1
|
Zhou S, Wen X, Zhao Y, Bai X, Qin X, Chu W. Structural elucidation of a Acanthopanax senticosus polysaccharide CQ-1 and its hepatoprotective activity via gut health regulation and antioxidative defense. Int J Biol Macromol 2024; 281:136343. [PMID: 39374720 DOI: 10.1016/j.ijbiomac.2024.136343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/14/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Acanthopanax senticosus has proven health benefits, particularly for liver damage. The objective of this study was to elucidate the protective effects and the underlying mechanisms of action of A. senticosus against metabolic dysfunction-associated fatty liver disease (MAFLD). A novel homogeneous water-soluble polysaccharide, CQ-1, was successfully isolated and purified from A. senticosus root. The main chain structure of CQ-1 was identified as →2)-α-L-Rha-(1 → 4)-α-D-GalAp-(1 → 6)-β-D-Galp-(1→. Additionally, branched chains comprising an arabinosyl residue, galactosyl residue, and galacturonic acidic residue were identified as being attached to →2,4)-α-L-Rha-(1→, →3,6)-β-D-Galp-(1→, and →3,4)-α-D-GalAp-(1→, respectively. CQ-1 exhibited antioxidant and prebiotic activities in vitro. CQ-1 increased antioxidant capacity and reduced serum pro-inflammatory cytokines in mice. Additionally, CQ-1 has been shown to enhance the diversity and composition of the gut microbiota, thereby facilitating the restoration of gut function. These include improving intestinal barrier function and increasing short-chain fatty acid levels in mice. Our study has shown that CQ-1 has a hepatoprotective effect in MAFLD mice, and we have proposed that CQ-1 may be a promising strategy for the treatment of MAFLD.
Collapse
Affiliation(s)
- Shuxin Zhou
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xin Wen
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yang Zhao
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xinfeng Bai
- Shandong Provincial Third Hospital, Shandong University, Jinan, China.
| | - Xianjin Qin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Weihua Chu
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Zhu Z, Yu M, Xu M, Ji X, Zong X, Zhang Z, Shang W, Zhang L, Fang P. Baicalin suppresses macrophage JNK-mediated adipose tissue inflammation to mitigate insulin resistance in obesity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118355. [PMID: 38762213 DOI: 10.1016/j.jep.2024.118355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix scutellariae (the root of Scutellaria baicalensis Georgi) is a traditional Chinese medicine (TCM) used to treat a wide range of inflammation-related diseases, such as obesity, diabetes, diabetic kidney disease, and COVID-19-associated inflammatory states in the lung and kidney. Baicalin is the major anti-inflammatory component of Radix scutellariae and has shown the potential to inhibit inflammation in metabolic disorders. In this study, we explored the ability and underlying mechanisms of baicalin to modulate the macrophage to mitigate insulin resistance in obesity. MATERIALS AND METHODS Obese mice were administered baicalin (50 mg/kg/day) intraperitoneally for 3 weeks. RAW264.7 and BMDM cells were stimulated with LPS and treated with baicalin for 24 h, while 3T3-L1 and primary white adipocytes were treated with the supernatants from baicalin-treated RAW264.7 cells for 24 h. RESULTS The results showed that baicalin significantly improved glucose and insulin tolerance as well as decreased fat and adipose tissue macrophage levels in obese mice. Besides, baicalin significantly reduced serum and adipose tissue IL-1β, TNF-α and IL-6 levels in obese mice, as well as suppressed LPS-induced IL-1β, TNF-α and IL-6 expression and release in macrophages. Furthermore, treatment with the supernatant from baicalin-treated RAW264.7 cells increased the levels of PGC-1α, SIRT1, p-IRS-1 and p-AKT in adipocytes. Moreover, baicalin treatment dramatically downregulated macrophage p-p38, p-JNK, and Ac-p65Lys310 levels while increasing SIRT1 both in vivo and in vitro. Importantly, JNK inhibitor SP600125 blocked most of the effects of baicalin on SIRT1, Ac-p65Lys310 and pro-inflammatory factors in macrophages. CONCLUSION Therefore, these results demonstrated for the first time that baicalin exerts its anti-inflammatory effects in obese adipose tissue macrophages mainly through suppressing JNK/SIRT1/p65 signaling. These findings amplified the mechanisms of baicalin and its potential to attenuate insulin resistance.
Collapse
Affiliation(s)
- Ziyue Zhu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengfan Xu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Ji
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Xicui Zong
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China.
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Liu ZSJ, Truong TTT, Bortolasci CC, Spolding B, Panizzutti B, Swinton C, Kim JH, Hernández D, Kidnapillai S, Gray L, Berk M, Dean OM, Walder K. The potential of baicalin to enhance neuroprotection and mitochondrial function in a human neuronal cell model. Mol Psychiatry 2024; 29:2487-2495. [PMID: 38503930 DOI: 10.1038/s41380-024-02525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Baicalin is a flavone glycoside derived from flowering plants belonging to the Scutellaria genus. Previous studies have reported baicalin's anti-inflammatory and neuroprotective properties in rodent models, indicating the potential of baicalin in neuropsychiatric disorders where alterations in numerous processes are observed. However, the extent of baicalin's therapeutic effects remains undetermined in a human cell model, more specifically, neuronal cells to mimic the brain environment in vitro. As a proof of concept, we treated C8-B4 cells (murine cell model) with three different doses of baicalin (0.1, 1 and 5 μM) and vehicle control (DMSO) for 24 h after liposaccharide-induced inflammation and measured the levels of TNF-α in the medium by ELISA. NT2-N cells (human neuronal-like cell model) underwent identical baicalin treatment, followed by RNA extraction, genome-wide mRNA expression profiles and gene set enrichment analysis (GSEA). We also performed neurite outgrowth assays and mitochondrial flux bioanalysis (Seahorse) in NT2-N cells. We found that in C8-B4 cells, baicalin at ≥ 1 μM exhibited anti-inflammatory effects, lowering TNF-α levels in the cell culture media. In NT2-N cells, baicalin positively affected neurite outgrowth and transcriptionally up-regulated genes in the tricarboxylic acid cycle and the glycolysis pathway. Similarly, Seahorse analysis showed increased oxygen consumption rate in baicalin-treated NT2-N cells, an indicator of enhanced mitochondrial function. Together, our findings have confirmed the neuroprotective and mitochondria enhancing effects of baicalin in human-neuronal like cells. Given the increased prominence of mitochondrial mechanisms in diverse neuropsychiatric disorders and the paucity of mitochondrial therapeutics, this suggests the potential therapeutic application of baicalin in human neuropsychiatric disorders where these processes are altered.
Collapse
Affiliation(s)
- Zoe S J Liu
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia.
| | - Trang T T Truong
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Briana Spolding
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Bruna Panizzutti
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Courtney Swinton
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Damián Hernández
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Srisaiyini Kidnapillai
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Laura Gray
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Olivia M Dean
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Ken Walder
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| |
Collapse
|
4
|
Shen X, Yang H, Yang Y, Zhu X, Sun Q. The cellular and molecular targets of natural products against metabolic disorders: a translational approach to reach the bedside. MedComm (Beijing) 2024; 5:e664. [PMID: 39049964 PMCID: PMC11266934 DOI: 10.1002/mco2.664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic disorders, including obesity, dyslipidemia, diabetes, nonalcoholic fatty liver disease, and metabolic syndrome, are characterized by insulin resistance, abnormalities in circulating cholesterol and lipid profiles, and hypertension. The most common pathophysiologies of metabolic disorders are glucose/lipid metabolism dysregulation, insulin resistance, inflammatory response, and oxidative stress. Although several agents have been approved for the treatment of metabolic disorders, there is still a strong demand for more efficacious drugs with less side effects. Natural products have been critical sources of drug research and discovery for decades. However, the usefulness of bioactive natural products is often limited by incomplete understanding of their direct cellular targets. In this review, we highlight the current understanding of the established and emerging molecular mechanisms of metabolic disorders. We further summarize the therapeutic effects and underlying mechanisms of natural products on metabolic disorders, with highlights on their direct cellular targets, which are mainly implicated in the regulation of glucose/lipid metabolism, insulin resistance, metabolic inflammation, and oxidative stress. Finally, this review also covers the clinical studies of natural products in metabolic disorders. These progresses are expected to facilitate the application of these natural products and their derivatives in the development of novel drugs against metabolic disorders.
Collapse
Affiliation(s)
- Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan ProvinceHospital of Chengdu University of Traditional Chinese MedicineChengdu University of Traditional Chinese MedicineChengduChina
| | - Hongling Yang
- Department of Nephrology and Institute of NephrologySichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney DiseasesChengduChina
| | - Yang Yang
- Department of Respiratory and Critical Care MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical GeneticsSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| | - Qingxiang Sun
- Department of Respiratory and Critical Care MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| |
Collapse
|
5
|
Zhao B, Liu K, Liu X, Li Q, Li Z, Xi J, Xie F, Li X. Plant-derived flavonoids are a potential source of drugs for the treatment of liver fibrosis. Phytother Res 2024; 38:3122-3145. [PMID: 38613172 DOI: 10.1002/ptr.8193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 04/14/2024]
Abstract
Liver fibrosis is a dynamic pathological process that can be triggered by any chronic liver injury. If left unaddressed, it will inevitably progress to the severe outcomes of liver cirrhosis or even hepatocellular carcinoma. In the past few years, the prevalence and fatality of hepatic fibrosis have been steadily rising on a global scale. As a result of its intricate pathogenesis, the quest for pharmacological interventions targeting liver fibrosis has remained a formidable challenge. Currently, no pharmaceuticals are exhibiting substantial clinical efficacy in the management of hepatic fibrosis. Hence, it is of utmost importance to expedite the development of novel therapeutics for the treatment of this condition. Various research studies have revealed the ability of different natural flavonoid compounds to alleviate or reverse hepatic fibrosis through a range of mechanisms, which are related to the regulation of liver inflammation, oxidative stress, synthesis and secretion of fibrosis-related factors, hepatic stellate cells activation, and proliferation, and extracellular matrix synthesis and degradation by these compounds. This review summarizes the progress of research on different sources of natural flavonoids with inhibitory effects on liver fibrosis over the last decades. The anti-fibrotic effects of natural flavonoids have been increasingly studied, making them a potential source of drugs for the treatment of liver fibrosis due to their good efficacy and biosafety.
