1
|
Gluvic Z, Obradovic M, Manojlovic M, Vincenza Giglio R, Maria Patti A, Ciaccio M, Suri JS, Rizzo M, Isenovic ER. Impact of different hormones on the regulation of nitric oxide in diabetes. Mol Cell Endocrinol 2024; 592:112325. [PMID: 38968968 DOI: 10.1016/j.mce.2024.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Polymetabolic syndrome achieved pandemic proportions and dramatically influenced public health systems functioning worldwide. Chronic vascular complications are the major contributors to increased morbidity, disability, and mortality rates in diabetes patients. Nitric oxide (NO) is among the most important vascular bed function regulators. However, NO homeostasis is significantly deranged in pathological conditions. Additionally, different hormones directly or indirectly affect NO production and activity and subsequently act on vascular physiology. In this paper, we summarize the recent literature data related to the effects of insulin, estradiol, insulin-like growth factor-1, ghrelin, angiotensin II and irisin on the NO regulation in physiological and diabetes circumstances.
Collapse
Affiliation(s)
- Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mia Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy; Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Angelo Maria Patti
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy; Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Manfredi Rizzo
- Internal Medicine Unit, "Vittorio Emanuele II" Hospital, Castelvetrano, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Bagheripour F, Jeddi S, Kashfi K, Ghasemi A. Anti-obesity and anti-diabetic effects of L-citrulline are sex-dependent. Life Sci 2024; 339:122432. [PMID: 38237764 DOI: 10.1016/j.lfs.2024.122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
AIMS Anti-diabetic and anti-obesity effects of L-citrulline (Cit) have been reported in male rats. This study determined sex differences in response to Cit in Wistar rats. MAIN METHODS Type 2 diabetes (T2D) was induced using a high-fat diet followed by low-dose of streptozotocin (30 mg/kg) injection. Male and female Wistar rats were divided into 4 groups (n = 6/group): Control, control+Cit, T2D, and T2D + Cit. Cit (4 g/L in drinking water) was administered for 8 weeks. Obesity indices were recorded, serum fasting glucose and lipid profile were measured, and glucose and pyruvate tolerance tests were performed during the Cit intervention. White (WAT) and brown (BAT) adipose tissues were weighted, and the adiposity index was calculated at the end of the study. KEY FINDINGS Cit was more effective in decreasing fasting glucose (18 % vs. 11 %, P = 0.0100), triglyceride (20 % vs. 14 %, P = 0.0173), and total cholesterol (16 % vs. 11 %, P = 0.0200) as well as decreasing gluconeogenesis and improving glucose tolerance, in females compared to male rats with T2D. Following Cit administration, decreases in WAT weight (16 % vs. 14 % for gonadal, 21 % vs. 16 % for inguinal, and 18 % vs. 13 % for retroperitoneal weight, all P < 0.0001) and increases in BAT weight (58 % vs. 19 %, for interscapular and 10 % vs. 7 % for axillary, all P < 0.0001) were higher in females than male rats with T2D. The decrease in adiposity index was also higher (11 % vs. 9 %, P = 0.0007) in females. SIGNIFICANCE The anti-obesity and anti-diabetic effects of Cit in rats are sex-dependent, with Cit being more effective in female than male rats.
