1
|
Sun Y, Xu M, Duan Q, Bryant JL, Xu X. The role of autophagy in the progression of HIV infected cardiomyopathy. Front Cell Dev Biol 2024; 12:1372573. [PMID: 39086659 PMCID: PMC11289186 DOI: 10.3389/fcell.2024.1372573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/05/2024] [Indexed: 08/02/2024] Open
Abstract
Although highly active antiretroviral therapy (HAART) has changed infection with human immunodeficiency virus (HIV) from a diagnosis with imminent mortality to a chronic illness, HIV positive patients who do not develop acquired immunodeficiency syndrome (AIDs) still suffer from a high rate of cardiac dysfunction and fibrosis. Regardless of viral load and CD count, HIV-associated cardiomyopathy (HIVAC) still causes a high rate of mortality and morbidity amongst HIV patients. While this is a well characterized clinical phenomena, the molecular mechanism of HIVAC is not well understood. In this review, we consolidate, analyze, and discuss current research on the intersection between autophagy and HIVAC. Multiple studies have linked dysregulation in various regulators and functional components of autophagy to HIV infection regardless of mode of viral entry, i.e., coronary, cardiac chamber, or pericardial space. HIV proteins, including negative regulatory factor (Nef), glycoprotein 120 (gp120), and transactivator (Tat), have been shown to interact with type II microtubule-associated protein-1 β light chain (LC3-II), Rubiquitin, SQSTM1/p62, Rab7, autophagy-specific gene 7 (ATG7), and lysosomal-associated membrane protein 1 (LAMP1), all molecules critical to normal autophagy. HIV infection can also induce dysregulation of mitochondrial bioenergetics by altering production and equilibrium of adenosine triphosphate (ATP), mitochondrial reactive oxygen species (ROS), and calcium. These changes alter mitochondrial mass and morphology, which normally trigger autophagy to clear away dysfunctional organelles. However, with HIV infection also triggering autophagy dysfunction, these abnormal mitochondria accumulate and contribute to myocardial dysfunction. Likewise, use of HAART, azidothymidine and Abacavir, have been shown to induce cardiac dysfunction and fibrosis by inducing abnormal autophagy during antiretroviral therapy. Conversely, studies have shown that increasing autophagy can reduce the accumulation of dysfunctional mitochondria and restore cardiomyocyte function. Interestingly, Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, has also been shown to reduce HIV-induced cytotoxicity by regulating autophagy-related proteins, making it a non-antiviral agent with the potential to treat HIVAC. In this review, we synthesize these findings to provide a better understanding of the role autophagy plays in HIVAC and discuss the potential pharmacologic targets unveiled by this research.
Collapse
Affiliation(s)
- Yuting Sun
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Mengmeng Xu
- Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University, New York, NY, United States
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| | - Joseph L. Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
2
|
Favere K, Van Hecke M, Eens S, Bosman M, Delputte PL, De Sutter J, Fransen E, Roskams T, Guns PJ, Heidbuchel H. The influence of endurance exercise training on myocardial fibrosis and arrhythmogenesis in a coxsackievirus B3 myocarditis mouse model. Sci Rep 2024; 14:12653. [PMID: 38825590 PMCID: PMC11144711 DOI: 10.1038/s41598-024-61874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
Nonischaemic myocardial fibrosis is associated with cardiac dysfunction, malignant arrhythmias and sudden cardiac death. In the absence of a specific aetiology, its finding as late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging is often attributed to preceding viral myocarditis. Athletes presenting with ventricular arrhythmias often have nonischaemic LGE. Previous studies have demonstrated an adverse effect of exercise on the course of acute viral myocarditis. In this study, we have investigated, for the first time, the impact of endurance training on longer-term outcomes such as myocardial fibrosis and arrhythmogenicity in a murine coxsackievirus B3 (CVB)-induced myocarditis model. Male C57BL/6J mice (n = 72) were randomly assigned to 8 weeks of forced treadmill running (EEX) or no exercise (SED). Myocarditis was induced 2 weeks later by a single intraperitoneal injection with CVB, versus vehicle in the controls (PBS). In a separate study, mice (n = 30) were subjected to pretraining for 13 weeks (preEEX), without continuation of exercise during myocarditis. Overall, continuation of exercise resulted in a milder clinical course of viral disease, with less weight loss and better preserved running capacity. CVB-EEX and preEEX-CVB mice tended to have a lower mortality rate. At sacrifice (i.e. 6 weeks after inoculation), the majority of virus was cleared from the heart. Histological assessment demonstrated prominent myocardial inflammatory infiltration and cardiomyocyte loss in both CVB groups. Inflammatory lesions in the CVB-EEX group contained higher numbers of pro-inflammatory cells (iNOS-reactive macrophages and CD8+ T lymphocytes) compared to these in CVB-SED. Treadmill running during myocarditis increased interstitial fibrosis [82.4% (CVB-EEX) vs. 56.3% (CVB-SED); P = 0.049]. Additionally, perivascular and/or interstitial fibrosis with extensive distribution was more likely to occur with exercise [64.7% and 64.7% (CVB-EEX) vs. 50% and 31.3% (CVB-SED); P = 0.048]. There was a numerical, but not significant, increase in the number of scars per cross-section (1.9 vs. 1.2; P = 0.195), with similar scar distribution and histological appearance in CVB-EEX and CVB-SED. In vivo electrophysiology studies did not induce sustained monomorphic ventricular tachycardia, only nonsustained (usually polymorphic) runs. Their cumulative beat count and duration paralleled the increased fibrosis between CVB-EEX and CVB-SED, but the difference was not significant (P = 0.084 for each). Interestingly, in mice that were subjected to pretraining only without continuation of exercise during myocarditis, no differences between pretrained and sedentary mice were observed at sacrifice (i.e. 6 weeks after inoculation and training cessation) with regard to myocardial inflammation, fibrosis, and ventricular arrhythmogenicity. In conclusion, endurance exercise during viral myocarditis modulates the inflammatory process with more pro-inflammatory cells and enhances perivascular and interstitial fibrosis development. The impact on ventricular arrhythmogenesis requires further exploration.
