1
|
Kumar AP, P P, Mandal S, Kumar BRP, Raju RM, Dhanabal S, Rajagopal K, G R, X PN, Justin A. Computational studies, synthesis, in-vitro binding and transcription analysis of novel imidazolidine-2,4-dione and 2-thioxo thiazolidine-4-one based glitazones for central PPAR-γ agonism. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
2
|
Fontaine V, Balducci C, Dinan L, Monteiro E, Boumedine T, Fournié M, Nguyen V, Guibout L, Clatot J, Latil M, Veillet S, Sahel JA, Lafont R, Dilda PJ, Camelo S. Anti-Inflammatory Effects and Photo- and Neuro-Protective Properties of BIO203, a New Amide Conjugate of Norbixin, in Development for the Treatment of Age-Related Macular Degeneration (AMD). Int J Mol Sci 2023; 24:5296. [PMID: 36982372 PMCID: PMC10049354 DOI: 10.3390/ijms24065296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
9'-cis-norbixin (norbixin/BIO201) protects RPE cells against phototoxicity induced by blue light and N-retinylidene-N-retinylethanolamine (A2E) in vitro and preserves visual functions in animal models of age-related macular degeneration (AMD) in vivo. The purpose of this study was to examine the mode of action and the in vitro and in vivo effects of BIO203, a novel norbixin amide conjugate. Compared to norbixin, BIO203 displays improved stability at all temperatures tested for up to 18 months. In vitro, BIO203 and norbixin share a similar mode of action involving the inhibition of PPARs, NF-κB, and AP-1 transactivations. The two compounds also reduce IL-6, IL-8, and VEGF expression induced by A2E. In vivo, ocular maximal concentration and BIO203 plasma exposure are increased compared to those of norbixin. Moreover, BIO203 administered systemically protects visual functions and retinal structure in albino rats subjected to blue-light illumination and in the retinal degeneration model of Abca4-/- Rdh8-/- double knock-out mice following 6 months of oral complementation. In conclusion, we report here that BIO203 and norbixin share similar modes of action and protective effects in vitro and in vivo. BIO203, with its improved pharmacokinetic and stability properties, could be developed for the treatment of retinal degenerative diseases such as AMD.
Collapse
Affiliation(s)
- Valérie Fontaine
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.)
| | - Christine Balducci
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| | - Laurence Dinan
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| | - Elodie Monteiro
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.)
| | - Thinhinane Boumedine
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.)
| | - Mylène Fournié
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.)
| | - Vincent Nguyen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.)
| | - Louis Guibout
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| | - Justine Clatot
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| | - Mathilde Latil
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| | - Stanislas Veillet
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.)
- Fondation Ophtalmologique Rothschild, 29 rue Manin, 75019 Paris, France
- Department of Ophthalmology, School of Medicine, The University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - René Lafont
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| | - Pierre J. Dilda
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| | - Serge Camelo
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| |
Collapse
|
3
|
Virendra SA, Kumar A, Chawla PA, Mamidi N. Development of Heterocyclic PPAR Ligands for Potential Therapeutic Applications. Pharmaceutics 2022; 14:2139. [PMID: 36297575 PMCID: PMC9611956 DOI: 10.3390/pharmaceutics14102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
The family of nuclear peroxisome proliferator-activated receptors (PPARα, PPARβ/δ, and PPARγ) is a set of ligand-activated transcription factors that regulate different functions in the body. Whereas activation of PPARα is known to reduce the levels of circulating triglycerides and regulate energy homeostasis, the activation of PPARγ brings about insulin sensitization and increases the metabolism of glucose. On the other hand, PPARβ when activated increases the metabolism of fatty acids. Further, these PPARs have been claimed to be utilized in various metabolic, neurological, and inflammatory diseases, neurodegenerative disorders, fertility or reproduction, pain, and obesity. A series of different heterocyclic scaffolds have been synthesized and evaluated for their ability to act as PPAR agonists. This review is a compilation of efforts on the part of medicinal chemists around the world to find novel compounds that may act as PPAR ligands along with patents in regards to PPAR ligands. The structure-activity relationship, as well as docking studies, have been documented to better understand the mechanistic investigations of various compounds, which will eventually aid in the design and development of new PPAR ligands. From the results of the structural activity relationship through the pharmacological and in silico evaluation the potency of heterocycles as PPAR ligands can be described in terms of their hydrogen bonding, hydrophobic interactions, and other interactions with PPAR.
