1
|
Chopra H, Cao C, Alice H, Kak S, Maska B, Tagett R, Sugai J, Garmire L, Kaigler D. Landscape of Differentiation Potentials as a "Hallmark" in Oral-derived MSCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606413. [PMID: 39211139 PMCID: PMC11360929 DOI: 10.1101/2024.08.02.606413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Mesenchymal stem cells (MSCs) offer clinical promise for use in cell therapy approaches for regenerative medicine. A therapeutic challenge is that MSCs from different tissues are phenotypically and functionally distinct. Therefore, this study aims to molecularly characterize oral-derived MSCs by defining one of the three hallmarks of MSCs, differentiation potential, to discern their true molecular identities. Methods Three different populations of oral tissue MSCs (from alveolar bone-aBMSCs; from dental pulp-DPSCs; and from gingiva-GMSCs) from three different patients were isolated and cultured. These MSCs were characterized for their stemness by flow cytometry and multi-differentiation potential, and their RNA was also isolated and analyzed quantitatively with RNA sequencing. Total mRNA-seq was performed and differentially expressed genes (DEGs) were identified in pairwise (DPSCs vs. aBMSCs, GMSCs vs. aBMSCs, and GMSCs vs. DPSCs) and tissue-specific comparisons (aBMSCs vs. Others, DPSCs vs. Others, GMSCs vs. Others) (FDR, p<0.05 ). Further, these DEGs, either common between MSC populations or unique to a specific MSC population, were evaluated for pathways and biological processes. Results aBMSCs, DPSCs, and GMSCs were successfully isolated and characterized. The tissue-specific comparison revealed that DEGs were most numerous in DPSCs (693 genes) as compared to aBMSCs (103 genes) or DPSCs (232 genes). Statistically significant DEGs through pairwise comparisons present higher numbers in GMSCs vs. DPSCs (627) as compared to either DPSCs vs aBMSCs (286) or GMSCs vs. aBMSCs (82). Further analysis found that RUNX2, IBSP, SOX6, ACAN, and VCAM1 were significantly upregulated in aBMSCs. In DPSCs, BMP4 and IL6 were significantly downregulated, whereas AXL and NES were significantly upregulated. In GMSCs, AGPT1, SEMA4D, and PGDFA were significantly downregulated. Additionally, MAPK, PI3-AKT, and RAS signaling pathways were significantly regulated in GMSCs. Interestingly, aBMSCs and DPSCs revealed positive regulation of osteoblast differentiation, whereas GMSCs revealed negative regulation of osteoblast differentiation. DPSCs also revealed negative regulation of angiogenesis. Conclusions Oral-derived MSCs have an inherent "landscape" of differentiation defined by their tissue of origin; yet this differentiation potential can be modulated by their microenvironment.
Collapse
|
2
|
Sun J, He L, An Q, Ye X, Ma J, Yan J, Xie X, Sun X, Niu Y, Cao W. Graphene/ chitosan tubes inoculated with dental pulp stem cells promotes repair of facial nerve injury. Front Chem 2024; 12:1417763. [PMID: 38887698 PMCID: PMC11180760 DOI: 10.3389/fchem.2024.1417763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction: Facial nerve injury significantly impacts both the physical and psychological] wellbeing of patients. Despite advancements, there are still limitations associated with autografts transplantation. Consequently, there is an urgent need for effective artificial grafts to address these limitations and repair injuries. Recent years have witnessed the recognition of the beneficial effects of chitosan (CS) and graphene in the realm of nerve repair. Dental pulp stem cells (DPSCs) hold great promise due to their high proliferative and multi-directional differentiation capabilities. Methods: In this study, Graphene/CS (G/CST) composite tubes were synthesized and their physical, chemical and biological properties were evaluated, then DPSCs were employed as seed cells and G/CST as a scaffold to investigate their combined effect on promoting facial nerve injury repair. Results and Disscussion: The experimental results indicate that G/CST possesses favorable physical and chemical properties, along with good cyto-compatibility. making it suitable for repairing facial nerve transection injuries. Furthermore, the synergistic application of G/CST and DPSCs significantly enhanced the repair process for a 10 mm facial nerve defect in rabbits, highlighting the efficacy of graphene as a reinforcement material and DPSCs as a functional material in facial nerve injury repair. This approach offers an effective treatment strategy and introduces a novel concept for clinically managing facial nerve injuries.
Collapse
Affiliation(s)
- Jingxuan Sun
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Lina He
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Qi An
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Xu Ye
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Jinjie Ma
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Jing Yan
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Xiaoqi Xie
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Xiangyu Sun
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Yumei Niu
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Wenxin Cao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
| |
Collapse
|
3
|
Gonen ZB, Çolpak HA, Yay A, Gokdemir NS, Bahar D, Günay Canpolat D, Yalcin B. Dental Pulp-Derived Mesenchymal Stem Cells Increase Axon Numbers in Mental Nerve Repair. J Maxillofac Oral Surg 2024; 23:568-573. [PMID: 38911401 PMCID: PMC11190120 DOI: 10.1007/s12663-023-01957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 06/19/2023] [Indexed: 06/25/2024] Open
Abstract
Aim The mental nerve, the extended part of the inferior alveolar nerve, is often injured during dentoalveolar, orthognathic, or tumor surgery. Numerous therapeutic interventions, including surgery and pharmacotherapy, have been used to enhance the recovery of nerve injuries. Dental pulp stem cells (DPSCs) represent an easily accessible source of adult stem cells that can be isolated from the pulp of extracted teeth. This study evaluated the effect of DPSCs on the regeneration of the mental nerve injury model of rabbits. Methods In this presented study, DPSCs were cultured and cell characterizations were performed by using flow cytometry and immunostainings. Bilateral mental nerve injury models of rabbits were created. In the control group (n = 10), saline was applied, and in the study group (n = 10), 2 × 106 DPSCs were applied to the repaired nerve areas. After 3 weeks, animals were killed and histological examination was obtained by using Masson's trichrome staining. An unpaired Student's t test was used when comparing the groups. Differences were considered to be statistically significant at P values of less than 0.05. Results The DPSCs demonstrated a homogeneous population of mesenchymal stromal cells which expressed cluster of differentiation CD44, CD73, CD90, and CD105 and lack of CD34, CD45, and HLA-DR. Our finding clearly demonstrated that a lower number of cross-sectioned axons were founded in the control group (60.18 ± 2.52) compared to the study group (72.96 ± 2.43) (p = 0.00). Conclusions DPSCs promote mental nerve axonal regeneration. These results suggest that DPSCs provide an important accessible source of adult stem cells for mental nerve regeneration.
Collapse
Affiliation(s)
- Zeynep Burcin Gonen
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry and Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Halis Ali Çolpak
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alanya Aladdin Keykubat University, Antalya, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Dilek Bahar
- Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Dilek Günay Canpolat
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| | - Betül Yalcin
- Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| |
Collapse
|
4
|
Songsaad AT, Thairat S, Seemaung P, Thongsuk A, Balit T, Ruangsawasdi N, Phruksaniyom C, Gonmanee T, White KL, Thonabulsombat C. Characterization of neural stem cells derived from human stem cells from the apical papilla undergoing three-dimensional neurosphere induction. J Appl Oral Sci 2023; 31:e20230209. [PMID: 37970885 PMCID: PMC10697670 DOI: 10.1590/1678-7757-2023-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/03/2023] [Accepted: 09/29/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVES The endogenous repairing based on the activation of neural stem cells (NSCs) is impaired by neurodegenerative diseases. The present study aims to characterize human stem cells from the apical papilla (hSCAPs) with features of mesenchymal stem cells (MSCs) and to demonstrate the neuronal differentiation of hSCAPs into NSCs through the formation of three-dimensional (3D) neurospheres, verifying the structural, immunophenotyping, self-renewal, gene expression and neuronal activities of these cells to help further improve NSCs transplantation. METHODOLOGY The hSCAPs were isolated from healthy impacted human third molar teeth and characterized as MSCs. They were then induced into 3D-neurospheres using a specific neural induction medium. Subsequently, the intra-neurospheral cells were confirmed to be NSCs by the identification of Nissl substance and the analysis of immunofluorescence staining, self-renewal ability, and gene expression of the cells. Moreover, the neuronal activity was investigated using intracellular calcium oscillation. RESULTS The isolated cells from the human apical papilla expressed many markers of MSCs, such as self-renewal ability and multilineage differentiation. These cells were thus characterized as MSCs, specifically as hSCAPs. The neurospheres induced from hSCAPs exhibited a 3D-floating spheroidal shape and larger neurospheres, and consisted of a heterogeneous population of intra-neurospheral cells. Further investigation showed that these intra-neurospheral cells had Nissl body staining and also expressed both Nestin and SOX2. They presented a self-renewal ability as well, which was observed after their disaggregation. Their gene expression profiling also exhibited a significant amount of NSC markers (NES, SOX1, and PAX6). Lastly, a large and dynamic change of the fluorescent signal that indicated calcium ions (Ca2+) was detected in the intracellular calcium oscillation, which indicated the neuronal activity of NSCs-derived hSCAPs. CONCLUSIONS The hSCAPs exhibited properties of MSCs and could differentiate into NSCs under 3D-neurosphere generation. The present findings suggest that NSCs-derived hSCAPs may be used as an alternative candidates for cell-based therapy, which uses stem cell transplantation to further treat neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Sarut Thairat
- Mahidol University, Faculty of Dentistry, Oral Tissues, Cells and Molecular Biology Analysis and Research Center, Bangkok, Thailand
| | - Peeratchai Seemaung
- Mahidol University, Faculty of Science, Department of Anatomy, Bangkok, Thailand
| | - Amarin Thongsuk
- Mahidol University, Faculty of Science, Department of Anatomy, Bangkok, Thailand
| | - Tatcha Balit
- Mahidol University, Faculty of Science, Department of Anatomy, Bangkok, Thailand
| | - Nisarat Ruangsawasdi
- Mahidol University, Faculty of Dentistry, Department of Pharmacology, Bangkok, Thailand
| | | | - Thanasup Gonmanee
- Mahidol University, Faculty of Medicine Ramathibodi Hospital, Chakri Naruebodindra Medical Institute, Samut Prakan, Thailand
| | - Kenneth L White
- Utah State University, College of Agriculture and Applied Sciences, Department of Animal, Dairy, and Veterinary Sciences, Utah, The United States of America
| | | |
Collapse
|
5
|
Xing WB, Wu ST, Wang XX, Li FY, Wang RX, He JH, Fu J, He Y. Potential of dental pulp stem cells and their products in promoting peripheral nerve regeneration and their future applications. World J Stem Cells 2023; 15:960-978. [PMID: 37970238 PMCID: PMC10631371 DOI: 10.4252/wjsc.v15.i10.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023] Open
Abstract
Peripheral nerve injury (PNI) seriously affects people's quality of life. Stem cell therapy is considered a promising new option for the clinical treatment of PNI. Dental stem cells, particularly dental pulp stem cells (DPSCs), are adult pluripotent stem cells derived from the neuroectoderm. DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages, such as easy isolation, multidifferentiation potential, low immunogenicity, and low transplant rejection rate. DPSCs are extensively used in tissue engineering and regenerative medicine, including for the treatment of sciatic nerve injury, facial nerve injury, spinal cord injury, and other neurodegenerative diseases. This article reviews research related to DPSCs and their advantages in treating PNI, aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research.
Collapse
Affiliation(s)
- Wen-Bo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Shu-Ting Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Xin-Xin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Fen-Yao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ruo-Xuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ji-Hui He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
6
|
Bai X, Cao R, Wu D, Zhang H, Yang F, Wang L. Dental Pulp Stem Cells for Bone Tissue Engineering: A Literature Review. Stem Cells Int 2023; 2023:7357179. [PMID: 37868704 PMCID: PMC10586346 DOI: 10.1155/2023/7357179] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Bone tissue engineering (BTE) is a promising approach for repairing and regenerating damaged bone tissue, using stem cells and scaffold structures. Among various stem cell sources, dental pulp stem cells (DPSCs) have emerged as a potential candidate due to their multipotential capabilities, ability to undergo osteogenic differentiation, low immunogenicity, and ease of isolation. This article reviews the biological characteristics of DPSCs, their potential for BTE, and the underlying transcription factors and signaling pathways involved in osteogenic differentiation; it also highlights the application of DPSCs in inducing scaffold tissues for bone regeneration and summarizes animal and clinical studies conducted in this field. This review demonstrates the potential of DPSC-based BTE for effective bone repair and regeneration, with implications for clinical translation.