Collapse
Affiliation(s)
- Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine 610032, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Yu C, Guo X, Cui X, Su G, Wang H. Functional Food Chemical Ingredient Strategies for Non-alcoholic Fatty Liver Disease (NAFLD) and Hepatic Fibrosis: Chemical Properties, Health Benefits, Action, and Application. Curr Nutr Rep 2024; 13:1-14. [PMID: 38172459 DOI: 10.1007/s13668-023-00514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW The liver is an important digestive gland in the body. Lifestyle and dietary habits are increasingly damaging our liver, leading to various diseases and health problems. Non-alcoholic fatty liver disease (NAFLD) has become one of the most serious liver disease problems in the world. Diet is one of the important factors in maintaining liver health. Functional foods and their components have been identified as novel sources of potential preventive agents in the prevention and treatment of liver disease in daily life. However, the effects of functional components derived from small molecules in food on different types of liver diseases have not been systematically summarized. RECENT FINDINGS The components and related mechanisms in functional foods play a significant role in the development and progression of NAFLD and liver fibrosis. A variety of structural components are found to treat and prevent NAFLD and liver fibrosis through different mechanisms, including flavonoids, alkaloids, polyphenols, polysaccharides, unsaturated fatty acids, and peptides. On the other hand, the relevant mechanisms include oxidative stress, inflammation, and immune regulation, and a large number of literature studies have confirmed a close relationship between the mechanisms. The purpose of this article is to examine the current literature related to functional foods and functional components used for the treatment and protection against NAFLD and hepatic fibrosis, focusing on chemical properties, health benefits, mechanisms of action, and application in vitro and in vivo. The roles of different components in the biological processes of NAFLD and liver fibrosis were also discussed.
Collapse
Affiliation(s)
- Chong Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiaohe Guo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiaohang Cui
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Haifeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
7
|
Sun J, Chen Y, Wang T, Ali W, Ma Y, Yuan Y, Gu J, Bian J, Liu Z, Zou H. Baicalin and N-acetylcysteine regulate choline metabolism via TFAM to attenuate cadmium-induced liver fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155337. [PMID: 38241915 DOI: 10.1016/j.phymed.2024.155337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/14/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
(Background): Cadmium is an environmental pollutant associated with several liver diseases. Baicalin and N-Acetylcysteine have antioxidant and hepatoprotective effects. (Purpose): However, it is unclear whether baicalin and N-Acetylcysteine can alleviate Cadmium -induced liver fibrosis by regulating metabolism, or whether they exert a synergistic effect. (Study design): We treated Cadmium-poisoned mice with baicalin, N-Acetylcysteine, or baicalin+ N-Acetylcysteine. We studied the effects of baicalin and N-Acetylcysteine on Cadmium-induced liver fibers and their specific mechanisms. (Methods): We used C57BL/6 J mice, and AML12, and HSC-6T cells to establish in vitro assays and in vivo models. (Results): Metabolomics was used to detect the effect of baicalin and N-Acetylcysteine on liver metabolism, which showed that compared with the control group, the Cadmium group had increased fatty acid and amino acid levels, with significantly reduced choline and acetylcholine contents. Baicalin and N-Acetylcysteine alleviated these Cadmium-induced metabolic changes. We further showed that choline alleviated Cadmium -induced liver inflammation and fibrosis. In addition, cadmium significantly promoted extracellular leakage of lactic acid, while choline alleviated the cadmium -induced destruction of the cell membrane structure and lactic acid leakage. Western blotting showed that cadmium significantly reduced mitochondrial transcription factor A (TFAM) and Choline Kinase α(CHKα2) levels, and baicalin and N-Acetylcysteine reversed this effect. Overexpression of Tfam in mouse liver and AML12 cells increased the expression of CHKα2 and the choline content, alleviating and cadmium-induced lactic acid leakage, liver inflammation, and fibrosis. (Conclusion): Overall, baicalin and N-Acetylcysteine alleviated cadmium-induced liver damage, inflammation, and fibrosis to a greater extent than either drug alone. TFAM represents a target for baicalin and N-Acetylcysteine, and alleviated cadmium-induced liver inflammation and fibrosis by regulating hepatic choline metabolism.
Collapse
Affiliation(s)
- Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
8
|
Huang W, Cao Z, Wang W, Yang Z, Jiao S, Chen Y, Chen S, Zhang L, Li Z. Discovery of LH10, a novel fexaramine-based FXR agonist for the treatment of liver disease. Bioorg Chem 2024; 143:107071. [PMID: 38199141 DOI: 10.1016/j.bioorg.2023.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Farnesoid X receptor (FXR) was considered as a promising drug target in the treatment of cholestasis, drug-induced liver injury, and non-alcoholic steatohepatitis (NASH). However, the existing FXR agonists have shown different degrees of side effects in clinical trials without clear interpretation. MET-409 in clinical phase Ⅲ, has been proven significantly fewer side effects than that of other FXR agonists. This may be due to the completely different structure of FEX and other non-steroidal FXR agonists. Herein, the structure-based drug design was carried out based on FEX, and the more active FXR agonist LH10 (FEX EC50 = 0,3 μM; LH10 EC50 = 0.14 μM)) was screened out by the comprehensive SAR studies. Furthermore, LH10 exhibited robust hepatoprotective activity on the ANIT-induced cholestatic model and APAP-induced acute liver injury model, which was even better than positive control OCA. In the nonalcoholic steatohepatitis (NASH) model, LH10 significantly improved the pathological characteristics of NASH by regulating several major pathways including lipid metabolism, inflammation, oxidative stress, and fibrosis. With the above attractive results, LH10 is worthy of further evaluation as a novel agent for the treatment of liver disorders.
Collapse
Affiliation(s)
- Wanqiu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shixuan Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ya Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Siliang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, PR China.
| |
Collapse
|
9
|
Xue Y, Wei Y, Cao L, Shi M, Sheng J, Xiao Q, Cheng Z, Luo T, Jiao Q, Wu A, Chen C, Zhong L, Zhang C. Protective effects of scutellaria-coptis herb couple against non-alcoholic steatohepatitis via activating NRF2 and FXR pathways in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116933. [PMID: 37482263 DOI: 10.1016/j.jep.2023.116933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria-coptis herb couple (SC) is a classic herbal pair used in many Traditional Chinese Medicine (TCM) formulations in the treatment of endocrine and metabolic deseases. Diabetes mellitus and non-alcoholic steatohepatitis (NASH) are both endocrine and metabolic diseases. Previous studies have shown that SC has anti-diabetic effects. However, the effect and mechanism of SC against NASH remains unclear. AIM OF THE STUDY This study aimed to demonstrate the effect and mechanism of SC against NASH through the nuclear factor-erythroid 2-related factor 2 (Nrf2) and farnesoid X receptor (FXR) dual signaling pathways in vivo and in vitro. MATERIALS AND METHODS The high fat diet-fed rat model, and HepG2 and RAW264.7 cell models were used. Serum biochemical indexes and liver histopathological changes were examined. Metabolomics, transcriptomics, and flow cytometry were performed. RT-qPCR and western blot analysis were performed to provide expression of NRF2 and FXR pathway signal molecules during SC's anti-NASH treatment in vivo and in vitro. RESULTS SC had anti-NASH effects in vivo with significantly improvement of serum NASH biochemical index and hepatopathological structure; meanwhile, SC significantly elevated the expression levels of FXR protein in liver and intestinal tissues, and cholesterol 7a-hydroxylase (CYP7A1) protein in liver. The mRNA expression levels of Takeda G protein receptor 5 (TGR5), CYP7A1, fibroblast growth factor receptor-4 (FGFR4), FXR, small heterodimer partner (SHP), fibroblast growth factor 15/19 (FGF15/19) and glucagon-like peptide-1 (GLP-1) were significantly elevated by SC. SC reduced the levels of NorCA, isoLCA and α-MCA in the feces of NAFLD rats. In vitro, SC-containing serum (SC-CS) was found to significantly reduce intracellular lipid deposition, inhibit ROS production, reduce intracellular Malondialdehyde (MDA) and IL-1β levels, and enhance the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Six differential genes closely related to oxidative stress and Nrf2 were identified by transcriptomic analysis. SC-CS up-regulated the expression of NRF2, and reduced the expression of TXNIP and Caspase-1 genes in RAW264.7 cells. In addition, SC-CS reduced the expression of Keap1 and NF-κB, and up-regulated the expression of Nrf2, heme oxygenase-1 (HO-1), quinone oxidoreductase 1 (NQO1), and SOD; SC-CS elevated the protein level of NRF2, and reduced the protein level of TXNIP in HepG2 cells. CONCLUSIONS the mechanisms of SC action against NASH was closely related to the simultaneous activations of both NRF2 and FXR signaling pathways. These findings provide a new insight into the anti-NASH application of SC in clinical settings and demonstrate the potential of SC in the treatment of NASH.
Collapse
Affiliation(s)
- Yanan Xue
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Yue Wei
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Lan Cao
- Research Center of Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, PR China
| | - Min Shi
- College of Life Science, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Junqing Sheng
- College of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Qin Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Ziwen Cheng
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Tao Luo
- First Affiliated Hospital of Nanchang University, 330006, PR China
| | - Quanhui Jiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Ailan Wu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Lingyun Zhong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Changhua Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China; Nanchang Research Institute, Sun Yat-sen University, Jiangxi, 330096, PR China.
| |
Collapse
|
10
|
Xue Y, Wei Y, Cao L, Shi M, Sheng J, Xiao Q, Cheng Z, Luo T, Jiao Q, Wu A, Chen C, Zhong L, Zhang C. Protective effects of scutellaria-coptis herb couple against non-alcoholic steatohepatitis via activating NRF2 and FXR pathways in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116933. [DOI: https:/doi.org/10.1016/j.jep.2023.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
|
11
|
Li JZ, Chen N, Ma N, Li MR. Mechanism and Progress of Natural Products in the Treatment of NAFLD-Related Fibrosis. Molecules 2023; 28:7936. [PMID: 38067665 PMCID: PMC10707854 DOI: 10.3390/molecules28237936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disorder worldwide, with liver fibrosis (LF) serving as a pivotal juncture in NAFLD progression. Natural products have demonstrated substantial antifibrotic properties, ushering in novel avenues for NAFLD treatment. This study provides a comprehensive review of the potential of natural products as antifibrotic agents, including flavonoids, polyphenol compounds, and terpenoids, with specific emphasis on the role of Baicalin in NAFLD-associated fibrosis. Mechanistically, these natural products have exhibited the capacity to target a multitude of signaling pathways, including Hedgehog, Wnt/β-catenin, TGF-β1, and NF-κB. Moreover, they can augment the activities of antioxidant enzymes, inhibit pro-fibrotic factors, and diminish fibrosis markers. In conclusion, this review underscores the considerable potential of natural products in addressing NAFLD-related liver fibrosis through multifaceted mechanisms. Nonetheless, it underscores the imperative need for further clinical investigation to authenticate their effectiveness, offering invaluable insights for future therapeutic advancements in this domain.
