1
|
Liu ZH, Xu QY, Wang Y, Gao HX, Min YH, Jiang XW, Yu WH. Catalpol from Rehmannia glutinosa Targets Nrf2/NF-κB Signaling Pathway to Improve Renal Anemia and Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1451-1485. [PMID: 39075978 DOI: 10.1142/s0192415x24500575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Rehmannia glutinosa is widely recognized as a prominent medicinal herb employed by practitioners across various generations for the purpose of fortifying kidney yin. Within Rehmannia glutinosa, the compound known as catalpol (CAT) holds significant importance as a bioactive constituent. However, the protective effects of CAT on kidneys, including ameliorative effects on chronic kidney disease - most prominently renal anemia and renal fibrosis - have not been clearly defined. In this study, the kidney injury model of NRK-52E cells and C57BL/6N male mice was prepared by exposure to aristolochic acid I (AA-I), and it was discovered that CAT could ameliorate oxidative stress injury, inflammatory injury, apoptosis, renal anemia, renal fibrosis, and other renal injuries both in vivo and in vitro. Further treatment of NRK-52E cells with Nrf2 inhibitors (ML385) and activators (ML334), as well as NF-κB inhibitors (PDTC), validated CAT's ability to target Nrf2 activation. Furthermore, the expression of phosphorylated NF-κB p65, IL-6, and Cleaved-Caspase3 protein was inhibited. CAT also inhibited NF-κB, and then inhibited the expression of IL-6, p-STAS3, TGF-β1 protein. Therefore, CAT can regulate Nrf2/NF-κB signaling pathway, significantly correct renal anemia and renal fibrosis, and is conducive to the preservation of renal structure and function, thus achieving a protective effect on the kidneys.
Collapse
Affiliation(s)
- Zhi-Hui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Qing-Yang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Yu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Hong-Xin Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Ya-Hong Min
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Xiao-Wen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Wen-Hui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
- Chinese Veterinary Research Institute, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
- Heilongjiang Key Laboratory for the Prevention and Control of Common Animal Diseases, Harbin, Heilongjiang Province, 150030, P. R. China
| |
Collapse
|
2
|
Feng Y, Ren Y, Zhang X, Yang S, Jiao Q, Li Q, Jiang W. Metabolites of traditional Chinese medicine targeting PI3K/AKT signaling pathway for hypoglycemic effect in type 2 diabetes. Front Pharmacol 2024; 15:1373711. [PMID: 38799166 PMCID: PMC11116707 DOI: 10.3389/fphar.2024.1373711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease characterized by insulin resistance, with high morbidity and mortality worldwide. Due to the tightly intertwined connection between the insulin resistance pathway and the PI3K/AKT signaling pathway, regulating the PI3K/AKT pathway and its associated targets is essential for hypoglycemia and the prevention of type 2 diabetes mellitus. In recent years, metabolites isolated from traditional Chinese medicine has received more attention and acceptance for its superior bioactivity, high safety, and fewer side effects. Meanwhile, numerous in vivo and in vitro studies have revealed that the metabolites present in traditional Chinese medicine possess better bioactivities in regulating the balance of glucose metabolism, ameliorating insulin resistance, and preventing type 2 diabetes mellitus via the PI3K/AKT signaling pathway. In this article, we reviewed the literature related to the metabolites of traditional Chinese medicine improving IR and possessing therapeutic potential for type 2 diabetes mellitus by targeting the PI3K/AKT signaling pathway, focusing on the hypoglycemic mechanism of the metabolites of traditional Chinese medicine in type 2 diabetes mellitus and elaborating on the significant role of the PI3K/AKT signaling pathway in type 2 diabetes mellitus. In order to provide reference for clinical prevention and treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenwen Jiang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Shen F, Yang W, Luan G, Peng J, Li Z, Gao J, Hou Y, Bai G. Catalpolaglycone disrupts mitochondrial thermogenesis by specifically binding to a conserved lysine residue of UCP2 on the proton leak tunnel. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155356. [PMID: 38241920 DOI: 10.1016/j.phymed.2024.155356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/03/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Catalpol (CAT), a naturally occurring iridoid glycoside sourced from the root of Rehmannia glutinosa, affects mitochondrial metabolic functions. However, the mechanism of action of CAT against pyrexia and its plausible targets remain to be fully elucidated. PURPOSE This study aimed to identify the specific targets of CAT for blocking mitochondrial thermogenesis and to unveil the unique biological mechanism of action of the orthogonal binding mode between the hemiacetal group and lysine residue on the target protein in vivo. METHODS Lipopolysaccharide (LPS)/ carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-induced fever models were established to evaluate the potential antipyretic effects of CAT. An alkenyl-modified CAT probe was designed to identify and capture potential targets. Binding capacity was tested using in-gel imaging and a cellular thermal shift assay. The underlying antipyretic mechanisms were explored using biochemical and molecular biological methods. Catalpolaglycone (CA) was coupled with protein profile identification and molecular docking analysis to evaluate and identify its binding mode to UCP2. RESULTS After deglycation of CAT in vivo, the hemiacetal group in CA covalently binds to Lys239 of UCP2 in the mitochondria of the liver via an ɛ-amine nucleophilic addition. This irreversible binding affects proton leakage and improves mitochondrial membrane potential and ADP/ATP transformation efficiency, leading to an antipyretic effect. CONCLUSION Our findings highlight the potential role of CA in modulating UCP2 activity or function within the mitochondria and open new avenues for investigating the therapeutic effects of CA on mitochondrial homeostasis.
Collapse
Affiliation(s)
- Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Wen Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Guoqing Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Jiamin Peng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Zhenqiang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| |
Collapse
|
4
|
Dlamini M, Khathi A. Prediabetes-Associated Changes in Skeletal Muscle Function and Their Possible Links with Diabetes: A Literature Review. Int J Mol Sci 2023; 25:469. [PMID: 38203642 PMCID: PMC10778616 DOI: 10.3390/ijms25010469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The skeletal muscle plays a critical role in regulating systemic blood glucose homeostasis. Impaired skeletal muscle glucose homeostasis associated with type 2 diabetes mellitus (T2DM) has been observed to significantly affect the whole-body glucose homeostasis, thereby resulting in other diabetic complications. T2DM does not only affect skeletal muscle glucose homeostasis, but it also affects skeletal muscle structure and functional capacity. Given that T2DM is a global health burden, there is an urgent need to develop therapeutic medical therapies that will aid in the management of T2DM. Prediabetes (PreDM) is a prominent risk factor of T2DM that usually goes unnoticed in many individuals as it is an asymptomatic condition. Hence, research on PreDM is essential because establishing diabetic biomarkers during the prediabetic state would aid in preventing the development of T2DM, as PreDM is a reversible condition if it is detected in the early stages. The literature predominantly documents the changes in skeletal muscle during T2DM, but the changes in skeletal muscle during prediabetes are not well elucidated. In this review, we seek to review the existing literature on PreDM- and T2DM-associated changes in skeletal muscle function.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban X54001, South Africa;
| |
Collapse
|
5
|
Li J, Chen Z, Bai Y, Wei Y, Guo D, Liu Z, Niu Y, Shi B, Zhang X, Cai Y, Zhao Z, Hu J, Wang J, Liu X, Li S, Zhao F. Integration of ATAC-Seq and RNA-Seq Analysis to Identify Key Genes in the Longissimus Dorsi Muscle Development of the Tianzhu White Yak. Int J Mol Sci 2023; 25:158. [PMID: 38203329 PMCID: PMC10779322 DOI: 10.3390/ijms25010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
During the postnatal stages, skeletal muscle development undergoes a series of meticulously regulated alterations in gene expression. However, limited studies have employed chromatin accessibility to unravel the underlying molecular mechanisms governing muscle development in yak species. Therefore, we conducted an analysis of both gene expression levels and chromatin accessibility to comprehensively characterize the dynamic genome-wide chromatin accessibility during muscle growth and development in the Tianzhu white yak, thereby elucidating the features of accessible chromatin regions throughout this process. Initially, we compared the differences in chromatin accessibility between two groups and observed that calves exhibited higher levels of chromatin accessibility compared to adult cattle, particularly within ±2 kb of the transcription start site (TSS). In order to investigate the correlation between alterations in chromatin accessible regions and variations in gene expression levels, we employed a combination of ATAC-seq and RNA-seq techniques, leading to the identification of 18 central transcriptional factors (TFs) and 110 key genes with significant effects. Through further analysis, we successfully identified several TFs, including Sp1, YY1, MyoG, MEF2A and MEF2C, as well as a number of candidate genes (ANKRD2, ANKRD1, BTG2 and LMOD3) which may be closely associated with muscle growth and development. Moreover, we constructed an interactive network program encompassing hub TFs and key genes related to muscle growth and development. This innovative approach provided valuable insights into the molecular mechanism underlying skeletal muscle development in the postnatal stages of Tianzhu white yaks while also establishing a solid theoretical foundation for future research on yak muscle development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | | | | | | | | |
Collapse
|
6
|
Wei D, Wang J, Jiupan Z, Khan R, Abbas Raza SH, Yaping S, Chao J, Ayari-Akkari A, Ahmed DAEM. Roles of MEF2A and HOXA5 in the transcriptional regulation of the bovine FoxO1 gene. Anim Biotechnol 2023; 34:4367-4379. [PMID: 36449378 DOI: 10.1080/10495398.2022.2150632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The Forkhead box factor 1 (FoxO1) gene plays a vital role in the growth and development of skeletal muscle. In the present study, expression analysis of the bovine FoxO1 gene exhibited the highest expression in longissimus dorsi muscle followed by its expression in adipose tissue. Moreover, high mRNA expression of FoxO1 gene was found in differentiated bovine myoblasts and adipocytes at day 6 of induced differentiation (p < 0.05). The regulatory pattern of the bovine FoxO1 gene was investigated through screening and dual-luciferase activity of the 1.7 kb 5'UTR (untranslated region) within pGL3-basic vector and a core promoter region was explored at (-285/-27) upstream of the transcription start site. The transcription factors (TFs) MEF2A and HOXA5 within the core promoter region (-285/-27) were found as the regulatory cis-acting element. The siRNA interference of the TFs, chromatin immunoprecipitation (ChIP) assay, and site-directed mutation validated that MEF2A and HOXA5 binding occurs in the region -285/-27 bp and performs an essential role in the transcriptional regulation of bovine FoxO1 gene. These findings explored the regulatory network mechanism of the FoxO1 gene in skeletal muscle development and adipogenesis for the bovine breed improvement program.
