1
|
Ji F, Park J, Rheem H, Kim JH. Overlapping and Distinct Physical and Biological Phenotypes in Pure Frailty and Obese Frailty. Biosci Rep 2024; 44:BSR20240784. [PMID: 39382189 PMCID: PMC11554920 DOI: 10.1042/bsr20240784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Pure frailty and obese frailty are common types of frailty syndrome. However, the overlapping and distinct characteristics between pure frailty and obese frailty remain unclear. This study aims to reveal the overlapping/distinct physical and biological phenotypes of pure frailty and obese frailty, providing theoretical support for their prevention, diagnosis, and treatment. METHOD Mice were fed either a normal or high-fat diet and assessed at 20 months of age. They were assigned to one of the four groups: control, obesity, pure frailty, and obese frailty. Grip strength, walking speed, physical activity, endurance, and body weight were measured to determine pure frailty and obese frailty. Physical and biological phenotypes were assessed. RESULTS Distinct physical phenotypes were observed between pure frailty and obese frailty in terms of body weight, lean mass, fat mass, fat mass in tissue, grip strength, endurance, and physical activity, while walking speed overlapped. In biological phenotypes, levels of Smad2/3, FoxO3a, P62, LAMP-2, and cathepsin L expression were distinct, while AKT, p-AKT, mTOR, p-mTOR, p-Smad2/3, p-FoxO3a, Beclin-1, ATG7, and LC3 overlapped. CONCLUSION Distinct physical phenotypes observed in obese frailty are primarily attributable to the effect of obesity, with further impairment of muscle function resulting from the combined effects of frailty syndromes and obesity. Pure frailty and obese frailty share overlapping biological phenotypes, particularly in the regulation of muscle protein synthesis. Moreover, the interaction between obesity and frailty syndromes gives rise to both overlapping and distinct biological phenotypes, especially in the regulation of specific degradation signaling proteins.
Collapse
Affiliation(s)
- Fujue Ji
- Major in Sport Science, Division of Sport Industry and Science, College of Performing Arts and Sport, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
- BK21 FOUR Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Ji Hyun Park
- Major in Sport Science, Division of Sport Industry and Science, College of Performing Arts and Sport, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Hyeonseung Rheem
- Major in Sport Science, Division of Sport Industry and Science, College of Performing Arts and Sport, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
- BK21 FOUR Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jong-Hee Kim
- Major in Sport Science, Division of Sport Industry and Science, College of Performing Arts and Sport, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
- BK21 FOUR Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Xia L, Liu HY, Wang BY, Lin HN, Wang MC, Ren JX. A review of physiological functions of orexin: From instinctive responses to subjective cognition. Medicine (Baltimore) 2023; 102:e34206. [PMID: 37390267 PMCID: PMC10313292 DOI: 10.1097/md.0000000000034206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
Orexin, also known as hypocretin, is an excitatory neuropeptide secreted by the hypothalamus. Orexin is divided into orexin-A (OXA) and orexin-B (OXB), which are derived from a common precursor secreted by hypothalamic neurons. Orexin acts on orexin receptor-1 (OX1R) and orexin receptor-2 (OX2R). Orexin neurons, as well as receptors, are widely distributed in various regions of the brain as well as in the peripheral system and have a wider range of functions. This paper reviews the latest research results of orexin in the aspects of food intake, sleep, addiction, depression and anxiety. Because orexin has certain physiological functions in many systems, we further explored the possibility of orexin as a new target for the treatment of bulimia, anorexia nervosa, insomnia, lethargy, anxiety and depression. It is precisely because orexin has physiological functions in multiple systems that orexin, as a new target for the treatment of the above diseases, has potential contradictions. For example, it promotes the function of 1 system and may inhibit the function of another system. How to study a new drug, which can not only treat the diseases of this system, but also do not affect other system functions, is what we need to focus on.
Collapse
Affiliation(s)
- LiBo Xia
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Hai Yan Liu
- Department of Medical Section, Changchun Second Hospital, Changchun, China
| | - Bi Yan Wang
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Hai Ning Lin
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Meng Chen Wang
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Ji-Xiang Ren
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Villano I, La Marra M, Di Maio G, Monda V, Chieffi S, Guatteo E, Messina G, Moscatelli F, Monda M, Messina A. Physiological Role of Orexinergic System for Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8353. [PMID: 35886210 PMCID: PMC9323672 DOI: 10.3390/ijerph19148353] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023]
Abstract
Orexins, or hypocretins, are excitatory neuropeptides involved in the regulation of feeding behavior and the sleep and wakefulness states. Since their discovery, several lines of evidence have highlighted that orexin neurons regulate a great range of physiological functions, giving it the definition of a multitasking system. In the present review, we firstly describe the mechanisms underlining the orexin system and their interactions with the central nervous system (CNS). Then, the system's involvement in goal-directed behaviors, sleep/wakefulness state regulation, feeding behavior and energy homeostasis, reward system, and aging and neurodegenerative diseases are described. Advanced evidence suggests that the orexin system is crucial for regulating many physiological functions and could represent a promising target for therapeutical approaches to obesity, drug addiction, and emotional stress.
Collapse
Affiliation(s)
- Ines Villano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Marco La Marra
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Girolamo Di Maio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Vincenzo Monda
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80138 Naples, Italy; (V.M.); (E.G.)
| | - Sergio Chieffi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Ezia Guatteo
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80138 Naples, Italy; (V.M.); (E.G.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (G.M.); (F.M.)
| | - Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (G.M.); (F.M.)