Collapse
Affiliation(s)
- Jin-Zhong Li
- Division of Infectious Disease, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Ning Chen
- General Medicine, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Nan Ma
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Min-Ran Li
- Division of Infectious Disease, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Yu X. Promising Therapeutic Treatments for Cardiac Fibrosis: Herbal Plants and Their Extracts. Cardiol Ther 2023; 12:415-443. [PMID: 37247171 PMCID: PMC10423196 DOI: 10.1007/s40119-023-00319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 05/30/2023] Open
Abstract
Cardiac fibrosis is closely associated with multiple heart diseases, which are a prominent health issue in the global world. Neurohormones and cytokines play indispensable roles in cardiac fibrosis. Many signaling pathways participate in cardiac fibrosis as well. Cardiac fibrosis is due to impaired degradation of collagen and impaired fibroblast activation, and collagen accumulation results in increasing heart stiffness and inharmonious activity, leading to structure alterations and finally cardiac function decline. Herbal plants have been applied in traditional medicines for thousands of years. Because of their naturality, they have attracted much attention for use in resisting cardiac fibrosis in recent years. This review sheds light on several extracts from herbal plants, which are promising therapeutics for reversing cardiac fibrosis.
Collapse
Affiliation(s)
- Xuejing Yu
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75235, USA.
| |
Collapse
|
13
|
Choi J, Choi H, Chung J. Icariin Supplementation Suppresses the Markers of Ferroptosis and Attenuates the Progression of Nonalcoholic Steatohepatitis in Mice Fed a Methionine Choline-Deficient Diet. Int J Mol Sci 2023; 24:12510. [PMID: 37569885 PMCID: PMC10419585 DOI: 10.3390/ijms241512510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Icariin, a flavonoid abundant in the herb Epimedium, exhibits anti-ferroptotic activity. However, its impact on nonalcoholic steatohepatitis (NASH) development remains unclear. This study aimed to investigate the potential role of icariin in mitigating methionine choline-deficient (MCD) diet-induced NASH in C57BL/6J mice. The results showed that icariin treatment significantly reduced serum alanine aminotrasferase and aspartate aminotransferase activities while improving steatosis, inflammation, ballooning, and fibrosis in the liver tissues of mice fed the MCD diet. These improvements were accompanied by a substantial reduction in the hepatic iron contents and levels of malondialdehyde and 4-hydroxynonenal, as well as an increase in the activities of catalase and superoxide dismutase. Notably, icariin treatment suppressed the hepatic protein levels of ferroptosis markers such as acyl-CoA synthetase long-chain family member 4 and arachidonate 12-lipoxygenase, which were induced by the MCD diet. Furthermore, transmission electron microscopy confirmed the restoration of morphological changes in the mitochondria, a hallmark characteristic of ferroptosis, by icariin. Additionally, icariin treatment significantly increased the protein levels of Nrf2, a cystine/glutamate transporter (xCT), and glutathione peroxidase 4 (GPX4). In conclusion, our study suggests that icariin has the potential to attenuate NASH, possibly by suppressing ferroptosis via the Nrf2-xCT/GPX4 pathway.
Collapse
Affiliation(s)
| | | | - Jayong Chung
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; (J.C.); (H.C.)
| |
Collapse
|
14
|
Shatta MA, El-Derany MO, Gibriel AA, El-Mesallamy HO. Rhamnetin ameliorates non-alcoholic steatosis and hepatocellular carcinoma in vitro. Mol Cell Biochem 2023; 478:1689-1704. [PMID: 36495373 PMCID: PMC10267014 DOI: 10.1007/s11010-022-04619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver (NAFLD) is a widespread disease with various complications including Non-alcoholic steatohepatitis (NASH) that could lead to cirrhosis and ultimately hepatocellular carcinoma (HCC). Up till now there is no FDA approved drug for treatment of NAFLD. Flavonoids such as Rhamnetin (Rhm) have been ascribed effective anti-inflammatory and anti-oxidative properties. Thus, Rhm as a potent flavonoid could target multiple pathological cascades causing NAFLD to prevent its progression into HCC. NAFLD is a multifactorial disease and its pathophysiology is complex and is currently challenged by the 'Multiple-hit hypothesis' that includes wider range of comorbidities rather than previously established theory of 'Two-hit hypothesis'. Herein, we aimed at establishing reliable in vitro NASH models using different mixtures of variable ratios and concentrations of oleic acid (OA) and palmitic acid (PA) combinations using HepG2 cell lines. Moreover, we compared those models in the context of oil red staining, triglyceride levels and their altered downstream molecular signatures for genes involved in de novo lipogenesis, inflammation, oxidative stress and apoptotic machineries as well. Lastly, the effect of Rhm on NASH and HCC models was deeply investigated. Over the 10 NASH models tested, PA 500 µM concentration was the best model to mimic the molecular events of steatosis induced NAFLD. Rhm successfully ameliorated the dysregulated molecular events caused by the PA-induced NASH. Additionally, Rhm regulated inflammatory and oxidative machinery in the HepG2 cancerous cell lines. In conclusion, PA 500 µM concentration is considered an effective in vitro model to mimic NASH. Rhm could be used as a promising therapeutic modality against both NASH and HCC pathogenesis.
Collapse
Affiliation(s)
- Mahmoud A Shatta
- Department of Biochemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Abdullah A Gibriel
- Department of Biochemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Hala O El-Mesallamy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
- Dean of Faculty of Pharmacy, Sinai University, North Sinai, 45518, Egypt
| |
Collapse
|
15
|
Li Z, Ouyang H, Zhu J. Traditional Chinese medicines and natural products targeting immune cells in the treatment of metabolic-related fatty liver disease. Front Pharmacol 2023; 14:1195146. [PMID: 37361209 PMCID: PMC10289001 DOI: 10.3389/fphar.2023.1195146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
MAFLD stands for metabolic-related fatty liver disease, which is a prevalent liver disease affecting one-third of adults worldwide, and is strongly associated with obesity, hyperlipidemia, and type 2 diabetes. It encompasses a broad spectrum of conditions ranging from simple liver fat accumulation to advanced stages like chronic inflammation, tissue damage, fibrosis, cirrhosis, and even hepatocellular carcinoma. With limited approved drugs for MAFLD, identifying promising drug targets and developing effective treatment strategies is essential. The liver plays a critical role in regulating human immunity, and enriching innate and adaptive immune cells in the liver can significantly improve the pathological state of MAFLD. In the modern era of drug discovery, there is increasing evidence that traditional Chinese medicine prescriptions, natural products and herb components can effectively treat MAFLD. Our study aims to review the current evidence supporting the potential benefits of such treatments, specifically targeting immune cells that are responsible for the pathogenesis of MAFLD. By providing new insights into the development of traditional drugs for the treatment of MAFLD, our findings may pave the way for more effective and targeted therapeutic approaches.
Collapse
|
16
|
Wen Y, Wang Y, Zhao C, Zhao B, Wang J. The Pharmacological Efficacy of Baicalin in Inflammatory Diseases. Int J Mol Sci 2023; 24:ijms24119317. [PMID: 37298268 DOI: 10.3390/ijms24119317] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Baicalin is one of the most abundant flavonoids found in the dried roots of Scutellaria baicalensis Georgi (SBG) belonging to the genus Scutellaria. While baicalin is demonstrated to have anti-inflammatory, antiviral, antitumor, antibacterial, anticonvulsant, antioxidant, hepatoprotective, and neuroprotective effects, its low hydrophilicity and lipophilicity limit the bioavailability and pharmacological functions. Therefore, an in-depth study of baicalin's bioavailability and pharmacokinetics contributes to laying the theoretical foundation for applied research in disease treatment. In this view, the physicochemical properties and anti-inflammatory activity of baicalin are summarized in terms of bioavailability, drug interaction, and inflammatory conditions.
Collapse
Affiliation(s)
- Yongqiang Wen
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Yazhou Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
17
|
Pathak MP, Pathak K, Saikia R, Gogoi U, Patowary P, Chattopadhyay P, Das A. Therapeutic potential of bioactive phytoconstituents found in fruits in the treatment of non-alcoholic fatty liver disease: A comprehensive review. Heliyon 2023; 9:e15347. [PMID: 37101636 PMCID: PMC10123163 DOI: 10.1016/j.heliyon.2023.e15347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 03/15/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a chronic liver condition affects a large number of people around the world with a frequency of 25% of all the chronic liver disease worldwide. Several targets viz. anti-inflammatory, anti-apoptotic and, anti-fibrotic factors, anti-oxidant and insulin-sensitizing pathways, metabolic regulators as well as repurposing traditional medications have been studied for the pharmacologic therapy of NAFLD. Newer pharmacotherapies like caspases blockade, agonists of PPAR and farnesoid X receptor agonists are currently being investigated in treating human NAFLD. However, NAFLD has no FDA-approved pharmacological therapy, therefore there is a considerable unmet therapy need. Apart from the conventional treatment regime, the current approaches to treating NAFLD include lifestyle interventions including healthy diet with adequate nutrition and physical activity. Fruits are known to play a key role in the well-being of human health. Fruits are loaded with a repertoire of bioactive phytoconstituents like catechins, phytosterols, proanthocyanidin, genestin, daidzen, resveratrol, magiferin found in fruits like pear, apricot, strawberries, oranges, apples, bananas, grapes, kiwi, pineapple, watermelon, peach, grape seed and skin, mango, currants, raisins, dried dates, passion fruit and many more. These bioactive phytoconstituents are reported to demonstrate promising pharmacological efficacy like reduction in fatty acid deposition, increased lipid metabolism, modulation of insulin signaling pathway, gut microbiota and hepatic inflammation, inhibition of histone acetyltransferase enzymatic activity to name a few. Not only fruits, but their derivatives like oils, pulp, peel, or their preparations are also found to be equally beneficial in various liver diseases like NAFLD, NASH. Although most of the fruits contains potent bioactive phytoconstituents, however, the presence of sugar in fruits put a question mark on the ameliorative property of the fruits and there has been contrasting reports on the glycemic control post fruit consumption in type 2 diabetic patients. This review is an attempt to summarize the beneficial effects of fruit phytoconstituents on NAFLD based on epidemiological, clinical and experimental evidence, focusing especially on their mechanisms of action.