Collapse
Affiliation(s)
- Kasper Favere
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610, Antwerp, Belgium.
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610, Antwerp, Belgium.
- Department of Cardiology, Antwerp University Hospital, 2650, Antwerp, Belgium.
- Department of Internal Medicine, Ghent University, 9000, Ghent, Belgium.
| | - Manon Van Hecke
- Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, 3000, Leuven, Belgium
| | - Sander Eens
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610, Antwerp, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610, Antwerp, Belgium
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610, Antwerp, Belgium
| | - Peter L Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610, Antwerp, Belgium
| | - Johan De Sutter
- Department of Internal Medicine, Ghent University, 9000, Ghent, Belgium
| | - Erik Fransen
- Centre for Medical Genetics, University of Antwerp, 2610, Antwerp, Belgium
| | - Tania Roskams
- Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, 3000, Leuven, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, 2650, Antwerp, Belgium
| |
Collapse
|
3
|
George SA, Trampel KA, Brunner K, Efimov IR. Moderate Endurance Exercise Increases Arrhythmia Susceptibility and Modulates Cardiac Structure and Function in a Sexually Dimorphic Manner. J Am Heart Assoc 2024; 13:e033317. [PMID: 38686869 PMCID: PMC11179941 DOI: 10.1161/jaha.123.033317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/05/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Although moderate endurance exercise has been reported to improve cardiovascular health, its effects on cardiac structure and function are not fully characterized, especially with respect to sexual dimorphism. We aimed to assess the effects of moderate endurance exercise on cardiac physiology in male versus female mice. METHODS AND RESULTS C57BL/6J mice of both sexes were run on a treadmill for 6 weeks. ECG and echocardiography were performed every 2 weeks. After 6 weeks of exercise, mice were euthanized, and triple parametric optical mapping was performed on Langendorff perfused hearts to assess cardiac electrophysiology. Arrhythmia inducibility was tested by programmed electrical stimulation. Left ventricular tissue was fixed, and RNA sequencing was performed to determine exercise-induced transcriptional changes. Exercise-induced left ventricular dilatation was observed in female mice alone, as evidenced by increased left ventricular diameter and reduced left ventricular wall thickness. Increased cardiac output was also observed in female exercised mice but not males. Optical mapping revealed further sexual dimorphism in exercise-induced modulation of cardiac electrophysiology. In female mice, exercise prolonged action potential duration and reduced voltage-calcium influx delay. In male mice, exercise reduced the calcium decay constant, suggesting faster calcium reuptake. Exercise increased arrhythmia inducibility in both male and female mice; however, arrhythmia duration was increased only in females. Lastly, exercise-induced transcriptional changes were sex dependent: females and males exhibited the most significant changes in contractile versus metabolism-related genes, respectively. CONCLUSIONS Our data suggest that moderate endurance exercise can significantly alter multiple aspects of cardiac physiology in a sex-dependent manner. Although some of these effects are beneficial, like improved cardiac mechanical function, others are potentially proarrhythmic.
Collapse
Affiliation(s)
- Sharon A. George
- Department of Biomedical EngineeringGeorge Washington UniversityWashingtonDC
- Department of Biomedical EngineeringNorthwestern UniversityChicagoIL
| | - Katy Anne Trampel
- Department of Biomedical EngineeringGeorge Washington UniversityWashingtonDC
- Department of Biomedical EngineeringNorthwestern UniversityChicagoIL
| | - Kelsey Brunner
- Department of Biomedical EngineeringGeorge Washington UniversityWashingtonDC
| | - Igor R. Efimov
- Department of Biomedical EngineeringGeorge Washington UniversityWashingtonDC
- Department of Biomedical EngineeringNorthwestern UniversityChicagoIL
- Department of MedicineNorthwestern UniversityChicagoIL
| |
Collapse
|
4
|
Herrera JJ, McAllister CM, Szczesniak D, Goddard R, Day SM. High-intensity exercise training using a rotarod instrument (RotaHIIT) significantly improves exercise capacity in mice. Physiol Rep 2024; 12:e15997. [PMID: 38697937 PMCID: PMC11065697 DOI: 10.14814/phy2.15997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 05/05/2024] Open
Abstract
Voluntary or forced exercise training in mice is used to assess functional capacity as well as potential disease-modifying effects of exercise over a range of cardiovascular disease phenotypes. Compared to voluntary wheel running, forced exercise training enables precise control of exercise workload and volume, and results in superior changes in cardiovascular performance. However, the use of a shock grid with treadmill-based training is associated with stress and risk of injury, and declining compliance with longer periods of training time for many mouse strains. With these limitations in mind, we designed a novel, high-intensity interval training modality (HIIT) for mice that is carried out on a rotarod. Abbreviated as RotaHIIT, this protocol establishes interval workload intensities that are not time or resource intensive, maintains excellent training compliance over time, and results in improved exercise capacity independent of sex when measured by treadmill graded exercise testing (GXT) and rotarod specific acceleration and endurance testing. This protocol may therefore be useful and easily implemented for a broad range of research investigations. As RotaHIIT training was not associated cardiac structural or functional changes, or changes in oxidative capacity in cardiac or skeletal muscle tissue, further studies will be needed to define the physiological adaptations and molecular transducers that are driving the training effect of this exercise modality.