Collapse
Affiliation(s)
- Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jin Wang
- Institute of Animal Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Zhang Jiupan
- Institute of Animal Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Rajwali Khan
- Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | | | - Song Yaping
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jiang Chao
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Laboratory of Diversity, Management and Conservation of Biological Systems, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Dalia Abd El Moneim Ahmed
- Laboratory of Diversity, Management and Conservation of Biological Systems, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
7
|
Sousa LDR, Viana NR, Coêlho AG, Barbosa CDO, Barros DSL, Martins MDCDCE, Ramos RM, Arcanjo DDR. Use of Monoterpenes as Potential Therapeutics in Diabetes Mellitus: A Prospective Review. Adv Pharmacol Pharm Sci 2023; 2023:1512974. [PMID: 38029230 PMCID: PMC10665111 DOI: 10.1155/2023/1512974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/06/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
Monoterpenes are secondary metabolites of plants belonging to the terpenoid class of natural products. They are the most abundant components of essential oils that are generally considered to have various pharmacological properties. These compounds are reported to have antidiabetic effects in recent years. Due to nature's complex biosynthetic machinery, they also exhibit a reasonable degree of structural complexity/diversity for further analysis in structure-activity studies. Therefore, monoterpenes as antidiabetic agents have been investigated by recent in vitro and in vivo studies extensively reported in the scientific literature and claimed by patent documents. The purpose of this survey is to provide a comprehensive and prospective review concerning the potential applications of monoterpenes in the treatment of diabetes. The data for this research were collected through the specialized databases PubMed, Scopus, Web of Science, and ScienceDirect between the years 2014 and 2022, as well as the patent databases EPO, WIPO, and USPTO. The research used 76 articles published in the leading journals in the field. The main effect observed was the antidiabetic activity of monoterpenes. This review showed that monoterpenes can be considered promising agents for prevention and/or treatment of diabetes as well as have a marked pharmaceutical potential for the development of bioproducts for therapeutics applications.
Collapse
Affiliation(s)
- Leonardo da Rocha Sousa
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
- LaBME–Laboratory of Molecular Biology and Epidemiology, Federal Institute of Education, Science and Technology of Piauí–Campus Teresina Central, Teresina, Brazil
| | - Nildomar Ribeiro Viana
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
| | - Angélica Gomes Coêlho
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
| | - Celma de Oliveira Barbosa
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
| | | | - Maria do Carmo de Carvalho e Martins
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
| | - Ricardo Martins Ramos
- LaBME–Laboratory of Molecular Biology and Epidemiology, Federal Institute of Education, Science and Technology of Piauí–Campus Teresina Central, Teresina, Brazil
- LaPeSI–Information Systems Research Laboratory, Department of Information, Environment, Health and Food Production, Federal Institute of Piaui, Teresina, Brazil
| | - Daniel Dias Rufino Arcanjo
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
| |
Collapse
|
8
|
Duan YY, Chen XF, Zhu RJ, Jia YY, Huang XT, Zhang M, Yang N, Dong SS, Zeng M, Feng Z, Zhu DL, Wu H, Jiang F, Shi W, Hu WX, Ke X, Chen H, Liu Y, Jing RH, Guo Y, Li M, Yang TL. High-throughput functional dissection of noncoding SNPs with biased allelic enhancer activity for insulin resistance-relevant phenotypes. Am J Hum Genet 2023; 110:1266-1288. [PMID: 37506691 PMCID: PMC10432149 DOI: 10.1016/j.ajhg.2023.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Most of the single-nucleotide polymorphisms (SNPs) associated with insulin resistance (IR)-relevant phenotypes by genome-wide association studies (GWASs) are located in noncoding regions, complicating their functional interpretation. Here, we utilized an adapted STARR-seq to evaluate the regulatory activities of 5,987 noncoding SNPs associated with IR-relevant phenotypes. We identified 876 SNPs with biased allelic enhancer activity effects (baaSNPs) across 133 loci in three IR-relevant cell lines (HepG2, preadipocyte, and A673), which showed pervasive cell specificity and significant enrichment for cell-specific open chromatin regions or enhancer-indicative markers (H3K4me1, H3K27ac). Further functional characterization suggested several transcription factors (TFs) with preferential allelic binding to baaSNPs. We also incorporated multi-omics data to prioritize 102 candidate regulatory target genes for baaSNPs and revealed prevalent long-range regulatory effects and cell-specific IR-relevant biological functional enrichment on them. Specifically, we experimentally verified the distal regulatory mechanism at IRS1 locus, in which rs952227-A reinforces IRS1 expression by long-range chromatin interaction and preferential binding to the transcription factor HOXC6 to augment the enhancer activity. Finally, based on our STARR-seq screening data, we predicted the enhancer activity of 227,343 noncoding SNPs associated with IR-relevant phenotypes (fasting insulin adjusted for BMI, HDL cholesterol, and triglycerides) from the largest available GWAS summary statistics. We further provided an open resource (http://www.bigc.online/fnSNP-IR) for better understanding genetic regulatory mechanisms of IR-relevant phenotypes.