Collapse
Affiliation(s)
- Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati-781026, Assam, India
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Pompy Patowary
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur 784001, Assam, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur 784001, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| |
Collapse
|
18
|
Yuri G, Sanhueza S, Paredes A, Morales G, Cifuentes M, Ormazabal P. Deleterious liver-adipose crosstalk in obesity: Hydroethanolic extract of Lampaya medicinalis Phil. (Verbenaceae) counteracts fatty acid-induced fibrotic marker expression in human hepatocytes. Mol Cell Endocrinol 2023; 564:111882. [PMID: 36736687 DOI: 10.1016/j.mce.2023.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Elevated circulating fatty acids in obesity may induce hepatic steatosis, leading to liver inflammation, fibrosis and nonalcoholic fatty liver disease (NAFLD). On the other hand, impaired communication between hepatocytes and adipose tissue (AT) in obesity influences adipose lipolysis and fibrosis, negatively affecting metabolic function. Infusions of Lampaya medicinalis Phil. (Verbenaceae) are used in Chilean folk medicine to treat inflammatory diseases. Hydroethanolic extract of lampaya (HEL) contains flavonoids that may explain its anti-inflammatory effect, but it is unknown whether HEL modulates fibrogenic processes in hepatocytes. We studied lipolysis and expression of fibrosis markers after exposure of visceral AT explants from subjects with obesity to HepG2-secreted factors. In addition, we evaluated the effect of HEL on palmitic acid (PA, C16:0) and oleic acid (OA; C18:1)-induced fibrotic marker expression in HepG2 hepatocytes. Results: Exposure to HepG2-secreted factors increased visceral AT lipolysis and expression of CTGF and collagen I. Exposure to OA/PA elevated collagen I, CTGF, fibronectin, α-smooth muscle actin, MMP-2 and MMP-9 expression in HepG2 cells, and these effects were prevented by HEL co-treatment. Conclusion: HEL effect counteracting OA/PA-induced fibrotic marker expression in HepG2 hepatocytes may represent a preventive approach against hepatic fibrosis and deleterious liver-adipose crosstalk in obesity.
Collapse
Affiliation(s)
- Gabriela Yuri
- Institute of Health Sciences, Universidad de O'Higgins, Av. Libertador Bernardo O'Higgins 611, 2820000, Rancagua, Chile; Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490, Macul, Santiago, Chile
| | - Sofía Sanhueza
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490, Macul, Santiago, Chile
| | - Adrián Paredes
- Laboratorio de Química Biológica, Instituto Antofagasta (IA) and Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, 1240000, Antofagasta, Chile
| | - Glauco Morales
- Laboratorio de Química Biológica, Instituto Antofagasta (IA) and Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, 1240000, Antofagasta, Chile
| | - Mariana Cifuentes
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490, Macul, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.
| | - Paulina Ormazabal
- Institute of Health Sciences, Universidad de O'Higgins, Av. Libertador Bernardo O'Higgins 611, 2820000, Rancagua, Chile; Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490, Macul, Santiago, Chile.
| |
Collapse
|
19
|
Guan X, Shen S, Liu J, Song H, Chang J, Mao X, Song J, Zhang L, Liu C. Protective effecs of baicalin magnesium on non-alcoholic steatohepatitis rats are based on inhibiting NLRP3/Caspase-1/IL-1β signaling pathway. BMC Complement Med Ther 2023; 23:72. [PMID: 36879310 PMCID: PMC9987046 DOI: 10.1186/s12906-023-03903-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Baicalin magnesium is a water-soluble compound isolated from the aqueous solution by Scutellaria baicalensis Georgi. Preliminary experiments have demonstrated that baicalin magnesium can exert protective effects against acute liver injury in rats induced by carbon tetrachloride or lipopolysaccharide combined with d-galactose by regulating lipid peroxidation and oxidative stress. The aim of this study was to investigate the protective effect of baicalin magnesium on non-alcoholic steatohepatitis (NASH) in rats and to elucidate the underlying mechanisms. NASH was induced through a high-fat diet (HFD) for 8 weeks, and Sprague-Dawley rats were intravenously injected with baicalin magnesium, baicalin, and magnesium sulfate for 2 weeks, respectively. Serum was obtained for biochemical analyses and the determination of oxidative stress indicators. Liver tissues were collected for use in liver index assessment, histopathological examination, inflammatory factor analysis, and protein and gene expression analysis. The results revealed that baicalin magnesium markedly improved HFD-induced lipid deposition, inflammatory response, oxidative stress, and histopathological impairments. And baicalin magnesium may exert a protective effect on NASH rats by inhibiting the NLR family pyrin domain involving the 3 (NLRP3)/caspase-1/interleukin (IL)-1β inflammatory pathway. Additionally, the effect of baicalin magnesium was remarkably superior to that of equimolar baicalin and magnesium sulfate in regard to ameliorating NASH symptoms. In conclusion, the findings suggested that baicalin magnesium may represent a potential drug for the treatment of NASH.
Collapse
Affiliation(s)
- Xiulu Guan
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Shiyuan Shen
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Jinxia Liu
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Hongru Song
- Heibei North University, Zhangjiakou, 075000, China
| | - Jinhua Chang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Xiaoxia Mao
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Jingyu Song
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Lin Zhang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China.
| | - Cuizhe Liu
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China.
| |
Collapse
|
20
|
Li H, Guan T, Qin S, Xu Q, Yin L, Hu Q. Natural products in pursuing novel therapies of nonalcoholic fatty liver disease and steatohepatitis. Drug Discov Today 2023; 28:103471. [PMID: 36610488 DOI: 10.1016/j.drudis.2022.103471] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are hepatic manifestations of systemic metabolic dysfunction, which affect one-quarter of the adult population worldwide as estimated, and exhibit high risk in progressing to hepatic fibrosis, cirrhosis, and hepatocellular carcinoma. Current drug discovery focuses on modifying homeostasis of lipids, carbohydrates, and cholesterol, as well as inhibiting inflammation and fibrogenesis. Many natural products show promising activities on various molecular targets involving these mechanisms; however, they have not been fully exploited. Since some compounds are components of healthy food, they may be employed in chemoprevention as adjuvants to lifestyle modification, while natural products such as alkaloids and sesquiterpenoids could serve as promising starting points for structural modifications and deserve further development.
Collapse
Affiliation(s)
- Haiyan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, Panyu, Guangzhou, China
| | - Ting Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, Panyu, Guangzhou, China
| | - Shi Qin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, Panyu, Guangzhou, China
| | - Qihao Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, Panyu, Guangzhou, China.
| | - Lina Yin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, Panyu, Guangzhou, China.
| | - Qingzhong Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, Panyu, Guangzhou, China.
| |
Collapse
|
21
|
Wang T, Xu ZH. Natural Compounds with Aldose Reductase (AR) Inhibition: A Class of Medicative Agents for Fatty Liver Disease. Comb Chem High Throughput Screen 2023; 26:1929-1944. [PMID: 36655533 DOI: 10.2174/1386207326666230119101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 01/20/2023]
Abstract
Fatty liver disease (FLD), which includes both non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD), is a worldwide health concern. The etiology of ALD is long-term alcohol consumption, while NAFLD is defined as an abnormal amount of lipid present in liver cells, which is not caused by alcohol intake and has recently been identified as a hepatic manifestation of metabolic syndrome (such as type 2 diabetes, obesity, hypertension, and obesity). Inflammation, oxidative stress, and lipid metabolic dysregulation are all known to play a role in FLD progression. Alternative and natural therapies are desperately needed to treat this disease since existing pharmaceuticals are mostly ineffective. The aldose reductase (AR)/polyol pathway has recently been shown to play a role in developing FLD by contributing to inflammation, oxidative stress, apoptosis, and fat accumulation. Herein, we review the effects of plantderived compounds capable of inhibiting AR in FLD models. Natural AR inhibitors have been found to improve FLD in part by suppressing inflammation, oxidative stress, and steatosis via the regulation of several critical pathways, including the peroxisome proliferator-activated receptor (PPAR) pathway, cytochrome P450 2E1 (CYP2E1) pathway, AMP-activated protein kinase (AMPK) pathway, etc. This review revealed that natural compounds with AR inhibitory effects are a promising class of therapeutic agents for FLD.
Collapse
Affiliation(s)
- Tong Wang
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zi-Hui Xu
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
22
|
Shi H, Qiao F, Lu W, Huang K, Wen Y, Ye L, Chen Y. Baicalin improved hepatic injury of NASH by regulating NRF2/HO-1/NRLP3 pathway. Eur J Pharmacol 2022; 934:175270. [DOI: 10.1016/j.ejphar.2022.175270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022]
|
23
|
Potential Therapeutic Implication of Herbal Medicine in Mitochondria-Mediated Oxidative Stress-Related Liver Diseases. Antioxidants (Basel) 2022; 11:antiox11102041. [PMID: 36290765 PMCID: PMC9598588 DOI: 10.3390/antiox11102041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are double-membrane organelles that play a role in ATP synthesis, calcium homeostasis, oxidation-reduction status, apoptosis, and inflammation. Several human disorders have been linked to mitochondrial dysfunction. It has been found that traditional therapeutic herbs are effective on alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) which are leading causes of liver cirrhosis and hepatocellular carcinoma. The generation of reactive oxygen species (ROS) in response to oxidative stress is caused by mitochondrial dysfunction and is considered critical for treatment. The role of oxidative stress, lipid toxicity, and inflammation in NAFLD are well known. NAFLD is a chronic liver disease that commonly progresses to cirrhosis and chronic liver disease, and people with obesity, insulin resistance, diabetes, hyperlipidemia, and hypertension are at a higher risk of developing NAFLD. NAFLD is associated with a number of pathological factors, including insulin resistance, lipid metabolic dysfunction, oxidative stress, inflammation, apoptosis, and fibrosis. As a result, the improvement in steatosis and inflammation is enough to entice researchers to look into liver disease treatment. However, antioxidant treatment has not been very effective for liver disease. Additionally, it has been suggested that the beneficial effects of herbal medicines on immunity and inflammation are governed by various mechanisms for lipid metabolism and inflammation control. This review provided a summary of research on herbal medicines for the therapeutic implementation of mitochondria-mediated ROS production in liver disease as well as clinical applications through herbal medicine. In addition, the pathophysiology of common liver disorders such as ALD and NAFLD would be investigated in the role that mitochondria play in the process to open new therapeutic avenues in the management of patients with liver disease.
Collapse
|
24
|
Role of Oxidative Stress in Liver Disorders. LIVERS 2022. [DOI: 10.3390/livers2040023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Oxygen is vital for life as it is required for many different enzymatic reactions involved in intermediate metabolism and xenobiotic biotransformation. Moreover, oxygen consumption in the electron transport chain of mitochondria is used to drive the synthesis of ATP to meet the energetic demands of cells. However, toxic free radicals are generated as byproducts of molecular oxygen consumption. Oxidative stress ensues not only when the production of reactive oxygen species (ROS) exceeds the endogenous antioxidant defense mechanism of cells, but it can also occur as a consequence of an unbalance between antioxidant strategies. Given the important role of hepatocytes in the biotransformation and metabolism of xenobiotics, ROS production represents a critical event in liver physiology, and increasing evidence suggests that oxidative stress contributes to the development of many liver diseases. The present review, which is part of the special issue “Oxidant stress in Liver Diseases”, aims to provide an overview of the sources and targets of ROS in different liver diseases and highlights the pivotal role of oxidative stress in cell death. In addition, current antioxidant therapies as treatment options for such disorders and their limitations for future trial design are discussed.