Collapse
Affiliation(s)
- Xiaolei Bai
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Ruijue Cao
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Danni Wu
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Huicong Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Fan Yang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Linhong Wang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
7
|
Carvalho S, Santos JI, Moreira L, Gonçalves M, David H, Matos L, Encarnação M, Alves S, Coutinho MF. Neurological Disease Modeling Using Pluripotent and Multipotent Stem Cells: A Key Step towards Understanding and Treating Mucopolysaccharidoses. Biomedicines 2023; 11:biomedicines11041234. [PMID: 37189853 DOI: 10.3390/biomedicines11041234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Despite extensive research, the links between the accumulation of glycosaminoglycans (GAGs) and the clinical features seen in patients suffering from various forms of mucopolysaccharidoses (MPSs) have yet to be further elucidated. This is particularly true for the neuropathology of these disorders; the neurological symptoms are currently incurable, even in the cases where a disease-specific therapeutic approach does exist. One of the best ways to get insights on the molecular mechanisms driving that pathogenesis is the analysis of patient-derived cells. Yet, not every patient-derived cell recapitulates relevant disease features. For the neuronopathic forms of MPSs, for example, this is particularly evident because of the obvious inability to access live neurons. This scenario changed significantly with the advent of induced pluripotent stem cell (iPSC) technologies. From then on, a series of differentiation protocols to generate neurons from iPSC was developed and extensively used for disease modeling. Currently, human iPSC and iPSC-derived cell models have been generated for several MPSs and numerous lessons were learnt from their analysis. Here we review most of those studies, not only listing the currently available MPS iPSC lines and their derived models, but also summarizing how they were generated and the major information different groups have gathered from their analyses. Finally, and taking into account that iPSC generation is a laborious/expensive protocol that holds significant limitations, we also hypothesize on a tempting alternative to establish MPS patient-derived neuronal cells in a much more expedite way, by taking advantage of the existence of a population of multipotent stem cells in human dental pulp to establish mixed neuronal and glial cultures.
Collapse
Affiliation(s)
- Sofia Carvalho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de SantaComba, 3000-548 Coimbra, Portugal
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Luciana Moreira
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Mariana Gonçalves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Hugo David
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Marisa Encarnação
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
8
|
Sramkó B, Földes A, Kádár K, Varga G, Zsembery Á, Pircs K. The Wisdom in Teeth: Neuronal Differentiation of Dental Pulp Cells. Cell Reprogram 2023; 25:32-44. [PMID: 36719998 PMCID: PMC9963504 DOI: 10.1089/cell.2022.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are found in almost all postnatal organs. Under appropriate environmental cues, multipotency enables MSCs to serve as progenitors for several lineage-specific, differentiated cell types. In vitro expansion and differentiation of MSCs give the opportunity to obtain hardly available somatic cells, such as neurons. The neurogenic potential of MSCs makes them a promising, autologous source to restore damaged tissue and as such, they have received much attention in the field of regenerative medicine. Several stem cell pool candidates have been studied thus far, but only a few of them showed neurogenic differentiation potential. Due to their embryonic ontology, stem cells residing in the stroma of the dental pulp chamber are an exciting source for in vitro neural cell differentiation. In this study, we review the key properties of dental pulp stem cells (DPSCs), with a particular focus on their neurogenic potential. Moreover, we summarize the various presently available methods used for neural differentiation of human DPSCs also emphasizing the difficulties in reproducibly high production of such cells. We postulate that because DPSCs are stem cells with very close ontology to neurogenic lineages, they may serve as excellent targets for neuronal differentiation in vitro and even for direct reprogramming.
Collapse
Affiliation(s)
- Bendegúz Sramkó
- HCEMM-SU Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary.,Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Földes
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Kristóf Kádár
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Gábor Varga
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Karolina Pircs
- HCEMM-SU Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary.,Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Liu Z, Wang S, Huo N, Yang S, Shi Q, Xu J. Extracellular vesicles: A potential future strategy for dental and maxillofacial tissue repair and regeneration. Front Physiol 2022; 13:1012241. [PMID: 36479350 PMCID: PMC9719951 DOI: 10.3389/fphys.2022.1012241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/09/2022] [Indexed: 06/18/2024] Open
Abstract
Extracellular vesicles (EVs), nano-sized bilayer membrane structures containing lipids, proteins and nucleic acids, play key roles in intercellular communication. Compared to stem cells, EVs have lower tumorigenicity and immunogenicity, are easier to manage and cause fewer ethic problems. In recent years, EVs have emerged as a potential solution for tissue regeneration in stomatology through cell-free therapies. The present review focuses on the role of EVs in dental and maxillofacial tissue repair and regeneration, including in dental and periodontal tissue, maxilla and mandible bone, temporomandibular joint cartilage, peripheral nerve and soft tissue. We also make a brief overview on the mechanism of EVs performing functions. However, limitations and challenges in clinical application of EVs still exist and should be addressed in future researches.
Collapse
Affiliation(s)
- Ziwei Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Orthopedic Laboratory of PLA General Hospital, Beijing, China
| | - Situo Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Orthopedic Laboratory of PLA General Hospital, Beijing, China
| | - Na Huo
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuo Yang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Quan Shi
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Juan Xu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Lee AY, Jang KH, Jo CH. Minimal Cube Explant Provides Optimal Isolation Condition of Mesenchymal Stem Cells from Umbilical Cord. Tissue Eng Regen Med 2022; 19:793-807. [PMID: 35325405 PMCID: PMC9294096 DOI: 10.1007/s13770-022-00440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Enzymatic digestion and explant method have been widely used for isolating umbilical cord-derived mesenchymal stem cells (UC MSCs), although there is still a strong need for robust protocols for optimal isolation for large-scale stem cell banks. This study aims to establish an explant method for clinical scale production of MSCs from human UC tissue and to characterize UC MSCs isolated and cultured with the explant method. METHODS UC MSCs were isolated by enzymatic digestion, minimal cube explant (MCE) 1-2, MCE 2-4, and MCE 10 and cultured, respectively. Also, human antibody array and basic fibroblast growth factor (bFGF) secretion in conditioned medium (CM) was analyzed. The cells were evaluated initial cell number, colony forming unit-fibroblast (CFU-F), proliferation capacity, CD marker expression, and multi-lineage differentiation. SA-β-gal assay as well as expression of p16, p21 and p53 was performed by RT-PCR. RESULTS MCE 2-4 is the most optimized method for isolation of small umbilical cord-derived fast proliferating cells (smumf cells) with the greatest number. MCE 2-4 had the highest secretion of various bioactive factors including bFGF. The MCE 2-4 provided significantly higher CD146 expression than enzymatic digestion, and that expression was maintained until P20. The gene expression of p16, p21, and p53 of smumf cells did not change until P10 and SA-β-gal activity did not increase until P14. CONCLUSION This study demonstrated that MCE 2-4 provided an optimal environment to isolate MSCs with quantity and quality from human whole UC tissue through secretion of various bioactive factors inherent to UC.
Collapse
Affiliation(s)
- Ah-Young Lee
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Kwi-Hoon Jang
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Chris Hyunchul Jo
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea.
- Department of Translational Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
11
|
Yang K, Lu R, Lu J, Fan S, Zhang Q, Lou Z, Ma Y, Lu G, Pan R, Zhang J. Phenotypic and Functional Characterizations of Mesenchymal Stem/Stromal Cells Isolated From Human Cranial Bone Marrow. Front Neurosci 2022; 16:909256. [PMID: 35747205 PMCID: PMC9209782 DOI: 10.3389/fnins.2022.909256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are adult stem cells that were originally isolated from bone marrow. In contrast to long bone-derived MSCs that have been extensively characterized, our knowledge regarding to MSCs isolated from flat bones (e.g., cranial bones) remain less clear. In this study, MSCs were purified from human cranial bone marrow (CB-MSCs) and their transdifferentiation capacity and immunomodulatory functions were further characterized. Phenotypic analysis of CB-MSCs demonstrated high expression of CD73, CD90, and CD105 while negative for CD14, CD34, and HLA-DR. Further in vitro differentiation assay shown that CB-MSCs capable of differentiating into cell types of mesenchymal origin (i.e., adipocytes, osetoblasts, and chondrocytes) and collectively, these results indicated that cells isolated from cranial bone marrow in this study are bona fide MSCs according to the minimal criteria proposed by the International Society for Cellular Therapy. Following in vitro expansion, single colony-derived CB-MSCs (scCB-MSCs) were obtained and confocal microscopy analysis further revealed functional heterogeneity within primary CB-MSCs. Specifically, obtained scCB-MSCs exhibited GABA progenitor features, as determined by olig2 and nestin. As expect, scCB-MSCs were readily induced to differentiate into GABAergic neuron-like cells. Furthermore, immunomodulatory roles of scCB-MSCs were evaluated following co-culture with human peripheral blood lymphocytes and results shown that co-culturing with scCB-MSCs significantly suppressed lymphocyte proliferation and promoted differentiation of lymphocytes into regulatory T cells but not Th1/Th17 phenotype. Overall, our results indicated that CB-MSCs exhibited clonal heterogeneity with marked propensity to differentiate into neural-like cells and this might represent promising candidates for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kaichuang Yang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
- Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ruijie Lu
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Shucai Fan
- Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiang Zhang
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
| | - Zijian Lou
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Yuyuan Ma
- Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Gang Lu
- Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- *Correspondence: Ruolang Pan
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
- Jianmin Zhang
| |
Collapse
|
12
|
Hypoxia Induces DPSC Differentiation versus a Neurogenic Phenotype by the Paracrine Mechanism. Biomedicines 2022; 10:biomedicines10051056. [PMID: 35625792 PMCID: PMC9138575 DOI: 10.3390/biomedicines10051056] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
As previously described by several authors, dental pulp stem cells (DPSCs), when adequately stimulated, may acquire a neuronal-like phenotype acting as a favorable source of stem cells in the generation of nerves. Besides, it is known that hypoxia conditioning is capable of stimulating cell differentiation as well as survival and self-renewal, and that multiple growth factors, including Epidermal Growth factor (EGF) and basic fibroblast growth factor (bFGF), are often involved in the induction of the neuronal differentiation of progenitor cells. In this work, we investigated the role of hypoxia in the commitment of DPSCs into a neuronal phenotype. These cells were conditioned with hypoxia (O2 1%) for 5 and 16 days; subsequently, we analyzed the proliferation rate and morphology, and tested the cells for neural and stem markers. Moreover, we verified the possible autocrine/paracrine role of DPSCs in the induction of neural differentiation by comparing the secretome profile of the hypoxic and normoxic conditioned media (CM). Our results showed that the hypoxia-mediated DPSC differentiation was time dependent. Moreover, conditioned media (CM derived from DPSCs stimulated by hypoxia were able, in turn, to induce the neural differentiation of SH-SY5Y neuroblastoma cells and undifferentiated DPSCs. In conclusion, under the herein-mentioned conditions, hypoxia seems to favor the differentiation of DPSCs into neuron-like cells. In this way, we confirm the potential clinical utility of differentiated neuronal DPSCs, and we also suggest the even greater potential of CM-derived-hypoxic DPSCs that could more readily be used in regenerative therapies.