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Antonietta Messina
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| |
Collapse
|
4
|
Myers KP, Majewski M, Schaefer D, Tierney A. Chronic experience with unpredictable food availability promotes food reward, overeating, and weight gain in a novel animal model of food insecurity. Appetite 2022; 176:106120. [PMID: 35671918 DOI: 10.1016/j.appet.2022.106120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/08/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022]
Abstract
Ubiquitous, easy access to food is thought to promote obesity in the modern environment. However, people coping with food insecurity have limited, unpredictable food access and are also prone to obesity. Causal factors linking food insecurity and obesity are not understood. In this study we describe an animal model to investigate biopsychological impacts of the chronic unpredictability inherent in food insecurity. Female rats were maintained on a 'secure' schedule of highly predictable 4x/day feedings of uniform size, or an 'insecure' schedule delivering the same total food over time but frequently unpredictable regarding how much, if any, food would arrive at each scheduled feeding. Subgroups of secure and insecure rats were fed ordinary chow or high-fat/high-sugar (HFHS) chow to identify separate and combined effects of insecurity and diet quality. Insecure chow-fed rats, relative to secure chow-fed rats, were hyperactive and consumed more when provided a palatable liquid diet. Insecure HFHS-fed rats additionally had higher progressive ratio breakpoints for sucrose, increased meal size, and subsequently gained more weight during 8 days of ad libitum HFHS access. Insecurity appeared to maintain a heightened attraction to palatable food that habituated in rats with secure HFHS access. In a second experiment, rats fed ordinary chow on the insecure schedule subsequently gained more weight when provided ad libitum chow, showing that prior insecurity per se promoted short-term weight gain in the absence of HFHS food. We propose this to be a potentially useful animal model for mechanistic research on biopsychological impacts of insecurity, demonstrating that chronic food uncertainty is a factor promoting obesity.
Collapse
Affiliation(s)
- Kevin P Myers
- Department of Psychology and Neuroscience Program, Bucknell University, USA.
| | - Marta Majewski
- Department of Psychology and Neuroscience Program, Bucknell University, USA
| | - Dominique Schaefer
- Department of Psychology and Neuroscience Program, Bucknell University, USA
| | - Alexis Tierney
- Department of Psychology and Neuroscience Program, Bucknell University, USA
| |
Collapse
|
5
|
Mavanji V, Pomonis B, Kotz CM. Orexin, serotonin, and energy balance. WIREs Mech Dis 2022; 14:e1536. [PMID: 35023323 PMCID: PMC9286346 DOI: 10.1002/wsbm.1536] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022]
Abstract
The lateral hypothalamus is critical for the control of ingestive behavior and spontaneous physical activity (SPA), as lesion or stimulation of this region alters these behaviors. Evidence points to lateral hypothalamic orexin neurons as modulators of feeding and SPA. These neurons affect a broad range of systems, and project to multiple brain regions such as the dorsal raphe nucleus, which contains serotoninergic neurons (DRN) important to energy homeostasis. Physical activity is comprised of intentional exercise and SPA. These are opposite ends of a continuum of physical activity intensity and structure. Non‐goal‐oriented behaviors, such as fidgeting, standing, and ambulating, constitute SPA in humans, and reflect a propensity for activity separate from intentional activity, such as high‐intensity voluntary exercise. In animals, SPA is activity not influenced by rewards such as food or a running wheel. Spontaneous physical activity in humans and animals burns calories and could theoretically be manipulated pharmacologically to expend calories and protect against obesity. The DRN neurons receive orexin inputs, and project heavily onto cortical and subcortical areas involved in movement, feeding and energy expenditure (EE). This review discusses the function of hypothalamic orexin in energy‐homeostasis, the interaction with DRN serotonin neurons, and the role of this orexin‐serotonin axis in regulating food intake, SPA, and EE. In addition, we discuss possible brain areas involved in orexin–serotonin cross‐talk; the role of serotonin receptors, transporters and uptake‐inhibitors in the pathogenesis and treatment of obesity; animal models of obesity with impaired serotonin‐function; single‐nucleotide polymorphisms in the serotonin system and obesity; and future directions in the orexin–serotonin field. This article is categorized under:Metabolic Diseases > Molecular and Cellular Physiology
Collapse
Affiliation(s)
- Vijayakumar Mavanji
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Brianna Pomonis
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Catherine M Kotz
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA.,Geriatric Research Education and Clinical Center, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Tordoff MG, Ellis HT. Obesity in C57BL/6J mice fed diets differing in carbohydrate and fat but not energy content. Physiol Behav 2022; 243:113644. [PMID: 34767835 PMCID: PMC8667181 DOI: 10.1016/j.physbeh.2021.113644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/03/2023]
Abstract
To investigate the contributions of carbohydrate and fat to obesity we measured the body weight, body composition and food intake of adult C57BL/6J mice fed ad libitum with various combinations of two semisynthetic diets that differed in carbohydrate and fat but not in protein, micronutrient or energy content. In Experiment 1, involving male mice, body weights were similar in groups fed diets comprised of (by energy) 20% protein, 75% carbohydrate and 5% fat (C75-F5) or 20% protein, 5% carbohydrate and 75% fat (C5-F75). However, mice fed a 50:50 composite mixture of the C75-F5 and C5-F75 diets (i.e., a C40-F40 diet) became substantially more obese. Mice that could choose between the C75-F5 and C5-F75 diets ate equal amounts of each diet and gained almost as much weight as did the group fed C40-F40 diet. Mice switched every day between the C75-F5 and C5-F75 diets gained no more weight than did those fed either diet exclusively. In Experiment 2, male and female mice were fed chow or one of 8 isocaloric diets that differed parametrically in carbohydrate and fat content. Groups fed diets in the middle of the range (i.e., C35-F45 or C45-F35) weighed significantly more and were significantly fatter than were those fed diets with more extreme proportions of carbohydrate and fat (e.g., C75-F5, C5-F75), an effect that was more pronounced in males than females. In Experiment 3 and 4, male mice fed versions of the C40-F40 formulation gained more weight than did those fed the C75-F5 or C5-F75 formulations irrespective of whether the carbohydrate was predominantly sucrose or predominantly starch, or whether the fat was vegetable shortening, corn oil, palm oil or canola oil; the type of carbohydrate or fat had little or no impact on body weight. In all four experiments, energy intakes differed among the diet groups but could not account for the differences in body weight. These results demonstrate that the proportion of carbohydrate and fat in the diet influences body weight independently of energy content, and that the type of carbohydrate or fat has little impact on body weight. Consuming carbohydrate and fat simultaneously or in close temporal proximity exacerbates obesity.