Collapse
Affiliation(s)
- Fatemeh Bagheripour
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Yousefzadeh N, Jeddi S, Afzali H, Kashfi K, Ghasemi A. Chronic nitrate administration increases the expression the genes involved in the browning of white adipose tissue in female rats. Cell Biochem Funct 2022; 40:750-759. [PMID: 36098488 DOI: 10.1002/cbf.3741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022]
Abstract
Nitrate, a nitric oxide (NO) donor, has antiobesity effect in female rats. This study hypothesized that the antiobesity effect of nitrate in female rats is due to the browning of white adipose tissue (WAT). Female Wistar rats (aged 8 months) were divided into two groups (n = 10/group): the control group received tap water and the nitrate group received water containing 100 mg/L of sodium nitrate for 9 months. At months 0, 3, 6, and 9, obesity indices were measured. At month 9, gonadal adipose tissue was used to measure messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor-γ (PPAR-γ), PPAR-γ coactivator 1-α (PGC1-α), uncoupling protein 1 (UCP1), and adipocyte density and area. After the 9-month intervention, nitrate-treated rats had lower body weight, body mass index, thoracic circumference, and abdominal circumference by 6.4% (p = .012), 9.1% (p = .029), 6.0% (p = .056), and 5.7% (p = .098), respectively. In addition, nitrate-treated rats had higher PPAR-γ (mRNA: 1.78-fold, p = .016 and protein: 19%, p = .076), PGC1-α (mRNA: 1.69-fold, p = .012 and protein: 68%, p = .001), and UCP1 (mRNA: 2.50-fold, p = .001 and protein: 81%, p = .001) in gonadal adipose tissue. Nitrate also reduced adipocyte area by 35% (p = .054) and increased adipocyte density by 31% (p = .086). In conclusion, antiobesity effect of nitrate in female rats is associated with increased browning of gonadal adipose tissue as indicated by higher expression of PPAR-γ, PGC1-α, and UCP1 and reduced adipocyte area and increased adipocyte density.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Afzali
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, New York, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Yousefzadeh N, Jeddi S, Shokri M, Afzali H, Norouzirad R, Kashfi K, Ghasemi A. Long Term Sodium Nitrate Administration Positively Impacts Metabolic and Obesity Indices in Ovariectomized Rats. Arch Med Res 2021; 53:147-156. [PMID: 34696904 DOI: 10.1016/j.arcmed.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND In postmenopausal women, nitric oxide (NO) deficiency is associated with obesity and type 2 diabetes (T2D). This study aims at determining the long-term effects of low-dose nitrate administration on metabolic and obesity indices in ovariectomized (OVX) rats. METHODS OVX rat model was induced using the two dorsolateral skin incision method. Two months after ovariectomy, rats were divided into three groups (n = 10/group): Control, OVX, and OVX+nitrate, and the latter received sodium nitrate at a dose of 100 mg/L in their drinking water for nine months. Fasting serum glucose and lipid profile were measured every month. A glucose tolerance test was performed at months 1, 3, and 9 (the end of the study). Obesity indices were calculated, and histological analyses were performed on the gonadal adipose tissues at month 9. RESULTS OVX rats had impaired fasting glucose, glucose intolerance, and dyslipidemia with higher obesity indices at month 9. Nitrate improved glucose and lipid metabolism in OVX rats and decreased body weight (6.9%), body mass index (12.5%), Lee index (5.4%), adiposity index (23.9%), abdominal circumference (10.5%), and thoracic circumference (17.1%). Also, nitrate decreased adipocyte area by 49% and increased adipocyte density by 193% in gonadal adipose tissue. CONCLUSION Long-term low-dose nitrate administration improves glucose and lipid metabolism in OVX rats in association with decreasing OVX-induced adiposity, increasing adipocyte density, and decreasing adipocyte area. These findings provide support for a potential therapeutic role of nitrate in postmenopausal women with some features of metabolic syndrome.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Shokri
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Afzali
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Norouzirad
- School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zhang Z, Yang D, Xiang J, Zhou J, Cao H, Che Q, Bai Y, Guo J, Su Z. Non-shivering Thermogenesis Signalling Regulation and Potential Therapeutic Applications of Brown Adipose Tissue. Int J Biol Sci 2021; 17:2853-2870. [PMID: 34345212 PMCID: PMC8326120 DOI: 10.7150/ijbs.60354] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
In mammals, thermogenic organs exist in the body that increase heat production and enhance energy regulation. Because brown adipose tissue (BAT) consumes energy and generates heat, increasing energy expenditure via BAT might be a potential strategy for new treatments for obesity and obesity-related diseases. Thermogenic differentiation affects normal adipose tissue generation, emphasizing the critical role that common transcriptional regulation factors might play in common characteristics and sources. An understanding of thermogenic differentiation and related factors could help in developing ways to improve obesity indirectly or directly through targeting of specific signalling pathways. Many studies have shown that the active components of various natural products promote thermogenesis through various signalling pathways. This article reviews recent major advances in this field, including those in the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA), cyclic guanosine monophosphate-GMP-dependent protein kinase G (cGMP-AKT), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), transforming growth factor-β/bone morphogenic protein (TGF-β/BMP), transient receptor potential (TRP), Wnt, nuclear factor-κ-light-chain-enhancer of activated B cells (NF-κΒ), Notch and Hedgehog (Hh) signalling pathways in brown and brown-like adipose tissue. To provide effective information for future research on weight-loss nutraceuticals or drugs, this review also highlights the natural products and their active ingredients that have been reported in recent years to affect thermogenesis and thus contribute to weight loss via the above signalling pathways.