Collapse
Affiliation(s)
- Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ren-Jie Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ying-Ying Jia
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiao-Ting Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Meng Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ning Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Mengqi Zeng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhihui Feng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Dong-Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hao Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Feng Jiang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wei Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wei-Xin Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xin Ke
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Rui-Hua Jing
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Meng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
9
|
Yu M, Wu S, Gong C, Chen L. Neuregulin-1β increases glucose uptake and promotes GLUT4 translocation in palmitate-treated C2C12 myotubes by activating PI3K/AKT signaling pathway. Front Pharmacol 2023; 13:1066279. [PMID: 36703726 PMCID: PMC9871240 DOI: 10.3389/fphar.2022.1066279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Abstract
Insulin resistance (IR) is a feature of type 2 diabetes (T2DM) accompanied by reduced glucose uptake and glucose transporter 4 (GLUT4) translocation by skeletal muscle. Neuregulin-1β (NRG-1β) is essential for myogenesis and the regulation of skeletal muscle metabolism. Neuregulin-1β increases insulin sensitivity, promotes glucose uptake and glucose translocation in normal skeletal muscle. Here, we explored whether Neuregulin-1β increased glucose uptake and GLUT4 translocation in palmitate (PA)-treated C2C12 myotubes. After C2C12 myoblasts differentiated into myotubes, we used palmitate to induce cellular insulin resistance. Cells were incubated with or without Neuregulin-1β and glucose uptake was determined using the 2-NBDG assay. The expression level of glucose transporter 4 (GLUT4) was measured via immunofluorescence and Western blotting. MK2206, an inhibitor of AKT, was employed to reveal the important role played by AKT signaling in PA-treated C2C12 myotubes. We then established an animal model with T2DM and evaluated the effects of Neuregulin-1β on body weight and the blood glucose level. The GLUT4 level in the gastrocnemius of T2DM mice was also measured. NRG-1β not only increased glucose uptake by PA-treated myotubes but also promoted GLUT4 translocation to the plasma membrane. The effect of NRG-1β on PA-treated C2C12 myotubes was associated with AKT activation. In T2DM mice, Neuregulin-1β not only improved diabetes-induced weight loss and diabetes-induced hyperglycemia, but also promoted GLUT4 translocation in the gastrocnemius. In summary, Neuregulin-1β increased glucose uptake and promoted translocation of GLUT4 to the plasma membrane in PA-treated C2C12 myotubes by activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
| | | | - Chao Gong
- *Correspondence: Chao Gong, ; Lianhua Chen,
| | | |
Collapse
|
10
|
Li Y, Lin S, Xu X, Jin W, Su Y, Yuan F, Zhang Y, Li Z, Zhou Y, Zhu L, Zhang L. Skeletal muscle HSF1 prevents insulin resistance by improving glucose utilization. FASEB J 2022; 36:e22667. [PMID: 36421020 DOI: 10.1096/fj.202201160rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
The regulation of muscle glucose utilization has significant potential for the treatment of type 2 diabetes mellitus (T2DM) and obesity. Heat shock factor 1 (HSF1) is involved in cellular metabolism and regulation of muscle metabolism. However, it is unclear how HSF1 regulates muscle glucose metabolism. In the present study, the development of obesity in mice was associated with HSF1 downregulation. Serum samples and muscle biopsies were obtained from obese and healthy humans. Fasting glucose and insulin levels and the homeostasis model assessment of insulin resistance value showed that obesity was associated with insulin resistance. The skeletal muscle level of HSF1 was decreased in obese and ob/ob mice. HSF1 was selectively over-expressed in the skeletal muscles of high fat diet (HFD)-fed mice. Muscle HSF1 over-expression successfully triggered glycolytic-to-oxidative myofiber switch and increased fatty acid metabolism and insulin sensitivity in the skeletal muscles of HFD-fed mice. Moreover, HSF1 improved energy expenditure and blocked muscle accumulation of triglycerides in HFD-fed mice. Consequently, muscle HSF1 mitigated the impaired muscle insulin signaling and insulin resistance in HFD-fed mice. In conclusion, T2DM and obesity in HFD-fed mice may be treated with selective HSF1-directed programming of exercise-like effects in skeletal muscle. These findings may aid the development of a new therapeutic approach for obesity and T2DM.
Collapse
Affiliation(s)
- Yun Li
- Department of Pediatric Laboratory, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Shibo Lin
- Department of Bariatric and Metabolic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Xu
- Department of Pediatrics, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Weilai Jin
- Department of Pediatric Laboratory, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Yinglin Su
- Department of Neonatology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Fuqiang Yuan
- Department of Pediatric Laboratory, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Yiting Zhang
- Department of Pediatric Laboratory, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Zhengying Li
- Department of Neonatology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Yahui Zhou
- Department of Neonatology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Lihong Zhu
- Department of Pediatrics, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Le Zhang
- Department of Neonatology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
11
|
Zhang J, Raza SHA, Wei D, Yaping S, Chao J, Jin W, Almohaimeed HM, A Batarfi M, Assiri R, Aggad WS, Ghalib SH, Ageeli AA. Roles of MEF2A and MyoG in the transcriptional regulation of bovine LATS2 gene. Res Vet Sci 2022; 152:417-426. [PMID: 36126508 DOI: 10.1016/j.rvsc.2022.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
As an important downstream effector gene in the hippo signaling pathway, large tumor suppressor gene 2 (LATS2) is involved in cell proliferation and differentiation, organ size and tissue regeneration, and plays an important role in regulating the growth and development of animal muscles. The purpose of this study is to explore the temporal expression of bovine LATS2 gene, and determine the key transcription factors for regulating bovine LATS2 gene. The result showed that bovine LATS2 gene was highly expressed in liver and longissimus dorsi, and was up-regulated in infancy muscle. In addition, it was highly expressed on the 2th day during the differentiation stage of myoblast. The upstream 1.7 Kb sequence of the 5 'translation region of bovine LATS2 gene was cloned, and 7 different deletion fragments were amplified by the upstream primers. These fragments were constructed into double luciferase reporter vectors and transfected into myoblasts and myotubes cells, respectively to detect the core promoter regions. In addition, the key transcription factors of the core promoter sequence of the bovine LATS2 gene were analyzed and predicted by online software. Combining with site-directed mutations, siRNA interference and chromatin immunoprecipitation technology, it was identified that MEF2A and MyoG combined in core promoter region (-248/-56) to regulate the transcription activity of bovine LATS2 gene. The results have laid a theoretical foundation for exploring the molecular regulation mechanism of LATS2 gene in the process of muscle growth.
Collapse
Affiliation(s)
- Jiupan Zhang
- Institute of Animal Sciences, Ningxia Academy of agricultural and Forestry Sciences, Yinchuan 750021, China
| | | | - Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China.
| | - Song Yaping
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Jiang Chao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Wang Jin
- Institute of Animal Sciences, Ningxia Academy of agricultural and Forestry Sciences, Yinchuan 750021, China
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Munirah A Batarfi
- Department of Anatomy, Basic medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Rasha Assiri
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Waheeb S Aggad
- Department of Anatomy, College of Medicine, University of Jeddah, P.O. Box 8304, Jeddah 23234, Saudi Arabia
| | - Samirah H Ghalib
- Chemistry department, Collage of Science (female section), Jazan University, Jazan 82621, Saudi Arabia
| | - Abeer A Ageeli
- Chemistry department, Collage of Science (female section), Jazan University, Jazan 82621, Saudi Arabia
| |
Collapse
|
12
|
Liu J, Du J, Li Y, Wang F, Song D, Lin J, Li B, Li L. Catalpol induces apoptosis in breast cancer in vitro and in vivo: Involvement of mitochondria apoptosis pathway and post-translational modifications. Toxicol Appl Pharmacol 2022; 454:116215. [PMID: 36067808 DOI: 10.1016/j.taap.2022.116215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
Breast cancer is a fatal cancer with the highest mortality in female. New strategies for anti-breast cancer are still urgently needed. Catalpol, an iridoid glycoside extracted from the traditional Chinese medicinal plant Rehmannia glutinosa, has shown anticancer efficacy in various cancer cells. However, its effect on breast cancer remains unclear. In this study, we aim to investigate the anti-breast cancer activity of catalpol and elucidate its underlying mechanism. Cell counting kit-8 (CCK-8) and morphology change showed that catalpol could inhibit the proliferation and viability of MCF-7 cells. Catalpol administration reduced the tumor volume in xenograft model. Catalpol induced apoptosis in MCF-7 cells confirmed by Hoechst 33342 staining and Annexin V-FITC/PI double staining. In vivo, catalpol also induced apoptosis as seen from the increased level of terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) in tumor. According to JC-1 and Dichlorodi-hydrofluorescein Diacetate (DCFH-DA) staining, loss of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) generation was found in MCF-7 cells treated with catalpol. Furthermore, catalpol also increased the level of cytoplasmic cytochrome c and activity of caspase-3 in MCF-7 cells. Likewise, histopathological and immunohistochemical (IHC) assay also found that catalpol enhanced the levels of cytochrome c and caspase-3 in breast cancer tissues. Ultimately, acetylation, 2-hydroxyisobutyrylation and lactylation were dramatically increased, whereas succinylation, malonylation and phosphorylation were markedly decreased in the breast cancer tumor treated with catalpol. Taken together, catalpol inhibited breast cancer in vitro and in vivo through induction of apoptosis via mitochondria apoptosis pathway and regulation of protein post-translational modifications (PTMs). Thus, it can be considered as an excellent candidate compound for treatment of breast cancer.