Collapse
Affiliation(s)
- Jonathan J. Herrera
- Department of Molecular & Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Medical Scientist Training ProgramUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Christopher M. McAllister
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Danielle Szczesniak
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Rose‐Carmel Goddard
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Sharlene M. Day
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
5
|
Zhang S, Sun Y, Wang J, Lu Y, Yuan H, Zong Y, Zhu H, Tang Y, Sun Y, Zheng F, Li Y. Shuyu decoction exhibits anti-fatigue properties via alleviating exercise-induced immune dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117259. [PMID: 37783410 DOI: 10.1016/j.jep.2023.117259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuyu decoction (SYD), an effective traditional Chinese medicine (TCM), has been widely used for treating deficiency-related diseases for thousands of years. Meanwhile, exercise-induced fatigue (EF), a common physiological phenomenon observed in physical training, has been treated as a deficient condition in TCM for decades. Currently, not many studies have been conducted on the effect of SYD on EF and little is known about its underlying pharmacological mechanism. AIM OF THE STUDY This current study was designed to assess the anti-fatigue roles of SYD and explore its effect on exercise-induced immune dysfunction. MATERIALS AND METHODS Eighteen rats were randomly divided into three groups: normal control (NC) group, model (M) group, and SYD group (27.8 g/kg). The M and SYD group were given treadmill training for 6 weeks. From the fourth week, the SYD group was administered SYD intragastrically for 3 consecutive weeks. After three weeks of treatment, the rats were anesthetized, and the blood and spleen tissue samples were dissected. The blood sample was devoted to the blood biochemical-related indicators, which were used to evaluate the anti-fatigue of SYD. The expression of Interleukin (IL)-6, IL-1β, tumor necrosis factor-α (TNF-α), IL-17, CD3+, and CD4+ were detected by ELISA and the level of CD8+ of blood was measured through Flow Cytometry (FC). The histopathological changes of spleen tissue samples were determined by Hematoxylin and eosin (H&E) staining and an estimation of CD3+, CD4+, and CD8+ expression of spleen tissues were calculated through FC. RESULTS Compared with the M group, the SYD group observed an increase in tensile force and the ratio of cortisol to testosterone (TTE/COR), whereas a reduction in the levels of lactic acid (LAC), blood urea nitrogen (BUN), creatine kinase (CK), (P < 0.01 or P < 0.05). ELISA experiments showed that SYD reduced the expressions of IL-6, IL-1β, and TNF-α, IL-17 and increased the expression of IL-10 (P < 0.01 or P < 0.05). In the HE test, SYD treatment transformed the structure of the spleen. FC experiments further showed that SYD increased the expressions of CD3+, CD4+, and CD8+ in blood and spleen tissues (P < 0.01 or P < 0.05). CONCLUSION Our findings indicate that SYD can alleviate EF by improving inflammation and immunity. However, the relationship between inflammatory factors and the related immune response remains to be further investigated.
Collapse
Affiliation(s)
- Shujing Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuemeng Sun
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiarou Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yixing Lu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huimin Yuan
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yulin Zong
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haoyu Zhu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Tang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan Sun
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fengjie Zheng
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yuhang Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
6
|
Sixtus RP, Berry MJ, Gray CL, Dyson RM. A novel whole-body thermal stress test for monitoring cardiovascular responses in Guinea pigs. J Therm Biol 2023; 113:103500. [PMID: 37055107 DOI: 10.1016/j.jtherbio.2023.103500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 03/12/2023]
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality worldwide. Stress tests are frequently employed to expose early signs of cardiovascular dysfunction or disease and can be employed, for example, in the context of preterm birth. We aimed to establish a safe and effective thermal stress test to examine cardiovascular function. Guinea pigs were anaesthetized using a 0.8% isoflurane, 70% N2O mix. ECG, non-invasive blood pressure, laser Doppler flowmetry, respiratory rate, and an array of skin and rectal thermistors were applied. A physiologically relevant heating and a cooling thermal stress test was developed. Upper and lower thermal limits for core body temperature were set at 41.5 OC and 34 OC, for the safe recovery of animals. This protocol therefore presents a viable thermal stress test for use in guinea pig models of health and disease that facilitates exploration of whole-system cardiovascular function.
Collapse
Affiliation(s)
- Ryan P Sixtus
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand.
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Clint L Gray
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Rebecca M Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
7
|
The potential anti-osteoporotic effect of exercise-induced increased preptin level in ovariectomized rats. Anat Sci Int 2023; 98:22-35. [PMID: 35507276 DOI: 10.1007/s12565-022-00666-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/03/2022] [Indexed: 01/20/2023]
Abstract
Osteoporosis increases bone fragility and fractures. Preptin hormone is regulated by moderate exercise training and increases bone formation. Therefore, this study was conducted to see how estradiol administration and moderate exercise training affected osteoporotic changes in ovariectomized (OVX) rats. To achieve this aim, 36 healthy adult female Wistar albino rats were randomized into Sham, OVX, ovariectomized estradiol-treated (OVX + E) (OVX + E rats were treated using subcutaneous estradiol benzoate 2.5 μg/kg body weight/day), ovariectomized practicing moderate exercise training, ovariectomized estradiol-treated and practiced a moderate exercise training, and ovariectomized alendronate-treated (OVX + Alen) (OVX + Alen rats were treated orally with alendronate 3 mg/kg body weight/week) groups. Alendronate was used as a standard anti-osteoporotic drug. Moderate exercise training, including therapy with estradiol and alendronate for OVX rats began on the fourth week and lasted for six weeks. Results showed that OVX rats had estrogen and preptin deficiency in serum. These deficiencies were associated with a significant increase in bone resorption biomarkers (urinary deoxypyridinoline and hydroxyproline), and bone formation biomarkers (serum osteocalcin and bone-specific alkaline phosphatase). Also, serum pro-inflammatory cytokines (tumor necrosis factor alpha and interleukin-6) were increased, while bone osteopontin (OPN) expression was decreased. Subsequently, the osteoporotic alterations were verified based on histopathological changes. From the results, estradiol therapy and moderate exercise training significantly improved these findings to the same extent as that of the standard alendronate treatment. Therefore, through their anti-inflammatory properties, increasing bone OPN expression, and regulating serum preptin; estradiol therapy and moderate exercise training can reduce osteoporotic alterations in OVX rats. Thus, combined estradiol therapy and moderate exercise training could be a promising potential therapeutic protocol to reduce postmenopausal osteoporosis. Also, targeting serum preptin and bone osteopontin regulation could have a critical role in the treatment of postmenopausal osteoporosis.