Collapse
|
13
|
Mohammadi F, Bahrami N, Nazariyan M, Mohamadnia A, Hakimiha N, Nazariyan A. Effect of Photobiomodulation Therapy on Differentiation of Mesenchymal Stem Cells Derived from Impacted Third Molar Tooth into Neuron-like Cells. Photochem Photobiol 2022; 98:1434-1440. [PMID: 35363889 DOI: 10.1111/php.13627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Peripheral nerve damages are among the most important consequences of dental and maxillofacial procedures. Tissue engineering using mesenchymal stem cells (MSCs) is a promising method to manage such injuries. Moreover, photobiomodulation therapy (PBMT) can enhance this treatment. The present study aimed to investigate the effect of PBMT on differentiation of MSCs derived from dental follicle (DF) into neurons. MSCs were isolated from an impacted tooth follicle by digestion method. The stem cells were cultured, and differentiated into neurons. The cells received two sessions of PBMT with 810 or 980nm diode laser (100 mW, 4 J/cm2 ) in either DMEM or neural inductive medium . Phenotypic characterization of the cells was determined using Flow cytometry. In addition, β-tubulin and MAP2 genes expression level changes were analyzed using RT-PCR and western blot technique. After 14 days, Flow cytometry analysis confirmed the mesenchymal nature of cells. RT-PCR and western blot affirmed the expression of β-tubulin and MAP2 genes and proteins, respectively. PBMT with both wavelengths significantly increased β-tubulin and MAP2 expression in neural inductive medium with highest expression mean in 980-nm group. PBMT with 810 and 980-nm lasers could be a promising adjunctive method in differentiation of DF-originated MSCs into neural cells.
Collapse
Affiliation(s)
- Farnoush Mohammadi
- Craniomaxillofacial Research center, Tehran University of Medical Sciences, Tehran, Iran.,Oral and Maxillofacial Surgery Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Naghmeh Bahrami
- Craniomaxillofacial Research center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Nazariyan
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Mohamadnia
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hakimiha
- laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Nazariyan
- Clinical biochemistry Department, Faculty of Medicine, Zanjan University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Extrapolating neurogenesis of mesenchymal stem/stromal cells on electroactive and electroconductive scaffolds to dental and oral-derived stem cells. Int J Oral Sci 2022; 14:13. [PMID: 35210393 PMCID: PMC8873504 DOI: 10.1038/s41368-022-00164-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 01/06/2023] Open
Abstract
The high neurogenic potential of dental and oral-derived stem cells due to their embryonic neural crest origin, coupled with their ready accessibility and easy isolation from clinical waste, make these ideal cell sources for neuroregeneration therapy. Nevertheless, these cells also have high propensity to differentiate into the osteo-odontogenic lineage. One strategy to enhance neurogenesis of these cells may be to recapitulate the natural physiological electrical microenvironment of neural tissues via electroactive or electroconductive tissue engineering scaffolds. Nevertheless, to date, there had been hardly any such studies on these cells. Most relevant scientific information comes from neurogenesis of other mesenchymal stem/stromal cell lineages (particularly bone marrow and adipose tissue) cultured on electroactive and electroconductive scaffolds, which will therefore be the focus of this review. Although there are larger number of similar studies on neural cell lines (i.e. PC12), neural stem/progenitor cells, and pluripotent stem cells, the scientific data from such studies are much less relevant and less translatable to dental and oral-derived stem cells, which are of the mesenchymal lineage. Much extrapolation work is needed to validate that electroactive and electroconductive scaffolds can indeed promote neurogenesis of dental and oral-derived stem cells, which would thus facilitate clinical applications in neuroregeneration therapy.
Collapse
|
15
|
Yan M, Nada OA, Fu LL, Li DZ, Feng HC, Chen LM, Gosau M, Friedrich RE, Smeets R. A comparative study on the secretion of various cytokines by pulp stem cells at different passages and their neurogenic potential. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 166:161-167. [PMID: 34747415 DOI: 10.5507/bp.2021.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/01/2021] [Indexed: 11/23/2022] Open
Abstract
AIMS By measuring the extent of cytokines secreted by human dental pulp stem cells (hDPSCs) from passages 2 through 10, the optimal passage of hDPSCs was determined. This offers a potential theoretical basis for the treatment of neurological disorders. METHOD After isolation and culture of hDPSCs from human teeth, the morphological features of the cells were observed under an inverted microscope. hDPSCs were identified by their immunophenotypes and their multiple differentiation capability. Cytokine concentrations secreted in the supernatants at passages 2-10 were detected by ELISA. RESULTS hDPSCs were viewed as fusiform or polygonal in shape, with a bulging cell body, homogenized cytoplasm, and a clear nucleus. Moreover, they could differentiate into neuroblasts in vitro. hDPSCs at passage 3 were positive for CD29 (91.5%), CD73 (94.8%) and CD90 (96.7%), but negative for the hematopoietic markers CD34 (0.13%). ELISA results showed that hDPSCs at passage 3 had the highest secretion levels of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF), with the highest secretion level of Neurotrophin-3 (NT-3) being at passage 2. CONCLUSION hDPSCs have steady biological features of stem cells and exhibit optimal proliferation potential. hDPSCs at different passages have different capacities in the secretion of VEGF, BDNF, NGF, and NT-3. In conclusion cytokines secreted by hDPSCs may prove to be appropriate in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Ming Yan
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.,Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 050017, PR China
| | - Ola A Nada
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Alexandria, 21500, Egypt
| | - Ling-Ling Fu
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.,Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 050017, PR China
| | - Dong-Zhen Li
- Department of Oral and Maxillofacial Surgery, Hebei Eye Hospital, Xingtai, 054000, China
| | - Hong-Chao Feng
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 050017, PR China
| | - Li-Ming Chen
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 050017, PR China
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
16
|
Wu SH, Liao YT, Huang CH, Chen YC, Chiang ER, Wang JP. Comparison of the Confluence-Initiated Neurogenic Differentiation Tendency of Adipose-Derived and Bone Marrow-Derived Mesenchymal Stem Cells. Biomedicines 2021; 9:biomedicines9111503. [PMID: 34829732 PMCID: PMC8615071 DOI: 10.3390/biomedicines9111503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ADSCs), which tended to neurogenically differentiate spontaneously after achieving high confluence, were observed. Human ADSCs reaching 80% confluence were cultured in DMEM without an inducing factor for 24 h and then maintained in DMEM plus 1% FBS medium for 7 days. The neurogenic, adipogenic, and osteogenic genes of the factor-induced and confluence-initiated differentiation of the ADSCs and bone marrow-derived mesenchymal stem cells (BMSCs) at passages 3 to 5 were determined and compared using RT-qPCR, and the neurogenic differentiation was confirmed using immunofluorescent staining. In vitro tests revealed that the RNA and protein expression of neuronal markers, including class III β-tubulin (TUBB3), microtubule-associated protein 2 (MAP2), neurofilament medium polypeptide (NEFM), neurofilament heavy polypeptide (NEFH), and neurofilament light polypeptide (NEFL), had been enhanced in the confluence-initiated differentiation of the ADSCs. In addition, the expressions of neurotrophins, such as the nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF), were also elevated in the confluence-initiated differentiation of the ADSCs. However, the confluent ADSCs did not show a tendency toward spontaneous adipogenic and osteogenic differentiation. Moreover, compared with the confluent ADSCs, the tendency of spontaneous neurogenic, adipogenic, and osteogenic differentiation of the confluent human bone marrow mesenchymal stem cells (BMSCs) was not observed. The results indicated that ADSCs had the potential to spontaneously differentiate into neuron-like cells during the confluent culture period; however, this tendency was not observed in BMSCs.
Collapse
Affiliation(s)
- Szu-Hsien Wu
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan; (S.-H.W.); (C.-H.H.)
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, National Defense Medical Center, Taipei 112, Taiwan
| | - Yu-Ting Liao
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan;
| | - Chi-Han Huang
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan; (S.-H.W.); (C.-H.H.)
| | - Yi-Chou Chen
- Department of Orthopedics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan;
| | - En-Rung Chiang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan;
| | - Jung-Pan Wang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Correspondence: ; Tel.: +886-2-2875-7557; Fax: +886-2-2875-7657
| |
Collapse
|
17
|
Du Z, Shi X, Guan A. lncRNA H19 facilitates the proliferation and differentiation of human dental pulp stem cells via EZH2-dependent LATS1 methylation. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 25:116-126. [PMID: 34401209 PMCID: PMC8339349 DOI: 10.1016/j.omtn.2021.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Human dental pulp stem cells (hDPSCs) have been recognized as a candidate cell source for tissue engineering. Long non-coding RNAs (lncRNAs) are differentially expressed in inflamed human dental pulp tissues. The present study is aimed at investigating the role of lncRNA H19 in the differentiation potential of hDPSCs. hDPSCs were successfully isolated and cultured, followed by conducting gain and loss-of-function experiments on lncRNA H19 and large tumor suppressor 1 (LATS1) to elucidate their respective biological functions in hDPSCs. lncRNA H19 was able to promote, whereas LATS1 was found to inhibit the differentiation, proliferation, and migration capabilities of hDPSCs. LATS1 was found to activate the Hippo-Yes-associated protein (YAP) signaling pathway by decreasing levels of YAP and Tafazzin (TAZ). The effects of lncRNA H19 on hDPSCs were achieved by repressing LATS1 through enhancer of zeste homolog 2-induced trimethylation of histone 3 at lysine 27. Finally, hDPSCs overexpressing lncRNA H19 and/or LATS1 were transplanted into nude mice. It was shown that lncRNA H19 inhibited LATS1 to promote the production of odontoblasts in vivo. Taken together, lncRNA H19 serves as a contributor to the differentiation potential of hDPSCs via the inhibition of LATS1, therefore highlighting novel therapeutic targets for dental pulp repair.
Collapse
Affiliation(s)
- Zhen Du
- Department of Stomatology, Linyi People's Hospital, Linyi 276000, Shandong Province, P.R. China
| | - Xiaoming Shi
- Department of Stomatology, Linyi People's Hospital, Linyi 276000, Shandong Province, P.R. China
| | - Aizhong Guan
- Department of Stomatology, Linyi People's Hospital, Linyi 276000, Shandong Province, P.R. China
| |
Collapse
|
18
|
Ahmed MN, Shi D, Dailey MT, Rothermund K, Drewry MD, Calabrese TC, Cui XT, Syed-Picard FN. Dental Pulp Cell Sheets Enhance Facial Nerve Regeneration via Local Neurotrophic Factor Delivery. Tissue Eng Part A 2021; 27:1128-1139. [PMID: 33164704 PMCID: PMC8616747 DOI: 10.1089/ten.tea.2020.0265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An effective strategy for sustained neurotrophic factor (NTF) delivery to sites of peripheral nerve injury (PNI) would accelerate healing and enhance functional recovery, addressing the major clinical challenges associated with the current standard of care. In this study, scaffold-free cell sheets were generated using human dental pulp stem/progenitor cells, that endogenously express high levels of NTFs, for use as bioactive NTF delivery systems. Additionally, the effect of fibroblast growth factor 2 (FGF2) on NTF expression by dental pulp cell (DPC) sheets was evaluated. In vitro analysis confirmed that DPC sheets express high levels of NTF messenger RNA (mRNA) and proteins, and the addition of FGF2 to DPC sheet culture increased total NTF production by significantly increasing the cellularity of sheets. Furthermore, the DPC sheet secretome stimulated neurite formation and extension in cultured neuronal cells, and these functional effects were further enhanced when DPC sheets were cultured with FGF2. These neuritogenic results were reversed by NTF inhibition substantiating that DPC sheets have a positive effect on neuronal cell activity through the production of NTFs. Further evaluation of DPC sheets in a rat facial nerve crush injury model in vivo established that in comparison with untreated controls, nerves treated with DPC sheets had greater axon regeneration through the injury site and superior functional recovery as quantitatively assessed by compound muscle action potential measurements. This study demonstrates the use of DPC sheets as vehicles for NTF delivery that could augment the current methods for treating PNIs to accelerate regeneration and enhance the functional outcome. Impact statement The major challenges associated with current treatments of peripheral nerve injuries (PNIs) are prolonged repair times and insufficient functional recovery. Dental pulp stem/progenitor cells (DPCs) are known to endogenously express high levels of neurotrophic factors (NTFs), growth factors that enhance axon regeneration. In this study, we demonstrate that scaffold-free DPC sheets can act as effective carrier systems to facilitate the delivery and retention of NTF-producing DPCs to sites of PNIs and improve functional nerve regeneration. DPC sheets have high translational feasibility and could augment the current standard of care to enhance the quality of life for patients dealing with PNIs.