Collapse
|
7
|
Funabashi D, Wakiyama Y, Muto N, Kita I, Nishijima T. Social isolation is a direct determinant of decreased home-cage activity in mice: A within-subjects study using a body-implantable actimeter. Exp Physiol 2021; 107:133-146. [PMID: 34921441 DOI: 10.1113/ep090132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? It is generally recognized that social isolation is associated with physical inactivity; however, is social isolation a direct determinant of decreased physical activity? What is the main finding and its importance? We conducted a within-subjects experiment with the aid of a body-implantable actimeter. Our results clearly demonstrated that social isolation decreased home-cage activity in mice. This might have resulted from increased immobility and decreased vigorous activity, suggesting that avoiding social isolation is important to preventing physical inactivity. ABSTRACT An inactive lifestyle can negatively affect physiological and mental health. Social isolation is associated with physical inactivity; however, it remains uncertain whether social isolation is a direct determinant of decreased physical activity. Hence, we assessed whether social isolation decreases home-cage activity using a within-subjects design and examined the effects of social isolation on hippocampal neurogenesis in mice. This study used a body-implantable actimeter called nanotag®, which enabled us to measure home-cage activity despite housing the mice in groups. We first examined the influence of the intraperitoneal implantation of nanotag® on home-cage activity. Although nanotag® implantation decreased home-cage activity temporarily, 7 days post-implantation, it recovered to the same level as that of control (non-implanted) mice, suggesting that implantation of nanotag® does not have a negative influence on home-cage activity if mice undergo a 1-week recovery period after implantation. In the main experiment, after the 1-week baseline measurement performed while in group housing, the mice were placed in a group or in isolation. Home-cage activity was measured for an additional 4 weeks. Home-cage activity in isolated mice during the dark period decreased by 26% from pre-intervention to the last week of intervention. Furthermore, the reduction in the number of 5-minute epochs during which the activity count exceeded 301 (an index of vigorous activity) was significantly larger for isolated mice. Contrary to expectations, social isolation did not impair hippocampal neurogenesis. Our results demonstrate that social isolation is a direct determinant of decreased physical activity, possibly because of reduced vigorous physical activity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Daisuke Funabashi
- Department of Health Promotion Science, Graduate School of Human Health Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yusuke Wakiyama
- Department of Health Promotion Science, Graduate School of Human Health Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Naoya Muto
- Department of Health Promotion Science, Graduate School of Human Health Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Ichiro Kita
- Department of Health Promotion Science, Graduate School of Human Health Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Takeshi Nishijima
- Department of Health Promotion Science, Graduate School of Human Health Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
8
|
Nurmasitoh T, Khoiriyah U, Fidianingsih I, Arjana AZ, Devita N. Impact of Obesity on Physical Activity. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Obesity occurs due to an imbalance between the calories and the energy released. On the animal model, obesity is considered as the ground for low physical activity. This is caused by low dopamine D2 receptor in the striatum. However, this suggestion is still unproven in the human condition.
AIM: The aim of this study was to find out difference in dopamine expression in obese subjects compared to non-obese subjects when triggered by the stimuli of physical activity.
METHODS: This is a quasi-experimental study. The sample was obese and non-obese (control) female who met inclusion and exclusion criteria. Before treatment was given, subjects were asked to fill out a depression, anxiety, and exercise motivation questionnaire. All subjects were tested for vital signs, anthropometrics, and neurological examinations to determine the initial condition. Then, the subjects saw video about physical activity and were taken for blood to measure blood dopamine levels using enzyme-linked immunosorbent assay. Differences in dopamine levels between the obese and control groups were analyzed using independent t-test. The relationship between dopamine levels and exercise motivation was analyzed using Pearson.
RESULTS: The obese group’s dopamine level was 71.19 ±3.02ng/ml and the control group was 81.15 ± 3.17ng/ml (independent t-test, p = 0.032). The obese group’s motivation score was 58.46 ± 1.59 and the control group score was 62.38 ± 1.54 (independent t-test, p = 0.09). Furthermore, there was no correlation between dopamine levels and motivation scores (Pearson test, p = 0.09).