Collapse
|
8
|
Welch N, Singh SS, Musich R, Mansuri MS, Bellar A, Mishra S, Chelluboyina AK, Sekar J, Attaway AH, Li L, Willard B, Hornberger TA, Dasarathy S. Shared and unique phosphoproteomics responses in skeletal muscle from exercise models and in hyperammonemic myotubes. iScience 2022; 25:105325. [PMID: 36345342 PMCID: PMC9636548 DOI: 10.1016/j.isci.2022.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/22/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle generation of ammonia, an endogenous cytotoxin, is increased during exercise. Perturbations in ammonia metabolism consistently occur in chronic diseases, and may blunt beneficial skeletal muscle molecular responses and protein homeostasis with exercise. Phosphorylation of skeletal muscle proteins mediates cellular signaling responses to hyperammonemia and exercise. Comparative bioinformatics and machine learning-based analyses of published and experimentally derived phosphoproteomics data identified differentially expressed phosphoproteins that were unique and shared between hyperammonemic murine myotubes and skeletal muscle from exercise models. Enriched processes identified in both hyperammonemic myotubes and muscle from exercise models with selected experimental validation included protein kinase A (PKA), calcium signaling, mitogen-activated protein kinase (MAPK) signaling, and protein homeostasis. Our approach of feature extraction from comparative untargeted "omics" data allows for selection of preclinical models that recapitulate specific human exercise responses and potentially optimize functional capacity and skeletal muscle protein homeostasis with exercise in chronic diseases.
Collapse
Affiliation(s)
- Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shashi Shekhar Singh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ryan Musich
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - M. Shahid Mansuri
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Annette Bellar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Saurabh Mishra
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Jinendiran Sekar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amy H. Attaway
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ling Li
- Proteomics Core, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Belinda Willard
- Proteomics Core, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
9
|
Crescioli C. Vitamin D, exercise, and immune health in athletes: A narrative review. Front Immunol 2022; 13:954994. [PMID: 36211340 PMCID: PMC9539769 DOI: 10.3389/fimmu.2022.954994] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Vitamin D exerts important extra-skeletal effects, exhibiting an exquisite immune regulatory ability, affecting both innate and adaptive immune responses through the modulation of immunocyte function and signaling. Remarkably, the immune function of working skeletal muscle, which is fully recognized to behave as a secretory organ with immune capacity, is under the tight control of vitamin D as well. Vitamin D status, meaning hormone sufficiency or insufficiency, can push toward strengthening/stabilization or decline of immune surveillance, with important consequences for health. This aspect is particularly relevant when considering the athletic population: while exercising is, nowadays, the recommended approach to maintain health and counteract inflammatory processes, “too much” exercise, often experienced by athletes, can increase inflammation, decrease immune surveillance, and expose them to a higher risk of diseases. When overexercise intersects with hypovitaminosis D, the overall effects on the immune system might converge into immune depression and higher vulnerability to diseases. This paper aims to provide an overview of how vitamin D shapes human immune responses, acting on the immune system and skeletal muscle cells; some aspects of exercise-related immune modifications are addressed, focusing on athletes. The crossroad where vitamin D and exercise meet can profile whole-body immune response and health.
Collapse
|
10
|
Chen H, Chen C, Spanos M, Li G, Lu R, Bei Y, Xiao J. Exercise training maintains cardiovascular health: signaling pathways involved and potential therapeutics. Signal Transduct Target Ther 2022; 7:306. [PMID: 36050310 PMCID: PMC9437103 DOI: 10.1038/s41392-022-01153-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
Exercise training has been widely recognized as a healthy lifestyle as well as an effective non-drug therapeutic strategy for cardiovascular diseases (CVD). Functional and mechanistic studies that employ animal exercise models as well as observational and interventional cohort studies with human participants, have contributed considerably in delineating the essential signaling pathways by which exercise promotes cardiovascular fitness and health. First, this review summarizes the beneficial impact of exercise on multiple aspects of cardiovascular health. We then discuss in detail the signaling pathways mediating exercise's benefits for cardiovascular health. The exercise-regulated signaling cascades have been shown to confer myocardial protection and drive systemic adaptations. The signaling molecules that are necessary for exercise-induced physiological cardiac hypertrophy have the potential to attenuate myocardial injury and reverse cardiac remodeling. Exercise-regulated noncoding RNAs and their associated signaling pathways are also discussed in detail for their roles and mechanisms in exercise-induced cardioprotective effects. Moreover, we address the exercise-mediated signaling pathways and molecules that can serve as potential therapeutic targets ranging from pharmacological approaches to gene therapies in CVD. We also discuss multiple factors that influence exercise's effect and highlight the importance and need for further investigations regarding the exercise-regulated molecules as therapeutic targets and biomarkers for CVD as well as the cross talk between the heart and other tissues or organs during exercise. We conclude that a deep understanding of the signaling pathways involved in exercise's benefits for cardiovascular health will undoubtedly contribute to the identification and development of novel therapeutic targets and strategies for CVD.
Collapse
Affiliation(s)
- Huihua Chen
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Rong Lu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yihua Bei
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.
| | - Junjie Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
11
|
Zha Y, Zhuang W, Yang Y, Zhou Y, Li H, Liang J. Senescence in Vascular Smooth Muscle Cells and Atherosclerosis. Front Cardiovasc Med 2022; 9:910580. [PMID: 35722104 PMCID: PMC9198250 DOI: 10.3389/fcvm.2022.910580] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the primary cell type involved in the atherosclerosis process; senescent VSMCs are observed in both aged vessels and atherosclerotic plaques. Factors associated with the atherosclerotic process, including oxidative stress, inflammation, and calcium-regulating factors, are closely linked to senescence in VSMCs. A number of experimental studies using traditional cellular aging markers have suggested that anti-aging biochemical agents could be used to treat atherosclerosis. However, doubt has recently been cast on such potential due to the increasingly apparent complexity of VSMCs status and an incomplete understanding of the role that these cells play in the atherosclerosis process, as well as a lack of specific or spectrum-limited cellular aging markers. The utility of anti-aging drugs in atherosclerosis treatment should be reevaluated. Promotion of a healthy lifestyle, exploring in depth the characteristics of each cell type associated with atherosclerosis, including VSMCs, and development of targeted drug delivery systems will ensure efficacy whilst evaluation of the safety and tolerability of drug use should be key aims of future anti-atherosclerosis research. This review summarizes the characteristics of VSMC senescence during the atherosclerosis process, the factors regulating this process, as well as an overview of progress toward the development and application of anti-aging drugs.