Collapse
Affiliation(s)
- Meer N. Ahmed
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Delin Shi
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew T. Dailey
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kristi Rothermund
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michelle D. Drewry
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tia C. Calabrese
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xinyan T. Cui
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fatima N. Syed-Picard
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania USA
- Address correspondence to: Fatima N. Syed-Picard, MSE, PhD, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, 413 Salk Pavilion, 355 Sutherland Drive, Pittsburgh, PA 15213, USA
| |
Collapse
|
19
|
Pieles O, Reichert TE, Morsczeck C. Classical isoforms of protein kinase C (PKC) and Akt regulate the osteogenic differentiation of human dental follicle cells via both β-catenin and NF-κB. Stem Cell Res Ther 2021; 12:242. [PMID: 33853677 PMCID: PMC8048169 DOI: 10.1186/s13287-021-02313-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human dental follicle cells (DFCs) are the precursor cells of the periodontium with a high potential for regenerative therapies of (alveolar) bone. However, the molecular mechanisms of osteogenic differentiation are inadequately understood. Classical isoforms of protein kinase C (PKC) are reported to inhibit osteogenesis of stem/precursor cells. This study evaluated the role of classical PKCs and potential downstream targets on the osteogenic differentiation of DFCs. METHODS DFCs were osteogenic differentiated with dexamethasone or bone morphogenetic protein 2 (BMP2). Expression of PKC and potential upstream/downstream regulators was manipulated using activators, inhibitors, and small interfering ribonucleic acid (siRNA). Expression of proteins was examined by Western blot analysis, while the activation levels of enzymes and transcription factors were examined by their phosphorylation states or by specific activation assays. Expression levels of osteogenic markers were examined by RT-qPCR (reverse transcription-quantitative polymerase chain reaction) analysis. Activity of alkaline phosphatase (ALP) and accumulation of calcium nodules by Alizarin Red staining were measured as indicators of mineralization. RESULTS Classical PKCs like PKCα inhibit the osteogenic differentiation of DFCs, but do not interfere with the induction of differentiation. Inhibition of classical PKCs by Gö6976 enhanced activity of Akt after osteogenic induction. Akt was also regulated during differentiation and especially disturbed BMP2-induced mineralization. The PKC/Akt axis was further shown to regulate the canonical Wnt signaling pathway and eventually nuclear expression of active β-catenin during dexamethasone-induced osteogenesis. Moreover, the nuclear factor "kappa-light-chain-enhancer" of activated B cells (NF-κB) pathway is regulated during osteogenic differentiation of DFCs and via the PKC/Akt axis and disturbs the mineralization. Upstream, parathyroid hormone-related protein (PTHrP) sustained the activity of PKC, while Wnt5a inhibited it. CONCLUSIONS Our results demonstrate that classical PKCs like PKCα and Akt regulate the osteogenic differentiation of DFCs partly via both β-catenin and NF-κB.
Collapse
Affiliation(s)
- Oliver Pieles
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
20
|
Mattei V, Martellucci S, Pulcini F, Santilli F, Sorice M, Delle Monache S. Regenerative Potential of DPSCs and Revascularization: Direct, Paracrine or Autocrine Effect? Stem Cell Rev Rep 2021; 17:1635-1646. [PMID: 33829353 PMCID: PMC8553678 DOI: 10.1007/s12015-021-10162-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
A new source of mesenchymal stem cells has recently been discovered, the so-called dental pulp derived stem cells (DPSCs) which therefore could represent potentially tools for regenerative medicine. DPSC originate from the neural crest and are physiologically involved in dentin homeostasis; moreover, they contribute to bone remodeling and differentiation into several tissues including cartilage, bone, adipose and nervous tissues. DPSCs have also been shown to influence the angiogenesis process, for example through the release of secretory factors or by differentiating into vascular and/or perivascular cells. Angiogenesis, that has a pivotal role in tissue regeneration and repair, is defined as the formation of new vessels from preexisting vessels and is mediated by mutual and reciprocal interactions between endothelial cells and perivascular cells. It is also known that co-cultures of perivascular and endothelial cells (ECs) can form a vascular network in vitro and also in vivo. Since DPSCs seem to have characteristics similar to pericytes, understanding the possible mechanism of interaction between DPSCs and ECs during neo-angiogenesis is dramatically important for the development of advanced clinical application in the field of regeneration.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
- StemTeCh Group, Chieti, Italy.
| |
Collapse
|
21
|
Ullah I, Shin Y, Kim Y, Oh KB, Hwang S, Kim YI, Lee JW, Hur TY, Lee S, Ock SA. Effect of sex-specific differences on function of induced hepatocyte-like cells generated from male and female mouse embryonic fibroblasts. Stem Cell Res Ther 2021; 12:79. [PMID: 33494802 PMCID: PMC7831237 DOI: 10.1186/s13287-020-02100-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The liver is one of the vital organs involved in detoxification and metabolism. The sex-based differences between the functionality of male and female liver have been previously reported, i.e., male's liver are good in alcohol clearance and lipid metabolism, while female's liver are better in cholesterol metabolism. To date, studies on novel drug toxicity have not considered the sex-specific dimorphic nature of the liver. However, the use of hepatocyte-like cells to treat liver diseases has increased recently. METHODS Mouse embryos were isolated from a pregnant female C57BL/6J mouse where mouse embryonic fibroblasts (MEFs) were isolated from back skin tissue of each embryo. MEFs were transduced with human transcription factors hHnf1α, hHnf4α, and hFoxa3 using the lentiviral system. The transduced MEFs were further treated with hepatocyte-conditioned media followed by its analysis through RT-qPCR, immunofluorescence, functional assays, and finally whole-transcriptome RNA sequencing analysis. For in vivo investigation, the mouse hepatocyte-like cells (miHep) were transplanted into CCl4-induced acute liver mouse model. RESULTS In this study, we evaluated the sex-specific effect of miHep induced from male- and female-specific mouse embryonic fibroblasts (MEFs). We observed miHeps with a polygonal cytoplasm and bipolar nucleus and found that male miHeps showed higher mHnf4a, albumin secretion, and polyploidization than female miHeps. Transcriptomes from miHeps were similar to those from the liver, especially for Hnf4a of male miHeps. Male Cyps were normalized to those from females, which revealed Cyp expression differences between liver and miHeps. In both liver and miHeps, Cyp 4a12a and Cyp 4b13a/2b9 predominated in males and females, respectively. After grafting of miHeps, AST/ALT decreased, regardless of mouse sex. CONCLUSION In conclusion, activation of endogenic Hnf4a is important for generation of successful sex-specific miHeps; furthermore, the male-derived miHep exhibits comparatively enhanced hepatic features than those of female miHep.
Collapse
Affiliation(s)
- Imran Ullah
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea.,Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yurianna Shin
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Yeongji Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Young-Im Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Jeong Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125, Gwakhak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tai-Young Hur
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Seunghoon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea.
| |
Collapse
|
22
|
Human Dental Pulp-Derived Mesenchymal Stem Cell Potential to Differentiate into Smooth Muscle-Like Cells In Vitro. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8858412. [PMID: 33553433 PMCID: PMC7846403 DOI: 10.1155/2021/8858412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that mesenchymal stem cells (MSCs) derived from various tissue sources can be differentiated into smooth muscle-like cells (SMLCs) in vitro. In this paper, dental pulp-derived mesenchymal stem cells (DPSCs) were evaluated for their differentiation ability towards smooth muscle-like cells (SMLCs) under the effect of widely used cytokines (TGF-β1 and PDGF-BB) with special focus on different culturing environments. For this purpose, both the commercially used culturing plates (Norm-c) and 0.1% gelatin-precoated (Gel-c) plates were used. Isolated cells displayed plastic adherence, pluripotency and cell surface marker profiling, and adipogenic and osteogenic differentiation potential with lineage specific marker expression. Differentiated cells induced under different culturing plates showed successful differentiation into SMLCs by positively expressing smooth muscle cell (SMC) specific markers both at the mRNA and protein levels. Gelatin coating could substantially enhance DPSC differentiation potential than Norm-c-induced cells. However, the absence of mature marker MHY-11 by immunostaining results from all treatment groups further indicated the development of immature and synthetic SMLCs. Finally, it was concluded that DPSC differentiation ability into SMLCs can be enhanced under cytokine treatment as well as by altering the cellular niche by precoating the culturing plates with suitable substrates. However, to get fully functional, contractile, and mature SMLCs, still many different cytokine cocktail combinations and more suitable coating substrates will be needed.
Collapse
|
23
|
Son YB, Kang YH, Lee HJ, Jang SJ, Bharti D, Lee SL, Jeon BG, Park BW, Rho GJ. Evaluation of odonto/osteogenic differentiation potential from different regions derived dental tissue stem cells and effect of 17β-estradiol on efficiency. BMC Oral Health 2021; 21:15. [PMID: 33413268 PMCID: PMC7792121 DOI: 10.1186/s12903-020-01366-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background The dentin is a tissue, which is formed by odontoblasts at the pulp interface of the teeth that supports the enamel. Odontoblasts, the cranial neural crest cells are derived from ectodermal mesenchymal stem cells (MSCs) and are long and polarized cells. They are present at the outer surface of dentin and play a prominent role about dentin formation. Recently, attention has been focused on induction of odontoblast using various type of MSCs and effects of the 17ß-estradiol supplementation. In this study, we establish an efficient odonto/osteoblast differentiation protocol using 17ß-estradiol supplementation while comparing the odonto/osteoblast ability of various dental MSCs. Methods Same donor derived four types of dental MSCs namely dental pulp stem cells (DPSCs), stem cells from apical papilla (SCAP), dental follicle stem cells (DFSCs), and periodontal ligament stem cells (PDLSCs) were evaluated for their stemness characteristics and potency towards odonto/osteoblast (Induced odonto/osteoblast) differentiation.
Then 17ß-estradiol supplementation of 0 and 10 µM was applied to the odonto/osteoblast differentiation media for 14 days respectively. Furthermore, mRNA and protein levels of odonto/osteoblast markers were evaluated. Results All of the experimental groups displayed stemness characteristics by showing adipocyte and chondrocyte differentiation abilities, expression for cell surface markers and cell proliferation capacity without any significant differences. Moreover, all dental derived MSCs were shown to have odonto/osteoblast differentiation ability when cultured under specific conditions and also showed positive expression for odontoblast markers at both mRNA and protein level. Among all, DPSCs revealed the higher differentiation potential than other dental MSCs. Furthermore, odonto/osteoblast differentiation potential was enhanced by supplementing the differentiation media with 17ß-estradiol (E2). Conclusions Thus, DPSCs possess higher odonto/osteogenic potential than the SCAPs, DFSCs, PDLSCs and their differentiation capacity can by further enhanced under E2 supplementation.
Collapse
Affiliation(s)
- Young-Bum Son
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, GN, 660-701, Republic of Korea
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon, Republic of Korea.,Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Hyeon-Jeong Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, GN, 660-701, Republic of Korea
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, GN, 660-701, Republic of Korea
| | - Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, GN, 660-701, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, GN, 660-701, Republic of Korea
| | - Byeong-Gyun Jeon
- Department of Biology Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon, Republic of Korea. .,Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Jinju, Republic of Korea. .,Department of Dentistry, Hanil Hospital, Jinju, Republic of Korea.
