1
|
Hashimoto N, Nagata R, Han KH, Wakagi M, Ishikawa-Takano Y, Fukushima M. Involvement of the vagus nerve and hepatic gene expression in serum adiponectin concentrations in mice. J Physiol Biochem 2024; 80:99-112. [PMID: 37837567 DOI: 10.1007/s13105-023-00987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023]
Abstract
Several humoral factors, such as adiponectin and urate, have been suggested to affect metabolic syndromes. Previously, we reported a reduction in blood adiponectin concentrations after a high-fructose diet partially via the vagus nerve in rats. Although a lithogenic diet (LD), i.e., supplementation of a normal control diet (CT) with 0.6% cholesterol and 0.2% sodium cholate, reduced blood adiponectin concentrations, the involvement of the vagus nerve in this mechanism remains unclear. To estimate the involvement of the vagus nerve in the regulation of blood adiponectin concentrations using an LD, male imprinting control region mice that had been vagotomized (HVx) or only laparotomized (Sham) were administered a CT or an LD for 10 weeks. Serum adiponectin concentrations in the Sham-LD, HVx-CT, and HVx-LD groups were reduced by half compared with the Sham-CT group. The hepatic mRNA levels of fibroblast growth factor 21 (Fgf21), which reportedly stimulates adiponectin secretion from white adipose tissue, were lower in the LD groups compared with the CT groups. HepG2 hepatoma cells showed that various bile acids reduced the mRNA expression of FGF21. Moreover, the LD increased serum urate concentrations and reduced hepatic expressions of the acyl-CoA oxidase 1 (Acox1) mRNA and glucokinase, suggesting insufficient regeneration of ATP from AMP. In conclusion, serum adiponectin concentration may be regulated via the vagus nerve in normal mice, whereas a reduction of hepatic Fgf21 mRNA by bile acids may also lower serum adiponectin levels. Moreover, the LD may promote hepatic AMP accumulation and subsequently increase the serum urate concentration in mice.
Collapse
Affiliation(s)
- Naoto Hashimoto
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada, Obihiro, Hokkaido, 080-8555, Japan.
- Division of Food Function Research, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki, 305-8642, Japan.
| | - Ryuji Nagata
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Kyu-Ho Han
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Manabu Wakagi
- Division of Food Function Research, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Yuko Ishikawa-Takano
- Division of Food Function Research, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Michihiro Fukushima
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
2
|
Miles LA, Bai H, Chakrabarty S, Baik N, Zhang Y, Parmer RJ, Samad F. Overexpression of Plg-R KT protects against adipose dysfunction and dysregulation of glucose homeostasis in diet-induced obese mice. Adipocyte 2023; 12:2252729. [PMID: 37642146 PMCID: PMC10481882 DOI: 10.1080/21623945.2023.2252729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
The plasminogen receptor, Plg-RKT, is a unique cell surface receptor that is broadly expressed in cells and tissues throughout the body. Plg-RKT localizes plasminogen on cell surfaces and promotes its activation to the broad-spectrum serine protease, plasmin. In this study, we show that overexpression of Plg-RKT protects mice from high fat diet (HFD)-induced adipose and metabolic dysfunction. During the first 10 weeks on the HFD, the body weights of mice that overexpressed Plg-RKT (Plg-RKT-OEX) were lower than those of control mice (CagRosaPlgRKT). After 10 weeks on the HFD, CagRosaPlgRKT and Plg-RKT-OEX mice had similar body weights. However, Plg-RKT-OEX mice showed a more metabolically favourable body composition phenotype. Plg-RKT-OEX mice also showed improved glucose tolerance and increased insulin sensitivity. We found that the improved metabolic functions of Plg-RKT-OEX mice were mechanistically associated with increased energy expenditure and activity, decreased proinflammatory adipose macrophages and decreased inflammation, elevated brown fat thermogenesis, and higher expression of adipose PPARγ and adiponectin. These findings suggest that Plg-RKT signalling promotes healthy adipose function via multiple mechanisms to defend against obesity-associated adverse metabolic phenotypes.
