhang L, Ding A, Wu Q, Li SFY. A Review on the Phytochemistry, Pharmacology, Pharmacokinetics and Toxicology of Geniposide, a Natural Product. Molecules 2017; 22:E1689. [PMID: 28994736 PMCID: PMC6151614 DOI: 10.3390/molecules22101689] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/27/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022] Open
Abstract
Iridoid glycosides are natural products occurring widely in many herbal plants. Geniposide (C17H24O10) is a well-known one, present in nearly 40 species belonging to various families, especially the Rubiaceae. Along with this herbal component, dozens of its natural derivatives have also been isolated and characterized by researchers. Furthermore, a large body of pharmacological evidence has proved the various biological activities of geniposide, such as anti-inflammatory, anti-oxidative, anti-diabetic, neuroprotective, hepatoprotective, cholagogic effects and so on. However, there have been some research articles on its toxicity in recent years. Therefore, this review paper aims to provide the researchers with a comprehensive profile of geniposide on its phytochemistry, pharmacology, pharmacokinetics and toxicology in order to highlight some present issues and future perspectives as well as to help us develop and utilize this iridoid glycoside more efficiently and safely.
Collapse
Affiliation(s)
- Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Sheng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wei Xiao
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang 222001, China.
| | - Zhenzhong Wang
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang 222001, China.
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Anwei Ding
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qinan Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
22
|
Jiang K, Zhang T, Yin N, Ma X, Zhao G, Wu H, Qiu C, Deng G. Geraniol alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis. Oncotarget 2017; 8:71038-71053. [PMID: 29050341 PMCID: PMC5642616 DOI: 10.18632/oncotarget.20298] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/19/2017] [Indexed: 12/28/2022] Open
Abstract
Geraniol (GOH), a special type of acyclic monoterpene alcohol, has been widely used to treat many diseases associated with inflammation and apoptosis. Acute lung injury (ALI) is a common clinical disease in humans characterized by pulmonary inflammation and apoptosis. In the present study, we investigated the protective effects of GOH in a mouse model of ALI induced by the intranasal administration of lipopolysaccharide (LPS) and elucidated the underlying molecular mechanisms in RAW 264.7 cells. In vivo, GOH treatment markedly ameliorated pathological injury and pulmonary cell apoptosis and reduced the wet/dry (W/D) weight ratio of lungs, myeloperoxidase (MPO) activity and the production of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). In vitro, the levels of pro-inflammatory cytokines, iNOS and COX-2 were significantly increased in LPS-stimulated RAW 264.7 cells, an effect that was decreased by GOH treatment. Moreover, GOH treatment dramatically reduced the expression of Toll-like receptor 4 (TLR4) and then prevented the nuclear factor-κB (NF-κB) activation. GOH treatment also promoted anti-apoptotic Bcl-2 expression and inhibited pro-apoptotic Bax and Caspase-3 expression. Furthermore, knockdown of TLR4 expression exerted a similar effect and inhibited the phosphorylation of p65, as well as the Bax and Caspase-3 expression. Taken together, these results suggest that GOH treatment alleviates LPS-induced ALI via inhibiting pulmonary inflammation and apoptosis, a finding that might be associated with the inhibition of TLR4-mediated NF-κB and Bcl-2/Bax signalling pathways.