Collapse
Affiliation(s)
- Yiwen Zha
- Medical College, Yangzhou University, Yangzhou, China
| | - Wenwen Zhuang
- Medical College, Yangzhou University, Yangzhou, China
| | - Yongqi Yang
- Medical College, Yangzhou University, Yangzhou, China
| | - Yue Zhou
- Medical College, Yangzhou University, Yangzhou, China
| | - Hongliang Li
- Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- *Correspondence: Hongliang Li,
| | - Jingyan Liang
- Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
- Jingyan Liang,
| |
Collapse
|
12
|
Abdi A, Mehrabani J, Nordvall M, Wong A, Fallah A, Bagheri R. Effects of concurrent training on irisin and fibronectin type-III domain containing 5 (FNDC5) expression in visceral adipose tissue in type-2 diabetic rats. Arch Physiol Biochem 2022; 128:651-656. [PMID: 31979994 DOI: 10.1080/13813455.2020.1716018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT Evidence suggests that myokines could have clinical implications for metabolic diseases such as type-2 diabetes. OBJECTIVE We investigated the effects of concurrent training (CT) on irisin and fibronectin type-III domain containing five (FNDC5) expressions in visceral adipose tissue (VAT) in type-2 diabetic rats. MATERIALS AND METHODS Eighteen male Wistar rats (ages four to eight weeks) became diabetic using nicotinamide and streptozotocin and were assigned to either a control (CON) or a CT group using a randomised block design. The CT group exercised on a motor-driven treadmill at 60 to 75 per cent of VO2max (0% grade) for 10-40 min/day (aerobic training) and performed 10 climbs on a 1-meter ladder utilising weighted resistance of 30-100% of body mass (resistance exercise) for 5 days/week over 8 weeks. Forty-eight hours after the last training session, the VAT of rats was removed and washed. FNDC5-relative gene expression and irisin were measured by the reverse transcription polymerase chain reaction (RT-PCR) method and enzyme-linked immunosorbent assay (ELISA) kit. Additionally, insulin resistance and plasma insulin and glucose levels were determined. RESULTS Our findings revealed that CT significantly increased FNDC5-relative gene expression in the VAT of type-2 diabetic rats compared to controls. Furthermore, eight weeks of CT improved insulin resistance and insulin and glucose levels but did not significantly alter irisin levels in type-2 diabetic rats. DISCUSSION AND CONCLUSION The results of this study demonstrated that CT increased FNDC5 mRNA and improved insulin resistance, insulin, and glucose levels. Also observed were increased trends (non-significant, p = .051) in irisin levels. Hence, CT may play a role in attenuating metabolic disorders such as obesity and type-2 diabetes.
Collapse
Affiliation(s)
- Ahmad Abdi
- Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Javad Mehrabani
- Department of Exercise Physiology, University of Guilan, Rasht, Iran
| | - Michael Nordvall
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Abbas Fallah
- Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
13
|
Abdi A. The effect of aerobic, resistance, and concurrent training on the expression and protein levels of RBP4 visceral and subcutaneous adipose tissue in diabetic rats with STZ. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
Haghparast Azad M, Niktab I, Dastjerdi S, Abedpoor N, Rahimi G, Safaeinejad Z, Peymani M, Forootan FS, Asadi-Shekaari M, Nasr Esfahani MH, Ghaedi K. The combination of endurance exercise and SGTC (Salvia-Ginseng-Trigonella-Cinnamon) ameliorate mitochondrial markers' overexpression with sufficient ATP production in the skeletal muscle of mice fed AGEs-rich high-fat diet. Nutr Metab (Lond) 2022; 19:17. [PMID: 35248109 PMCID: PMC8897771 DOI: 10.1186/s12986-022-00652-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/17/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Skeletal muscle mitochondria is one of the most important affected sites of T2DM and its molecular mechanism is yet to be elucidated. Some recent theories believed that mitochondrial markers are upregulated in response to high fat induced T2DM; however, the reasons and the affected factors are still uncertain. In this regard, we aimed to investigate the effect of high fat induced T2DM on mitochondrial markers of skeletal muscle, and an herbal component along with endurance exercise, as probable treatments, in AGE-rich high-fat diet (AGEs-HFD) induced T2DM mice. METHODS T2DM was induced by 16 weeks of AGEs-HFD consumption in male C57BL/6 mice, followed by 8 weeks of drugs ingestion and endurance exercise treatments (n = 6 in each group and total number of 42 mice). The herbal component was an aquatic extract of Salvia officinalis, Trigonella foenum-graecum, Panax ginseng, and Cinnamomum zeylanicum, termed "SGTC". We then examined the relative expression of several mitochondrial markers, including Ppargc1α, Tfam, and electron transport chain genes and ATP levels, in skeletal muscle samples. RESULTS T2DM was successfully induced according to morphological, biochemical, and molecular observations. All mitochondrial markers, including Ppargc1a, Tfam, Cpt2, and electron transport chain genes, were upregulated in T2DM group compared to controls with no significant changes in the ATP levels. Most mitochondrial markers were downregulated by drug treatment compared to T2DM, but the ATP level was not significantly altered. All mitochondrial markers were upregulated in exercised group compared to T2DM with mild increase in the ATP level. The Ex + SGTC group had moderate level of mitochondrial markers compared to T2DM, but the highest ATP production. CONCLUSION The highly significant overexpression of mitochondrial markers may be in response to free fatty acid overload. However, the lack of significant change in the ATP level may be a result of ROS generation due to electron leakage in the AGEsRAGE axis and electron transport chain. Almost all treatments ameliorate mitochondrial markers' overexpression. The SGTC appears to regulate this with its antioxidant properties. Instead, exercise upregulated mitochondrial markers efficiently; however, the most efficient results, i.e. the most ATP production among the treatments, were observed in the Ex + SGTC group.