Collapse
|
25
|
Shi H, Qiao F, Huang K, Lu W, Zhang X, Ke Z, Wu Y, Cao L, Chen Y. Exploring therapeutic mechanisms of San-Huang-Tang in nonalcoholic fatty liver disease through network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115477. [PMID: 35764198 DOI: 10.1016/j.jep.2022.115477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE San-Huang-Tang (SHT), a traditional Chinese medicine (TCM) formula, has been clinically used to treat obesity and type 2 diabetes mellitus. Recently it has proved that SHT have a good effect on non-alcoholic fatty liver disease (NAFLD). AIM OF THE STUDY Our study was designed to investigate the therapeutic mechanisms of the SHT against NAFLD. The data of SHT were obtained through network pharmacology platform and validated experimentally in vivo and in vitro. MATERIALS AND METHODS The candidate targets of SHT were predicted by network pharmacological analysis and crucial targets were chosen by the protein-protein interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto encyclopedia of genes and Genomes (KEGG) were applied to analyze the NAFLD-related signaling pathways affected by SHT, and then the analysis results were verified with molecular biological experiments in vivo and in vitro. RESULTS Molecules were screened with network pharmacological analysis, and then the improvement of insulin resistance of NAFLD mice was measured by IPITTs and IPGTTs. Through series of molecular experiments, it is revealed that SHT could increase the transcription of insulin receptor (INSR) and insulin receptor substrate (IRS1), and enhance the phosphorylation of both threonine protein kinase (AKT) and forkhead box O1 (FoxO1). CONCLUSIONS Screened by bioinformatics and verified by experiments in vivo and in vitro, SHT could contribute to NAFLD by affecting insulin resistance via activating INSR/IRS1/AKT/FoxO1 pathway. Our research findings provide not only an experimental basis for the therapeutic effect of SHT but also a new target against NAFLD.
Collapse
Affiliation(s)
- Huilian Shi
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Fei Qiao
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Kaiyue Huang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Weiting Lu
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Xinzhuang Zhang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, Jiangsu, PR China
| | - Zhipeng Ke
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, Jiangsu, PR China
| | - Yanchi Wu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, Jiangsu, PR China; Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China.
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
26
|
Ganguly R, Gupta A, Pandey AK. Role of baicalin as a potential therapeutic agent in hepatobiliary and gastrointestinal disorders: A review. World J Gastroenterol 2022; 28:3047-3062. [PMID: 36051349 PMCID: PMC9331529 DOI: 10.3748/wjg.v28.i26.3047] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/21/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Baicalin is a natural bioactive compound derived from Scutellaria baicalensis, which is extensively used in traditional Chinese medicine. A literature survey demonstrated the broad spectrum of health benefits of baicalin such as antioxidant, anticancer, anti-inflammatory, antimicrobial, cardio-protective, hepatoprotective, renal protective, and neuroprotective properties. Baicalin is hydrolyzed to its metabolite baicalein by the action of gut microbiota, which is further reconverted to baicalin via phase 2 metabolism in the liver. Many studies have suggested that baicalin exhibits therapeutic potential against several types of hepatic disorders including hepatic fibrosis, xenobiotic-induced liver injury, fatty liver disease, viral hepatitis, cholestasis, ulcerative colitis, hepatocellular and colorectal cancer. During in vitro and in vivo examinations, it has been observed that baicalin showed a protective role against liver and gut-associated abnormalities by modifying several signaling pathways such as nuclear factor-kappa B, transforming growth factor beta 1/SMAD3, sirtuin 1, p38/mitogen-activated protein kinase/Janus kinase, and calcium/calmodulin-dependent protein kinase kinaseβ/adenosine monophosphate-activated protein kinase/acetyl-coenzyme A carboxylase pathways. Furthermore, baicalin also regulates the expression of fibrotic genes such as smooth muscle actin, connective tissue growth factor, β-catenin, and inflammatory cytokines such as interferon gamma, interleukin-6 (IL-6), tumor necrosis factor-alpha, and IL-1β, and attenuates the production of apoptotic proteins such as caspase-3, caspase-9 and B-cell lymphoma 2. However, due to its low solubility and poor bioavailability, widespread therapeutic applications of baicalin still remain a challenge. This review summarized the hepatic and gastrointestinal protective attributes of baicalin with an emphasis on the molecular mechanisms that regulate the interaction of baicalin with the gut microbiota.
Collapse
Affiliation(s)
- Risha Ganguly
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| |
Collapse
|
27
|
Shao G, Liu Y, Lu L, Zhang G, Zhou W, Wu T, Wang L, Xu H, Ji G. The Pathogenesis of HCC Driven by NASH and the Preventive and Therapeutic Effects of Natural Products. Front Pharmacol 2022; 13:944088. [PMID: 35873545 PMCID: PMC9301043 DOI: 10.3389/fphar.2022.944088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a clinical syndrome with pathological changes that are similar to those of alcoholic hepatitis without a history of excessive alcohol consumption. It is a specific form of nonalcoholic fatty liver disease (NAFLD) that is characterized by hepatocyte inflammation based on hepatocellular steatosis. Further exacerbation of NASH can lead to cirrhosis, which may then progress to hepatocellular carcinoma (HCC). There is a lack of specific and effective treatments for NASH and NASH-driven HCC, and the mechanisms of the progression of NASH to HCC are unclear. Therefore, there is a need to understand the pathogenesis and progression of these diseases to identify new therapeutic approaches. Currently, an increasing number of studies are focusing on the utility of natural products in NASH, which is likely to be a promising prospect for NASH. This paper reviews the possible mechanisms of the pathogenesis and progression of NASH and NASH-derived HCC, as well as the potential therapeutic role of natural products in NASH and NASH-derived HCC.
Collapse
Affiliation(s)
- Gaoxuan Shao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
28
|
Protective Mechanism of Nostoc sphaeroides Kütz. Polysaccharide on Liver Fibrosis by HFD-Induced Liver Fat Synthesis and Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1745244. [PMID: 35836833 PMCID: PMC9276475 DOI: 10.1155/2022/1745244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/21/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022]
Abstract
Nostoc sphaeroides Kütz. polysaccharide (NSKP) is one of the main components of Nostoc sphaeroides Kütz. and is often used as health food. We investigated whether NSKP interferes with the progression of liver fibrosis. Male mice were randomly divided into 4 groups: control (C), high-fat diet (M), high-fat diet + 0.4 g/kg NSKP (L), and high-fat diet + 0.8 g/kg NSKP (H). C was fed standard diet, M was fed high-fat diet, and L and H were fed high-fat diet in addition to gavage of 0.4 g/kg or 0.8 g/kg NSKP, respectively, for 22 weeks. At the end of the experiment, the serum and liver oxidative stress, fat accumulation, and fibrosis indexes were detected. The histopathology of liver was also observed. The results showed that the rice of NSKP, compared with M, improved blood lipid level, liver total cholesterol (TC), triglyceride (TG), and liver antioxidant capacity and effectively interfered with liver fibrosis related indicators. So it is interesting to note that NSKP appeared to be effective in liver injury; further experiments are necessary to clarify the exact mechanisms involved.
Collapse
|
29
|
Wang W, Gu W, He C, Zhang T, Shen Y, Pu Y. Bioactive components of Banxia Xiexin Decoction for the treatment of gastrointestinal diseases based on flavor-oriented analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115085. [PMID: 35150814 DOI: 10.1016/j.jep.2022.115085] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin Decoction (BXD) was first recorded in a Chinese medical classic, Treatise on Febrile Diseases and Miscellaneous Diseases, which was written in the Eastern Han dynasty of China. This ancient prescription consists of seven kinds of Chinese herbal medicine, namely, Pinellia ternata, Rhizoma Coptidis, Radix scutellariae, Rhizoma Zingiberis, Ginseng, Jujube, and Radix Glycyrrhizaepreparata. In clinic practice, its original application in China mainly has focused on the treatment of chronic gastritis for several hundred years. BXD is also effective in treating other gastrointestinal diseases (GIDs) in modern medical application. Despite available literature support and clinical experience, the treatment mechanisms or their relationships with the bioactive compounds in BXD responsible for its pharmacological actions, still need further explorations in more diversified channels. According to the analysis based on the five-flavor theory of TCM, BXD is traditionally viewed as the most representative prescription for pungent-dispersion, bitter-purgation and sweet-tonification. Consequently, based on the flavor-oriented analysis, the compositive herbs in BXD can be divided into three flavor groups, namely, the pungent, bitter, and sweet groups, each of which has specific active ingredients that are possibly relevant to GID treatment. AIM OF THE REVIEW This paper summarized recent literatures on BXD and its bioactive components used in GID treatment, and provided the pharmacological or chemical basis for the further exploration of the ancient prescription and the relative components. METHOD ology: Relevant literature was collected from various electronic databases such as Pubmed, Web of Science, and China National Knowledge Infrastructure (CNKI). Citations were based on peer-reviewed articles published in English or Chinese during the last decade. RESULTS Multiple components were found in the pungent, bitter, and sweet groups in BXD. The corresponding bioactive components include gingerol, shogaol, stigmasterol, and β-sitosterol in the pungent group; berberine, palmatine, coptisine, baicalein, and baicalin in the bitter group; and ginsenosides, polysaccharides, liquiritin, and glycyrrhetinic acid in the sweet group. These components have been found directly or indirectly responsible for the remarkable effects of BXD on GID. CONCLUSION This review provided some valuable reference to further clarify BXD treatment for GID and their possible material basis, based on the perspective of the flavor-oriented analysis.