Collapse
Affiliation(s)
- Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Di Yang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junwei Xiang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Cao
- Guangdong Cosmetics Engineering & Technology Research Center, School of Chemistry and Chemical Engneering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou 510663, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
6
|
Shen F, Zhao Y, Ding W, Liu K, Ren X, Zhang Q, Yu J, Hu Y, Zuo H, Guo M, Jin L, Gong M, Wu W, Gu X, Xu L, Yang F, Lu J. Autonomous climbing: An effective exercise mode with beneficial outcomes of aerobic exercise and resistance training. Life Sci 2020; 265:118786. [PMID: 33221346 DOI: 10.1016/j.lfs.2020.118786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
AIMS To assess the effects of three specific exercise training modes, aerobic exercise (A), resistance training (R) and autonomous climbing (AC), aimed at proposing a cross-training method, on improving the physical, molecular and metabolic characteristics of mice without many side effects. MATERIALS AND METHODS Seven-week-old male mice were randomly divided into four groups: control (C), aerobic exercise (A), resistance training (R), and autonomous climbing (AC) groups. Physical changes in mice were tracked and analysed to explore the similarities and differences of these three exercise modes. Histochemistry, quantitative real-time PCR (RT-PCR), western blot (WB) and metabolomics analysis were performed to identify the underlying relationships among the three training modes. KEY FINDINGS Mice in the AC group showed better body weight control, glucose and energy homeostasis. Molecular markers of myogenesis, hypertrophy, antidegradation and mitochondrial function were highly expressed in the muscle of mice after autonomous climbing. The serum metabolomics landscape and enriched pathway comparison indicated that the aerobic oxidation pathway (pentose phosphate pathway, galactose metabolism and fatty acid degradation) and amino acid metabolism pathway (tyrosine, arginine and proline metabolism) were significantly enriched in group AC, suggesting an increased muscle mitochondrial function and protein balance ability of mice after autonomous climbing. SIGNIFICANCE We propose a new exercise mode, autonomous climbing, as a convenient but effective training method that combines the beneficial effects of aerobic exercise and resistance training.