Collapse
Affiliation(s)
- Maryam Haghparast Azad
- ACECR Institute of Higher Education, Isfahan, Iran.,Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Iman Niktab
- ACECR Institute of Higher Education, Isfahan, Iran.,Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Shaghayegh Dastjerdi
- ACECR Institute of Higher Education, Isfahan, Iran.,Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Navid Abedpoor
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Golbarg Rahimi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., P.O. Code 81746-73441, Isfahan, Iran
| | - Zahra Safaeinejad
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Farzad Seyed Forootan
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .,Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran.
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., P.O. Code 81746-73441, Isfahan, Iran.
| |
Collapse
|
15
|
Morroni J, Schirone L, Valenti V, Zwergel C, Riera CS, Valente S, Vecchio D, Schiavon S, Ragno R, Mai A, Sciarretta S, Lozanoska-Ochser B, Bouchè M. Inhibition of PKCθ Improves Dystrophic Heart Phenotype and Function in a Novel Model of DMD Cardiomyopathy. Int J Mol Sci 2022; 23:ijms23042256. [PMID: 35216371 PMCID: PMC8880527 DOI: 10.3390/ijms23042256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic cardiac muscle inflammation and subsequent fibrotic tissue deposition are key features in Duchenne Muscular Dystrophy (DMD). The treatment of choice for delaying DMD progression both in skeletal and cardiac muscle are corticosteroids, supporting the notion that chronic inflammation in the heart plays a pivotal role in fibrosis deposition and subsequent cardiac dysfunction. Nevertheless, considering the adverse effects associated with long-term corticosteroid treatments, there is a need for novel anti-inflammatory therapies. In this study, we used our recently described exercised mdx (ex mdx) mouse model characterised by accelerated heart pathology, and the specific PKCθ inhibitor Compound 20 (C20), to show that inhibition of this kinase leads to a significant reduction in the number of immune cells infiltrating the heart, as well as necrosis and fibrosis. Functionally, C20 treatment also prevented the reduction in left ventricle fractional shortening, which was typically observed in the vehicle-treated ex mdx mice. Based on these findings, we propose that PKCθ pharmacological inhibition could be an attractive therapeutic approach to treating dystrophic cardiomyopathy
Collapse
Affiliation(s)
- Jacopo Morroni
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy; (J.M.); (C.S.R.); (B.L.-O.)
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (D.V.); (S.S.); (S.S.)
| | - Valentina Valenti
- Department of Cardiology, Ospedale Santa Maria Goretti, 04100 Latina, Italy;
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (C.Z.); (S.V.); (R.R.); (A.M.)
| | - Carles Sánchez Riera
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy; (J.M.); (C.S.R.); (B.L.-O.)
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (C.Z.); (S.V.); (R.R.); (A.M.)
| | - Daniele Vecchio
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (D.V.); (S.S.); (S.S.)
| | - Sonia Schiavon
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (D.V.); (S.S.); (S.S.)
| | - Rino Ragno
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (C.Z.); (S.V.); (R.R.); (A.M.)
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (C.Z.); (S.V.); (R.R.); (A.M.)
| | - Sebastiano Sciarretta
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (D.V.); (S.S.); (S.S.)
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy; (J.M.); (C.S.R.); (B.L.-O.)
| | - Marina Bouchè
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy; (J.M.); (C.S.R.); (B.L.-O.)
- Correspondence:
| |
Collapse
|
16
|
Alhumaid W, Small SD, Kirkham AA, Becher H, Pituskin E, Prado CM, Thompson RB, Haykowsky MJ, Paterson DI. A Contemporary Review of the Effects of Exercise Training on Cardiac Structure and Function and Cardiovascular Risk Profile: Insights From Imaging. Front Cardiovasc Med 2022; 9:753652. [PMID: 35265675 PMCID: PMC8898950 DOI: 10.3389/fcvm.2022.753652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Exercise is a commonly prescribed therapy for patients with established cardiovascular disease or those at high risk for de novo disease. Exercise-based, multidisciplinary programs have been associated with improved clinical outcomes post myocardial infarction and is now recommended for patients with cancer at elevated risk for cardiovascular complications. Imaging studies have documented numerous beneficial effects of exercise on cardiac structure and function, vascular function and more recently on the cardiovascular risk profile. In this contemporary review, we will discuss the effects of exercise training on imaging-derived cardiovascular outcomes. For cardiac imaging via echocardiography or magnetic resonance, we will review the effects of exercise on left ventricular function and remodeling in patients with established or at risk for cardiac disease (myocardial infarction, heart failure, cancer survivors), and the potential utility of exercise stress to assess cardiac reserve. Exercise training also has salient effects on vascular function and health including the attenuation of age-associated arterial stiffness and thickening as assessed by Doppler ultrasound. Finally, we will review recent data on the relationship between exercise training and regional adipose tissue deposition, an emerging marker of cardiovascular risk. Imaging provides comprehensive and accurate quantification of cardiac, vascular and cardiometabolic health, and may allow refinement of risk stratification in select patient populations. Future studies are needed to evaluate the clinical utility of novel imaging metrics following exercise training.