Collapse
Affiliation(s)
- Weiwei Wang
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weiliang Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao He
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yao Shen
- Shanghai Center of Biomedicine Development, Shanghai, 201203, China.
| | - Yiqiong Pu
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
30
|
Baicalin ameliorates alcohol-induced hepatic steatosis by suppressing SREBP1c elicited PNPLA3 competitive binding to ATGL. Arch Biochem Biophys 2022; 722:109236. [DOI: 10.1016/j.abb.2022.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022]
|
31
|
Fang L, Wang HF, Chen YM, Bai RX, Du SY. Baicalin confers hepatoprotective effect against alcohol-associated liver disease by upregulating microRNA-205. Int Immunopharmacol 2022; 107:108553. [DOI: 10.1016/j.intimp.2022.108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/05/2022]
|
32
|
Jian J, Nie MT, Xiang B, Qian H, Yin C, Zhang X, Zhang M, Zhu X, Xie WF. Rifaximin Ameliorates Non-alcoholic Steatohepatitis in Mice Through Regulating gut Microbiome-Related Bile Acids. Front Pharmacol 2022; 13:841132. [PMID: 35450049 PMCID: PMC9017645 DOI: 10.3389/fphar.2022.841132] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 12/27/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is the progressive stage of non-alcoholic fatty liver disease (NAFLD). The non-absorbable antibiotic rifaximin has been used for treatment of irritable bowel syndrome, traveling diarrhea, and hepatic encephalopathy, but the efficacy of rifaximin in NASH patients remains controversial. This study investigated the effects and underlying mechanisms of rifaximin treatment in mice with methionine and choline deficient (MCD) diet-induced NASH. We found that rifaximin greatly ameliorated hepatic steatosis, lobular inflammation, and fibrogenesis in MCD-fed mice. Bacterial 16S rRNA sequencing revealed that the gut microbiome was significantly altered in MCD-fed mice. Rifaximin treatment enriched 13 amplicon sequence variants (ASVs) belonging to the groups Muribaculaceae, Parabacteroides, Coriobacteriaceae_UCG-002, uncultured Oscillospiraceae, Dubosiella, Rikenellaceae_RC9_gut_group, Mucispirillum, and uncultured Desulfovibrionaceae. However, rifaximin treatment also reduced seven ASVs in the groups Aerococcus, Oscillospiraceae, uncultured Ruminococcaceae, Bilophila, Muribaculaceae, Helicobacter, and Alistipes in MCD-fed mice. Bile acid-targeted metabolomic analysis indicated that the MCD diet resulted in accumulation of primary bile acids and deoxycholic acid (DCA) in the ileum. Rifaximin delivery reduced DCA levels in MCD-fed mice. Correlation analysis further showed that DCA levels were associated with differentially abundant ASVs modulated by rifaximin. In conclusion, rifaximin may ameliorate NASH by decreasing ileal DCA through alteration of the gut microbiome in MCD-fed mice. Rifaximin treatment may therefore be a promising approach for NASH therapy in humans.
Collapse
Affiliation(s)
- Jie Jian
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mei-Tong Nie
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Baoyu Xiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Qian
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chuan Yin
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Zhu
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
33
|
Duan R, Huang K, Guan X, Li S, Xia J, Shen M, Sun Z, Yu Z. Tectorigenin ameliorated high-fat diet-induced nonalcoholic fatty liver disease through anti-inflammation and modulating gut microbiota in mice. Food Chem Toxicol 2022; 164:112948. [PMID: 35390440 DOI: 10.1016/j.fct.2022.112948] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a complex pathogenesis of liver disease combined with liver inflammation and gut microbiota dysbiosis. Tectorigenin (Tg) is derived from many plants with excellent anti-inflammation activity. However, the beneficial effect of Tg on NAFLD associated with gut microbiota remained unclear. This study aimed to investigate the underlying beneficial effect of Tg on NAFLD in high-fat diet (HFD)-fed mice. Results showed that Tg alleviated lipid profiles and liver steatosis, and reduced serum lipopolysaccharide (LPS) and total bile acid (TBA) levels. Besides, RT-qPCR and Western blot suggested that Tg alleviated hepatic lipid accumulation through inhibiting the lipogenesis and promoting the lipolysis, prevented gut-derived LPS-induced liver inflammatory via restoring intestinal barrier and restraining pro-inflammatory cytokines release, meanwhile, promoted the BA circulation via activating BA receptor and promoting BA synthesis. Moreover, Tg reverted the HFD-induced gut microbial dysbiosis by promoting the growth of beneficial Akkermansia, and inhibiting the proportions of harmful microbes, including Blautia, Lachnoclostridium, Lachnospiraceae_UCG-006, Roseburia, Romboutsia and Faecalibaculum, which were highly correlated with NAFLD-related parameters in serum and liver. Thus, Tg could attenuate NAFLD through mediating the liver-gut axis, and it could be used as a dietary supplement for NAFLD treatment via its anti-inflammatory and prebiotic effects.
Collapse
Affiliation(s)
- Ruiqian Duan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China.
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Ji'an Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Meng Shen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Zhu Sun
- Inner Mongolia Yangufang Ecological Agricultural Science and Technology (Group) Co., Ltd, Inner Mongolia, PR China
| | - Zhiquan Yu
- Inner Mongolia Yangufang Ecological Agricultural Science and Technology (Group) Co., Ltd, Inner Mongolia, PR China
| |
Collapse
|
34
|
El-Tantawy WH, Temraz A. Anti-fibrotic activity of natural products, herbal extracts and nutritional components for prevention of liver fibrosis: review. Arch Physiol Biochem 2022; 128:382-393. [PMID: 31711319 DOI: 10.1080/13813455.2019.1684952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is a grave problem worldwide, and the development of this condition is the first step towards cirrhosis. In fact, when lesions of different aetiologies chronically affect the liver, it triggers fibrogenesis, the resulting damage and the progression of fibrosis cause serious clinical influences including severe complications, expensive treatments, and death in end-stage liver disease. Although impressive progress has been reported in understanding the pathogenesis of liver fibrosis, no effective agent has been developed to prevent or reverse the fibrotic process directly. This article reviews natural products, herbal medicines and nutritional components that exhibited an anti-fibrotic activity through different mechanisms of action, including suppressing of cytokine production, inhibition of hepatic stellate cells "HSCs" propagation, modulation of the molecular mechanisms leading to hepatic fibrosis, free radical scavenging and anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Abeer Temraz
- Pharmacognosy Department, Faculty of Pharmacy For Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
35
|
Ibrahim A, Nasr M, El-Sherbiny IM. Baicalin as an emerging magical nutraceutical molecule: Emphasis on pharmacological properties and advances in pharmaceutical delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
He Q, Sun X, Zhang M, Chu L, Zhao Y, Wu Y, Zhang J, Han X, Guan S, Ding C. Protective effect of baicalin against arsenic trioxide-induced acute hepatic injury in mice through JAK2/STAT3 signaling pathway. Int J Immunopathol Pharmacol 2022; 36:20587384211073397. [PMID: 35088608 PMCID: PMC8801635 DOI: 10.1177/20587384211073397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Baicalin (BA) is a kind of flavonoid that is isolated from Scutellaria baicalensis Georgi, which has been verified to have hepatoprotective effects in some diseases. However, the role of BA in acute hepatic injury induced by arsenic trioxide (ATO) remains unclear. The aim of this study was to investigate the protective action of BA on acute hepatic injury induced by ATO and to probe its possible mechanism. Mice were pretreated with BA (50, 100 mg/kg) by gavage. After 7 h, ATO (7.5 mg/kg) was injected intraperitoneally to induce liver injury. After 7 days of treatment, serum and hepatic specimens were collected and assayed to evaluate the hepatoprotective effect of BA. Pathological sections and the liver function index indicated that ATO caused significant liver injury. The fluorescence of reactive oxygen species and oxidative stress indicators showed that ATO also increased oxidative stress. The inflammatory markers in ATO-induced mice also increased significantly. Staining of the terminal deoxynucleotidyl transferase dUTP nick end labeling and apoptotic factor assay showed that apoptosis increased. However, with BA pretreatment, these changes were significantly weakened. In addition, BA treatment promoted the expression of proteins related to the JAK2/STAT3 signaling pathway. The results suggest that BA can ameliorate acute ATO-induced hepatic injury in mice, which is related to the inhibition of oxidative stress, thereby reducing inflammation and apoptosis. The mechanism of this protection is potentially related to the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Qianqian He
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoqi Sun
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Muqing Zhang
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, China
| | - Yang Zhao
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongchao Wu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianping Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, China
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shengjiang Guan
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Shengjiang Guan, Affiliated Hospital, Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Luquan Economic Development Zone, Luquan District, Shijiazhuang, Hebei 050011, China.
| | - Chao Ding
- Department of Cardiology, Bethune International Peace Hospital of PLA, Shijiazhuang, China
- Chao Ding, Department of Cardiology, Bethune International Peace Hospital of PLA, Shijiazhuang, Hebei 050011, China. Email
| |
Collapse
|
37
|
Zhu MZ, Huang J, Li M, Zhoua WJ, Yao ZM, Ji G, Zhang L. Integrated miRNA and mRNA analysis identified potential mechanisms and targets of qianggan extracts in preventing nonalcoholic steatohepatitis. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_48_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
Zhu MZ, Huanga J, Lia M, Zhou WJ, Yao ZM, Ji G, Zhang L. Integrated miRNA and mRNA analysis identified potential mechanisms and targets of qianggan extracts in preventing nonalcoholic steatohepatitis. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.335135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
Zhou Z, Zhang J, You L, Wang T, Wang K, Wang L, Kong X, Gao Y, Sun X. Application of herbs and active ingredients ameliorate non-alcoholic fatty liver disease under the guidance of traditional Chinese medicine. Front Endocrinol (Lausanne) 2022; 13:1000727. [PMID: 36204095 PMCID: PMC9530134 DOI: 10.3389/fendo.2022.1000727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global health problem, and its prevalence has been on the rise in recent years. Traditional Chinese Medicine (TCM) contains a wealth of therapeutic resources and has been in use for thousands of years regarding the prevention of liver disease and has been shown to be effective in the treatment of NAFLD in China. but the molecular mechanisms behind it have not been elucidated. In this article, we have updated and summarized the research and evidence concerning herbs and their active ingredients for the treatment in vivo and vitro models of NAFLD or NASH, by searching PubMed, Web of Science and SciFinder databases. In particular, we have found that most of the herbs and active ingredients reported so far have the effect of clearing heat and dispelling dampness, which is consistent with the concept of dampness-heat syndrome, in TCM theory. we have attempted to establish the TCM theory and modern pharmacological mechanisms links between herbs and monomers according to their TCM efficacy, experiment models, targets of modulation and amelioration of NAFLD pathology. Thus, we provide ideas and perspectives for further exploration of the pathogenesis of NAFLD and herbal therapy, helping to further the scientific connotation of TCM theories and promote the modernization of TCM.