Collapse
Affiliation(s)
- Sharma Arvind Virendra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Ankur Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
4
|
Rational design, molecular docking, dynamic simulation, synthesis, PPAR-γ competitive binding and transcription analysis of novel glitazones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
A2E-induced inflammation and angiogenesis in RPE cells in vitro are modulated by PPAR-α, -β/δ, -γ, and RXR antagonists and by norbixin. Aging (Albany NY) 2021; 13:22040-22058. [PMID: 34544906 PMCID: PMC8507260 DOI: 10.18632/aging.203558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 09/03/2021] [Indexed: 12/15/2022]
Abstract
N-retinylidene-N-retinylethanolamine (A2E) plays a central role in age-related macular degeneration (AMD) by inducing angiogenesis and inflammation. A2E effects are mediated at least partly via the retinoic acid receptor (RAR)-α. Here we show that A2E binds and transactivates also peroxisome proliferator-activated receptors (PPAR) and retinoid X receptors (RXR). 9’-cis-norbixin, a di-apocarotenoid is also a ligand of these nuclear receptors (NR). Norbixin inhibits PPAR and RXR transactivation induced by A2E. Moreover, norbixin reduces protein kinase B (AKT) phosphorylation, NF-κB and AP-1 transactivation and mRNA expression of the inflammatory interleukins (IL) -6 and -8 and of vascular endothelial growth factor (VEGF) enhanced by A2E. By contrast, norbixin increases matrix metalloproteinase 9 (MMP9) and C-C motif chemokine ligand 2 (CCL2) mRNA expression in response to A2E. Selective PPAR-α, -β/δ and –γ antagonists inhibit the expression of IL-6 and IL-8 while only the antagonist of PPAR-γ inhibits the transactivation of NF-κB following A2E exposure. In addition, a cocktail of all three PPARs antagonists and also HX531, an antagonist of RXR reproduce norbixin effects on inflammation. Altogether, A2E’s deleterious biological effects could be inhibited through PPAR and RXR regulation. Moreover, the modulation of these NR by norbixin may open new avenues for the treatment of AMD.
Collapse
|
6
|
Barteková M, Adameová A, Görbe A, Ferenczyová K, Pecháňová O, Lazou A, Dhalla NS, Ferdinandy P, Giricz Z. Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radic Biol Med 2021; 169:446-477. [PMID: 33905865 DOI: 10.1016/j.freeradbiomed.2021.03.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiometabolic diseases (CMDs) are metabolic diseases (e.g., obesity, diabetes, atherosclerosis, rare genetic metabolic diseases, etc.) associated with cardiac pathologies. Pathophysiology of most CMDs involves increased production of reactive oxygen species and impaired antioxidant defense systems, resulting in cardiac oxidative stress (OxS). To alleviate OxS, various antioxidants have been investigated in several diseases with conflicting results. Here we review the effect of CMDs on cardiac redox homeostasis, the role of OxS in cardiac pathologies, as well as experimental and clinical data on the therapeutic potential of natural antioxidants (including resveratrol, quercetin, curcumin, vitamins A, C, and E, coenzyme Q10, etc.), synthetic antioxidants (including N-acetylcysteine, SOD mimetics, mitoTEMPO, SkQ1, etc.), and promoters of antioxidant enzymes in CMDs. As no antioxidant indicated for the prevention and/or treatment of CMDs has reached the market despite the large number of preclinical and clinical studies, a sizeable translational gap is evident in this field. Thus, we also highlight potential underlying factors that may contribute to the failure of translation of antioxidant therapies in CMDs.