CONCLUSION: There are significant differences in dopamine levels between the obese group and the control group but no correlation between dopamine levels and exercise motivation scores.
Collapse
|
9
|
Yoshimura A, Yamaguchi T, Kugita M, Kumamoto K, Shiogama K, Ogitsu N, Yoneda M, Miura T, Nagamura Y, Nagao S. High Levels of Dietary Lard or Sucrose May Aggravate Lysosomal Renal Injury in Non-Obese, Streptozotocin-Injected CD-1 Mice Provided Isocaloric Diets. J Nutr Sci Vitaminol (Tokyo) 2021; 67:243-248. [PMID: 34470999 DOI: 10.3177/jnsv.67.243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Daily fat and sugar intake has increased in Japan, while total energy intake has decreased. However, the number of type 2 diabetes mellitus patients has increased, and this often causes renal injury characterized by autophagic vacuoles. Although many studies with comparisons of high fat or sugar versus a normal macronutrient balanced diet have been reported, there are few studies that equalized calorie intake and body weights. In the current study, AIN93M diets (CONT group) with matching energy content with lard derived high saturated fat (LARD group), soybean oil derived unsaturated fat (SOY OIL group) and sucrose (SUCROSE group) were provided to compare their effects on renal morphology in streptozotocin-injected CD-1 mice without causing obesity. The number of renal tubular vacuoles was higher in SUCROSE and slightly higher in LARD compared with CONT mice, and was higher in LARD and SUCROSE compared with SOY OIL mice. Most of those vacuoles were LAMP1-positive, a marker of lysosomal autophagy. These results suggest that despite identical energy contents, diets with high sucrose or saturated fat compared to unsaturated fat may aggravate lysosomal renal injury in a non-obese, streptozotocin-induced model of diabetes mellitus.
Collapse
Affiliation(s)
- Aya Yoshimura
- Education and Research Center of Animal Models for Human Diseases, Fujita Health University
| | - Tamio Yamaguchi
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science
| | - Masanori Kugita
- Education and Research Center of Animal Models for Human Diseases, Fujita Health University
| | - Kanako Kumamoto
- Education and Research Center of Animal Models for Human Diseases, Fujita Health University
| | - Kazuya Shiogama
- Division of Morphology and Cell Function, Faculty of Medical Technology, School of Health Sciences, Fujita Health University
| | - Naomichi Ogitsu
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science
| | - Misao Yoneda
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science
| | - Toshihiro Miura
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science
| | - Yoichi Nagamura
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science
| | - Shizuko Nagao
- Education and Research Center of Animal Models for Human Diseases, Fujita Health University
| |
Collapse
|
10
|
Steckler R, Tamir S, Gutman R. Mice held at an environmental photic cycle oscillating at their tau-like period length do not show the high-fat diet-induced obesity that develops under the 24-hour photic cycle. Chronobiol Int 2021; 38:598-612. [PMID: 33455455 DOI: 10.1080/07420528.2020.1869029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Circadian disruptions precede high-fat diet (HFD)-induced obesity (DIO). Deviation of the endogenous circadian rhythm period length (tau) from 24 hours correlates with mice inter-strain DIO under the 24-hour light-dark cycle (T-cycle). Additionally, entrainment to a tau-resembling T-cycle attenuates DIO, to some extent, in muted mice. These phenomena suggest that entrainment to a 24-hour T-cycle promotes DIO beyond that expected from the HFD-induced metabolic disruptions. However, the hypothesis that entrainment to a tau-resembling T-cycle attenuates DIO has not been tested in wild-type mice. Therefore, we examined, in newborn female FVB/N mice, whether DIO found under their 'regular' 24-hour T-cycle is attenuated under a T-cycle oscillating at their tau-resembling period of 23.7 h, which is diverted from 24 hours by only 0.3 h. Compared to mice fed a low-fat diet, those fed an HFD under the 24-hour T-cycle showed a disrupted pattern of circadian locomotor activity prior to DIO onset. Both these phenomena were absent under the tau-like T-cycle. DIO developed under the 24-hour T-cycle despite similar caloric intake, and was associated with the lower locomotor activity of HFD-fed mice compared to the other mouse groups. These results demonstrated that DIO is secondary to HFD-induced circadian disruptions that are not harmonized by the strongest Zeitgeber (light-dark cycle) when oscillating at a period that diverts by as little as ca. 0.3-h from tau. More importantly, imposing a light-dark cycle oscillating at a tau-like period length, which enhances entrainment and presumably reinforces endogenous circadian rhythms, prevented HFD-induced circadian disruptions and enabled tighter control of energy homeostasis, as manifested by the absence of DIO, even under ad-lib HFD feeding. These results support the identification of tau-related biomarkers, which may be considered as risk-factors for DIO. Moreover, these findings may promote the development of clock-related pharmaceutical interventions that will reduce the gap between tau and 24 hours, and increase the robustness of the endogenous and entrained circadian rhythms. This will enable reducing DIO, even without caloric restriction or time-restricted feeding.