Collapse
Affiliation(s)
- Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Nannan Yin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
23
|
Tynan A, Mawhinney L, Armstrong ME, O'Reilly C, Kennedy S, Caraher E, Jülicher K, O'Dwyer D, Maher L, Schaffer K, Fabre A, McKone EF, Leng L, Bucala R, Bernhagen J, Cooke G, Donnelly SC. Macrophage migration inhibitory factor enhances Pseudomonas aeruginosa biofilm formation, potentially contributing to cystic fibrosis pathogenesis. FASEB J 2017; 31:5102-5110. [PMID: 28768722 DOI: 10.1096/fj.201700463r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a key proinflammatory mediator that we have previously shown to be associated with an aggressive clinical phenotype in cystic fibrosis. It possesses unique tautomerase enzymatic activity. However, to date, no human-derived substrate has been identified that has the capacity to interact with this cytokine's unique tautomerase activity. This led us to hypothesize that MIF may have the capacity to interact with external substrates. We describe for the first time how Pseudomonas aeruginosa can utilize human recombinant MIF (rMIF) to significantly (P < 0.01) enhance its endogenous biofilm formation. Our in vivo studies demonstrate that utilizing a small-molecular-weight inhibitor targeting MIF's tautomerase activity (SCD-19) significantly reduces the inflammatory response in a murine pulmonary chronic P. aeruginosa model. In addition, we show that in in vitro experiments, pretreatment of P. aeruginosa with rMIF is associated with reduced bacterial killing by tobramycin. Our novel findings support the concept of an anti-MIF strategy that targets this enzymatic activity as a potential future antibacterial therapeutic approach.-Tynan, A., Mawhinney, L., Armstrong, M. E., O'Reilly, C., Kennedy, S., Caraher, E., Jülicher, K., O'Dwyer, D., Maher, L., Schaffer, K., Fabre, A., McKone, E. F., Leng, L., Bucala, R., Bernhagen, J., Cooke, G., Donnelly, S. C. Macrophage migration inhibitory factor enhances Pseudomonas aeruginosa biofilm formation, potentially contributing to cystic fibrosis pathogenesis.
Collapse
Affiliation(s)
- Aisling Tynan
- Department of Medicine, Tallaght Hospital, Trinity College, Dublin, Ireland
| | - Leona Mawhinney
- Department of Medicine, Tallaght Hospital, Trinity College, Dublin, Ireland
| | | | - Ciaran O'Reilly
- Department of Medicine, Tallaght Hospital, Trinity College, Dublin, Ireland
| | - Sarah Kennedy
- Department of Science, Centre for Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | - Emma Caraher
- Department of Science, Centre for Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | - Karen Jülicher
- Department of Medicine, Tallaght Hospital, Trinity College, Dublin, Ireland
| | - David O'Dwyer
- St. Vincent's University Hospital, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lewena Maher
- St. Vincent's University Hospital, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Kirsten Schaffer
- St. Vincent's University Hospital, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aurélie Fabre
- St. Vincent's University Hospital, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Edward F McKone
- St. Vincent's University Hospital, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lin Leng
- Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard Bucala
- Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany.,Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Gordon Cooke
- Department of Science, Centre for Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Tallaght Hospital, Trinity College, Dublin, Ireland;
| |
Collapse
|
24
|
Xu B, Li YL, Xu M, Yu CC, Lian MQ, Tang ZY, Li CX, Lin Y. Geniposide ameliorates TNBS-induced experimental colitis in rats via reducing inflammatory cytokine release and restoring impaired intestinal barrier function. Acta Pharmacol Sin 2017; 38:688-698. [PMID: 28260798 DOI: 10.1038/aps.2016.168] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
Geniposide is an iridoid glycosides purified from the fruit of Gardenia jasminoides Ellis, which is known to have antiinflammatory, anti-oxidative and anti-tumor activities. The present study aimed to investigate the effects of geniposide on experimental rat colitis and to reveal the related mechanisms. Experimental rat colitis was induced by rectal administration of a TNBS solution. The rats were treated with geniposide (25, 50 mg·kg-1·d-1, ig) or with sulfasalazine (SASP, 100 mg·kg-1·d-1, ig) as positive control for 14 consecutive days. A Caco-2 cell monolayer exposed to lipopolysaccharides (LPS) was used as an epithelial barrier dysfunction model. Transepithelial electrical resistance (TER) was measured to evaluate intestinal barrier function. In rats with TNBS-induced colitis, administration of geniposide or SASP significantly increased the TNBS-decreased body weight and ameliorated TNBS-induced experimental colitis and related symptoms. Geniposide or SASP suppressed inflammatory cytokine (TNF-α, IL-1β, and IL-6) release and neutrophil infiltration (myeloperoxidase activity) in the colon. In Caco-2 cells, geniposide (25-100 μg/mL) ameliorated LPS-induced endothelial barrier dysfunction via dose-dependently increasing transepithelial electrical resistance (TER). The results from both in vivo and in vitro studies revealed that geniposide down-regulated NF-κB, COX-2, iNOS and MLCK protein expression, up-regulated the expression of tight junction proteins (occludin and ZO-1), and facilitated AMPK phosphorylation. Both AMPK siRNA transfection and AMPK overexpression abrogated the geniposide-reduced MLCK protein expression, suggesting that geniposide ameliorated barrier dysfunction via AMPK-mediated inhibition of the MLCK pathway. In conclusion, geniposide ameliorated TNBS-induced experimental rat colitis by both reducing inflammation and modulating the disrupted epithelial barrier function via activating the AMPK signaling pathway.