Collapse
Affiliation(s)
- Zhijia Zhou
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghao Zhang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping You
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaixia Wang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Infection, Oriental Hospital Affiliated to Tongji University, Shanghai, China
| | - Lingtai Wang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| | - Yueqiu Gao
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| | - Xuehua Sun
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| |
Collapse
|
40
|
Chang H, Meng HY, Bai WF, Meng QG. A metabolomic approach to elucidate the inhibitory effects of baicalin in pulmonary fibrosis. PHARMACEUTICAL BIOLOGY 2021; 59:1016-1025. [PMID: 34362286 PMCID: PMC8354164 DOI: 10.1080/13880209.2021.1950192] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Baicalin, a major flavonoid extracted from Scutellaria baicalensis Georgi (Lamiaceae), has been shown to exert therapeutic effects on pulmonary fibrosis (PF). OBJECTIVE To use serum metabolomics combined with biochemical and histopathological analyses to clarify anti-PF mechanisms of baicalin on metabolic pathways and the levels of potential biomarkers. MATERIALS AND METHODS Forty male Sprague-Dawley rats were randomly divided into the control, PF model, prednisolone acetate-treated (4.2 mg/kg/day) and baicalin-treated (25 and 100 mg/kg/day) groups. A rat model of PF was established using a tracheal injection of bleomycin, and the respective drugs were administered intragastrically for 4 weeks. Histomorphology of lung tissue was examined after H&E and Masson's trichrome staining. Biochemical indicators including SOD, MDA and HYP were measured. Serum-metabonomic analysis based on UPLC-Q-TOF/MS was used to clarify the changes in potential biomarkers among different groups of PF rats. RESULTS Both doses of baicalin effectively alleviated bleomycin-induced pathological changes, and increased the levels of SOD (from 69.48 to 99.50 and 112.30, respectively), reduced the levels of MDA (from 10.91 to 5.0 and 7.53, respectively) and HYP (from 0.63 to 0.41 and 0.49, respectively). Forty-eight potential biomarkers associated with PF were identified. Meanwhile, the metabolic profiles and fluctuating metabolite levels were normalized or partially reversed after baicalin treatment. Furthermore, baicalin was found to improve PF potentially by the regulation of four key biomarkers involving taurine and hypotaurine metabolism, glutathione metabolism, and glycerophospholipid metabolism. CONCLUSIONS These findings revealed the anti-fibrotic mechanisms of baicalin and it may be considered as an effective therapy for PF.
Collapse
Affiliation(s)
- Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Hong-yu Meng
- Nephroendocrine Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wan-fu Bai
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Qing-gang Meng
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- CONTACT Qing-gang Meng Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North third Ring Road East, Chaoyang District, Beijing100700, China
| |
Collapse
|
41
|
Network Pharmacology Exploration Reveals Anti-Apoptosis as a Common Therapeutic Mechanism for Non-Alcoholic Fatty Liver Disease Treated with Blueberry Leaf Polyphenols. Nutrients 2021; 13:nu13114060. [PMID: 34836315 PMCID: PMC8621134 DOI: 10.3390/nu13114060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease characterized by excessive fat accumulation in the liver. The aim of this study is to elucidate the multi-target mechanism of polyphenols in blueberry leaves (PBL) on NAFLD by network pharmacology and to validate its results via biological experiments. Twenty constituents in PBL were preliminarily determined by liquid chromatography-tandem mass spectrometry. Subsequently, 141 predicted drug targets and 1226 targets associated with NAFLD were retrieved from public databases, respectively. The herb-compound-target network and the target protein–protein interaction network (PPI) were established through Cytoscape software, and four compounds and 53 corresponding targets were identified. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed to explore the biological processes of the predicted genes. The results of cell experiments demonstrated that PBL could significantly improve the viability of the NAFLD cell model, and the protein expressions of caspase-3 and Bcl-2 were consistent with the expected mechanism of action of PBL. Those results systematically revealed that the multi-target mechanism of PBL against NAFLD was related to the apoptosis pathway, which could bring deeper reflections into the hepatoprotective effect of PBL.
Collapse
|
42
|
Chen M, Xie Y, Gong S, Wang Y, Yu H, Zhou T, Huang F, Guo X, Zhang H, Huang R, Han Z, Xing Y, Liu Q, Tong G, Zhou H. Traditional Chinese medicine in the treatment of nonalcoholic steatohepatitis. Pharmacol Res 2021; 172:105849. [PMID: 34450307 DOI: 10.1016/j.phrs.2021.105849] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a common chronic liver disease in clinical practice. It has been considered that NASH is one of the main causes of chronic liver disease, cirrhosis and carcinoma. The mechanism of the NASH progression is complex, including lipid metabolism dysfunction, insulin resistance, oxidative stress, inflammation, apoptosis, fibrosis and gut microbiota dysbiosis. Except for lifestyle modification and bariatric surgery, there has been no pharmacological therapy that is being officially approved in NASH treatment. Traditional Chinese medicine (TCM), as a conventional and effective therapeutic strategy, has been proved to be beneficial in treating NASH in numbers of studies. In the light of this, TCM may provide a potential therapy for treating NASH. In this review, we summarized the associated mechanisms of action TCM treating NASH in preclinical studies and systematically analysis the effectiveness of TCM treating NASH in current clinical trials.
Collapse
Affiliation(s)
- Mingtai Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Ying Xie
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, PR China
| | - Shenglan Gong
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yunqiao Wang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Hao Yu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Tianran Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Furong Huang
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Xin Guo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Huanhuan Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Ruolan Huang
- Department of Neurology, Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen University General Hospital, Shenzhen, PR China
| | - Zhiyi Han
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Yufeng Xing
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Qiang Liu
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Guangdong Tong
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China.
| |
Collapse
|
43
|
Sun X, Wang X, He Q, Zhang M, Chu L, Zhao Y, Wu Y, Zhang J, Han X, Chu X, Wu Z, Guan S. Investigation of the ameliorative effects of baicalin against arsenic trioxide-induced cardiac toxicity in mice. Int Immunopharmacol 2021; 99:108024. [PMID: 34333357 DOI: 10.1016/j.intimp.2021.108024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 12/11/2022]
Abstract
Baicalin (BA), a kind of flavonoids compound, comes from Scutellaria baicalensis Georgi (a kind of perennial herb) and has beneficial effects on the cardiovascular system through anti-oxidant, anti-inflammation, and anti-apoptosis actions. However, the therapeutic effects and latent mechanisms of BA on arsenic trioxide (ATO)-induced cardiac toxicity has not been reported. The present research was performed to explore the effects and mechanisms of BA on ATO-induced heart toxicity. Male Kunming mice were treated with ATO (7.5 mg/kg) to induce cardiac toxicity. After the mice received ATO, BA (50 and 100 mg/kg) was administered for estimating its cardioprotective effects. Statistical data demonstrated that BA treatment alleviated electrocardiogram abnormalities and pathological injury caused by ATO. BA could also lead to recovery of CK and LDH activities to normal range and cause a decrease in MDA levels and ROS generation, augmentation of SOD, CAT, and GSH activities. We also found that BA caused a reduction in the expression of proinflammatory cytokines, such as TNF-α and IL-6. Moreover, BA attenuated ATO-induced apoptosis by promoting the expression of Bcl-2 and suppressing the expression of Bax and caspase-3. TUNEL test result demonstrated BA caused impediment of ATO-induced apoptosis. Furthermore, BA treatment suppressed the high expression of TLR4, NF-κB and P-NF-κB caused by ATO. In conclusion, these results indicate that BA may alleviate ATO-induced cardiac toxicity by restraining oxidative stress, apoptosis, and inflammation, and its mechanism would be associated with the inhibition of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaoqi Sun
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Xiaotian Wang
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050011, Hebei, China
| | - Qianqian He
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Muqing Zhang
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050011, Hebei, China; College of Integrative Medicine, Heibei University of Chinese Medicine, Shijiazhuang, 050200 Hebei, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China
| | - Yang Zhao
- The Fourth Hospital of Hebei Medical University, 12, Jiankang Road, Shijiazhuang 050011, Hebei, China
| | - Yongchao Wu
- The Fourth Hospital of Hebei Medical University, 12, Jiankang Road, Shijiazhuang 050011, Hebei, China
| | - Jianping Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China; School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050011, Hebei, China
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, 12, Jiankang Road, Shijiazhuang 050011, Hebei, China.
| | - Zhonglin Wu
- The Fourth Hospital of Hebei Medical University, 12, Jiankang Road, Shijiazhuang 050011, Hebei, China.
| | - Shengjiang Guan
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050011, Hebei, China; School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| |
Collapse
|
44
|
Fan Q, Xu F, Liang B, Zou X. The Anti-Obesity Effect of Traditional Chinese Medicine on Lipid Metabolism. Front Pharmacol 2021; 12:696603. [PMID: 34234682 PMCID: PMC8255923 DOI: 10.3389/fphar.2021.696603] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/01/2021] [Indexed: 01/01/2023] Open
Abstract
With the improvement of living conditions and the popularity of unhealthy eating and living habits, obesity is becoming a global epidemic. Obesity is now recognized as a disease that not only increases the risk of metabolic diseases such as type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and cancer but also negatively affects longevity and the quality of life. The traditional Chinese medicines (TCMs) are highly enriched in bioactive compounds and have been used for the treatment of obesity and obesity-related metabolic diseases over a long period of time. In this review, we selected the most commonly used anti-obesity or anti-hyperlipidemia TCMs and, where known, their major bioactive compounds. We then summarized their multi-target molecular mechanisms, specifically focusing on lipid metabolism, including the modulation of lipid absorption, reduction of lipid synthesis, and increase of lipid decomposition and lipid transportation, as well as the regulation of appetite. This review produces a current and comprehensive understanding of integrative and systematic mechanisms for the use of TCMs for anti-obesity. We also advocate taking advantage of TCMs as another therapy for interventions on obesity-related diseases, as well as stressing the fact that more is needed to be done, scientifically, to determine the active compounds and modes of action of the TCMs.
Collapse
Affiliation(s)
- Qijing Fan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Furong Xu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaoju Zou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
45
|
The Immunomodulating Effect of Baicalin on Inflammation and Insulin Resistance in High-Fat-Diet-Induced Obese Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5531367. [PMID: 34135978 PMCID: PMC8175130 DOI: 10.1155/2021/5531367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/20/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022]
Abstract
Background Obesity is a chronic low-grade systemic inflammation state, which causes insulin resistance, diabetes, and other metabolic diseases. Baicalin is known to have anti-inflammatory and antiobesity effects. In this study, we investigated the cellular and molecular immunological effects of baicalin on obesity-induced inflammation. Methods Male C57BL/6 mice were assigned to four groups: the normal chow, high-fat diet (HFD), BC2 (HFD + baicalin 200 mg/kg), and BC4 (HFD + baicalin 400 mg/kg) group; the three groups except normal chow were fed with a high-fat diet for 8 weeks to induce obesity followed by baicalin treatment with two doses for 8 weeks. The body weight, epididymal fat weight, liver weight, food intake, oral glucose tolerance test (OGTT), oral fat tolerance test (OFTT), and serum lipids were measured. We evaluated insulin resistance by measuring the serum insulin level and homeostatic model assessment of insulin resistance (HOMA-IR). Also, the major obesity-associated immune cells including monocytes, macrophages, T lymphocytes, and dendritic cells in the blood, fat, and liver and the inflammatory and insulin signaling-related gene expressions in the fat and liver were evaluated. Results Baicalin significantly reduced the body weight and liver weight and improved serum fasting glucose, insulin, HOMA-IR, free fatty acid, HDL cholesterol, and the levels of glucose and triglyceride at each time point in the OGTT and OFTT. In the analysis of immune cells, baicalin significantly decreased inflammatory Ly6Chi monocytes, M1 adipose tissue macrophages (ATMs), and M1 Kupffer cells. On the contrary, baicalin increased anti-inflammatory M2 ATMs and liver CD4+ T cells and CD4/CD8 ratio. In the analysis of inflammatory and insulin signaling molecules, baicalin significantly downregulated the gene expression of tumor necrosis factor-α, F4/80, and C-C motif chemokine 2 while upregulated the insulin receptor mRNA expression. Conclusion From these results, baicalin can be a promising treatment option for obesity and its related metabolic diseases based on its anti-inflammatory property.