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, GN, 660-701, Republic of Korea.
| |
Collapse
|
24
|
Songsaad A, Gonmanee T, Ruangsawasdi N, Phruksaniyom C, Thonabulsombat C. Potential of resveratrol in enrichment of neural progenitor-like cell induction of human stem cells from apical papilla. Stem Cell Res Ther 2020; 11:542. [PMID: 33317638 PMCID: PMC7737267 DOI: 10.1186/s13287-020-02069-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/02/2020] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Stem cell transplantation of exogenous neural progenitor cells (NPCs) derived from mesenchymal stem cells (MSCs) has emerged as a promising approach for neurodegenerative disease. Human stem cells from apical papilla (hSCAPs) are derived from migratory neural crest stem cells and exhibit a potential of neuronal differentiation. However, their neuronal differentiation is low and unpredictable. Resveratrol has been described as a sirtuin 1 (SIRT1) activator which plays an important role in enhancing neuronal differentiation. In this study, we investigate the potential of resveratrol as an enhancer on neuronal differentiation through NPCs induction of hSCAPs. METHODS Stem cells were isolated from human apical papilla and characterized as MSCs. The cellular toxicity of resveratrol treatment to the characterized hSCAPs was investigated by MTT assay. The non-cellular toxicity concentrations of resveratrol were assessed with various pre-treatment times to select the optimal condition that highly expressed the neural progenitor gene, NES. Consequently, the optimal condition of resveratrol pre-treatment was synergistically performed with a neuronal induction medium to trigger neuronal differentiation. The differentiated cells were visualized, the genes profiling was quantified, and the percentage of neuronal differentiation was calculated. Moreover, the intracellular calcium oscillation was demonstrated. RESULTS The cellular toxicity of resveratrol was not observed for up to 50 μM for 12 h. Interestingly, hSCAPs pre-treated with 10 μM resveratrol for 12 h (RSV-hSCAPs) significantly expressed NES, which is determined as the optimal condition. Under neuronal induction, both of hSCAPs and RSV-hSCAPs were differentiated (d-hSCAPs and RSV-d-hSCAPs) as they exhibited neuronal-like appearances with Nissl substance staining. The highest expression of NES and SOX1 was observed in RSV-d-hSCAPs. Additionally, the percentage of neuronal differentiation of RSV-d-hSCAPs was significantly higher than d-hSCAPs for 4 times. Importantly, the neuronal-like cells exhibited slightly increasing pattern of calcium intensity. CONCLUSION This study demonstrated that pre-treatment of resveratrol strongly induces neural progenitor marker gene expression which synergistically enhances neural progenitor-like cells' induction with neuronal induction medium.
Collapse
Affiliation(s)
- Anupong Songsaad
- Department of Anatomy, Faculty of Science, Mahidol University, 272 RAMA VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Thanasup Gonmanee
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand
| | - Nisarat Ruangsawasdi
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Chareerut Phruksaniyom
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Charoensri Thonabulsombat
- Department of Anatomy, Faculty of Science, Mahidol University, 272 RAMA VI Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
25
|
Li ZZ, Wang HT, Lee GY, Yang Y, Zou YP, Wang B, Gong CJ, Cai Y, Ren JG, Zhao JH. Bleomycin: A novel osteogenesis inhibitor of dental follicle cells via a TGF-β1/SMAD7/RUNX2 pathway. Br J Pharmacol 2020; 178:312-327. [PMID: 33068010 DOI: 10.1111/bph.15281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/16/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Tooth eruption is a complicated process regulated by the dental follicles (DF). Our recent study discovered that tooth eruption was inhibited upon injection of bleomycin into DF. However, the mechanisms were unknown. EXPERIMENTAL APPROACH Human dental follicle cells (hDFCs) were treated by bleomycin or exogenous TGF-β1 or transfected by plasmids loading SMAD7 or shRNA targeting SMAD7, followed by osteogenesis induction assay and signalling analysis. Human fresh DF tissues and Wistar rats were used to further confirm bleomycin function. KEY RESULTS Bleomycin decreased expression of RUNX2 and osteogenic genes in hDFCs, reducing osteogenic capacity. TGF-β1 expression was up-regulated in bleomycin-treated hDFCs. The effects of exogenous TGF-β1 were similar to those of bleomycin in hDFCs. Additionally, compared to SMAD2/3, SMAD7 expression increased more in bleomycin- or TGF-β1-treated hDFCs. Overexpression of SMAD7 likewise significantly decreased RUNX2 expression and osteogenic capacity of hDFCs. Knockdown of SMAD7 markedly attenuated the inhibitory effects of bleomycin and TGF-β1 on osteogenic capacity and RUNX2 expression of hDFCs. Most importantly, changes in TGF-β1, SMAD7, and RUNX2 expressions were similar in the DF of rats and humans treated with bleomycin. CONCLUSION AND IMPLICATIONS SMAD7 was a negative regulator of osteogenic differentiation in DFCs through suppressing RUNX2 expression. Bleomycin or TGF-β1 inhibited osteogenic differentiation of DFCs via a TGF-β1/SMAD7/RUNX2 pathway. Our findings might be beneficial for enhancing the osteogenic activity of DFCs or inhibiting the eruption of undesirable teeth.
Collapse
Affiliation(s)
- Zhi-Zheng Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hai-Tao Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Grace Y Lee
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ying Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan-Ping Zou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chu-Jie Gong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yu Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian-Gang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ji-Hong Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Choudhary P, Gupta A, Singh S. Therapeutic Advancement in Neuronal Transdifferentiation of Mesenchymal Stromal Cells for Neurological Disorders. J Mol Neurosci 2020; 71:889-901. [PMID: 33047251 DOI: 10.1007/s12031-020-01714-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders have become the leading cause of chronic pain and death. Treatments available are not sufficient to help the patients as they only alleviate the symptoms and not the cause. In this regard, stem cells therapy has emerged as an upcoming option for the replacement of dead and damaged neurons. Stem cells, in general, are characterized as cells exhibiting potency properties, i.e., on being subjected to specific conditions they transform into cells of another lineage. Of all the types, mesenchymal stem cells (MSCs) are known for their pluripotent nature without the obstacle of ethical concern surrounding the procurement of other cell types. Although fibroblasts are quite similar to MSCs morphologically, certain markers like CD73, CD 90 are specific to MSCs, making both the cell types distinguishable from each other. This is implemented while procuring MSCs from a plethora of sources like umbilical cord blood, adipose tissue, bone marrow, etc. Among these, bone marrow MSCs are the most widely used type for neural regeneration. Neural regeneration is achieved via transdifferentiation. Several studies have either transplanted the stem cells into rodent models or have carried out transdifferentiation in vitro. The process involves a combination of growth factors, pre-treatment factors, and neuronal differentiation inducing mediums. The results obtained are characterized by neuron-like morphology, expression of markers, along with electrophysical activity in some. Recent attempts involve exploring biomaterials that may mimic the native ECM and therefore can be directly introduced at the site of interest. The review gives a brief description of MSCs, their sources and markers, and the different attempts that have been made towards achieving the goal of differentiating MSCs into neurons.
Collapse
Affiliation(s)
- Princy Choudhary
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Ayushi Gupta
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Sangeeta Singh
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India.
| |
Collapse
|
27
|
Ullah I, Seo K, Wi H, Kim Y, Lee S, Ock SA. Induction of the differentiation of porcine bone marrow mesenchymal stem cells into premature hepatocyte-like cells in an indirect coculture system with primary hepatocytes. Anim Cells Syst (Seoul) 2020; 24:289-298. [PMID: 33209203 PMCID: PMC7646558 DOI: 10.1080/19768354.2020.1823473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver transplantation is currently the only option for patients with end-stage liver disease. Thus, other alternate therapeutic strategies are needed. Bone marrow mesenchymal stem cells (BM-MSCs) are nonhematopoietic cells present in the bone marrow stroma that serve as precursors cells for various other cells. In this study, we evaluated the differentiation of porcine BM-MSCs into hepatocyte-like cells using three types of culture systems: hepatic induction medium (HIM), HIM/primary hepatocyte culture supernatant (HCS; 1:1 ratio), and a hepatocyte coculture system (HCCS; primary hepatocytes in the upper chamber, and BM-MSCs in the lower chamber). Primary hepatocytes were isolated from anesthetized healthy 1-month-old pigs by enzymatic digestion. Hepatic-specific marker expression (albumin [ALB], transferrin [TF], α-fetoprotein [AFP]), glycogen storage, low-density lipoprotein, and indocyanine green uptake were evaluated. Upregulation of hepatic-specific markers (ALB, TF, and AFP) was observed by real-time polymerase chain reaction in the HCCS group. Periodic acid-Schiff staining revealed enhanced glycogen storage in hepatocyte-like cells from the HCCS group compared with that from the HIM/HCS group. Furthermore, hepatocyte like-cells in the HCCS group showed improved LDL and ICG uptake than those in the other groups. Overall, our current study revealed that indirect coculture of primary hepatocytes and BM-MSCs enhanced the differentiation efficacy of BM-MSCs into hepatocyte-like cells by unknown useful soluble factors, including paracrine factors.
Collapse
Affiliation(s)
- Imran Ullah
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea.,Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kangmin Seo
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Hayeon Wi
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Youngim Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Seunghoon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| |
Collapse
|
28
|
Wu T, Xu W, Chen H, Li S, Dou R, Shen H, Liu X, Liu X, Hong Y, He J. Comparison of the differentiation of dental pulp stem cells and periodontal ligament stem cells into neuron-like cells and their effects on focal cerebral ischemia. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1016-1029. [PMID: 32845287 DOI: 10.1093/abbs/gmaa082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
Recent studies have reported an increasing incidence of ischemic stroke, particularly in younger age groups. Dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) are the most common stem cells acquired from the teeth of adults, even elderly people. However, there are no detailed reports on whether DPSCs or PDLSCs are suitable for the treatment of ischemic stroke. In this study, the in vitro differentiation of DPSCs and PDLSCs into neuron-like cells was evaluated. Then, we established a rat model of cerebral ischemia. DPSCs or PDLSCs were administered to animals, and the therapeutic effects of these two types of cells were investigated. The results showed that PDLSCs had a higher differentiation rate than DPSCs. Immunofluorescence studies showed that the expression of the neuronal differentiation marker Thy-1 was higher in PDLSCs than in DPSCs, and other gene markers of neuronal differentiation showed corresponding trends, which were confirmed by western blot analysis. In this process, the Notch and Wnt signaling pathways were inhibited and activated, respectively. Finally, rats with transient occlusion of the right middle cerebral artery were used as a model to assess the therapeutic effect of PDLSCs and DPSCs on ischemia. The results showed that rats in the PDLSC-treated group emitted significantly greater red fluorescence signal than the DPSC-treated group. PDLSC transplantation promoted the recovery of neurological function more effectively than DPSC transplantation. Hence, PDLSCs represent an autogenous source of adult mesenchymal stem cells with desirable biological properties and may be an ideal candidate for clinical applications.
Collapse
Affiliation(s)
- Tingting Wu
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| | - Wanting Xu
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| | - Hanlin Chen
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| | - Shasha Li
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| | - Rengang Dou
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Hongtao Shen
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Xue Liu
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Xiaoyu Liu
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| | - Yongfeng Hong
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Jiacai He
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| |
Collapse
|
29
|
Fracaro L, Senegaglia AC, Herai RH, Leitolis A, Boldrini-Leite LM, Rebelatto CLK, Travers PJ, Brofman PRS, Correa A. The Expression Profile of Dental Pulp-Derived Stromal Cells Supports Their Limited Capacity to Differentiate into Adipogenic Cells. Int J Mol Sci 2020; 21:E2753. [PMID: 32326648 PMCID: PMC7215853 DOI: 10.3390/ijms21082753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) can self-renew, differentiate into specialised cells and have different embryonic origins-ectodermal for dental pulp-derived MSCs (DPSCs) and mesodermal for adipose tissue-derived MSCs (ADSCs). Data on DPSCs adipogenic differentiation potential and timing vary, and the lack of molecular and genetic information prompted us to gain a better understanding of DPSCs adipogenic differentiation potential and gene expression profile. While DPSCs differentiated readily along osteogenic and chondrogenic pathways, after 21 days in two different types of adipogenic induction media, DPSCs cultures did not contain lipid vacuoles and had low expression levels of the adipogenic genes proliferator-activated receptor gamma (PPARG), lipoprotein lipase (LPL) and CCAAT/enhancer-binding protein alpha (CEBPA). To better understand this limitation in adipogenesis, transcriptome analysis in undifferentiated DPSCs was carried out, with the ADSC transcriptome used as a positive control. In total, 14,871 transcripts were common to DPSCs and ADSCs, some were unique (DPSCs: 471, ADSCs: 1032), and 510 were differentially expressed genes. Detailed analyses of overrepresented transcripts showed that DPSCs express genes that inhibit adipogenic differentiation, revealing the possible mechanism for their limited adipogenesis.