Collapse
Affiliation(s)
- Rafi Steckler
- Laboratory of Integrative Physiology (LIP), The Department of Nutrition and Natural Products, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel.,Department of Nutritional Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Snait Tamir
- Department of Nutritional Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel.,Laboratory of Human Health and Nutrition Sciences, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
| | - Roee Gutman
- Laboratory of Integrative Physiology (LIP), The Department of Nutrition and Natural Products, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel.,Department of Nutritional Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel.,Department of Animal Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
11
|
Diniz TA, de Lima Junior EA, Teixeira AA, Biondo LA, da Rocha LAF, Valadão IC, Silveira LS, Cabral-Santos C, de Souza CO, Rosa Neto JC. Aerobic training improves NAFLD markers and insulin resistance through AMPK-PPAR-α signaling in obese mice. Life Sci 2020; 266:118868. [PMID: 33310034 DOI: 10.1016/j.lfs.2020.118868] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022]
Abstract
Liver steatosis is one of the main drivers for the development of whole-body insulin resistance. Conversely, aerobic training (AT) has been suggested as non-pharmacological tool to improve liver steatosis, however, the underlying molecular mechanism remains unclear. Therefore, the aim of this study was to analyze the effect of 8-weeks AT in non-alcoholic liver disease (NAFLD) outcomes in obese mice. Male C57BL/6 J wild type (WT) were fed with standard (SD) or high-fat diet (HFD) for 12-weeks. Another group fed with HFD underwent 8-weeks of AT (60% of maximum velocity), initiated at the 5th week of experimental protocol. We measured metabolic, body composition parameters, protein and gene expression inflammatory and metabolic mediators. We found that AT attenuates the weight gain, but not body fat accumulation. AT improved triacylglycerol and non-esterified fatty acid plasma concentrations, and also whole-body insulin resistance. Regarding NAFLD, AT decreased the progression of macrovesicular steatosis and inflammation through the upregulation of AMPK Thr172 phosphorylation and PPAR-α protein expression. Moreover, although no effects of intervention in PPAR-γ protein concentration were observed, we found increased levels of its target genes Cd36 and Scd1 in exercised group, demonstrating augmented transcriptional activity. AT reduced liver cytokines concentrations, such as TNF-α, IL-10, MCP-1 and IL-6, regardless of increased Ser536 NF-κB phosphorylation. In fact, none of the interventions regulated NF-κB target genes Il1b and Cccl2, demonstrating its low transcriptional activity. Therefore, we conclude that AT attenuates the progression of liver macrovesicular steatosis and inflammation through AMPK-PPAR-α signaling and PPAR-γ activation, respectively, improving insulin resistance in obese mice.
Collapse
Affiliation(s)
- Tiego Aparecido Diniz
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, Avenida Prof Lineu Prestes, 1524, CEP 05508-900 Butantã, São Paulo, Brazil
| | - Edson Alves de Lima Junior
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, Avenida Prof Lineu Prestes, 1524, CEP 05508-900 Butantã, São Paulo, Brazil
| | - Alexandre Abílio Teixeira
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, Avenida Prof Lineu Prestes, 1524, CEP 05508-900 Butantã, São Paulo, Brazil
| | - Luana Amorim Biondo
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, Avenida Prof Lineu Prestes, 1524, CEP 05508-900 Butantã, São Paulo, Brazil
| | | | | | - Loreana Sanches Silveira
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, Avenida Prof Lineu Prestes, 1524, CEP 05508-900 Butantã, São Paulo, Brazil
| | - Carol Cabral-Santos
- Exercise and Immunometabolism Research Group, Department of Physical Education, University of the State of Sao Paulo, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP, Brazil
| | - Camila Oliveira de Souza
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, Avenida Prof Lineu Prestes, 1524, CEP 05508-900 Butantã, São Paulo, Brazil
| | - José Cesar Rosa Neto
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, Avenida Prof Lineu Prestes, 1524, CEP 05508-900 Butantã, São Paulo, Brazil.
| |
Collapse
|
12
|
Stott NL, Marino JS. High Fat Rodent Models of Type 2 Diabetes: From Rodent to Human. Nutrients 2020; 12:nu12123650. [PMID: 33261000 PMCID: PMC7761287 DOI: 10.3390/nu12123650] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Poor dietary habits contribute to increased incidences of obesity and related co-morbidities, such as type 2 diabetes (T2D). The biological, genetic, and pathological implications of T2D, are commonly investigated using animal models induced by a dietary intervention. In spite of significant research contributions, animal models have limitations regarding the translation to human pathology, which leads to questioning their clinical relevance. Important considerations include diet-specific effects on whole organism energy balance and glucose and insulin homeostasis, as well as tissue-specific changes in insulin and glucose tolerance. This review will examine the T2D-like phenotype in rodents resulting from common diet-induced models and their relevance to the human disease state. Emphasis will be placed on the disparity in percentages and type of dietary fat, the duration of intervention, and whole organism and tissue-specific changes in rodents. An evaluation of these models will help to identify a diet-induced rodent model with the greatest clinical relevance to the human T2D pathology. We propose that a 45% high-fat diet composed of approximately one-third saturated fats and two-thirds unsaturated fats may provide a diet composition that aligns closely to average Western diet macronutrient composition, and induces metabolic alterations mirrored by clinical populations.