Collapse
Affiliation(s)
- Fei Shen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yu Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China; Department of Physical Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710049, PR China
| | - Wubin Ding
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Kailin Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China
| | - Xiangyu Ren
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China
| | - Qiang Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yepeng Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China; Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Hui Zuo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ling Jin
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China
| | - Mingkai Gong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China
| | - Wenhao Wu
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Fenglei Yang
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Jian Lu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
7
|
Jeddi S, Yousefzadeh N, Afzali H, Ghasemi A. Long-term nitrate administration increases expression of browning genes in epididymal adipose tissue of male type 2 diabetic rats. Gene 2020; 766:145155. [PMID: 32950634 DOI: 10.1016/j.gene.2020.145155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 01/31/2023]
Abstract
Expression of browning genes are lower in both humans and animals with type 2 diabetes (T2D). This study aims at determining effects of long-term nitrate administration on protein and mRNA levels of uncoupling protein 1 (UCP1), peroxisome proliferator activated receptor gamma (PPAR-γ), and PPAR-γ coactivator 1 alpha (PGC1-α) in epididymal adipose tissue (eAT) of rats with T2D. Male Wistar rats were divided into 4 groups (n = 6/group): Control, diabetes, control + nitrate (CN), and diabetes + nitrate (DN). T2D was induced using high fat diet combined with a low-dose of streptozotocin (30 mg/kg body weight). Sodium nitrate was administrated at a dose of 100 mg/L for 6 months in nitrate-treated rats. Fasting serum glucose and insulin concentrations were measured at months 0 (i.e. at start of the protocol), 3, and 6. At month 6, protein and mRNA levels of UCP1, PPAR-γ, and PGC1-α were measured in eAT samples. In addition, tissue concentration of cyclic guanosine monophosphate (cGMP) was measured and histological analyses were done at month 6. In rats with T2D, 6-month administration of nitrate decreased serum glucose and insulin concentrations by 13% and 23%, respectively and increased cGMP level by 85%. Rats with T2D had lower mRNA and protein levels of PPAR-γ (62%, P < 0.0001 and 18%, P = 0.0472), PGC1-α (49%, P = 0.0019 and 21%, P = 0.0482), and UCP1 (35%, P = 0.0613 and 30%, P = 0.0031) in eAT; 6-month nitrate administration restored these decreased levels to near control values. In addition, nitrate increased adipocyte density by 193% and decreased adipocyte area by 53% in rats with T2D. In conclusion, long-term low-dose nitrate administration increased mRNA and protein expressions of browning genes in white adipose tissue of male rats with T2D; these findings partly explain favorable metabolic effects of nitrate administration in diabetes.
Collapse
Affiliation(s)
- Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Afzali
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Gheibi S, Ghasemi A. Insulin secretion: The nitric oxide controversy. EXCLI JOURNAL 2020; 19:1227-1245. [PMID: 33088259 PMCID: PMC7573190 DOI: 10.17179/excli2020-2711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is a gas that serves as a ubiquitous signaling molecule participating in physiological activities of various organ systems. Nitric oxide is produced in the endocrine pancreas and contributes to synthesis and secretion of insulin. The potential role of NO in insulin secretion is disputable - both stimulatory and inhibitory effects have been reported. Available data indicate that effects of NO critically depend on its concentration. Different isoforms of NO synthase (NOS) control this and have the potential to decrease or increase insulin secretion. In this review, the role of NO in insulin secretion as well as the possible reasons for discrepant findings are discussed. A better understanding of the role of NO system in the regulation of insulin secretion may facilitate the development of new therapeutic strategies in the management of diabetes.
Collapse
Affiliation(s)
- Sevda Gheibi
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Gheibi S, Samsonov AP, Gheibi S, Vazquez AB, Kashfi K. Regulation of carbohydrate metabolism by nitric oxide and hydrogen sulfide: Implications in diabetes. Biochem Pharmacol 2020; 176:113819. [PMID: 31972170 DOI: 10.1016/j.bcp.2020.113819] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the human body and have a key role in many of the physiological activities of the various organ systems. Decreased NO bioavailability and deficiency of H2S are involved in the pathophysiology of type 2 diabetes and its complications. Restoration of NO levels have favorable metabolic effects in diabetes. The role of H2S in pathophysiology of diabetes is however controversial; H2S production is decreased during development of obesity, diabetes, and its complications, suggesting the potential therapeutic effects of H2S. On the other hand, increased H2S levels disturb the pancreatic β-cell function and decrease insulin secretion. In addition, there appear to be important interactions between NO and H2S at the levels of both biosynthesis and signaling pathways, yet clear an insight into this relationship is lacking. H2S potentiates the effects of NO in the cardiovascular system as well as NO release from its storage pools. Likewise, NO increases the activity and the expression of H2S-generating enzymes. Inhibition of NO production leads to elimination/attenuation of the cardioprotective effects of H2S. Regarding the increasing interest in the therapeutic applications of NO or H2S-releasing molecules in a variety of diseases, particularly in the cardiovascular disorders, much is to be learned about their function in glucose/insulin metabolism, especially in diabetes. The aim of this review is to provide a better understanding of the individual and the interactive roles of NO and H2S in carbohydrate metabolism.