Collapse
Affiliation(s)
- Waleed Alhumaid
- Division of Cardiology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Amy A. Kirkham
- Faculty of Kinesiology, University of Toronto, Toronto, ON, Canada
| | - Harald Becher
- Division of Cardiology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Edith Pituskin
- Faculty of Nursing, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Carla M. Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Richard B. Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mark J. Haykowsky
- Faculty of Nursing, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - D. Ian Paterson
- Division of Cardiology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- *Correspondence: D. Ian Paterson
| |
Collapse
|
17
|
Multiple Applications of Different Exercise Modalities with Rodents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3898710. [PMID: 34868454 PMCID: PMC8639251 DOI: 10.1155/2021/3898710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022]
Abstract
A large proportion of chronic diseases can be derived from a sedentary lifestyle. Raising physical activity awareness is indispensable, as lack of exercise is the fourth most common cause of death worldwide. Animal models in different research fields serve as important tools in the study of acute or chronic noncommunicable disorders. With the help of animal-based exercise research, exercise-mediated complex antioxidant and inflammatory pathways can be explored, which knowledge can be transferred to human studies. Whereas sustained physical activity has an enormous number of beneficial effects on many organ systems, these animal models are easily applicable in several research areas. This review is aimed at providing an overall picture of scientific research studies using animal models with a focus on different training modalities. Without wishing to be exhaustive, the most commonly used forms of exercise are presented.
Collapse
|
18
|
Bei Y, Wang L, Ding R, Che L, Fan Z, Gao W, Liang Q, Lin S, Liu S, Lu X, Shen Y, Wu G, Yang J, Zhang G, Zhao W, Guo L, Xiao J. Animal exercise studies in cardiovascular research: Current knowledge and optimal design-A position paper of the Committee on Cardiac Rehabilitation, Chinese Medical Doctors' Association. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:660-674. [PMID: 34454088 PMCID: PMC8724626 DOI: 10.1016/j.jshs.2021.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/09/2021] [Accepted: 07/11/2021] [Indexed: 05/02/2023]
Abstract
Growing evidence has demonstrated exercise as an effective way to promote cardiovascular health and protect against cardiovascular diseases However, the underlying mechanisms of the beneficial effects of exercise have yet to be elucidated. Animal exercise studies are widely used to investigate the key mechanisms of exercise-induced cardiovascular protection. However, standardized procedures and well-established evaluation indicators for animal exercise models are needed to guide researchers in carrying out effective, high-quality animal studies using exercise to prevent and treat cardiovascular diseases. In our review, we present the commonly used animal exercise models in cardiovascular research and propose a set of standard procedures for exercise training, emphasizing the appropriate measurements and analysis in these chronic exercise models. We also provide recommendations for optimal design of animal exercise studies in cardiovascular research, including the choice of exercise models, control of exercise protocols, exercise at different stages of disease, and other considerations, such as age, sex, and genetic background. We hope that this position paper will promote basic research on exercise-induced cardiovascular protection and pave the way for successful translation of exercise studies from bench to bedside in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Lei Wang
- Department of Rehabilitation Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rongjing Ding
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Lin Che
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhiqing Fan
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing 163000, China
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qi Liang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Shenghui Lin
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuqin Shen
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Guifu Wu
- Department of Cardiology, Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-Sen University, Shenzhen 518033, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian Yang
- Department of Rehabilitation Medicine, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Guolin Zhang
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wei Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Lan Guo
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Junjie Xiao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
19
|
Sadeghian R, Shahidi S, Komaki A, Habibi P, Ahmadiasl N, Yousefi H, Daghigh F. Synergism effect of swimming exercise and genistein on the inflammation, oxidative stress, and VEGF expression in the retina of diabetic-ovariectomized rats. Life Sci 2021; 284:119931. [PMID: 34480934 DOI: 10.1016/j.lfs.2021.119931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022]
Abstract
AIMS Retinal neovascularization is one of the visual disorders during the postmenopausal period or types two diabetes. Physical activities and also phytoestrogens with powerful antioxidant features have been widely considered to improve nervous system diseases. Therefore, this study investigated the effects of genistein, swimming exercise, and their co-treatment on retina angiogenesis, oxidative stress, and inflammation in diabetic-ovariectomized rats. MAIN METHODS Wistar rats were randomly divided into six groups (n = 8 per group): sham, ovariectomized group (OVX), OVX + diabetes (OVX.D), OVX.D+ genistein (1 mg/kg, eight weeks; daily SC), OVX.D + exercise (eight weeks), and OVX.D+ genistein+exercise (eight weeks). At the end of 8 weeks, the retina was removed under anesthesia. The assessed effects of treatment were by measuring MiR-146a and miR-132 expression via RT-PCR, the protein levels of ERK, MMP-2, VEGF, and NF-κB via western blotting, inflammation, and oxidative stress markers levels via the Eliza. KEY FINDINGS The results showed miR-132, miR-146b, and MMP-2, NF-κB, ERK, VEGF, TNF-α, IL-1β proteins, and MDA factor in the OVX.D group were increased, but glutathione (GSH) was decreased in comparison with the sham and OVX groups. Both exercise and genistein treatment has reversed the disorder caused by diabetes. However, the combination of exercise and genistein was more effective than each treatment alone. SIGNIFICANCE It can be concluded that the interaction of exercise and genistein on microRNAs and their target protein was affected in the inflammation, stress oxidative, and extracellular matrix metalloproteinase pathways, can leading to a decrease in impairment of retinal neovascularization of the ovariectomized diabetic rats.
Collapse
Affiliation(s)
- Reihaneh Sadeghian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parisa Habibi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Nasser Ahmadiasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | | |
Collapse
|
20
|
Accelerating the Mdx Heart Histo-Pathology through Physical Exercise. Life (Basel) 2021; 11:life11070706. [PMID: 34357078 PMCID: PMC8306456 DOI: 10.3390/life11070706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic cardiac muscle inflammation and fibrosis are key features of Duchenne Muscular Dystrophy (DMD). Around 90% of 18-year-old patients already show signs of DMD-related cardiomyopathy, and cardiac failure is rising as the main cause of death among DMD patients. The evaluation of novel therapies for the treatment of dystrophic heart problems depends on the availability of animal models that closely mirror the human pathology. The widely used DMD animal model, the mdx mouse, presents a milder cardiac pathology compared to humans, with a late onset, which precludes large-scale and reliable studies. In this study, we used an exercise protocol to accelerate and worsen the cardiac pathology in mdx mice. The mice were subjected to a 1 h-long running session on a treadmill, at moderate speed, twice a week for 8 weeks. We demonstrate that subjecting young mdx mice (4-week-old) to "endurance" exercise accelerates heart pathology progression, as shown by early fibrosis deposition, increases necrosis and inflammation, and reduces heart function compared to controls. We believe that our exercised mdx model represents an easily reproducible and useful tool to study the molecular and cellular networks involved in dystrophic heart alterations, as well as to evaluate novel therapeutic strategies aimed at ameliorating dystrophic heart pathology.