Collapse
|
13
|
Spielmann J, Naujoks W, Emde M, Allweyer M, Kielstein H, Quandt D, Bähr I. High-Fat Diet and Feeding Regime Impairs Number, Phenotype, and Cytotoxicity of Natural Killer Cells in C57BL/6 Mice. Front Nutr 2020; 7:585693. [PMID: 33330585 PMCID: PMC7728990 DOI: 10.3389/fnut.2020.585693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Overweight and obesity are major public health challenges worldwide. Obesity is associated with a higher risk for the development of several cancer types, but specific mechanisms underlying the link of obesity and cancer are still unclear. Natural killer (NK) cells are circulating lymphoid cells promoting the elimination of virus-infected and tumor cells. Previous investigations demonstrated conflicting results concerning the influence of obesity on functional NK cell parameters in small animal models. The aim of the present study was to clarify potential obesity-associated alterations of murine NK cells in vivo, implementing different feeding regimes. Therefore, C57BL/6 mice were fed a normal-fat diet (NFD) or high-fat diet (HFD) under restrictive and ad libitum feeding regimes. Results showed diet and feeding-regime dependent differences in body weight, visceral fat mass and plasma cytokine concentrations. Flow cytometry analyses demonstrated significant changes in total cell counts as well as frequencies of immune cell populations in peripheral blood comparing mice fed NFD or HFD in an ad libitum or restrictive manner. Mice fed the HFD showed significantly decreased frequencies of total NK cells and the mature CD11b+CD27+ NK cell subset compared to mice fed the NFD. Feeding HFD resulted in significant changes in the expression of the maturation markers KLRG1 and CD127 in NK cells. Furthermore, real-time PCR analyses of NK-cell related functional parameters in adipose tissue revealed significant diet and feeding-regime dependent differences. Most notable, real-time cytotoxicity assays demonstrated an impaired cytolytic activity of splenic NK cells toward murine colon cancer cells in HFD-fed mice compared to NFD-fed mice. In conclusion, our data demonstrate that feeding a high-fat diet influences the frequency, phenotype and function of NK cells in C57BL/6 mice. Interestingly, restricted feeding of HFD compared to ad libitum feeding resulted in a partial prevention of the obesity-associated alterations on immune cells and especially on NK cells, nicely fitting with the current concept of an advantage for interval fasting for improved health.
Collapse
Affiliation(s)
- Julia Spielmann
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wiebke Naujoks
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Emde
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Allweyer
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dagmar Quandt
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,School of Medicine, College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Ina Bähr
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
14
|
Influencing factor of resistant starch formation and application in cereal products: A review. Int J Biol Macromol 2020; 149:424-431. [DOI: 10.1016/j.ijbiomac.2020.01.264] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/03/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
|
15
|
Messa GAM, Piasecki M, Hurst J, Hill C, Tallis J, Degens H. The impact of a high-fat diet in mice is dependent on duration and age, and differs between muscles. J Exp Biol 2020; 223:jeb217117. [PMID: 31988167 PMCID: PMC7097303 DOI: 10.1242/jeb.217117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
Prolonged high-fat diets (HFDs) can cause intramyocellular lipid (IMCL) accumulation that may negatively affect muscle function. We investigated the duration of a HFD required to instigate these changes, and whether the effects are muscle specific and aggravated in older age. Muscle morphology was determined in the soleus, extensor digitorum longus (EDL) and diaphragm muscles of female CD-1 mice from 5 groups: young fed a HFD for 8 weeks (YS-HFD, n=16), young fed a HFD for 16 weeks (YL-HFD, n=28) and young control (Y-Con, n=28). The young animals were 20 weeks old at the end of the experiment. Old (70 weeks) female CD-1 mice received either a normal diet (O-Con, n=30) or a HFD for 9 weeks (OS-HFD, n=30). Body mass, body mass index and intramyocellular lipid (IMCL) content increased in OS-HFD (P≤0.003). In the young mice, this increase was seen in YL-HFD and not YS-HFD (P≤0.006). The soleus and diaphragm fibre cross-sectional area (FCSA) in YL-HFD was larger than that in Y-Con (P≤0.004) while OS-HFD had a larger soleus FCSA compared with that of O-Con after only 9 weeks on a HFD (P<0.001). The FCSA of the EDL muscle did not differ significantly between groups. The oxidative capacity of fibres increased in young mice only, irrespective of HFD duration (P<0.001). High-fat diet-induced morphological changes occurred earlier in the old animals than in the young, and adaptations to HFD were muscle specific, with the EDL being least responsive.
Collapse
Affiliation(s)
- Guy A M Messa
- Department of Life Sciences, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Mathew Piasecki
- Clinical, Metabolic and Molecular Physiology, MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Josh Hurst
- Center for Sport, Exercise and Life Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Cameron Hill
- Center for Sport, Exercise and Life Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, Kings College, London SE1 1UL, UK
| | - Jason Tallis
- Center for Sport, Exercise and Life Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Hans Degens
- Department of Life Sciences, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester M1 5GD, UK
- Institute of Sport Science and Innovations, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
- University of Medicine and Pharmacy of Targu Mures, Târgu Mureş 540139, Romania
| |
Collapse
|
16
|
A combination of dietary fat intake and nicotine exposure enhances CB1 endocannabinoid receptor expression in hypothalamic nuclei in male mice. Neurosci Lett 2020; 714:134550. [DOI: 10.1016/j.neulet.2019.134550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 11/21/2022]
|
17
|
Fernandes AC, Rieger DK, Proença RPC. Perspective: Public Health Nutrition Policies Should Focus on Healthy Eating, Not on Calorie Counting, Even to Decrease Obesity. Adv Nutr 2019; 10:549-556. [PMID: 31305908 PMCID: PMC6628875 DOI: 10.1093/advances/nmz025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/07/2018] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
Calorie-focused policies, such as calorie menu labeling, seem to result in minor shifts toward healthier choices and public health improvement. This paper discusses the (lack of) relations between energy intake and healthy eating and the rationale for shifting the focus of public health nutrition policies to healthier foods and meals. We argue that the benefits of reducing caloric intake from low-quality foods might not result from the calorie reduction but rather from the reduced consumption of low-quality foods. It is better to consume a given number of calories from high-quality foods than a smaller number of calories from low-quality foods. It is not possible to choose a healthy diet solely based on the caloric value of foods because calories are not equal; they differ in nutritional quality according to their source. Foods are more than just a collection of calories and nutrients, and nutrients interact differently when presented as foods. Different subtypes of a macronutrient, although they have the same caloric value, are metabolized and influence health in different ways. For instance, industrial trans fats increase lipogenesis and the risk of heart diseases, whereas monounsaturated fats have the opposite effect. Food processing and cooking methods also influence the nutritional value of foods. Thus, public health nutrition policies should stop encouraging people to focus mainly on calorie counting to fight noncommunicable diseases. Instead, policies should focus on ingredients, dietary sources, and food processing and cooking methods.