Collapse
Affiliation(s)
- Sevda Gheibi
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden.
| | - Alan P Samsonov
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Shahsanam Gheibi
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Alexandra B Vazquez
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, USA.
| |
Collapse
|
10
|
Zhu F, Huang M, Jiao J, Zhuang P, Mao L, Zhang Y. Environmental exposure to perchlorate, nitrate, and thiocyanate in relation to obesity: A population-based study. ENVIRONMENT INTERNATIONAL 2019; 133:105191. [PMID: 31639604 DOI: 10.1016/j.envint.2019.105191] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Perchlorate, nitrate, and thiocyanate are well-known thyroid disrupters and may contribute to changes in body weight. However, the associations between environmental exposure to these chemicals and obesity-related outcomes remain unclear. OBJECTIVES We aim to examine the urinary levels of perchlorate, nitrate, and thiocyanate and their associations with obesity and abdominal obesity in the U.S. METHODS Here, we investigated the data of 16,265 adults aged 20-85 years from the National Health and Nutritional Examination Survey (NHANES) in 2001-2014. Urinary levels of perchlorate, nitrate, and thiocyanate were measured by ion chromatography combined with electrospray tandem mass spectrometry. Obesity and abdominal obesity were defined by the body mass index and waist circumference, respectively. Logistic regression models were used to estimate the associations. RESULTS Overall, 5794 (35.6%) cases of obesity and 9090 cases (55.9%) of abdominal obesity were observed among the participants. In multivariable-adjusted logistic regression models, urinary nitrate was inversely associated with obesity (p = 0.0022 for trend), while urinary thiocyanate was positively related to obesity (p < 0.001 for trend). Compared with the lowest quartile, the odds ratios with 95% confidence intervals (CIs) across increasing quartiles were 0.95 (95% CI, 0.83-1.08), 0.88 (0.75-1.03), and 0.74 (0.60-0.90) for urinary nitrate and 1.31 (1.16-1.48), 1.53 (1.36-1.73), and 1.73 (1.47-2.03) for urinary thiocyanate. Urinary perchlorate was not correlated with obesity. Similar associations were also found between exposure to these chemicals and abdominal obesity. CONCLUSIONS A higher exposure to urinary nitrate was associated with a lower risk of obesity, while a positive association was observed for urinary thiocyanate. These findings emphasize the need to longitudinally evaluate environmental exposure to perchlorate, nitrate, and thiocyanate with respect to their effect on obesity in humans.
Collapse
Affiliation(s)
- Fanghuan Zhu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengmeng Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Fischer A, Lüersen K, Schultheiß G, de Pascual-Teresa S, Mereu A, Ipharraguerre IR, Rimbach G. Supplementation with nitrate only modestly affects lipid and glucose metabolism in genetic and dietary-induced murine models of obesity. J Clin Biochem Nutr 2019; 66:24-35. [PMID: 32001953 PMCID: PMC6983433 DOI: 10.3164/jcbn.19-43] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 01/07/2023] Open
Abstract
To gain a better understanding of how nitrate may affect carbohydrate and lipid metabolism, female wild-type mice were fed a high-fat, high-fructose diet supplemented with either 0, 400, or 800 mg nitrate/kg diet for 28 days. Additionally, obese female db/db mice were fed a 5% fat diet supplemented with the same levels and source of nitrate. Nitrate decreased the sodium-dependent uptake of glucose by ileal mucosa in wild-type mice. Moreover, nitrate significantly decreased triglyceride content and mRNA expression levels of Pparγ in liver and Glut4 in skeletal muscle. Oral glucose tolerance as well as plasma cholesterol, triglyceride, insulin, leptin, glucose and the activity of ALT did not significantly differ between experimental groups but was higher in db/db mice than in wild-type mice. Nitrate changed liver fatty acid composition and mRNA levels of Fads only slightly. Further hepatic genes encoding proteins involved in lipid and carbohydrate metabolism were not significantly different between the three groups. Biomarkers of inflammation and autophagy in the liver were not affected by the different dietary treatments. Overall, the present data suggest that short-term dietary supplementation with inorganic nitrate has only modest effects on carbohydrate and lipid metabolism in genetic and dietary-induced mouse models of obesity.