Collapse
Affiliation(s)
- Jierong Liu
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Jikun Du
- Central Research Laboratory, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, The Second People's Hospital of Bao'an Shenzhen (Group) Shenzhen, China
| | - Yuanhua Li
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Fuwei Wang
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Daibo Song
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China; Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Jiantao Lin
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Baohong Li
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China.
| | - Li Li
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
13
|
Stefanowicz M, Nikołajuk A, Matulewicz N, Strączkowski M, Karczewska-Kupczewska M. Skeletal muscle RUNX1 is related to insulin sensitivity through its effect on myogenic potential. Eur J Endocrinol 2022; 187:143-157. [PMID: 35521787 DOI: 10.1530/eje-21-0776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Skeletal muscle is the major site of insulin action. There are limited data on the relationship between insulin action and skeletal muscle myogenic/regenerative potential. RUNX1 is a transcription factor which plays a role in muscle development and regeneration. The aim of our study was to assess the role of skeletal muscle myogenic/regenerative potential in the development of insulin resistance through the studies on RUNX1 transcription factor. DESIGN This study is a cross-sectional study. Experimental part with myoblast cell line culture. METHODS We examined 41 young healthy volunteers, 21 normal weight and 20 with overweight or obesity. Hyperinsulinemic-euglycemic clamp and vastus lateralis muscle biopsy were performed. In L6 myoblast and human skeletal muscle myoblasts (hSkMM) cell cultures, RUNX1 was silenced at two stages of development. Cell growth, the expression of markers of myogenesis, nuclei fusion index, Akt phosphorylation and glucose uptake were measured. RESULTS Skeletal muscle RUNX1 expression was decreased in overweight/obese individuals in comparison with normal-weight individuals and was positively related to insulin sensitivity, independently of BMI. Runx1 loss-of-function at the stage of myoblast inhibited myoblast proliferation and differentiation and reduced insulin-stimulated Akt phosphorylation and insulin-stimulated glucose uptake. In contrast, Runx1 knockdown in myotubes did not affect Akt phosphorylation, glucose uptake and other parameters studied. CONCLUSIONS Myogenic/regenerative potential of adult skeletal muscle may be an important determinant of insulin action. Our data suggest that muscle RUNX1 may play a role in the modulation of insulin action through its effect on myogenesis.
Collapse
Affiliation(s)
- Magdalena Stefanowicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Agnieszka Nikołajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Natalia Matulewicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Marek Strączkowski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | |
Collapse
|
14
|
Song L, Yin H, Han R, Li J, Ma N, Wang Y, Guo H. Metabolism of Du Zhong Formula in rats using UPLC-Q-TOF/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4795. [PMID: 34913224 DOI: 10.1002/jms.4795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Du Zhong Formula (DZF), a traditional Chinese medicine formula derived from BeiJiQianJinYaoFang, is used to treat kidney deficiency and lumbago. In this study, ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometer (UPLC-Q-TOF/MS) technique combined with pattern recognition analysis was applied for analysis of metabolic profiles of the bioactive components of the DZF in rat biological samples. In this experiment, a total of 73 compounds, including 53 prototype components and 20 metabolites, were identified tentatively in vivo compared with blank urine, plasma, feces, and cerebrospinal fluid (CSF). The prototype ingredients in DZF include terpenoids, gingerols, phenylpropanoids, alkaloids, phenanthrenes, bibenzyls, organic acids, and other ingredients. The metabolic pathways of DZF involved reduction, demethylation, hydroxylation, desugarization, deoxygenation, glucuronidation, sulfation, and methylation. The proposed method could develop an integrated template approach to analyze screening and identification of the bioactive components in plasma, urine, feces, and CSF after oral administration of herb medicines. Additionally, this investigation might provide helpful chemical information for further pharmacology and activity mechanism of DZF.
Collapse
Affiliation(s)
- Lili Song
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongqing Yin
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Han
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingfang Li
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ningning Ma
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Formula of Traditional Chinese Medicine, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
15
|
Luo ZW, Sun YY, Lin JR, Qi BJ, Chen JW. Exosomes derived from inflammatory myoblasts promote M1 polarization and break the balance of myoblast proliferation/differentiation. World J Stem Cells 2021; 13:1762-1782. [PMID: 34909122 PMCID: PMC8641021 DOI: 10.4252/wjsc.v13.i11.1762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute muscle injuries are one of the most common injuries in sports. Severely injured muscles are prone to re-injury due to fibrotic scar formation caused by prolonged inflammation. How to regulate inflammation and suppress fibrosis is the focus of promoting muscle healing. Recent studies have found that myoblasts and macrophages play important roles in the inflammatory phase following muscle injury; however, the crosstalk between these two types of cells in the inflammatory environment, particularly the exosome-related mechanisms, had not been well studied.
AIM To evaluate the effects of exosomes from inflammatory C2C12 myoblasts (IF-C2C12-Exos) on macrophage polarization and myoblast proliferation/differentiation.
METHODS A model of inflammation was established in vitro by lipopolysaccharide stimulation of myoblasts. C2C12-Exos were isolated and purified from the supernatant of myoblasts by gradient centrifugation. Multiple methods were used to identify the exosomes. Gradient concentrations of IF-C2C12-Exos were added to normal macrophages and myoblasts. PKH67 fluorescence tracing was used to identify the interaction between exosomes and cells. Microscopic morphology, Giemsa stain, and immunofluorescence were carried out for histological analysis. Additionally, ELISA assays, flow cytometry, and western blot were conducted to analyze molecular changes. Moreover, myogenic proliferation was assessed by the BrdU test, scratch assay, and CCK-8 assay.
RESULTS We found that the PKH-67-marked C2C12-Exos can be endocytosed by both macrophages and myoblasts. IF-C2C12-Exos induced M1 macrophage polarization and suppressed the M2 phenotype in vitro. In addition, these exosomes also stimulated the inflammatory reactions of macrophages. Furthermore, we demonstrated that IF-C2C12-Exos disrupted the balance of myoblast proliferation/differentiation, leading to enhanced proliferation and suppressed fibrogenic/myogenic differentiation.
CONCLUSION IF-C2C12-Exos can induce M1 polarization, resulting in a sustained and aggravated inflammatory environment that impairs myoblast differentiation, and leads to enhanced myogenic proliferation. These results demonstrate why prolonged inflammation occurs after acute muscle injury and provide a new target for the regulation of muscle regeneration.
Collapse
Affiliation(s)
- Zhi-Wen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ya-Ying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jin-Rong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bei-Jie Qi
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ji-Wu Chen
- Department of Sports Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Catalpol Weakens Depressive-like Behavior in Mice with Streptozotocin-induced Hyperglycemia via PI3K/AKT/Nrf2/HO-1 Signaling Pathway. Neuroscience 2021; 473:102-118. [PMID: 34358633 DOI: 10.1016/j.neuroscience.2021.07.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Depression has huge social risks of high incidence, disability, and suicide. Its prevalence and harm in people with hyperglycemia are 2-3 times higher than in normal people. However, antidepressants with precise curative effects and clear mechanisms for patients with hyperglycemia are currently lacking. Prescriptions containing Rehmannia glutinosa, a traditional medicinal herb with a wide range of nutritional and medicinal values, are often used as antidepressants in Chinese clinical medicine. Catalpol is one of the main effective compounds of R. glutinosa, with multiple biological activities such as hypoglycemia. Here, the antidepressant effect of catalpol on the pathological state of streptozotocin (STZ)-induced hyperglycemia and the underlying molecular mechanisms were analyzed. Results showed that administering catalpol orally to hyperglycemic mice for 21 consecutive days significantly reversed the abnormalities in tail suspension, forced swimming, and open field tests. Catalpol also reversed the abnormal phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) and the abnormal levels of nuclear factor erythroid 2-related factor 2 (Nrf2) protein, heme oxygenase-1 (HO-1), and antioxidants, including superoxide dismutase, glutathione peroxidase, glutathione-s transferase, reduced glutathione, and malondialdehyde in the hippocampus and frontal cortex of STZ-induced hyperglycemic mice. Thus, catalpol attenuates depressive-like behavior in pathological hyperglycemic state, and the antidepressant mechanism could at least be partly attributed to the upregulation of the PI3K/AKT/Nrf2/HO-1 signaling pathway in both brain regions, thus restoring the balance between oxidative and antioxidant damage. These data expanded the scientific understanding of catalpol and provided preclinical experimental evidence for its application.