Collapse
Affiliation(s)
- Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia.
| | - Adriana Adameová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 83232 Bratislava, Slovakia
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Kristína Ferenczyová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Oľga Pecháňová
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, And Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| |
Collapse
|
7
|
Liao S, Tan K, Floyd C, Bong D, Pino MJ, Wu C. Probing biased activation of mu-opioid receptor by the biased agonist PZM21 using all atom molecular dynamics simulation. Life Sci 2021; 269:119026. [PMID: 33444617 DOI: 10.1016/j.lfs.2021.119026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/25/2020] [Accepted: 01/02/2021] [Indexed: 01/14/2023]
Abstract
Morphine is a commonly used opioid drug to treat acute pain by binding to the mu-opioid receptor (MOR), but its effective analgesic efficacy via triggering of the heterotrimeric Gi protein pathway is accompanied by a series of adverse side effects via triggering of the β-arrestin pathway. Recently, PZM21, a recently developed MOR biased agonist, shows preferentially activating the G protein pathway over β-arrestin pathway. However, there is no high-resolution receptor structure in complex with PZM21 and its action mechanism remains elusive. In this study, PZM21 and Morphine were docked to the active human MOR-1 homology structure and then subjected to the molecular dynamics (MD) simulations in two different situations (i.e., one situation includes the crystal waters but another does not). Detailed comparisons between the two systems were made to characterize the differences in protein-ligand interactions, protein secondary and tertiary structures and dynamics networks. PZM21 could strongly interact with Y3287.43 of TM7, besides the residues (Asp1493.32 and Tyr1503.33) of TM3. The two systems' network paths to the intracellular end of TM6 were roughly similar but the paths to the end of TM7 were different. The PZM21-bound MOR's intracellular ends of TM5-7 bent outward more along with the distance changes of the three key molecular switches (ionic lock, transmission and Tyr toggle) and the distance increase of some conserved inter-helical residue pairs. The larger intracellular opening of the receptor could potentially facilitate G protein binding.
Collapse
Affiliation(s)
- Siyan Liao
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China; College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Kai Tan
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA; Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Cecilia Floyd
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Daegun Bong
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Michael James Pino
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
8
|
Fontaine V, Monteiro E, Fournié M, Brazhnikova E, Boumedine T, Vidal C, Balducci C, Guibout L, Latil M, Dilda PJ, Veillet S, Sahel JA, Lafont R, Camelo S. Systemic administration of the di-apocarotenoid norbixin (BIO201) is neuroprotective, preserves photoreceptor function and inhibits A2E and lipofuscin accumulation in animal models of age-related macular degeneration and Stargardt disease. Aging (Albany NY) 2020; 12:6151-6171. [PMID: 32255762 PMCID: PMC7185133 DOI: 10.18632/aging.103014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/02/2020] [Indexed: 12/31/2022]
Abstract
Atrophic A\age-related macular degeneration (AMD) and Stargardt disease (STGD) are major blinding diseases affecting millions of patients worldwide, but no treatment is available. In dry AMD and STGD oxidative stress and subretinal accumulation of N-retinylidene-N-retinylethanolamine (A2E), a toxic by-product of the visual cycle, causes retinal pigment epithelium (RPE) and photoreceptor degeneration leading to visual impairment. Acute and chronic retinal degeneration following blue light damage (BLD) in BALB/c mice and aging of Abca4-/- Rdh8-/- mice, respectively, reproduce features of AMD and STGD. Efficacy of systemic administrations of 9'-cis-norbixin (norbixin), a natural di-apocarotenoid, prepared from Bixa orellana seeds with anti-oxidative properties, was evaluated during BLD in BALB/c mice, and in Abca4-/- Rdh8-/- mice of different ages, following three experimental designs: “preventive”, “early curative” and “late curative” supplementations. Norbixin injected intraperitoneally in BALB/c mice, maintained scotopic and photopic electroretinogram amplitude and was neuroprotective. Norbixin chronic oral administration for 6 months in Abca4-/- Rdh8-/- mice following the “early curative” supplementation showed optimal neuroprotection and maintenance of photoreceptor function and reduced ocular A2E accumulation. Thus, norbixin appears promising as a systemic drug candidate for both AMD and STGD treatment.