Collapse
|
25
|
Wang H, Xu YS, Wang ML, Cheng C, Bian R, Yuan H, Wang Y, Guo T, Zhu LL, Zhou H. Protective effect of naringin against the LPS-induced apoptosis of PC12 cells: Implications for the treatment of neurodegenerative disorders. Int J Mol Med 2017; 39:819-830. [PMID: 28260042 PMCID: PMC5360435 DOI: 10.3892/ijmm.2017.2904] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
Several studies have demonstrated that increased apoptosis plays an essential role in neurodegenerative disorders. It has been demonstrated that lipopolysaccharide (LPS) induces apoptosis largely through the production of intracellular reactive oxygen species (ROS) and inflammatory mediators. In this study, we investigated the potential protective mechanisms of naringin (Nar), a pummelo peel extract, on LPS-induced PC12 cell apoptosis. Nar pre-conditioning prior to stimulation with LPS for 18 h was a prerequisite for evaluating PC12 cell viability and the protective mechanisms of Nar. Nar significantly improved cell survival in a time- and concentration-dependent manner. On the one hand, Nar downregulated cytochrome P450 2E1 (CYP2E1), inhibited the release of ROS, mitigated the stimulation of oxidative stress, and rectified the antioxidant protein contents of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), superoxide dismutase (SOD)2 and glutathione synthetase (GSS). On the other hand, Nar down-regulated inflammatory gene and protein expression, including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, HMGB1, high mobility group box 1 protein (HMGB1), cyclo-oxygenase-2 (COX-2), the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-TNF receptor-associated factor 6 (TRAF6) path way and downstream mitogen activated protein kinase (MAPK) phosphorylation, activator protein transcription factor-1 (AP-1) and nuclear factor (NF)-κB. Moroever, Nar markedly attenuated the cytochrome c shift from the mitochondria to the cytosol and regulated caspase-3-related protein expression. To the best of our knowledge, this is the first study to report the antioxidant, anti-inflammatory and anti-apoptotic effects of Nar in neuronal-like PC12 cells. These results suggest that Nar can be utilized as a potential drug for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurosurgery, Traffic Hospital of Shandong Province, Jinan, Shandong 250031, P.R. China
| | - You Song Xu
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Miao Lin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Chao Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Rui Bian
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hao Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ting Guo
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lin Lin Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hang Zhou
- Department of Neurosurgery, The 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
26
|
Gao X, Zhang Z, Li Y, Hu X, Shen P, Fu Y, Cao Y, Zhang N. Selenium Deficiency Deteriorate the Inflammation of S. aureus Infection via Regulating NF-κB and PPAR-γ in Mammary Gland of Mice. Biol Trace Elem Res 2016; 172:140-147. [PMID: 26554949 DOI: 10.1007/s12011-015-0563-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/03/2015] [Indexed: 11/26/2022]
Abstract
Selenium (Se) is an essential micronutrient contributing to a strong immune system for the prevention of infections and diseases in humans and animals. Dietary Se regulates the immune status and mediates anti-inflammatory action. Mastitis is an inflammation in the mammary gland typically induced through the major pathogen S. aureus. The aim of the present study was to determine the regulating effect of Se on S. aureus-induced inflammation using a mouse mastitis model. Immunofluorescence staining was used to detect histopathological injury. ELISA was used to detect cytokine expression, while protein and mRNA levels were analyzed through Western blotting and qPCR analysis, respectively. The results showed that Se deficiency increased inflammatory lesions in individuals with S. aureus infection in the mammary gland. The NO levels showed a significant increase in Se-deficient mice with S. aureus mastitis. Se deficiency accelerated the production of pro-inflammatory factors and reduced IL-10 expression. Furthermore, the results of the present study showed that the regulating effect of Se on S. aureus-induced mastitis was associated with the NF-κB pathway. Indeed, Se deficiency suppressed PPAR-γ activity and promoted NF-κB pathway activation. Thus, Se supplementation could improve the effect on PPAR-γ and NF-κB. These results suggest that Se deficiency could aggravate the inflammatory injury resulting from S. aureus-induced mastitis. Moreover, the results of the present study contribute to the development of new prevention or treatment methods for S. aureus-induced mastitis and other infectious diseases.