Collapse
Affiliation(s)
- Lindsey A. Miles
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Hongdong Bai
- Department of Medicine, Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Sagarika Chakrabarty
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Nagyung Baik
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Yuqing Zhang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Robert J. Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Fahumiya Samad
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| |
Collapse
|
3
|
Jiang Y, Liu J, Liu H, Zhang W, Li X, Liu L, Zhou M, Wang J, Su S, Ding X, Wang C. miR-381-3p Inhibits Intramuscular Fat Deposition through Targeting FABP3 by ceRNA Regulatory Network. BIOLOGY 2022; 11:biology11101497. [PMID: 36290402 PMCID: PMC9598794 DOI: 10.3390/biology11101497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/24/2023]
Abstract
Intramuscular fat (IMF) deposition is an important determinant of pork quality and a complex process facilitated by non-coding ceRNAs. In this study, 52 Berkshire × Anqing Sixwhite crossbred pigs were slaughtered to measure eight carcass and pork quality traits. Whole-transcriptome sequencing analysis was performed using longissimus dorsi samples of six low- and high-IMF samples; 34 ceRNA networks, based on 881, 394, 158 differentially expressed (DE) lncRNAs, miRNAs, and mRNAs, were constructed. Following weighted gene co-expression network analysis between the low and high IMF, only one ceRNA, lncRNA4789/miR-381-3p/FABP3, that showed similar DE trend in longissimus dorsi tissue was retained. Dual-luciferase reporter assays further indicated that FABP3 was a direct, functional target of miR-381-3p, where miR-381-3p overexpression inhibited the mRNA and protein expression of FABP3. In addition, overexpressed lncRNA4789 attenuated the effect of miR-381-3p on FABP3 by sponging miR-381-3p. Cell function verification experiment demonstrated that miR-381-3p suppressed IMF deposition by inhibiting preadipocyte cell differentiation and lipid droplet deposition via the suppression of FABP3 expression in the peroxisome proliferator-activated receptor signalling pathway, whereas lncRNA4789 rescued FABP3 expression by sponging miR-381-3p. Our study may aid in identifying novel molecular markers for its optimization in IMF which is of importance in breeding for improving pork quality.
Collapse
Affiliation(s)
- Yao Jiang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- National Animal Husbandry Service, Beijing 100125, China
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiali Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huatao Liu
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaojin Li
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Linqing Liu
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Mei Zhou
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jieru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shiguang Su
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Correspondence:
| |
Collapse
|
4
|
Wali JA, Milner AJ, Luk AWS, Pulpitel TJ, Dodgson T, Facey HJW, Wahl D, Kebede MA, Senior AM, Sullivan MA, Brandon AE, Yau B, Lockwood GP, Koay YC, Ribeiro R, Solon-Biet SM, Bell-Anderson KS, O'Sullivan JF, Macia L, Forbes JM, Cooney GJ, Cogger VC, Holmes A, Raubenheimer D, Le Couteur DG, Simpson SJ. Impact of dietary carbohydrate type and protein-carbohydrate interaction on metabolic health. Nat Metab 2021; 3:810-828. [PMID: 34099926 DOI: 10.1038/s42255-021-00393-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Reduced protein intake, through dilution with carbohydrate, extends lifespan and improves mid-life metabolic health in animal models. However, with transition to industrialised food systems, reduced dietary protein is associated with poor health outcomes in humans. Here we systematically interrogate the impact of carbohydrate quality in diets with varying carbohydrate and protein content. Studying 700 male mice on 33 isocaloric diets, we find that the type of carbohydrate and its digestibility profoundly shape the behavioural and physiological responses to protein dilution, modulate nutrient processing in the liver and alter the gut microbiota. Low (10%)-protein, high (70%)-carbohydrate diets promote the healthiest metabolic outcomes when carbohydrate comprises resistant starch (RS), yet the worst outcomes were with a 50:50 mixture of monosaccharides fructose and glucose. Our findings could explain the disparity between healthy, high-carbohydrate diets and the obesogenic impact of protein dilution by glucose-fructose mixtures associated with highly processed diets.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.
- The University of Sydney, ANZAC Research Institute, Sydney, New South Wales, Australia.