Collapse
Affiliation(s)
- Valérie Fontaine
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Elodie Monteiro
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Mylène Fournié
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Elena Brazhnikova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | | | - Cécile Vidal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Christine Balducci
- Biophytis, Sorbonne Université, Campus Pierre and Marie Curie, Paris 75005, France
| | - Louis Guibout
- Biophytis, Sorbonne Université, Campus Pierre and Marie Curie, Paris 75005, France
| | - Mathilde Latil
- Biophytis, Sorbonne Université, Campus Pierre and Marie Curie, Paris 75005, France
| | - Pierre J Dilda
- Biophytis, Sorbonne Université, Campus Pierre and Marie Curie, Paris 75005, France
| | - Stanislas Veillet
- Biophytis, Sorbonne Université, Campus Pierre and Marie Curie, Paris 75005, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - René Lafont
- Biophytis, Sorbonne Université, Campus Pierre and Marie Curie, Paris 75005, France
| | - Serge Camelo
- Biophytis, Sorbonne Université, Campus Pierre and Marie Curie, Paris 75005, France
| |
Collapse
|
9
|
Analysis of vismodegib resistance in D473G and W535L mutants of SMO receptor and design of novel drug derivatives using molecular dynamics simulations. Life Sci 2020; 244:117302. [DOI: 10.1016/j.lfs.2020.117302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/02/2020] [Accepted: 01/11/2020] [Indexed: 01/30/2023]
|
10
|
Short-Term Bixin Supplementation of Healthy Subjects Decreases the Susceptibility of LDL to Cu 2+-Induced Oxidation Ex Vivo. J Nutr Metab 2019; 2019:9407069. [PMID: 30944740 PMCID: PMC6421732 DOI: 10.1155/2019/9407069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/26/2019] [Indexed: 01/24/2023] Open
Abstract
Lycopene-based medications and supplements have been developed to prevent atherosclerosis, primarily because of their ability to decrease low-density lipoprotein (LDL) oxidation. Bixin and norbixin are carotenoids found in the seeds of annatto (Bixa orellana) and are colorants widely used by the food industry. Some studies have already demonstrated that these compounds have antioxidant and antiatherogenic potential in vitro and in animal models, but there is no evidence supporting the effects of their long-term or short-term consumption by humans. The aim of this study was to evaluate the effects of short-term intake of annatto carotenoids on biochemical and oxidative stress biomarkers as well as on the susceptibility of LDL oxidation in healthy individuals, using lycopene as a positive control. The effect of daily supplementation (0.05 mg/kg of body weight (b.w.)) with bixin, norbixin, lycopene, or placebo for 7 days was evaluated in a randomized, controlled crossover study in 16 healthy volunteers (8 men and 8 women). The susceptibility of LDL to Cu2+-induced oxidation ex vivo, biochemical parameters, and oxidative stress biomarkers were evaluated. No treatment affected biochemical parameters or most oxidative stress biomarkers. However, bixin reduced the oxidation rate of the LDL lipid moiety (−275%, p < 0.1) and nitric oxide metabolites (NOx) (−460%, p < 0.1), compared to the placebo group. Moreover, we observed that the changes in these parameters were positively associated, supporting the hypothesis that bixin decreases the susceptibility of LDL to Cu2+-induced oxidation by decreasing NOx levels, probably by downregulating the inducible nitric oxide synthase.
Collapse
|