Collapse
Affiliation(s)
- Alexandra Fischer
- Institute of Human Nutrition and Food Science, Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| | - Gerhard Schultheiß
- Animal Welfare Officer, University of Kiel, Hermann-Rodewald-Strasse 12, 24118 Kiel, Germany
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Food Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain
| | - Alessandro Mereu
- Yara Iberian, C/ Infanta Mercedes 31 - 2nd floor, 28020 Madrid, Spain
| | - Ignacio R Ipharraguerre
- Institute of Human Nutrition and Food Science, Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| |
Collapse
|
12
|
Norouzirad R, Gholami H, Ghanbari M, Hedayati M, González-Muniesa P, Jeddi S, Ghasemi A. Dietary inorganic nitrate attenuates hyperoxia-induced oxidative stress in obese type 2 diabetic male rats. Life Sci 2019; 230:188-196. [PMID: 31150686 DOI: 10.1016/j.lfs.2019.05.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/18/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
Abstract
AIMS Hyperoxia has beneficial metabolic effects in type 2 diabetes. However, hyperoxia exacerbates already existing oxidative stress in type 2 diabetes. Nitrate, a nitric oxide donor, is an effective new treatment in type 2 diabetes and also has antioxidant properties. The aim of this study was to determine whether nitrate administration can attenuate hyperoxia-induced oxidative stress in obese type 2 diabetic rats. MAIN METHODS Fifty-six male Wistar rats (190-210 g) were divided into 8 groups: Controls (non-treated, nitrate-treated, O2-treated, and nitrate + O2-treated) and diabetes (non-treated, nitrate-treated, O2-treated, and nitrate + O2-treated). Diabetes was induced using high-fat diet and low-dose of streptozotocin (30 mg/kg). Rats in intervention groups, were exposed to 95% oxygen and consumed sodium nitrate (100 mg/L) in drinking water. Serum fasting glucose, oxidized (GSSG) and reduced (GSH) glutathiones, total oxidant status (TOS), catalase and superoxide dismutase (SOD) activities, and total antioxidant capacity (TAC) were measured after intervention. Oxidative stress index (OSI) was calculated as TOS/TAC ratio. KEY FINDINGS Diabetic rats had increased oxidative stress and hyperoxia exacerbated it. In O2-diabetic rats, nitrate decreased GSSG (102.7 ± 2.1 vs. 236.0 ± 20.1 μM, P < 0.001), TOS (67.7 ± 7.3 vs. 104 ± 3.8 μM, P < 0.001), and OSI (0.44 ± 0.04 vs. 0.91 ± 0.07, P < 0.001) and increased catalase (2.8 ± 0.13 vs. 1.8 ± 0.21 KU/L, P = 0.014), SOD (53.4 ± 1.5 vs. 38.4 ± 1.2 U/mL, P < 0.001), GSH (43.7 ± 1.4 vs. 17.8 ± 0.5 mM, P = 0.003), TAC (152.5 ± 1.9 vs. 116.7 ± 5.0 mM, P < 0.001), and GSH/GSSG ratio (0.43 ± 0.01 vs. 0.08 ± 0.01, P = 0.005). Nitrate also potentiated effects of hyperoxia on decreasing fasting glucose. SIGNIFICANCE Our results showed that dietary nitrate attenuates hyperoxia-induced oxidative stress in type 2 diabetic rats.
Collapse
Affiliation(s)
- Reza Norouzirad
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dezful University of Medical Sciences, Dezful, Iran.
| | - Hanieh Gholami
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Ghanbari
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pedro González-Muniesa
- University of Navarra, Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain; University of Navarra, Centre for Nutrition Research, School of Pharmacy and Nutrition, Pamplona, Spain; IdiSNA Navarra's Health Research Institute, Pamplona, Spain; CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|