Collapse
|
46
|
Zhang CH, Sheng JQ, Xie WH, Luo XQ, Xue YN, Xu GL, Chen C. Mechanism and Basis of Traditional Chinese Medicine Against Obesity: Prevention and Treatment Strategies. Front Pharmacol 2021; 12:615895. [PMID: 33762940 PMCID: PMC7982543 DOI: 10.3389/fphar.2021.615895] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
In the last few decades, the incidences of obesity and related metabolic disorders worldwide have increased dramatically. Major pathophysiology of obesity is termed "lipotoxicity" in modern western medicine (MWM) or "dampness-heat" in traditional Chinese medicine (TCM). "Dampness-heat" is a very common and critically important syndrome to guild clinical treatment in TCM. However, the pathogenesis of obesity in TCM is not fully clarified, especially by MWM theories compared to TCM. In this review, the mechanism underlying the action of TCM in the treatment of obesity and related metabolic disorders was thoroughly discussed, and prevention and treatment strategies were proposed accordingly. Hypoxia and inflammation caused by lipotoxicity exist in obesity and are key pathophysiological characteristics of "dampness-heat" syndrome in TCM. "Dampness-heat" is prevalent in chronic low-grade systemic inflammation, prone to insulin resistance (IR), and causes variant metabolic disorders. In particular, the MWM theories of hypoxia and inflammation were applied to explain the "dampness-heat" syndrome of TCM, and we summarized and proposed the pathological path of obesity: lipotoxicity, hypoxia or chronic low-grade inflammation, IR, and metabolic disorders. This provides significant enrichment to the scientific connotation of TCM theories and promotes the modernization of TCM.
Collapse
Affiliation(s)
- Chang-Hua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jun-Qing Sheng
- College of Life Science, Nanchang University, Nanchang, China
| | - Wei-Hua Xie
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiao-Quan Luo
- Experimental Animal Science and Technology Center of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ya-Nan Xue
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Guo-Liang Xu
- Research Center for Differentiation and Development of Basic Theory of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
47
|
Zhou H, Ma C, Wang C, Gong L, Zhang Y, Li Y. Research progress in use of traditional Chinese medicine monomer for treatment of non-alcoholic fatty liver disease. Eur J Pharmacol 2021; 898:173976. [PMID: 33639194 DOI: 10.1016/j.ejphar.2021.173976] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
With the improvement of people's living standards and the change of eating habits, non-alcoholic fatty liver disease (NAFLD) has gradually become one of the most common chronic liver diseases in the world. However, there are no effective drugs for the treatment of NAFLD. Therefore, it is urgent to find safe, efficient, and economical anti-NAFLD drugs. Compared with western medicines that possess fast lipid-lowering effect, traditional Chinese medicines (TCM) have attracted increasing attention for the treatment of NAFLD due to their unique advantages such as multi-targets and multi-channel mechanisms of action. TCM monomers have been proved to treat NAFLD through regulating various pathways, including inflammation, lipid production, insulin sensitivity, mitochondrial dysfunction, autophagy, and intestinal microbiota. In particular, peroxisome proliferator-activated receptor α (PPAR-α), sterol regulatory element-binding protein 1c (SREBP-1c), nuclear transcription factor kappa (NF-κB), phosphoinositide 3-kinase (PI3K), sirtuin1 (SIRT1), AMP-activated protein kinase (AMPK), p53 and nuclear factor erythroid 2-related factor 2 (Nrf2) are considered as important molecular targets for ameliorating NAFLD by TCM monomers. Therefore, by searching PubMed, Web of Science and SciFinder databases, this paper updates and summarizes the experimental and clinical evidence of TCM monomers for the treatment of NAFLD in the past six years (2015-2020), thus providing thoughts and prospects for further exploring the pathogenesis of NAFLD and TCM monomer therapies.
Collapse
Affiliation(s)
- Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
48
|
Yang JY, Li M, Zhang CL, Liu D. Pharmacological properties of baicalin on liver diseases: a narrative review. Pharmacol Rep 2021; 73:1230-1239. [PMID: 33595821 PMCID: PMC8460515 DOI: 10.1007/s43440-021-00227-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Baicalin is the main active component of Scutellaria baicalensis, widely used in traditional Chinese medicine thanks to its various pharmacological effects, such as anti-tumor, anti-inflammatory, and antibacterial properties, as well as cardiovascular, hepatic, and renal protective effect. Recently, the protective effects of baicalin on liver disease have received much more attention. Several studies showed that baicalin protects against several types of liver diseases including viral hepatitis, fatty liver disease, xenobiotic induced liver injury, cholestatic liver injury, and hepatocellular carcinoma, with a variety of pharmacological mechanisms. A comprehensive understanding of the mechanism of baicalin can provide a valuable reference for its clinical use, but up to now, no narrative review is available that summarizes the pharmacological effects of baicalin to clarify its potential use in the treatment of liver diseases. Therefore, this review summarizes the progress of baicalin research and the underlying mechanism in the treatment of various liver diseases, to promote further research and its clinical application.
Collapse
Affiliation(s)
- Jin-Yu Yang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei, China
| | - Min Li
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei, China
| | - Cheng-Liang Zhang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
49
|
Qiu L, Guo C. Natural Aldose Reductase Inhibitor: A Potential Therapeutic Agent for Non-alcoholic Fatty Liver Disease. Curr Drug Targets 2021; 21:599-609. [PMID: 31589122 DOI: 10.2174/1389450120666191007111712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 01/09/2023]
Abstract
Aldose reductase (AR) has been reported to be involved in the development of nonalcoholic fatty liver disease (NAFLD). Hepatic AR is induced under hyperglycemia condition and converts excess glucose to lipogenic fructose, which contributes in part to the accumulation of fat in the liver cells of diabetes rodents. In addition, the hyperglycemia-induced AR or nutrition-induced AR causes suppression of the transcriptional activity of peroxisome proliferator-activated receptor (PPAR) α and reduced lipolysis in the liver, which also contribute to the development of NAFLD. Moreover, AR induction in non-alcoholic steatohepatitis (NASH) may aggravate oxidative stress and the expression of inflammatory cytokines in the liver. Here, we summarize the knowledge on AR inhibitors of plant origin and review the effect of some plant-derived AR inhibitors on NAFLD/NASH in rodents. Natural AR inhibitors may improve NAFLD at least in part through attenuating oxidative stress and inflammatory cytokine expression. Some of the natural AR inhibitors have been reported to attenuate hepatic steatosis through the regulation of PPARα-mediated fatty acid oxidation. In this review, we propose that the natural AR inhibitors are potential therapeutic agents for NAFLD.
Collapse
Affiliation(s)
- Longxin Qiu
- School of Life Sciences, Longyan University, Longyan 364012, China.,Fujian Province Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan 364012, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
| | - Chang Guo
- School of Life Sciences, Longyan University, Longyan 364012, China.,Fujian Province Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan 364012, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
| |
Collapse
|
50
|
Shen J, Li P, Liu S, Liu Q, Li Y, Sun Y, He C, Xiao P. Traditional uses, ten-years research progress on phytochemistry and pharmacology, and clinical studies of the genus Scutellaria. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113198. [PMID: 32739568 DOI: 10.1016/j.jep.2020.113198] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria (Lamiaceae), which includes approximately 360-469 accepted species, is widespread in Europe, North America, East Asia, and South America. Several species have a long history being used as traditional medicines to treat respiratory, peptic, neurological, and hepatic and gall diseases. The phytochemistry and pharmacology of the genus Scutellaria have been developed dramatically in the past ten years, and the traditional uses and clinical studies of the genus have not been systematically summarized. Therefore, it is especially valuable to review the current state of knowledge to provide a basis for further exploration of its medicinal potential. AIM OF THE REVIEW The review aims to provide updated information on the ethnopharmacology, the ten-year research progress of phytochemistry and pharmacology, and clinical studies of Scutellaria and to explore the potential medicinal values and further studies of Scutellaria. MATERIALS AND METHODS This review is based on published studies and books from the library and electronic sources, including SciFinder, Scopus, PubMed, Web of Science, Baidu Scholar, CNKI, the online ethnobotanical database, and ethnobotanical monographs. This literature is related to ethnopharmacology, the ten-year research progress on the phytochemistry and pharmacology, and clinical studies of Scutellaria. RESULTS A total of 50 species, 5 subspecies and 17 varieties of the genus Scutellaria are used as traditional medicine with various biological activities. In the past ten years, 208 chemical constituents have been identified from 16 species and 1 variety of the genus Scutellaria, such as neo-clerodane diterpenoids, sesterterpenoids, terpenoids, flavonoids. Pharmacological research has demonstrated that the extracts and compounds identified from this genus exhibit extensive biological activities, including anticancer, antioxidant, anti-inflammatory, antiviral and antibacterial activities, effects on cardiovascular, cerebrovascular diseases as well as hepatoprotective and neuroprotective effects. The species S. baicalensis, S. barbata, and S. lateriflora and the main compounds baicalein, baicalin and wogonin are involved in clinical trials, which point the way for us to conduct further studies, such as study on the anticancer, antihypertensive, anti-infective, anti-inflammatory, neuroprotective and other effects of Scutellaria. CONCLUSIONS The species included in the genus Scutellaria can be used to treat cancer, infection, hepatic disorders, cardiovascular and cerebrovascular diseases, neurodegenerative diseases, and other diseases. Some indications in traditional medicines have been confirmed by modern pharmacological studies, such as anticancer, anti-inflammatory, anti-infective activity, and hepatoprotective and neuroprotective effects. The available literature indicated that most of the bioactivities could be attributed to flavonoids and neo-clerodane diterpenoids. Although there are some uses of Scutellaria in clinical practice, the existing research on this genus is still limited. In order to expand the development of medicinal resources of Scutellaria, the already studied species in this genus are recommended for more comprehensive investigation on their active substances, pharmacological mechanisms, quality control, clinical use and new drug research. Additionally, it is necessary to study species that their chemical composition or pharmacological activity have not yet been investigated, especially those used in folk medicine.
Collapse
Affiliation(s)
- Jie Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Pei Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Shuangshuang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Qing Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Yue Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Yuhua Sun
- Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|