Collapse
|
17
|
Xu DQ, Zhao L, Li SJ, Huang XF, Li CJ, Sun LX, Li XH, Zhang LY, Jiang ZZ. Catalpol counteracts the pathology in a mouse model of Duchenne muscular dystrophy by inhibiting the TGF-β1/TAK1 signaling pathway. Acta Pharmacol Sin 2021; 42:1080-1089. [PMID: 32939036 PMCID: PMC8209148 DOI: 10.1038/s41401-020-00515-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by a mutation in the gene encoding the dystrophin protein. Catalpol is an iridoid glycoside found in Chinese herbs with anti-inflammatory, anti-oxidant, anti-apoptotic, and hypoglycemic activities that can protect against muscle wasting. In the present study we investigated the effects of catalpol on DMD. Aged Dystrophin-deficient (mdx) mice (12 months old) were treated with catalpol (100, 200 mg·kg-1·d-1, ig) for 6 weeks. At the end of the experiment, the mice were sacrificed, and gastrocnemius (GAS), tibialis anterior (TA), extensor digitorum longus (EDL), soleus (SOL) muscles were collected. We found that catalpol administration dose-dependently increased stride length and decreased stride width in Gait test. Wire grip test showed that the time of wire grip and grip strength were increased. We found that catalpol administration dose-dependently alleviated skeletal muscle damage, evidenced by reduced plasma CK and LDH activity as well as increased the weight of skeletal muscles. Catalpol administration had no effect on dystrophin expression, but exerted anti-inflammatory effects. Furthermore, catalpol administration dose-dependently decreased tibialis anterior (TA) muscle fibrosis, and inhibited the expression of TGF-β1, TAK1 and α-SMA. In primary myoblasts from mdx mice, knockdown of TAK1 abolished the inhibitory effects of catalpol on the expression levels of TGF-β1 and α-SMA. In conclusion, catalpol can restore skeletal muscle strength and alleviate skeletal muscle damage in aged mdx mice, thus may provide a novel therapy for DMD. Catalpol attenuates muscle fibrosis by inhibiting the TGF-β1/TAK1 signaling pathway.
Collapse
Affiliation(s)
- Deng-Qiu Xu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Zhao
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, 200032, China
| | - Si-Jia Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Fei Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Chun-Jie Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Xin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Xi-Hua Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, 200032, China
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China.
- Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Yu X, Zhang R, Wei C, Gao Y, Yu Y, Wang L, Jiang J, Zhang X, Li J, Chen X. MCT2 overexpression promotes recovery of cognitive function by increasing mitochondrial biogenesis in a rat model of stroke. Anim Cells Syst (Seoul) 2021; 25:93-101. [PMID: 34234890 PMCID: PMC8118516 DOI: 10.1080/19768354.2021.1915379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/07/2021] [Accepted: 03/26/2021] [Indexed: 10/27/2022] Open
Abstract
Monocarboxylate transporter 2 (MCT2) is the predominant monocarboxylate transporter expressed by neurons. MCT2 plays an important role in brain energy metabolism. Stroke survivors are at high risk of cognitive impairment. We reported previously that stroke-induced cognitive impairment was related to impaired energy metabolism. In the present study, we report that cognitive function was impaired after stroke in rats. We found that MCT2 expression, but not that of MCT1 or MCT4, was markedly decreased in the rat hippocampus at 7 and 28 days after transient middle cerebral artery occlusion (tMCAO). Moreover, MCT2 overexpression promoted recovery of cognitive function after stroke. The molecular mechanism underlying these effects may be related to an increase in adenosine monophosphate-activated protein kinase-mediated mitochondrial biogenesis induced by overexpression of MCT2. Our findings suggest that MCT2 activation ameliorates cognitive impairment after stroke.
Collapse
Affiliation(s)
- Xiaorong Yu
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Rui Zhang
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Cunsheng Wei
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuanyuan Gao
- Department of General Practice, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Yanhua Yu
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Lin Wang
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Junying Jiang
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuemei Zhang
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuemei Chen
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Bhattamisra SK, Koh HM, Lim SY, Choudhury H, Pandey M. Molecular and Biochemical Pathways of Catalpol in Alleviating Diabetes Mellitus and Its Complications. Biomolecules 2021; 11:biom11020323. [PMID: 33672590 PMCID: PMC7924042 DOI: 10.3390/biom11020323] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Catalpol isolated from Rehmannia glutinosa is a potent antioxidant and investigated against many disorders. This review appraises the key molecular pathways of catalpol against diabetes mellitus and its complications. Multiple search engines including Google Scholar, PubMed, and Science Direct were used to retrieve publications containing the keywords “Catalpol”, “Type 1 diabetes mellitus”, “Type 2 diabetes mellitus”, and “diabetic complications”. Catalpol promotes IRS-1/PI3K/AKT/GLUT2 activity and suppresses Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose 6-phosphatase (G6Pase) expression in the liver. Catalpol induces myogenesis by increasing MyoD/MyoG/MHC expression and improves mitochondria function through the AMPK/PGC-1α/PPAR-γ and TFAM signaling in skeletal muscles. Catalpol downregulates the pro-inflammatory markers and upregulates the anti-inflammatory markers in adipose tissues. Catalpol exerts antioxidant properties through increasing superoxide dismutase (sod), catalase (cat), and glutathione peroxidase (gsh-px) activity in the pancreas and liver. Catalpol has been shown to have anti-oxidative, anti-inflammatory, anti-apoptosis, and anti-fibrosis properties that in turn bring beneficial effects in diabetic complications. Its nephroprotective effect is related to the modulation of the AGE/RAGE/NF-κB and TGF-β/smad2/3 pathways. Catalpol produces a neuroprotective effect by increasing the expression of protein Kinase-C (PKC) and Cav-1. Furthermore, catalpol exhibits a cardioprotective effect through the apelin/APJ and ROS/NF-κB/Neat1 pathway. Catalpol stimulates proliferation and differentiation of osteoblast cells in high glucose condition. Lastly, catalpol shows its potential in preventing neurodegeneration in the retina with NF-κB downregulation. Overall, catalpol exhibits numerous beneficial effects on diabetes mellitus and diabetic complications.
Collapse
Affiliation(s)
- Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Correspondence: or ; Tel.: +60-3-2731-7310; Fax: +60-3-8656-7229
| | - Hui Min Koh
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (H.M.K.); (S.Y.L.)
| | - Shin Yean Lim
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (H.M.K.); (S.Y.L.)
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (H.C.); (M.P.)
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (H.C.); (M.P.)
| |
Collapse
|
20
|
Xu D, Li S, Wang L, Jiang J, Zhao L, Huang X, Sun Z, Li C, Sun L, Li X, Jiang Z, Zhang L. TAK1 inhibition improves myoblast differentiation and alleviates fibrosis in a mouse model of Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2021; 12:192-208. [PMID: 33236534 PMCID: PMC7890152 DOI: 10.1002/jcsm.12650] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Transforming growth factor-β-activated kinase 1 (TAK1) plays a key role in regulating fibroblast and myoblast proliferation and differentiation. However, the TAK1 changes associated with Duchenne muscular dystrophy (DMD) are poorly understood, and it remains unclear how TAK1 regulation could be exploited to aid the treatment of this disease. METHODS Muscle biopsies were obtained from control donors or DMD patients for diagnosis (n = 6 per group, male, 2-3 years, respectively). Protein expression of phosphorylated TAK1 was measured by western blot and immunofluorescence analysis. In vivo overexpression of TAK1 was performed in skeletal muscle to assess whether TAK1 is sufficient to induce or aggravate atrophy and fibrosis. To explore whether TAK1 inhibition protects against muscle damage, mdx (loss of dystrophin) mice were treated with adeno-associated virus (AAV)-short hairpin TAK1 (shTAK1) or NG25 (a TAK1 inhibitor). Serum analysis, skeletal muscle performance and histology, muscle contractile function, and gene and protein expression were performed. RESULTS We found that TAK1 was activated in the dystrophic muscles of DMD patients (n = 6, +72.2%, P < 0.001), resulting in fibrosis ( +65.9% for fibronectin expression, P < 0.001) and loss of muscle fibres (-32.5%, P < 0.01). Moreover, TAK1 was activated by interleukin-1β, tumour necrosis factor-α, and transforming growth factor-β1 (P < 0.01). Overexpression of TAK1 by AAV vectors further aggravated fibrosis (n = 8, +39.6% for hydroxyproline content, P < 0.01) and exacerbated muscle wasting (-31.6%, P < 0.01) in mdx mice; however, these effects were reversed in mdx mice by treatment with AAV-short hairpin TAK1 (shTAK1) or NG25 (a TAK1 inhibitor). The molecular mechanism underlying these effects may be related to the prevention of TAK1-mediated transdifferentiation of myoblasts into fibroblasts, thereby reducing fibrosis and increasing myoblast differentiation. CONCLUSIONS Our findings show that TAK1 activation exacerbated fibrosis and muscle degeneration and that TAK1 inhibition can improve whole-body muscle quality and the function of dystrophic skeletal muscle. Thus, TAK1 inhibition may constitute a novel therapy for DMD.