Collapse
Affiliation(s)
- Letícia Fracaro
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil; (L.F.); (A.C.S.); (L.M.B.-L.); (C.L.K.R.)
| | - Alexandra C. Senegaglia
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil; (L.F.); (A.C.S.); (L.M.B.-L.); (C.L.K.R.)
| | - Roberto H. Herai
- Graduate Program in Health Sciences (PPGCS), School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil;
| | - Amanda Leitolis
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Parana, Curitiba, Parana 81350-010, Brazil;
| | - Lidiane M. Boldrini-Leite
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil; (L.F.); (A.C.S.); (L.M.B.-L.); (C.L.K.R.)
| | - Carmen L. K. Rebelatto
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil; (L.F.); (A.C.S.); (L.M.B.-L.); (C.L.K.R.)
| | - Paul J. Travers
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK;
| | - Paulo R. S. Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil; (L.F.); (A.C.S.); (L.M.B.-L.); (C.L.K.R.)
| | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Parana, Curitiba, Parana 81350-010, Brazil;
| |
Collapse
|
30
|
Bharti D, Jang SJ, Lee SY, Lee SL, Rho GJ. In Vitro Generation of Oocyte Like Cells and Their In Vivo Efficacy: How Far We have been Succeeded. Cells 2020; 9:E557. [PMID: 32120836 PMCID: PMC7140496 DOI: 10.3390/cells9030557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
In the last few decades, stem cell therapy has grown as a boon for many pathological complications including female reproductive disorders. In this review, a brief description of available strategies that are related to stem cell-based in vitro oocyte-like cell (OLC) development are given. We have tried to cover all the aspects and latest updates of the in vitro OLC developmental methodologies, marker profiling, available disease models, and in vivo efficacies, with a special focus on mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) usage. The differentiation abilities of both the ovarian and non-ovarian stem cell sources under various induction conditions have shown different effects on morphological alterations, proliferation- and size-associated developments, hormonal secretions under gonadotropic stimulations, and their neo-oogenesis or folliculogenesis abilities after in vivo transplantations. The attainment of characters like oocyte-like morphology, size expansion, and meiosis initiation have been found to be major obstacles during in vitro oogenesis. A number of reports have either lacked in vivo studies or have shown their functional incapability to produce viable and healthy offspring. Though researchers have gained many valuable insights regarding in vitro gametogenesis, still there are many things to do to make stem cell-derived OLCs fully functional.
Collapse
Affiliation(s)
- Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Sang-Yun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
31
|
Human dental pulp stem cells differentiation to neural cells, osteocytes and adipocytes-An in vitro study. Heliyon 2020; 6:e03054. [PMID: 32042932 PMCID: PMC7002807 DOI: 10.1016/j.heliyon.2019.e03054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
Human dental pulp stem cells (hDPSCs) are promising source of cells for numerous and varied regenerative medicine applications as those possess high proliferation potential with multilineage differentiation capacity compare to other sources of adult stem cells; therefore, hDPSCs could be the good source for autologous transplantation in tissue engineering and regenerative medicine. In this study stem cells were isolated from dental pulp and were characterised by flowcytometry and immunocytochemistry. The controlled cells as well as, 7-day cultured cells were positive for transcription factors, OCT 4 and SOX 2 thatconfirmed isolated cellsasmesenchymal stem cells (MSCs). These cells showed positive expression for CD 19, CD 73, CD 90, CD 105 and are negative for CD 34, CD 45. Viability of hDPSCS were studied by trypan blue (TB) staining and fluorescent microscopic study. After 7 days of passaging by using several growth factors, cells express neural cell markers oligodendrocyte and glial fibrillary acidic protein. Specifically, osteocytes were grown from dental pulp MSCSsin vitro with the help of growth factors, dexamethasone, ascorbic acid-2- phosphate and β-glycerophosphate whereas, adipocytes were grown with indomethacin, 3-isobutyl-1-methylxanthine and insulin. Osteocytes and adipocytes were characterized by von Kossa and Oil red O staining, respectively. Chromosomal analysis of dental pulp-MSCs was done for qualitative assessment of MSCs. Karyotyping indicated diploid chromosome number in dental pulp derived MSCs. In vitro grown osteocytes could be used for bone fracture reunion cases, and adipocytes could be used for further research purposes.
Collapse
|
32
|
Kubiak CA, Grochmal J, Kung TA, Cederna PS, Midha R, Kemp SWP. Stem-cell-based therapies to enhance peripheral nerve regeneration. Muscle Nerve 2019; 61:449-459. [PMID: 31725911 DOI: 10.1002/mus.26760] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Peripheral nerve injury remains a major cause of morbidity in trauma patients. Despite advances in microsurgical techniques and improved understanding of nerve regeneration, obtaining satisfactory outcomes after peripheral nerve injury remains a difficult clinical problem. There is a growing body of evidence in preclinical animal studies demonstrating the supportive role of stem cells in peripheral nerve regeneration after injury. The characteristics of both mesoderm-derived and ectoderm-derived stem cell types and their role in peripheral nerve regeneration are discussed, specifically focusing on the presentation of both foundational laboratory studies and translational applications. The current state of clinical translation is presented, with an emphasis on both ethical considerations of using stems cells in humans and current governmental regulatory policies. Current advancements in cell-based therapies represent a promising future with regard to supporting nerve regeneration and achieving significant functional recovery after debilitating nerve injuries.
Collapse
Affiliation(s)
- Carrie A Kubiak
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan
| | - Joey Grochmal
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Theodore A Kung
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan
| | - Paul S Cederna
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Rajiv Midha
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephen W P Kemp
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
33
|
In vitro differentiation of single donor derived human dental mesenchymal stem cells into pancreatic β cell-like cells. Biosci Rep 2019; 39:BSR20182051. [PMID: 31015367 PMCID: PMC6527933 DOI: 10.1042/bsr20182051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/16/2019] [Accepted: 04/10/2019] [Indexed: 12/18/2022] Open
Abstract
The present study was carried out to investigate and compare the in vitro differentiation potential of mesenchymal stem cells (MSCs) isolated from human dental tissues (pulp, papilla, and follicle) of the same donor. MSCs were isolated from dental tissues (pulp, papilla, and follicle) following digestion method and were analyzed for the expression of pluripotent markers and cell surface markers. All three types of MSCs were evaluated for their potential to differentiate into mesenchymal lineages. Further, the MSCs were differentiated into pancreatic β cell-like cells using multistep protocol and characterized for the expression of pancreatic lineage specific markers. Functional properties of differentiated pancreatic β cell-like cells were assessed by dithizone staining and glucose challenge test. All three types of MSCs showed fibroblast-like morphology upon culture and expressed pluripotent, and mesenchymal cell surface markers. These MSCs were successfully differentiated into mesenchymal lineages and transdifferentiated into pancreatic β cell-like cells. Among them, dental follicle derived MSCs exhibits higher transdifferentiation potency toward pancreatic lineage as evaluated by the expression of pancreatic lineage specific markers both at mRNA and protein level, and secreted higher insulin upon glucose challenge. Additionally, follicle-derived MSCs showed higher dithizone staining upon differentiation. All three types of MSCs from a single donor possess similar cellular properties and can differentiate into pancreatic lineage. However, dental follicle derived MSCs showed higher potency toward pancreatic lineage than pulp and papilla derived MSCs, suggesting their potential application in future stem cell based therapy for the treatment of diabetes.
Collapse
|
34
|
Okuwa Y, Toriumi T, Nakayama H, Ito T, Otake K, Kurita K, Nakashima M, Honda M. Transplantation effects of dental pulp-derived cells on peripheral nerve regeneration in crushed sciatic nerve injury. J Oral Sci 2019; 60:526-535. [PMID: 30587687 DOI: 10.2334/josnusd.17-0462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The effects of transplanted human dental pulp-derived cells (DPCs) on peripheral nerve regeneration were studied in a rat model of sciatic nerve crush injury. In one group, DPCs were transplanted into the compression site (cell transplantation group); the control group underwent no transplantation (crushed group). Sciatic nerve regeneration was determined based on the recovery of motor function and histological and immunohistochemical analyses. The cell transplantation group showed improved motor function compared with the crushed group using the CatWalk XT system, which corresponded to a higher ratio of tibialis to anterior muscle weight 14 days after surgery. Histological analysis revealed a smaller interspace area and few vacuoles in the sciatic nerve after cell transplantation compared with the crushed group. The myelin sheath was visualized with Luxol Fast Blue (LFB) staining and anti-myelin basic protein (anti-MBP) antibody labeling; the percentages of LFB- and MBP-positive areas were higher in the cell transplantation group than in the crushed group. Human mitochondria-positive cells were also identified in the sciatic nerve at the transplantation site 14 days after surgery. Taken together, the observed correlation between morphological findings and functional outcomes following DPC transplantation indicates that DPCs promote peripheral nerve regeneration in rats.
Collapse
Affiliation(s)
- Yuta Okuwa
- Department of Oral and Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry.,Department of Oral Anatomy, Aichi-Gakuin University School of Dentistry
| | - Taku Toriumi
- Department of Oral Anatomy, Aichi-Gakuin University School of Dentistry
| | - Hidenori Nakayama
- Department of Oral and Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry
| | - Tatsuaki Ito
- Department of Oral and Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry
| | - Keita Otake
- Department of Oral and Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry
| | - Kenichi Kurita
- Department of Oral and Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry
| | - Misako Nakashima
- Department of Stem Cell Biology and Regenerative Medicine,National Center for Geriatrics and Gerontology
| | - Masaki Honda
- Department of Oral Anatomy, Aichi-Gakuin University School of Dentistry
| |
Collapse
|
35
|
Gancheva MR, Kremer KL, Gronthos S, Koblar SA. Using Dental Pulp Stem Cells for Stroke Therapy. Front Neurol 2019; 10:422. [PMID: 31110489 PMCID: PMC6501465 DOI: 10.3389/fneur.2019.00422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/08/2019] [Indexed: 12/26/2022] Open
Abstract
Stroke is a leading cause of permanent disability world-wide, but aside from rehabilitation, there is currently no clinically-proven pharmaceutical or biological agent to improve neurological disability. Cell-based therapies using stem cells, such as dental pulp stem cells, are a promising alternative for treatment of neurological diseases, including stroke. The ischaemic environment in stroke affects multiple cell populations, thus stem cells, which act through cellular and molecular mechanisms, are promising candidates. The most common stem cell population studied in the neurological setting has been mesenchymal stem cells due to their accessibility. However, it is believed that neural stem cells, the resident stem cell of the adult brain, would be most appropriate for brain repair. Using reprogramming strategies, alternative sources of neural stem and progenitor cells have been explored. We postulate that a cell of closer origin to the neural lineage would be a promising candidate for reprogramming and modification towards a neural stem or progenitor cell. One such candidate population is dental pulp stem cells, which reside in the root canal of teeth. This review will focus on the neural potential of dental pulp stem cells and their investigations in the stroke setting to date, and include an overview on the use of different sources of neural stem cells in preclinical studies and clinical trials of stroke.