Collapse
Affiliation(s)
- Xuejiao Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Zecai Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Ying Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Peng Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China.
| |
Collapse
|
27
|
Tan Z, Liu A, Luo M, Yin X, Song D, Dai M, Li P, Chu Z, Zou Z, Ma M, Guo B, Chen B. Geniposide Inhibits Alpha-Naphthylisothiocyanate-Induced Intrahepatic Cholestasis: The Downregulation of STAT3 and NFκB Signaling Plays an Important Role. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:721-36. [DOI: 10.1142/s0192415x16500397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Traditional medicinal formulation of Yin-zhi-huang (YZH) is widely used in the clinic for the treatment of jaundice and chronic liver diseases in East Asian countries. However, the pharmacologically active components of YZH and the underlying mechanism are still unknown. Geniposide (GEN) was recently identified as one of the most abundant circulating components in YZH. In this study, we investigated the protective effect of GEN against liver injuries induced by alpha-naphthylisothiocyanate (ANIT). 50[Formula: see text]mg/kg of GEN was administered to ICR mice once daily for 5 days, and challenge of ANIT 75[Formula: see text]mg/kg was performed on the 4th day. Blood and liver tissues were collected on day 6 and subjected to biochemical, histopathological and pathway analyses. The biochemical and pathological findings showed that GEN almost totally attenuated ANIT-induced cholestasis and liver injury compared with the vehicle/ANIT group. The altered gene transcription related to bile acid metabolism and transport was normalized by co-treatment with GEN. The expressions of tumor necrosis factor-[Formula: see text] and the suppressor of cytokine signaling 3 were significantly decreased in the GEN/ANIT group. Western blot revealed that GEN inhibited the activation and expression of STAT3 and NF[Formula: see text]B. These data suggest GEN inhibits ANIT-induced hepatotoxicity. The protective effect is associated with the downregulation of STAT3 and NF[Formula: see text]B signaling.
Collapse
Affiliation(s)
- Zhen Tan
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Aiming Liu
- Medical School of Ningbo University, Ningbo 315211, China
| | - Min Luo
- Medical School of Ningbo University, Ningbo 315211, China
| | - Xuan Yin
- Medical School of Ningbo University, Ningbo 315211, China
| | - Danjun Song
- Medical School of Ningbo University, Ningbo 315211, China
| | - Manyun Dai
- Medical School of Ningbo University, Ningbo 315211, China
| | - Pengxu Li
- Medical School of Ningbo University, Ningbo 315211, China
| | - Zanbo Chu
- Medical School of Ningbo University, Ningbo 315211, China
| | - Zuquan Zou
- Medical School of Ningbo University, Ningbo 315211, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Bin Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| |
Collapse
|
28
|
Guo L, Zheng X, Liu J, Yin Z. Geniposide Suppresses Hepatic Glucose Production via AMPK in HepG2 Cells. Biol Pharm Bull 2016; 39:484-91. [DOI: 10.1248/bpb.b15-00591] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lixia Guo
- Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University
- Chongqing Key Lab of Natural Medicine Research, Chongqing Technology and Business University
| | - Xuxu Zheng
- Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University
- Chongqing Key Lab of Natural Medicine Research, Chongqing Technology and Business University
| | - Jianhui Liu
- Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University
- Chongqing Key Lab of Natural Medicine Research, Chongqing Technology and Business University
| | - Zhongyi Yin
- Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University
- Chongqing Key Lab of Natural Medicine Research, Chongqing Technology and Business University
| |
Collapse
|