Collapse
Affiliation(s)
- Dengqiu Xu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Sijia Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Lu Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jingwei Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Lei Zhao
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaofei Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Zeren Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Chunjie Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xihua Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
21
|
Xu D, Zhao L, Jiang J, Li S, Sun Z, Huang X, Li C, Wang T, Sun L, Li X, Jiang Z, Zhang L. A potential therapeutic effect of catalpol in Duchenne muscular dystrophy revealed by binding with TAK1. J Cachexia Sarcopenia Muscle 2020; 11:1306-1320. [PMID: 32869445 PMCID: PMC7567147 DOI: 10.1002/jcsm.12581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/29/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by the loss of dystrophin, which results in inflammation, fibrosis, and the inhibition of myoblast differentiation in skeletal muscle. Catalpol, an iridoid glycoside, improves skeletal muscle function by enhancing myogenesis; it has potential to treat DMD. We demonstrate the positive effects of catalpol in dystrophic skeletal muscle. METHODS mdx (loss of dystrophin) mice (n = 18 per group) were treated with catalpol (200 mg/kg) for six consecutive weeks. Serum analysis, skeletal muscle performance and histology, muscle contractile function, and gene and protein expression were performed. Molecular docking and ligand-target interactions, RNA interference, immunofluorescence, and plasmids transfection were utilized to explore the protective mechanism in DMD by which catalpol binding with transforming growth factor-β-activated kinase 1 (TAK1) in skeletal muscle. RESULTS Six weeks of catalpol treatment improved whole-body muscle health in mdx mice, which was characterized by reduced plasma creatine kinase (n = 18, -35.1%, P < 0.05) and lactic dehydrogenase (n = 18, -10.3%, P < 0.05) activity. These effects were accompanied by enhanced grip strength (n = 18, +25.4%, P < 0.05) and reduced fibrosis (n = 18, -29.0% for hydroxyproline content, P < 0.05). Moreover, catalpol treatment protected against muscle fatigue and promoted muscle recovery in the tibialis anterior (TA) and diaphragm (DIA) muscles (n = 6, +69.8%, P < 0.05 and + 74.8%, P < 0.001, respectively), which was accompanied by enhanced differentiation in primary myoblasts from DMD patients (n = 6, male, mean age: 4.7 ± 1.9 years) and mdx mice. In addition, catalpol eliminated p-TAK1 overexpression in mdx mice (n = 12, -21.3%, P < 0.05) and primary myoblasts. The catalpol-induced reduction in fibrosis and increased myoblast differentiation resulted from the inhibition of TAK1 phosphorylation, leading to reduced myoblast trans-differentiation into myofibroblasts. Catalpol inhibited the phosphorylation of TAK1 by binding to TAK1, possibly at Asp-206, Thr-208, Asn-211, Glu-297, Lys-294, and Tyr-293. CONCLUSIONS Our findings show that catalpol and TAK1 inhibitors substantially improve whole-body muscle health and the function of dystrophic skeletal muscles and may provide a novel therapy for DMD.
Collapse
Affiliation(s)
- Dengqiu Xu
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
| | - Lei Zhao
- Department of NeurologyChildren's Hospital of Fudan UniversityShanghaiChina
| | - Jingwei Jiang
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
| | - Sijia Li
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
| | - Zeren Sun
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
| | - Xiaofei Huang
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
| | - Chunjie Li
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
| | - Tao Wang
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
- Jiangsu Center for Pharmacodynamics Research and EvaluationChina Pharmaceutical UniversityNanjingChina
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
| | - Xihua Li
- Department of NeurologyChildren's Hospital of Fudan UniversityShanghaiChina
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
- Key Laboratory of Drug Quality Control and PharmacovigilanceChina Pharmaceutical UniversityNanjingChina
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
- Center for Drug Research and DevelopmentGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Drug Quality Control and PharmacovigilanceChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
22
|
Liu Y, Li D, Wei Y, Ma Y, Wang Y, Huang L, Wang Y. Hydrolyzed peptides from purple perilla (Perilla frutescens L. Britt.) seeds improve muscle synthesis and exercise performance in mice. J Food Biochem 2020; 44:e13461. [PMID: 32984958 DOI: 10.1111/jfbc.13461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/04/2023]
Abstract
The purple perilla (Perilla frutescens L. Britt.) seed peptides (PPSP) were obtained and their improvement of muscle synthesis and exercise performance was investigated in this work. Results showed that the weight-average molecular weight of the PPSP was 869 Dalton. The PPSP were rich in branched-chain amino acids (18.82 g/100 g) and anti-fatigue amino acids, including glutamate (Glu), aspartic acid (Asp), and arginine (Arg). After the administration of PPSP at 1.2 g kg-1 day-1 for 4 weeks, the muscle coefficient and muscle fiber thickness in mice displayed a distinct (p < .05) increase via the upregulation of myogenic differentiation (MyoD) and myogenin (MyoG). The improved muscle strength and exercise tolerance were also observed. Simultaneously, the levels of the biochemical blood markers associated with fatigue and the glycogen degradation in liver and muscle were significantly (p < .05) suppressed. These results suggested that PPSP could effectively promote muscle synthesis and ameliorate exercise fatigue. PRACTICAL APPLICATIONS: Purple perilla is an annual herbal plant and widely grown in Asian countries as an important crop and food. It is believed that the protein content of purple perilla seeds can reach 23.7%, and the protein is rich in essential amino acids. However, the information about the beneficial effects of their proteins or peptides on muscle synthesis and anti-exercise fatigue were still limited. The present results discovered that the PPSP can effectively promote the growth of muscle tissue and improve exercise tolerance. It is indicated that PPSP may have a potential application value in partly or completely replacing animal proteins such as whey protein.
Collapse
Affiliation(s)
- Yixiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen, People's Republic of China
| | - Donghui Li
- College of Food and Biological Engineering, Jimei University, Xiamen, People's Republic of China
| | - Ying Wei
- The Department of Food Engineering, China National Research Institute of Food & Fermentation Industries Corporation Limited, Beijing, People's Republic of China
| | - Yu Ma
- College of Food and Biological Engineering, Jimei University, Xiamen, People's Republic of China
| | - Yuchen Wang
- The Department of Food Engineering, China National Research Institute of Food & Fermentation Industries Corporation Limited, Beijing, People's Republic of China
| | - Ling Huang
- College of Food and Biological Engineering, Jimei University, Xiamen, People's Republic of China
| | - Yanbo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
23
|
Yap KH, Yee GS, Candasamy M, Tan SC, Md S, Abdul Majeed AB, Bhattamisra SK. Catalpol Ameliorates Insulin Sensitivity and Mitochondrial Respiration in Skeletal Muscle of Type-2 Diabetic Mice Through Insulin Signaling Pathway and AMPK/SIRT1/PGC-1α/PPAR-γ Activation. Biomolecules 2020; 10:biom10101360. [PMID: 32987623 PMCID: PMC7598587 DOI: 10.3390/biom10101360] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Catalpol was tested for various disorders including diabetes mellitus. Numerous molecular mechanisms have emerged supporting its biological effects but with little information towards its insulin sensitizing effect. In this study, we have investigated its effect on skeletal muscle mitochondrial respiration and insulin signaling pathway. Type-2 diabetes (T2DM) was induced in male C57BL/6 by a high fat diet (60% Kcal) and streptozotocin (50 mg/kg, i.p.). Diabetic mice were orally administered with catalpol (100 and 200 mg/kg), metformin (200 mg/kg), and saline for four weeks. Fasting blood glucose (FBG), HbA1c, plasma insulin, oral glucose tolerance test (OGTT), insulin tolerance test (ITT), oxygen consumption rate, gene (IRS-1, Akt, PI3k, AMPK, GLUT4, and PGC-1α) and protein (AMPK, GLUT4, and PPAR-γ) expression in muscle were measured. Catalpol (200 mg/kg) significantly (p < 0.05) reduced the FBG, HbA1C, HOMA_IR index, and AUC of OGTT whereas, improved the ITT slope. Gene (IRS-1, Akt, PI3k, GLUT4, AMPK, and PGC-1α) and protein (AMPK, p-AMPK, PPAR-γ and GLUT4) expressions, as well as augmented state-3 respiration, oxygen consumption rate, and citrate synthase activity in muscle was observed in catalpol treated mice. The antidiabetic activity of catalpol is credited with a marked improvement in insulin sensitivity and mitochondrial respiration through the insulin signaling pathway and AMPK/SIRT1/PGC-1α/PPAR-γ activation in the skeletal muscle of T2DM mice.
Collapse
Affiliation(s)
- Kah Heng Yap
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (K.H.Y.); (S.C.T.)
| | - Gan Sook Yee
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (G.S.Y.); (M.C.)