Collapse
Affiliation(s)
- Ana C Fernandes
- Nutrition Postgraduate Program (Programa de Pós-graduação em Nutrição),Nutrition in Foodservice Research Centre (Núcleo de Pesquisa de Nutrição em Produção de Refeições, NUPPRE), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil,Address correspondence to ACF (e-mail: )
| | - Débora K Rieger
- Nutrition Postgraduate Program (Programa de Pós-graduação em Nutrição)
| | - Rossana P C Proença
- Nutrition Postgraduate Program (Programa de Pós-graduação em Nutrição),Nutrition in Foodservice Research Centre (Núcleo de Pesquisa de Nutrição em Produção de Refeições, NUPPRE), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| |
Collapse
|
18
|
Yoshimura S, Nakashima S, Tomiga Y, Kawakami S, Uehara Y, Higaki Y. Short- and long-term effects of high-fat diet feeding and voluntary exercise on hepatic lipid metabolism in mice. Biochem Biophys Res Commun 2018; 507:291-296. [PMID: 30449601 DOI: 10.1016/j.bbrc.2018.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
Abstract
Exercise is an effective tool for improving high-fat diet induced fat accumulation in the liver. However, the process of fat accumulation in the liver and the efficacy of early intervention with exercise remain unclear. The aim of this study was to investigate the short- and long-term effects of high-fat diet feeding and voluntary exercise on hepatic lipid metabolism in mice. Male C57BL/6J mice aged 6 weeks were randomly divided into two groups, the control group and high-fat diet feeding group, and fed a normal or high-fat diet for 12 weeks. After 6 weeks, mice in the high-fat diet feeding group were further divided into no exercise group and voluntary exercise training group, with mice in the exercise group provided a running wheel for 6 weeks. Body weight, food intake, and wheel rotation counts were measured every second day for 12 weeks. We found that voluntary exercise for 1 week (short-term exercise) significantly reduced fat accumulation in the liver by downregulating the expression of hepatic lipogenesis-associated proteins and upregulating the expression of hepatic lipolysis-associated proteins, as determined through western blotting and histology. Further, voluntary exercise for 6 weeks (long-term exercise) downregulated the expression of hepatic lipogenesis-associated proteins. These results suggest that hepatic lipogenesis and/or hepatic lipolysis mediate the beneficial effects of voluntary exercise on hepatic fat accumulation.
Collapse
Affiliation(s)
- Saki Yoshimura
- Graduate School of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka, 814-0180, Japan
| | - Shihoko Nakashima
- Faculty of Health and Sports Science, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka, 814-0180, Japan
| | - Yuki Tomiga
- The Fukuoka University Institute for Physical Activity, 8-19-1 Nanakuma, Johnan-ku, Fukuoka, 814-0180, Japan
| | - Shotaro Kawakami
- Department of Rehabilitation, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino, Fukuoka, 818-0067, Japan
| | - Yoshinari Uehara
- Faculty of Health and Sports Science, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka, 814-0180, Japan; The Fukuoka University Institute for Physical Activity, 8-19-1 Nanakuma, Johnan-ku, Fukuoka, 814-0180, Japan
| | - Yasuki Higaki
- Faculty of Health and Sports Science, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka, 814-0180, Japan; The Fukuoka University Institute for Physical Activity, 8-19-1 Nanakuma, Johnan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
19
|
Bray JK, Chiu GS, McNeil LK, Moon ML, Wall R, Towers AE, Freund GG. Switching from a high-fat cellulose diet to a high-fat pectin diet reverses certain obesity-related morbidities. Nutr Metab (Lond) 2018; 15:55. [PMID: 30093912 PMCID: PMC6080522 DOI: 10.1186/s12986-018-0294-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
Background Reducing caloric intake is a proven intervention for mitigating and modulating morbidities associated with overnutrition. Caloric restriction is difficult to affect clinically, therefore, dietary interventions that ameliorate the adverse consequences of overnutrition in the presence of a high-calorie diet would be of value. Methods Mice were fed an obesogenic diet containing 60% fat + 10% cellulose (HFC), or a control diet containing 10% fat + 10% cellulose (LFC) for 12 wks. Subgroups of mice were then switched from HFC to each of the following diets for an additional 5 wks: 1) 60% fat + 10% pectin (HFP), 2) LFC or 3) 10% fat + 10% pectin (LFP). To test for statistical differences, one-way or two-way ANOVAs were used with or without repeated measurements as needed. Results In comparison to HFC, HFP prevented additional weight gain while LFC and LFP triggered weight loss of 22.2 and 25.4%, respectively. Mice continued on HFC experienced a weight increase of 26% during the same 5 wk. interval. After 12 wks, HFC decreased mouse locomotion by 18% when compared to control diet, but a diet switch to LFC or LFP restored mouse movement. Importantly, HFP, LFC, and LFP reduced fasting blood glucose when compared to HFC. Likewise, HFP, LFC and LFP improved glucose tolerance and decreased fatty liver by 37.9, 49.8, 53.6 and 20.2%, 37.2, 43.7%, respectively. Conclusions Taken together, the results indicate that the dietary fiber pectin can mitigate some adverse consequences of overnutrition even in the presence of high-fat.