Collapse
Affiliation(s)
- Maria R. Gancheva
- Stroke Research Programme Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Karlea L. Kremer
- Stroke Research Programme Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Simon A. Koblar
- Stroke Research Programme Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Central Adelaide Local Health Network, Adelaide, SA, Australia
| |
Collapse
|
36
|
Martellucci S, Santacroce C, Santilli F, Piccoli L, Delle Monache S, Angelucci A, Misasi R, Sorice M, Mattei V. Cellular and Molecular Mechanisms Mediated by recPrP C Involved in the Neuronal Differentiation Process of Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:E345. [PMID: 30654447 PMCID: PMC6358746 DOI: 10.3390/ijms20020345] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/21/2022] Open
Abstract
Human Dental Pulp Stem Cells (hDPSCs) represent a type of adult mesenchymal stem cells that have the ability to differentiate in vitro in several lineages such as odontoblasts, osteoblasts, chondrocytes, adipocytes and neurons. In the current work, we used hDPSCs as the experimental model to study the role of recombinant prion protein 23⁻231 (recPrPC) in the neuronal differentiation process, and in the signal pathway activation of ERK 1/2 and Akt. We demonstrated that recPrPC was able to activate an intracellular signal pathway mediated by extracellular-signal-regulated kinase 1 and 2 (ERK 1/2) and protein kinase B (Akt). Moreover, in order to understand whether endogenous prion protein (PrPC) was necessary to mediate the signaling induced by recPrPC, we silenced PrPC, demonstrating that the presence of endogenous PrPC was essential for ERK 1/2 and Akt phosphorylation. Since endogenous PrPC is a well-known lipid rafts component, we evaluated the role of these structures in the signal pathway induced by recPrPC. Our results suggest that lipid rafts integrity play a key role in recPrPC activity. In fact, lipid rafts inhibitors, such as fumonisin B1 and MβCD, significantly prevented ERK 1/2 and Akt phosphorylation induced by recPrPC. In addition, we investigated the capacity of recPrPC to induce hDPSCs neuronal differentiation process after long-term stimulation through the evaluation of typical neuronal markers expression such as B3-Tubulin, neurofilament-H (NFH) and growth associated protein 43 (GAP43). Accordingly, when we silenced endogenous PrPC, we observed the inhibition of neuronal differentiation induced by recPrPC. The combined data suggest that recPrPC plays a key role in the neuronal differentiation process and in the activation of specific intracellular signal pathways in hDPSCs.
Collapse
Affiliation(s)
- Stefano Martellucci
- Laboratory of Experimental Medicine and Environmental Pathology, Rieti University Hub "Sabina Universitas", 02100 Rieti, Italy.
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy.
| | - Costantino Santacroce
- Laboratory of Experimental Medicine and Environmental Pathology, Rieti University Hub "Sabina Universitas", 02100 Rieti, Italy.
| | - Francesca Santilli
- Laboratory of Experimental Medicine and Environmental Pathology, Rieti University Hub "Sabina Universitas", 02100 Rieti, Italy.
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy.
| | - Luca Piccoli
- Department of Science Dentistry and Maxillofacial, "Sapienza" University, 00161 Rome, Italy.
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy.
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy.
| | - Vincenzo Mattei
- Laboratory of Experimental Medicine and Environmental Pathology, Rieti University Hub "Sabina Universitas", 02100 Rieti, Italy.
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy.
| |
Collapse
|
37
|
Dental pulp-derived stem cells can counterbalance peripheral nerve injury-induced oxidative stress and supraspinal neuro-inflammation in rat brain. Sci Rep 2018; 8:15795. [PMID: 30361632 PMCID: PMC6202384 DOI: 10.1038/s41598-018-34151-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022] Open
Abstract
Previously, we reported the successful regeneration of injured peripheral nerves using human dental pulp stem cells (DPSCs) or differentiated neuronal cells from DPSCs (DF-DPSCs) in a rat model. Here, we attempted to evaluate oxidative stress and supraspinal neuro-inflammation in rat brain after sciatic nerve injury (SNI). We divided our experimental animals into three SNI groups based on time. The expression of a microglial (Iba1) marker and reactive oxygen species (ROS) was lower in DPSCs and higher in DF-DPSCs. In contrast, the expression of an astroglial (GFAP) marker was higher in DPSCs and lower in DF-DPSCs at 2 weeks. However, the expression of ROS, Iba1 and GFAP gradually decreased at 8 and 12 weeks in the SNI DPSCs and DF-DPSCs groups compared to the SNI control. Furthermore, anti-inflammatory cytokine (IL-4 and TGF-β) expression was lower at 2 weeks, while it gradually increased at 8 and 12 weeks after surgery in the SNI DPSCs and DF-DPSCs groups. Similarly, SNI DPSCs had a high expression of pAMPK, SIRT1 and NFkB at the onset of SNI. However, 12 weeks after surgery, pAMPK and SIRT1 expression levels were higher and NFkB was down-regulated in both DPSCs and DF-DPSCs compared to the control group. Finally, we concluded that DPSCs responded early and more efficiently than DF-DPSCs to counterbalance peripheral nerve injury (PNI)-induced oxidative stress and supraspinal neuro-inflammation in rat brain.
Collapse
|
38
|
Jang S, Kang YH, Ullah I, Shivakumar SB, Rho GJ, Cho YC, Sung IY, Park BW. Cholinergic Nerve Differentiation of Mesenchymal Stem Cells Derived from Long-Term Cryopreserved Human Dental Pulp In Vitro and Analysis of Their Motor Nerve Regeneration Potential In Vivo. Int J Mol Sci 2018; 19:ijms19082434. [PMID: 30126144 PMCID: PMC6122009 DOI: 10.3390/ijms19082434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/14/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
The reduction of choline acetyltransferase, caused by the loss of cholinergic neurons, leads to the absence of acetylcholine (Ach), which is related to motor nerve degeneration. The aims of the present study were to evaluate the in vitro cholinergic nerve differentiation potential of mesenchymal stem cells from cryopreserved human dental pulp (hDPSCs-cryo) and to analyze the scale of in vivo motor nerve regeneration. The hDPSCs-cryo were isolated and cultured from cryopreserved dental pulp tissues, and thereafter differentiated into cholinergic neurons using tricyclodecane-9-yl-xanthogenate (D609). Differentiated cholinergic neurons (DF-chN) were transplanted into rats to address sciatic nerve defects, and the scale of in vivo motor nerve regeneration was analyzed. During in vitro differentiation, the cells showed neuron-like morphological changes including axonal fibers and neuron body development, and revealed high expression of cholinergic neuron-specific markers at both the messenger RNA (mRNA) and protein levels. Importantly, DF-chN showed significant Ach secretion ability. At eight weeks after DF-chN transplantation in rats with sciatic nerve defects, notably increased behavioral activities were detected with an open-field test, with enhanced low-affinity nerve growth factor receptor (p75NGFR) expression detected using immunohistochemistry. These results demonstrate that stem cells from cryopreserved dental pulp can successfully differentiate into cholinergic neurons in vitro and enhance motor nerve regeneration when transplanted in vivo. Additionally, this study suggests that long-term preservation of dental pulp tissue is worthwhile for use as an autologous cell resource in the field of nerve regeneration, including cholinergic nerves.
Collapse
Affiliation(s)
- Soomi Jang
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Ulsan, Ulsan 44033, Korea.
| | - Young-Hoon Kang
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju 52727, Korea.
- Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon 51472, Korea.
| | - Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Sharath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Yeong-Cheol Cho
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Ulsan, Ulsan 44033, Korea.
| | - Iel-Yong Sung
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Ulsan, Ulsan 44033, Korea.
| | - Bong-Wook Park
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju 52727, Korea.
- Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon 51472, Korea.
| |
Collapse
|
39
|
Affiliation(s)
- Bong-Wook Park
- Department of Dentistry, Gyeongsang National University School of Medicine, Jinju, Korea.,Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon, Korea
| |
Collapse
|
40
|
Martellucci S, Manganelli V, Santacroce C, Santilli F, Piccoli L, Sorice M, Mattei V. Role of Prion protein-EGFR multimolecular complex during neuronal differentiation of human dental pulp-derived stem cells. Prion 2018; 12:117-126. [PMID: 29644924 DOI: 10.1080/19336896.2018.1463797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cellular prion protein (PrPC) is expressed in a wide variety of stem cells in which regulates their self-renewal as well as differentiation potential. In this study we investigated the presence of PrPC in human dental pulp-derived stem cells (hDPSCs) and its role in neuronal differentiation process. We show that hDPSCs expresses early PrPC at low concentration and its expression increases after two weeks of treatment with EGF/bFGF. Then, we analyzed the association of PrPC with gangliosides and EGF receptor (EGF-R) during neuronal differentiation process. PrPC associates constitutively with GM2 in control hDPSCs and with GD3 only after neuronal differentiation. Otherwise, EGF-R associates weakly in control hDPSCs and more markedly after neuronal differentiation. To analyze the functional role of PrPC in the signal pathway mediated by EGF/EGF-R, a siRNA PrP was applied to ablate PrPC and its function. The treatment with siRNA PrP significantly prevented Akt and ERK1/2 phosphorylation induced by EGF. Moreover, siRNA PrP treatment significantly prevented neuronal-specific antigens expression induced by EGF/bFGF, indicating that cellular prion protein is essential for EGF/bFGF-induced hDPSCs differentiation. These results suggest that PrPC interact with EGF-R within lipid rafts, playing a role in the multimolecular signaling complexes involved in hDPSCs neuronal differentiation.
Collapse
Affiliation(s)
- Stefano Martellucci
- a Laboratory of Experimental Medicine and Environmental Pathology - Rieti University Hub "Sabina Universitas" , Via Angelo Maria Ricci 35/A, Rieti , Italy.,b Department of Experimental Medicine - "Sapienza" University , Viale Regina Elena 324, Rome , Italy
| | - Valeria Manganelli
- b Department of Experimental Medicine - "Sapienza" University , Viale Regina Elena 324, Rome , Italy
| | - Costantino Santacroce
- a Laboratory of Experimental Medicine and Environmental Pathology - Rieti University Hub "Sabina Universitas" , Via Angelo Maria Ricci 35/A, Rieti , Italy
| | - Francesca Santilli
- a Laboratory of Experimental Medicine and Environmental Pathology - Rieti University Hub "Sabina Universitas" , Via Angelo Maria Ricci 35/A, Rieti , Italy
| | - Luca Piccoli
- c Department of Science Dentistry and Maxillofacial - "Sapienza" University , Viale Regina Elena 287/A, Rome , Italy
| | - Maurizio Sorice
- b Department of Experimental Medicine - "Sapienza" University , Viale Regina Elena 324, Rome , Italy
| | - Vincenzo Mattei
- a Laboratory of Experimental Medicine and Environmental Pathology - Rieti University Hub "Sabina Universitas" , Via Angelo Maria Ricci 35/A, Rieti , Italy.,b Department of Experimental Medicine - "Sapienza" University , Viale Regina Elena 324, Rome , Italy
| |
Collapse
|
41
|
Bharti D, Shivakumar SB, Park JK, Ullah I, Subbarao RB, Park JS, Lee SL, Park BW, Rho GJ. Comparative analysis of human Wharton's jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell Tissue Res 2017; 372:51-65. [PMID: 29204746 PMCID: PMC5862947 DOI: 10.1007/s00441-017-2699-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 09/11/2017] [Indexed: 12/16/2022]
Abstract
Easy isolation, lack of ethical issues, high proliferation, multi-lineage differentiation potential and immunomodulatory properties of umbilical cord (UC)-derived mesenchymal stem cells (MSCs) make them a valuable tool in stem cell research. Recently, Wharton’s jelly (WJ) was proven as the best MSC source among various compartments of UC. However, it is still unclear whether or not Wharton’s jelly-derived MSCs (WJMSCs) from different parts of the whole cord exhibit the same characteristics. There may be varied MSCs present in different parts of WJ throughout the length of the UC. For this purpose, using an explant attachment method, WJMSCs were isolated from three different parts of the UC, mainly present towards the placenta (mother part), the center of the whole cord (central part) and the part attached to the fetus (baby part). WJMSCs from all three parts were maintained in normal growth conditions (10% ADMEM) and analyzed for mesenchymal markers, pluripotent genes, proliferation rate and tri-lineage differentiation potential. All WJMSCs were highly proliferative, positively expressed CD90, CD105, CD73 and vimentin, while not expressing CD34, CD45, CD14, CD19 or HLA-DR, differentiated into adipocytes, osteocytes and chondrocytes and expressed pluripotency markers OCT-4, SOX-2 and NANOG at gene and protein levels. Furthermore, MSCs derived from all the parts were shown to have potency towards hepatocyte-like cell differentiation. Human bone marrow-derived MSCs were used as a positive control. Finally, we conclude that WJMSCs derived from all the parts are valuable sources and can be efficiently used in various fields of regenerative medicine.