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (G.S.Y.); (M.C.)
| | - Swee Ching Tan
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (K.H.Y.); (S.C.T.)
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Abu Bakar Abdul Majeed
- Universiti Teknologi MARA, Sungai Buloh-Selayang Medical-Dental Campus, Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia;
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (G.S.Y.); (M.C.)
- Correspondence: or ; Tel.: +60-3-27317310; Fax: +60-3-86567229
| |
Collapse
|
24
|
Gao X, Xu J, Liu H. Protective effects of catalpol on mitochondria of hepatocytes in cholestatic liver injury. Mol Med Rep 2020; 22:2424-2432. [PMID: 32705256 PMCID: PMC7411478 DOI: 10.3892/mmr.2020.11337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Cholestasis, which is caused by the obstruction of bile flow, can lead to rapid organ injury, cell apoptosis and necrosis of hepatocytes, and may eventually develop into fibrosis and cirrhosis. Oxidative stress and mitochondrial dysfunction are the key pathogenic signs of hepatic cholestasis. Catalpol has pharmacological activities, including antioxidative and anti-inflammatory effects, and may relieve mitochondrial damage and restore mitochondrial membrane potential. However, the potential roles and mechanisms of catalpol in cholestasis-induced liver injury are not clear. In the present study, liver function-related indexes were measured in the serum of mice by commercial kits. In addition, levels of serum inflammatory factors were detected by ELISA. Hematoxylin and eosin staining was performed to observe histopathological changes, and mitochondrial membrane potential was detected using JC-1 staining. Mitochondrial adenosine triphosphate (ATP), reactive oxygen species (ROS) and malondialdehyde levels were determined using a luciferase reporter kit, flow cytometry and a thiobarbituric acid reactive substance assay kit, respectively. Western blotting was performed to detect the expression levels of apoptosis-related proteins in liver tissues. The findings revealed that catalpol reduced liver damage caused by cholestasis, improved the mitochondrial membrane potential, and increased the ATP content and glutathione content of cholestasis model mice. Moreover, catalpol also reduced the ROS level, inhibited lipid peroxidation, and regulated oxidative stress and apoptotic protein expression. Thus, the present study preliminarily confirmed that catalpol can reduce liver injury in a mouse model of cholestasis through inhibiting oxidative stress and enhancing mitochondrial membrane potential.
Collapse
Affiliation(s)
- Xingjuan Gao
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Jiaju Xu
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Hongbo Liu
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
25
|
Xu DQ, Li CJ, Jiang ZZ, Wang L, Huang HF, Li ZJ, Sun LX, Fan SS, Zhang LY, Wang T. The hypoglycemic mechanism of catalpol involves increased AMPK-mediated mitochondrial biogenesis. Acta Pharmacol Sin 2020; 41:791-799. [PMID: 31937931 PMCID: PMC7470840 DOI: 10.1038/s41401-019-0345-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondria serve as sensors of energy regulation and glucose levels, which are impaired by diabetes progression. Catalpol is an iridoid glycoside that exerts a hypoglycemic effect by improving mitochondrial function, but the underlying mechanism has not been fully elucidated. In the current study we explored the effects of catalpol on mitochondrial function in db/db mice and C2C12 myotubes in vitro. After oral administration of catalpol (200 mg·kg−1·d−1) for 8 weeks, db/db mice exhibited a decreased fasting blood glucose level and restored mitochondrial function in skeletal muscle. Catalpol increased mitochondrial biogenesis, evidenced by significant elevations in the number of mitochondria, mitochondrial DNA levels, and the expression of three genes associated with mitochondrial biogenesis: peroxisome proliferator-activated receptor gammaco-activator 1 (PGC-1α), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor 1 (NRF1). In C2C12 myotubes, catalpol significantly increased glucose uptake and ATP production. These effects depended on activation of AMP-activated protein kinase (AMPK)-mediated mitochondrial biogenesis. Thus, catalpol improves skeletal muscle mitochondrial function by activating AMPK-mediated mitochondrial biogenesis. These findings may guide the development of a new therapeutic approach for type 2 diabetes.
Collapse
|
26
|
Morais FS, Canuto KM, Ribeiro PRV, Silva AB, Pessoa ODL, Freitas CDT, Alencar NMN, Oliveira AC, Ramos MV. Chemical profiling of secondary metabolites from Himatanthus drasticus (Mart.) Plumel latex with inhibitory action against the enzymes α-amylase and α-glucosidase: In vitro and in silico assays. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112644. [PMID: 32058007 DOI: 10.1016/j.jep.2020.112644] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/22/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Himatanthus drasticus is an important medicinal plant whose latex is traditionally used in Northeast Brazil to treat various diseases, including diabetes. The use of α-amylase and α-glucosidase inhibitors can be an effective strategy to modulate levels of postprandial hyperglycemia via control of starch metabolism. AIMS OF THE STUDY This study aimed to verify if H. drasticus latex has inhibitory activity against enzymes linked to type 2 diabetes, besides chemically characterizing the metabolites responsible for such activities. In addition, in silico analysis was performed to support the traditional claim of possible antidiabetic activity of this latex. MATERIALS AND METHODS Latex from H. drasticus stems was sequentially partitioned with n-hexane (FHDH), CHCl3 (FHDC) and EtOH (FHDHA). Wash extraction of the FHDHA fraction was performed to obtain the other extract fractions. The FHDHA was submitted to chromatography in a SPE C18 cartridge using gradient elution with MeOH/H2O to produce five fractions: FHDHA1, FHDHA2, FHDHA3, FHDHA4 and FHDHA5. The FHDHA1 was subjected to semi-preparative reverse phase HPLC. Lineweaver-Burk plots were used to investigate the kinetic parameters of α-amylase and α-glucosidase inhibitory activity. The interactions between plumieride and porcine pancreatic α-amylase and α-glucosidase were analyzed through an in silico molecular docking study. RESULTS Phytochemical identification of compounds present in the FHDHA fraction of H. drasticus latex was possible by 1H, 13C NMR analysis and mass spectrometry, and the results were compared with the literature. The identified compounds were α-ethyl glucoside, protocatechuic acid, 3-O-caffeoylquinic acid, 15-demethylplumieride acid, 5-O-caffeoylquinic acid, caffeic acid, vanillic acid, plumieride, and catechin. The inhibition results of the fractions tested against α-amylase and α-glucosidase showed inhibitory activities dependent on the increase of fractions and compound concentrations. The IC50 results obtained from FHDHA, FHDHA1 and plumieride fractions against α-amylase were 36.46, 72.61, 33.87 μg/mL respectively. The IC50 of plumieride was the closest to that of acarbose (22.52 μg/mL), a result similar to that obtained for α-glucosidase. The type of inhibition was competitive for both enzymes. CONCLUSIONS There was strong inhibition of α-amylase and α-glucosidase by FHDHA, FHDHA1 and plumieride, suggesting that these enzymes slow glucose absorption.
Collapse
Affiliation(s)
- Francimauro S Morais
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará. Fortaleza, Ceará, Brazil.
| | | | | | - Alison B Silva
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Brazil
| | - Otilia D L Pessoa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Brazil
| | - Cleverson D T Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará. Fortaleza, Ceará, Brazil
| | - Nylane M N Alencar
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Brazil
| | - Ariclecio C Oliveira
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará. Fortaleza, Ceará, Brazil
| |
Collapse
|
27
|
Xu D, Huang X, Hassan HM, Wang L, Li S, Jiang Z, Zhang L, Wang T. Hypoglycaemic effect of catalpol in a mouse model of high-fat diet-induced prediabetes. Appl Physiol Nutr Metab 2020; 45:1127-1137. [PMID: 32294390 DOI: 10.1139/apnm-2020-0075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes mellitus is a major health problem and a societal burden. Individuals with prediabetes are at increased risk of type 2 diabetes mellitus. Catalpol, an iridoid glycoside, has been reported to exert a hypoglycaemic effect in db/db mice, but its effect on the progression of prediabetes is unclear. In this study, we established a mouse model of prediabetes and examined the hypoglycaemic effect, and the mechanism of any such effect, of catalpol. Catalpol (200 mg/(kg·day)) had no effect on glucose tolerance or the serum lipid level in a mouse model of impaired glucose tolerance-stage prediabetes. However, catalpol (200 mg/(kg·day)) increased insulin sensitivity and decreased the fasting glucose level in a mouse model of impaired fasting glucose/impaired glucose tolerance-stage prediabetes. Moreover, catalpol increased the mitochondrial membrane potential (1.52-fold) and adenosine triphosphate content (1.87-fold) in skeletal muscle and improved skeletal muscle function. These effects were mediated by activation of the insulin receptor-1/glucose transporter type 4 (IRS-1/GLUT4) signalling pathway in skeletal muscle. Our findings will facilitate the development of a novel approach to suppressing the progression of diabetes at an early stage. Novelty Catalpol prevents the progression of prediabetes in a mouse model of prediabetes. Catalpol improves insulin sensitivity in skeletal muscle. The effects of catalpol are mediated by activation of the IRS-1/GLUT4 signalling pathway.