Collapse
Affiliation(s)
- Julie K Bray
- 1Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL USA
| | - Gabriel S Chiu
- 1Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL USA.,2Division of Nutritional Sciences, University of Illinois, Urbana, IL USA
| | - Leslie K McNeil
- 1Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL USA
| | - Morgan L Moon
- 1Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL USA.,2Division of Nutritional Sciences, University of Illinois, Urbana, IL USA
| | - Robyn Wall
- 1Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL USA
| | - Albert E Towers
- 1Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL USA.,2Division of Nutritional Sciences, University of Illinois, Urbana, IL USA
| | - Gregory G Freund
- 1Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL USA.,2Division of Nutritional Sciences, University of Illinois, Urbana, IL USA.,3Department of Animal Sciences, University of Illinois, Urbana, IL USA.,4Department of Pathology, College of Medicine, University of Illinois at Urbana Champaign, 506 South Mathews Avenue, Urbana, IL 61801 USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Spontaneous physical activity (SPA) is a physical activity not motivated by a rewarding goal, such as that associated with food-seeking or wheel-running behavior. SPA is often thought of as only "fidgeting," but that is a mischaracterization, since fidgety behavior can be linked to stereotypies in neurodegenerative disease and other movement disorders. Instead, SPA should be thought of as all physical activity behavior that emanates from an unconscious drive for movement. RECENT FINDINGS An example of this may be restless behavior, which can include fidgeting and gesticulating, frequent sit-to-stand movement, and more time spent standing and moving. All physical activity burns calories, and as such, SPA could be manipulated as a means to burn calories, and defend against weight gain and reduce excess adiposity. In this review, we discuss human and animal literature on the use of SPA in reducing weight gain, the neuromodulators that could be targeted to this end, and future directions in this field.
Collapse
Affiliation(s)
- Catherine M Kotz
- Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA.
- GRECC, Minneapolis VA Health Care System, GRECC, One Veterans Drive, Minneapolis, MN, 55417, USA.
| | | | - Jennifer A Teske
- Department of Nutritional Sciences, University of Arizona, 1177 E 4th street, Shantz 332, Tucson, AZ, 85721, USA
| | - Charles J Billington
- Department of Medicine, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 5545, USA
- Minneapolis VA Health Care System, One Veterans Drive, Minneapolis, MN, 55417, USA
| |
Collapse
|
21
|
Borges CC, Penna-de-Carvalho A, Medeiros Junior JL, Aguila MB, Mandarim-de-Lacerda CA. Ovariectomy modify local renin-angiotensin-aldosterone system gene expressions in the heart of ApoE (-/-) mice. Life Sci 2017; 191:1-8. [PMID: 28987631 DOI: 10.1016/j.lfs.2017.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 12/26/2022]
Abstract
AIMS The evaluation of the local Renin-Angiotensin-Aldosterone system (RAAS) gene expressions in the heart of ovariectomized (OVX) apolipoprotein E deficient mice (ApoE). METHODS Four-months old C57BL/6 female mice (wild-type, wt, n=20), and ApoE female mice (n=20), were submitted to OVX or a surgical procedure without ovary removal (SHAM) and formed four groups (n=10/group): SHAM/wt, SHAM/ApoE, OVX/wt, and OVX/ApoE. KEY FINDINGS OVX led to greater body mass, plasma triglycerides (TG) and total cholesterol, and resulted in insulin resistance and altered RAAS gene expressions in the heart tissue. The gene expression of angiotensin-converting enzyme (ACE)-2 was lower in OVX/wt than in SHAM/wt (P=0.0004), Mas receptor (MASr) was lower in OVX/wt compared to SHAM/wt (P<0.0001). Also, angiotensin II receptor type 1 (AT1r) was higher in OVX/wt than in SHAM/wt (P=0.0229), and AT2r was lower in OVX/wt than in SHAM/wt (P=0.0121). OVX and ApoE deficiency showed interaction potentializing the insulin resistance, increasing TG levels and altering ACE and MASr gene expressions. ACE gene expression was higher in OVX/ApoE than in OVX/wt (P<0.0001), and MASr gene expression was lower in OVX/ApoE than in OVX/wt (P<0.0001). SIGNIFICANCE The impact of OVX on local RAAS cascade in the heart of ApoE deficient animals, besides the metabolic changes culminating with insulin resistance, involves an upregulation of renin, ACE, and AT1r gene expressions. The findings may contribute to clarify the mechanisms of development of postmenopausal hypertension and the link between RAAS and apolipoprotein E.
Collapse
Affiliation(s)
- Celina Carvalho Borges
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Aline Penna-de-Carvalho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Jorge L Medeiros Junior
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| |
Collapse
|