| | - Annabelle J Milner
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Alison W S Luk
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Tamara J Pulpitel
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Tim Dodgson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Harrison J W Facey
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Devin Wahl
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- The University of Sydney, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Mitchell A Sullivan
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Amanda E Brandon
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Belinda Yau
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Glen P Lockwood
- The University of Sydney, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Yen Chin Koay
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Rosilene Ribeiro
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Kim S Bell-Anderson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - John F O'Sullivan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Josephine M Forbes
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Gregory J Cooney
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- The University of Sydney, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Andrew Holmes
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- The University of Sydney, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
5
|
Anderson MR, Easthausen I, Gallagher G, Udupa J, Tong Y, Torigian D, Diamond JM, Porteous MK, Palmer SM, Snyder LD, Benvenuto L, Aversa M, Arcasoy S, Greenland JR, Hays SR, Kukreja J, Cantu E, Kim JS, Gallagher D, Baldwin MR, Barr RG, Lederer DJ, Christie JD, Singer JP. Skeletal muscle adiposity and outcomes in candidates for lung transplantation: a lung transplant body composition cohort study. Thorax 2020; 75:801-804. [PMID: 32482837 DOI: 10.1136/thoraxjnl-2019-214461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/25/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023]
Abstract
CT measurement of body composition may improve lung transplant candidate selection. We assessed whether skeletal muscle adipose deposition on abdominal and thigh CT scans was associated with 6 min walk distance (6MWD) and wait-list survival in lung transplant candidates. Each ½-SD decrease in abdominal muscle attenuation (indicating greater lipid content) was associated with 14 m decrease in 6MWD (95% CI -20 to -8) and 20% increased risk of death or delisting (95% CI 10% to 40%). Each ½-standard deviation decrease in thigh muscle attenuation was associated with 15 m decrease in 6MWD (95% CI -21 to -10). CT imaging may improve candidate risk stratification.
Collapse
Affiliation(s)
| | - Imaani Easthausen
- Population Health Sciences, Weill Cornell Medical College, New York, New York, USA
| | - Grace Gallagher
- Medicine, Columbia University Medical Center, New York, New York, USA
| | - Jayaram Udupa
- Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yubing Tong
- Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Drew Torigian
- Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua Matthew Diamond
- Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mary Katherine Porteous
- Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott M Palmer
- Medicine, Duke University, Durham, North Carolina, USA.,Duke Clinical Research Institute, Durham, North Carolina, USA
| | | | - Luke Benvenuto
- Medicine, Columbia University Medical Center, New York, New York, USA
| | - Meghan Aversa
- Medicine, Columbia University Medical Center, New York, New York, USA
| | - Selim Arcasoy
- Medicine, Columbia University Medical Center, New York, New York, USA
| | - John R Greenland
- Medicine, VA Medical Center, San Francisco, California, USA.,Medicine, University of California, San Francisco, California, USA
| | - Steven R Hays
- Medicine, University of California, San Francisco, California, USA
| | - Jasleen Kukreja
- Surgery, University of California, San Francisco, California, USA
| | - Edward Cantu
- Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Shinn Kim
- Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Dympna Gallagher
- Medicine, Columbia University Medical Center, New York, New York, USA
| | - Matthew R Baldwin
- Medicine, Columbia University Medical Center, New York, New York, USA
| | - R Graham Barr
- Medicine, Columbia University Medical Center, New York, New York, USA
| | - David J Lederer
- Medicine, Columbia University Medical Center, New York, New York, USA.,Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Jason D Christie
- Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
6
|
Effect of Propofol Continuous-Rate Infusion on Intravenous Glucose Tolerance Test in Dogs. Vet Sci 2018; 5:vetsci5020043. [PMID: 29677106 PMCID: PMC6024757 DOI: 10.3390/vetsci5020043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/07/2018] [Accepted: 04/19/2018] [Indexed: 11/16/2022] Open
Abstract
Hyperglycemia causes perioperative complications and many anesthetics impair glucose metabolism and cause hyperglycemia. We evaluated the effects of propofol on blood glucose metabolism and insulin secretion during an intravenous glucose tolerance test (IVGTT) in dogs. Blood glucose, insulin, triglyceride, cholesterol, and free fatty acid (FFA) levels were measured in dogs during IVGTT in a conscious state and under the effect of 2.0% isoflurane, low-concentration propofol (0.2 mg/kg/min), and high-concentration propofol (0.4 mg/kg/min) anesthesia. Plasma glucose levels significantly increased in all of the treatment groups when compared with those in the conscious group. The prolonged half-life period of plasma glucose suggested that isoflurane and propofol attenuated glucose metabolism in dogs. Plasma insulin levels were significantly lower in the isoflurane group when compared with those in the other groups, whereas blood FFA levels were increased in the propofol groups when compared with the other groups. These results suggest that propofol itself does not directly raise plasma glucose levels, but attenuates glucose metabolism by accumulating FFA.