Collapse
Affiliation(s)
- Dengqiu Xu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaofei Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hozeifa M Hassan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, People's Republic of China
| | - Lu Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Sijia Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, People's Republic of China.,Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Tao Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
28
|
Bhattamisra SK, Yap KH, Rao V, Choudhury H. Multiple Biological Effects of an Iridoid Glucoside, Catalpol and Its Underlying Molecular Mechanisms. Biomolecules 2019; 10:E32. [PMID: 31878316 PMCID: PMC7023090 DOI: 10.3390/biom10010032] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Catalpol, an iridoid glucoside, is widely distributed in many plant families and is primarily obtained from the root of Rehmanniaglutinosa Libosch. Rehmanniaglutinosa is a plant very commonly used in Chinese and Korean traditional medicine for various disorders, including diabetes mellitus, neuronal disorders, and inflammation. Catalpol has been studied extensively for its biological properties both in vitro and in vivo. This review aims to appraise the biological effects of catalpol and their underlying mechanisms. An extensive literature search was conducted using the keyword "Catalpol" in the public domains of Google scholar, PubMed, and Scifinder. Catalpol exhibits anti-diabetic, cardiovascular protective, neuroprotective, anticancer, hepatoprotective, anti-inflammatory, and anti-oxidant effects in experimental studies. Anti-inflammatory and antioxidant properties are mostly related for its biological effect. However, some specific mechanisms are also elucidated. Elevated serotonin and BDNF level by catalpol significantly protect against depression and neurodegeneration. Catalpol demonstrated an increased mitochondrial biogenesis and activation of PI3K/Akt pathway for insulin sensitizing effect. Further, its cardiovascular protective effect was linked to PI3K/Akt, apelin/APJ and Jak-Stat pathway. Catalpol produced a significant reduction in cell proliferation and an increase in apoptosis in different cancer conditions. Overall, catalpol demonstrated multiple biological effects due to its numerous mechanisms including anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Kah Heng Yap
- School of Post graduate studies, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia; (K.H.Y.); (V.R.)
| | - Vikram Rao
- School of Post graduate studies, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia; (K.H.Y.); (V.R.)
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia;
| |
Collapse
|
29
|
Chen L, Guo T, Yu Y, Sun Y, Yu G, Cheng L. Heat shock cognate protein 70 promotes the differentiation of C2C12 myoblast and targets Yin Yang 1. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:551. [PMID: 31807532 DOI: 10.21037/atm.2019.09.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Heat shock cognate protein 70 (HSC70) is a constitutively expressed molecular chaperone protein which can maintain the structure and function of the protein. HSC70 is engaged in a variety of physiological processes, yet its role during skeletal muscle differentiation is still unclear. Methods C2C12 cells were obtained and cultured. During differentiation, the expression of HSC70 was evaluated by RT-PCR. To determine the function of HSC70 during C2C12 myoblast differentiation, myotube transfection of siR-HSC70 was performed with Lipofectamine 2000 Reagent. Western blot was used to measure the expression of Yin Yang 1 (YY1) after down-regulating HSC70. To further assess if YY1 mediates the pro-differentiation effect of HSC70, a plasmid of YY1 overexpression was used to increase the expression of YY1 in the presence of siR-HSC70-2. The formation of myotubes was visualized by immunofluorescent staining, while the expression levels of MyoD and MyoG were evaluated by RT-PCR. Results In this study, we found that HSC70 was up-regulated during C2C12 myoblast differentiation. Knockdown of HSC70 not only inhibited the C2C12 myoblast differentiation but also reduced the expression of MyoD and MyoG. When YY1 protein was over-expressed, it could restore the differentiation in cells with HSC70 knockdown or inhibition. Conclusions Collectively, this study demonstrates that HSC70 is involved in the regulation of C2C12 myoblast differentiation via YY1 and may serve as a potential target for a therapeutic strategy to prevent muscle atrophy.
Collapse
Affiliation(s)
- Lei Chen
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Tao Guo
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yan Yu
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yeqing Sun
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Guangrong Yu
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Liming Cheng
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People's Republic of China, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
30
|
Catalpol in Diabetes and its Complications: A Review of Pharmacology, Pharmacokinetics, and Safety. Molecules 2019; 24:molecules24183302. [PMID: 31514313 PMCID: PMC6767014 DOI: 10.3390/molecules24183302] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
This review aimed to provide a general view of catalpol in protection against diabetes and diabetic complications, as well as its pharmacokinetics and safety concerns. The following databases were consulted with the retrieval of more than 100 publications through June 2019: PubMed, Chinese National Knowledge Infrastructure, WanFang Data, and web of science. Catalpol exerts an anti-diabetic effect in different animal models with an oral dosage ranging from 2.5 to 200 mg/kg in rats and 10 to 200 mg/kg in mice. Besides, catalpol may prevent the development of diabetic complications in kidney, heart, central nervous system, and bone. The underlying mechanism may be associated with an inhibition of inflammation, oxidative stress, and apoptosis through modulation of various cellular signaling, such as AMPK/PI3K/Akt, PPAR/ACC, JNK/NF-κB, and AGE/RAGE/NOX4 signaling pathways, as well as PKCγ and Cav-1 expression. The pharmacokinetic profile reveals that catalpol could pass the blood-brain barrier and has a potential to be orally administrated. Taken together, catalpol is a well-tolerated natural compound with promising pharmacological actions in protection against diabetes and diabetic complications via multi-targets, offering a novel scaffold for the development of anti-diabetic drug candidate. Further prospective and well-designed clinical trials will shed light on the potential of clinical usage of catalpol.
Collapse
|
31
|
Xu D, Jiang Z, Sun Z, Wang L, Zhao G, Hassan HM, Fan S, Zhou W, Han S, Zhang L, Wang T. Mitochondrial dysfunction and inhibition of myoblast differentiation in mice with high-fat-diet-induced pre-diabetes. J Cell Physiol 2018; 234:7510-7523. [PMID: 30362548 DOI: 10.1002/jcp.27512] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/10/2018] [Indexed: 01/18/2023]
Abstract
Pre-diabetes is characterized by impaired glucose tolerance (IGT) and/or impaired fasting glucose. Impairment of skeletal muscle function is closely associated with the progression of diabetes. However, the entire pathological characteristics and mechanisms of pre-diabetes in skeletal muscle remain fully unknown. Here, we established a mouse model of pre-diabetes, in which 6-week-old male C57BL6/J mice were fed either normal diet or high-fat diet (HFD) for 8 or 16 weeks. Both non-fasting and fasting glucose levels and the results of glucose and insulin tolerance tests showed that mice fed an 8-week HFD developed pre-diabetes with IGT; whereas mice fed a 16-week HFD presented with impaired fasting glucose and impaired glucose tolerance (IFG-IGT). Mice at both stages of pre-diabetes displayed decreased numbers of mitochondria in skeletal muscle. Moreover, IFG-IGT mice exhibited decreased mitochondrial membrane potential and ATP production in skeletal muscle and muscle degeneration characterized by a shift in muscle fibers from predominantly oxidative type I to glycolytic type II. Western blotting and histological analysis confirmed that myoblast differentiation was only inhibited in IFG-IGT mice. For primary skeletal muscle satellite cells, inhibition of differentiation was observed in palmitic acid-induced insulin resistance model. Moreover, enhanced myoblast differentiation increased glucose uptake and insulin sensitivity. These findings indicate that pre-diabetes result in mitochondrial dysfunction and inhibition of myoblast differentiation in skeletal muscle. Therefore, interventions that enhance myoblast differentiation may improve insulin resistance of diabetes at the earlier stage.
Collapse
Affiliation(s)
- Dengqiu Xu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance China Pharmaceutical University, Nanjing, China
| | - Zeren Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Lu Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Guolin Zhao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Hozeifa M Hassan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Sisi Fan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Wang Zhou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Shuangshuang Han
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance China Pharmaceutical University, Nanjing, China.,Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tao Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| |
Collapse
|