Collapse
Affiliation(s)
- Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sharath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Ji-Kwon Park
- Department of Obstetrics and Gynecology, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Ji-Sung Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea. .,Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
42
|
McGarvey LP, Clarke R, Lundy FT. Cough sensors from dental pulp. Pulm Pharmacol Ther 2017; 47:16-20. [PMID: 28782711 DOI: 10.1016/j.pupt.2017.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
Abstract
Mechanisms which alter sensory neural activity, in particular those rendering nerves hyper-responsive have been implicated in the pathophysiology of common clinical syndromes including chronic cough, itch and pain. However, experimental study of human sensory neurons is challenging because the cell bodies of peripheral neurons are housed in neuronal ganglia which are not accessible using peripheral biopsy techniques. While important advances have been made from studies conducted in animal models, there are interspecies differences. There is a need for development of a new generation of in vitro neuronal models based on human biology. In this article the propensity for human dental pulp stem cells to differentiate towards a neuronal phenotype and the potential of such a model to study altered sensory neural function will be discussed.
Collapse
Affiliation(s)
- Lorcan P McGarvey
- Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom.
| | - Rebecca Clarke
- Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom
| | - Fionnuala T Lundy
- Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
43
|
Ullah I, Park JM, Kang YH, Byun JH, Kim DG, Kim JH, Kang DH, Rho GJ, Park BW. Transplantation of Human Dental Pulp-Derived Stem Cells or Differentiated Neuronal Cells from Human Dental Pulp-Derived Stem Cells Identically Enhances Regeneration of the Injured Peripheral Nerve. Stem Cells Dev 2017; 26:1247-1257. [PMID: 28657463 DOI: 10.1089/scd.2017.0068] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human dental mesenchymal stem cells isolated from the dental follicle, pulp, and root apical papilla of extracted wisdom teeth have been known to exhibit successful and potent neurogenic differentiation capacity. In particular, human dental pulp-derived stem cells (hDPSCs) stand out as the most prominent source for in vitro neuronal differentiation. In this study, to evaluate the in vivo peripheral nerve regeneration potential of hDPSCs and differentiated neuronal cells from DPSCs (DF-DPSCs), a total of 1 × 106 hDPSCs or DF-hDPSCs labeled with PKH26 tracking dye and supplemented with fibrin glue scaffold and collagen tubulization were transplanted into the sciatic nerve resection (5-mm gap) of rat models. At 12 weeks after cell transplantation, both hDPSC and DF-hDPSC groups showed notably increased behavioral activities and higher muscle contraction forces compared with those in the non-cell transplanted control group. In immunohistochemical analysis of regenerated nerve specimens, specific markers for angiogenesis, axonal fiber, and myelin sheath increased in both the cell transplantation groups. Pretransplanted labeled PKH26 were also distinctly detected in the regenerated nerve tissues, indicating that transplanted cells were well-preserved and differentiated into nerve cells. Furthermore, no difference was observed in the nerve regeneration potential between the hDPSC and DF-hDPSC transplanted groups. These results demonstrate that dental pulp tissue is an excellent stem cell source for nerve regeneration, and in vivo transplantation of the undifferentiated hDPSCs could exhibit sufficient and excellent peripheral nerve regeneration potential.
Collapse
Affiliation(s)
- Imran Ullah
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University , Jinju, Republic of Korea.,2 Research Institute of Life Science, Gyeongsang National University , Jinju, Republic of Korea
| | - Ju-Mi Park
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University , Jinju, Republic of Korea.,2 Research Institute of Life Science, Gyeongsang National University , Jinju, Republic of Korea
| | - Young-Hoon Kang
- 3 Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital , Changwon, Republic of Korea
| | - June-Ho Byun
- 4 Department of Dentistry, Gyeongsang National University School of Medicine , Institute of Health Science, Jinju, Republic of Korea
| | - Dae-Geon Kim
- 5 Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University , Jinju, Republic of Korea
| | - Joo-Heon Kim
- 5 Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University , Jinju, Republic of Korea
| | - Dong-Ho Kang
- 6 Department of Neurosurgery, Gyeongsang National University School of Medicine , Jinju, Republic of Korea
| | - Gyu-Jin Rho
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University , Jinju, Republic of Korea.,2 Research Institute of Life Science, Gyeongsang National University , Jinju, Republic of Korea
| | - Bong-Wook Park
- 3 Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital , Changwon, Republic of Korea.,4 Department of Dentistry, Gyeongsang National University School of Medicine , Institute of Health Science, Jinju, Republic of Korea
| |
Collapse
|
44
|
Bertone AL, Reisbig NA, Kilborne AH, Kaido M, Salmanzadeh N, Lovasz R, Sizemore JL, Scheuermann L, Kopp RJ, Zekas LJ, Brokken MT. Equine Dental Pulp Connective Tissue Particles Reduced Lameness in Horses in a Controlled Clinical Trial. Front Vet Sci 2017; 4:31. [PMID: 28344975 PMCID: PMC5344919 DOI: 10.3389/fvets.2017.00031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/20/2017] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To assess if injection of allogeneic dental pulp tissue particles would improve lameness in horses with naturally occurring osteoarthritis (OA) or soft tissue (ST) injury. DESIGN Prospective, randomized, blinded, and controlled clinical trial and client survey assessment. ANIMALS Forty lame client-owned horses. PROCEDURES Sterile dental pulp, recovered from otherwise healthy foals that perish during dystocia, was processed under good manufacturing processing to produce mechanically manipulated, unexpanded pulp tissue particles containing viable cells surrounded in extracellular matrix. Forty lame client-owned horses with confirmed OA (n = 20), or ST injury (desmitis or tendonitis) received a 2 mL intra-articular (n = 20 OA) or intra-lesional (n = 20) injection of control transport vehicle (n = 20) or 10 × 106 dental pulp tissue particles (n = 20). Acclimatized horses had baseline measurements performed and were then injected on day 0. Horses were treadmill exercised for 2 weeks, evaluated by clinical parameters, lameness score, edema (score and circumference), pain on flexion (OA) or pressure (ST), and clients' scores for pain and discomfort before and through 45 days after pulp injection. Twenty horses were available for >2.5-year follow-up. RESULTS Pulp-treated horses showed decrease in lameness compared to baseline (P < 0.009) or placebo controls (P < 0.013) for at least 2 weeks. Client assessments of comfort were improved between before and 45 days after pulp injection (P < 0.001). Clinical improvement with ST injury was significantly greater than OA (P < 0.001). At >2.5-year follow-up, at least 10 horses were in work. CONCLUSION AND CLINICAL RELEVANCE Dental pulp tissue particles can be considered as a treatment option for equine lameness due to OA, desmitis, or tendonitis.
Collapse
Affiliation(s)
- Alicia L. Bertone
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Nathalie A. Reisbig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Allison H. Kilborne
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Mari Kaido
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Navid Salmanzadeh
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Rebecca Lovasz
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Joy L. Sizemore
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Logan Scheuermann
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Rosalind J. Kopp
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Lisa J. Zekas
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Matthew T. Brokken
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
45
|
Han YJ, Kang YH, Shivakumar SB, Bharti D, Son YB, Choi YH, Park WU, Byun JH, Rho GJ, Park BW. Stem Cells from Cryopreserved Human Dental Pulp Tissues Sequentially Differentiate into Definitive Endoderm and Hepatocyte-Like Cells in vitro. Int J Med Sci 2017; 14:1418-1429. [PMID: 29200956 PMCID: PMC5707759 DOI: 10.7150/ijms.22152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/13/2017] [Indexed: 01/03/2023] Open
Abstract
We previously described a novel tissue cryopreservation protocol to enable the safe preservation of various autologous stem cell sources. The present study characterized the stem cells derived from long-term cryopreserved dental pulp tissues (hDPSCs-cryo) and analyzed their differentiation into definitive endoderm (DE) and hepatocyte-like cells (HLCs) in vitro. Human dental pulp tissues from extracted wisdom teeth were cryopreserved as per a slow freezing tissue cryopreservation protocol for at least a year. Characteristics of hDPSCs-cryo were compared to those of stem cells from fresh dental pulps (hDPSCs-fresh). hDPSCs-cryo were differentiated into DE cells in vitro with Activin A as per the Wnt3a protocol for 6 days. These cells were further differentiated into HLCs in the presence of growth factors until day 30. hDPSCs-fresh and hDPSCs-cryo displayed similar cell growth morphology, cell proliferation rates, and mesenchymal stem cell character. During differentiation into DE and HLCs in vitro, the cells flattened and became polygonal in shape, and finally adopted a hepatocyte-like shape. The differentiated DE cells at day 6 and HLCs at day 30 displayed significantly increased DE- and hepatocyte-specific markers at the mRNA and protein level, respectively. In addition, the differentiated HLCs showed detoxification and glycogen storage capacities, indicating they could share multiple functions with real hepatocytes. These data conclusively show that hPDSCs-cryo derived from long-term cryopreserved dental pulp tissues can be successfully differentiated into DE and functional hepatocytes in vitro. Thus, preservation of dental tissues could provide a valuable source of autologous stem cells for tissue engineering.
Collapse
Affiliation(s)
- Young-Jin Han
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju, Republic of Korea
| | - Young-Hoon Kang
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju, Republic of Korea.,Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon, Republic of Korea
| | - Sarath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Bum Son
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Yong-Ho Choi
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Won-Uk Park
- Department of Dental Technology, Jinju Health College, Jinju, Republic of Korea
| | - June-Ho Byun
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju, Republic of Korea.,Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon, Republic of Korea
| |
Collapse
|
46
|
Seidel D, Obendorf J, Englich B, Jahnke HG, Semkova V, Haupt S, Girard M, Peschanski M, Brüstle O, Robitzki AA. Impedimetric real-time monitoring of neural pluripotent stem cell differentiation process on microelectrode arrays. Biosens Bioelectron 2016; 86:277-286. [PMID: 27387257 DOI: 10.1016/j.bios.2016.06.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 12/31/2022]
Abstract
In today's neurodevelopment and -disease research, human neural stem/progenitor cell-derived networks represent the sole accessible in vitro model possessing a primary phenotype. However, cultivation and moreover, differentiation as well as maturation of human neural stem/progenitor cells are very complex and time-consuming processes. Therefore, techniques for the sensitive non-invasive, real-time monitoring of neuronal differentiation and maturation are highly demanded. Using impedance spectroscopy, the differentiation of several human neural stem/progenitor cell lines was analyzed in detail. After development of an optimum microelectrode array for reliable and sensitive long-term monitoring, distinct cell-dependent impedimetric parameters that could specifically be associated with the progress and quality of neuronal differentiation were identified. Cellular impedance changes correlated well with the temporal regulation of biomolecular progenitor versus mature neural marker expression as well as cellular structure changes accompanying neuronal differentiation. More strikingly, the capability of the impedimetric differentiation monitoring system for the use as a screening tool was demonstrated by applying compounds that are known to promote neuronal differentiation such as the γ-secretase inhibitor DAPT. The non-invasive impedance spectroscopy-based measurement system can be used for sensitive and quantitative monitoring of neuronal differentiation processes. Therefore, this technique could be a very useful tool for quality control of neuronal differentiation and moreover, for neurogenic compound identification and industrial high-content screening demands in the field of safety assessment as well as drug development.
Collapse
Affiliation(s)
- Diana Seidel
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Janine Obendorf
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Beate Englich
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Vesselina Semkova
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Simone Haupt
- LIFE&BRAIN GmbH, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany; Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Mathilde Girard
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Genopole Campus 1, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| | - Marc Peschanski
- INSERM U861, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Genopole Campus 1, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| | - Oliver Brüstle
- LIFE&BRAIN GmbH, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany; Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Andrea A Robitzki
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany.
| |
Collapse
|