Collapse
|
7
|
Lee JH, Park E, Jin HJ, Lee Y, Choi SJ, Lee GW, Chang PS, Paik HD. Anti-inflammatory and anti-genotoxic activity of branched chain amino acids (BCAA) in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophages. Food Sci Biotechnol 2017; 26:1371-1377. [PMID: 30263672 DOI: 10.1007/s10068-017-0165-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022] Open
Abstract
The purpose of this study was to evaluate the anti-inflammatory and anti-genotoxic activity of branched-chain amino acids (BCAAs) in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophages. BCAAs inhibited LPS-induced NO production, with 100 mM leucine having the most pronounced effect, suppressing NO production by 81.15%. Valine and isoleucine also reduced NO production by 29.65 and 42.95%, respectively. Furthermore, BCAAs suppressed the inducible nitric oxide synthase mRNA expression. Additionally, BCAAs decreased the mRNA expression of interleukin-6 and cyclooxygenase-2 which are proinflammatory mediators. Anti-genotoxic activities of BCAAs were assessed using the alkaline comet assay and valine, isoleucine, and leucine significantly (p < 0.05) decreased tail length of DNA (damaged portion) to 254.8 ± 7.5, 235.6 ± 5.6, and 271.5 ± 19.9 μm compared than positive control H2O2 (434.3 ± 51.3 μm). These results suggest that BCAAs can be used in the pharmaceutical or functional food industries as anti-inflammatory agents or anti-cancer agents.
Collapse
Affiliation(s)
- Jae Hoon Lee
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Eunju Park
- 2Department of Food and Nutrition, Kyungnam University, Changwon, 51767 Korea
| | - Hyue Ju Jin
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Yunjeong Lee
- 2Department of Food and Nutrition, Kyungnam University, Changwon, 51767 Korea
| | - Seung Jun Choi
- 3Department of Food Science and Technology, Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - Gyu Whan Lee
- R&D Center, Daesang Corporation, Icheon, 17384 Korea
| | - Pahn-Shick Chang
- 5Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Hyun-Dong Paik
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
8
|
Zhu R, Liu H, Liu C, Wang L, Ma R, Chen B, Li L, Niu J, Fu M, Zhang D, Gao S. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol Res 2017; 122:78-89. [PMID: 28559210 DOI: 10.1016/j.phrs.2017.05.019] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/04/2017] [Accepted: 05/21/2017] [Indexed: 12/17/2022]
Abstract
Cinnamaldehyde, one of the active components derived from Cinnamon, has been used as a natural flavorant and fragrance agent in kitchen and industry. Emerging studies have been performed over the past decades to evaluate its beneficial role in management of diabetes and its complications. This review highlights recent advances of cinnamaldehyde in its glucolipid lowering effects, its pharmacokinetics, and its safety by consulting the Pubmed, China Knowledge Resource Integrated, China Science and Technology Journal, National Science and Technology Library, Wanfang Data, and the Web of Science Databases. For the inquiries, keywords such as Cinnamon, cinnamaldehyde, property, synthesis, diabetes, obesity, pharmacokinetics, and safety were used in various combinations. Accumulating evidence supports the notion that cinnamaldehyde exhibits glucolipid lowering effects in diabetic animals by increasing glucose uptake and improving insulin sensitivity in adipose and skeletal muscle tissues, improving glycogen synthesis in liver, restoring pancreatic islets dysfunction, slowing gastric emptying rates, and improving diabetic renal and brain disorders. Cinnamaldehyde exerts these effects through its action on multiple signaling pathways, including PPARs, AMPK, PI3K/IRS-1, RBP4-GLUT4, and ERK/JNK/p38MAPK, TRPA1-ghrelin and Nrf2 pathways. In addition, cinnamaldehyde seems to regulate the activities of PTP1B and α-amylase. Furthermore, cinnamaldehyde has the potential of metalizing into cinnamyl alcohol and methyl cinnamate and cinnamic acid in the body. Finally, there is a potential toxicity concern about this compound. In summary, cinnamaldehyde supplementation is shown to improve glucose and lipid homeostasis in diabetic animals, which may provide a new option for diabetic intervention. To this end, further scientific evidences are required from clinical trials on its glucose regulating effects and safety.
Collapse
Affiliation(s)
- Ruyuan Zhu
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haixia Liu
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chenyue Liu
- Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lili Wang
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rufeng Ma
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Beibei Chen
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lin Li
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianzhao Niu
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Min Fu
- The Research Institute of McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Dongwei Zhang
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Sihua Gao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
9
|
Calcium sensing receptor effects in adipocytes and liver cells: Implications for an adipose-hepatic crosstalk. Arch Biochem Biophys 2016; 607:47-54. [DOI: 10.1016/j.abb.2016.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 01/11/2023]
|