Collapse
|
21
|
Ghignatti PVDC, Nogueira LJ, Lehnen AM, Leguisamo NM. Cardioprotective effects of exercise training on doxorubicin-induced cardiomyopathy: a systematic review with meta-analysis of preclinical studies. Sci Rep 2021; 11:6330. [PMID: 33737561 PMCID: PMC7973566 DOI: 10.1038/s41598-021-83877-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
Doxorubicin (DOX)-induced cardiotoxicity in chemotherapy is a major treatment drawback. Clinical trials on the cardioprotective effects of exercise in cancer patients have not yet been published. Thus, we conducted a systematic review and meta-analysis of preclinical studies for to assess the efficacy of exercise training on DOX-induced cardiomyopathy. We included studies with animal models of DOX-induced cardiomyopathy and exercise training from PubMed, Web of Sciences and Scopus databases. The outcome was the mean difference (MD) in fractional shortening (FS, %) assessed by echocardiography between sedentary and trained DOX-treated animals. Trained DOX-treated animals improved 7.40% (95% CI 5.75-9.05, p < 0.001) in FS vs. sedentary animals. Subgroup analyses revealed a superior effect of exercise training execution prior to DOX exposure (MD = 8.20, 95% CI 6.27-10.13, p = 0.010). The assessment of cardiac function up to 10 days after DOX exposure and completion of exercise protocol was also associated with superior effect size in FS (MD = 7.89, 95% CI 6.11-9.67, p = 0.020) vs. an echocardiography after over 4 weeks. Modality and duration of exercise, gender and cumulative DOX dose did were not individually associated with changes on FS. Exercise training is a cardioprotective approach in rodent models of DOX-induced cardiomyopathy. Exercise prior to DOX exposure exerts greater effect sizes on FS preservation.
Collapse
Affiliation(s)
- Paola Victória da Costa Ghignatti
- Post-Graduate Program in Health Sciences: Cardiology, Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Av. Princesa Isabel, 370, Porto Alegre, Rio Grande do Sul, CEP 90620-001, Brazil
| | - Laura Jesuíno Nogueira
- Post-Graduate Program in Health Sciences: Cardiology, Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Av. Princesa Isabel, 370, Porto Alegre, Rio Grande do Sul, CEP 90620-001, Brazil
| | - Alexandre Machado Lehnen
- Post-Graduate Program in Health Sciences: Cardiology, Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Av. Princesa Isabel, 370, Porto Alegre, Rio Grande do Sul, CEP 90620-001, Brazil
| | - Natalia Motta Leguisamo
- Post-Graduate Program in Health Sciences: Cardiology, Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Av. Princesa Isabel, 370, Porto Alegre, Rio Grande do Sul, CEP 90620-001, Brazil.
| |
Collapse
|
22
|
Orhan C, Sahin E, Er B, Tuzcu M, Lopes AP, Sahin N, Juturu V, Sahin K. Effects of Exercise Combined with Undenatured Type II Collagen on Endurance Capacity, Antioxidant Status, Muscle Lipogenic Genes and E3 Ubiquitin Ligases in Rats. Animals (Basel) 2021; 11:851. [PMID: 33802919 PMCID: PMC8002679 DOI: 10.3390/ani11030851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
The current study aimed to investigate the effect of exercise combined with undenatured type II collagen (UCII) administration on endurance capacity, lipid metabolism, inflammation, and antioxidant status in rats. Twenty-one male Wistar albino rats were divided into three groups as follows: (1) Sedentary control, (2) Exercise (E), (3) Exercise + UCII (4 mg/kg BW/day; E + UCII). The findings showed that the exhaustive running time in the UCII group was significantly prolonged compared to that of the non-supplemented group (p < 0.001). When compared to the control group, total serum cholesterol (TC, p < 0.05) and triglyceride (TG, p < 0.05) levels decreased, while creatinine kinase (CK) levels increased in the E group (p < 0.001). Serum creatinine kinase levels were reduced in the E + UCII group compared to the E group (p < 0.01). Serum lactate, myoglobin (p < 0.01), and osteocalcin levels (p < 0.01) increased significantly in exercised rats compared to sedentary control rats, while serum lactate (p < 0.01) and myoglobin (p < 0.0001) levels decreased in the E + UCII group compared to control. Additionally, UCII supplementation caused significant increases in antioxidant enzyme activities [SOD (p < 0.01) and GSH-Px (p < 0.05)] and decreases in malondialdehyde (MDA) and tumor necrosis factor (TNF-α) levels (p < 0.001). Muscle lipogenic protein (SREBP-1c, ACLY, LXR, and FAS) levels were lower in the E + UCII group than in other groups. In addition, UCII supplementation decreased muscle MAFbx, MuRF-1, myostatin and increased MyoD levels in exercised rats. Moreover, the E + UCII group had lower muscle inflammatory markers [TNF-α (p < 0.0001) and IL-1β (p < 0.01)] than the control group. These results suggest exercise combined with UCII (4 mg/kg BW/day) modulates lipid, muscle, and antioxidant status in rats.
Collapse
Affiliation(s)
- Cemal Orhan
- Animal Nutrition Department, Veterinary Faculty, University of Firat, 23119 Elazig, Turkey; (C.O.); (E.S.); (N.S.)
| | - Emre Sahin
- Animal Nutrition Department, Veterinary Faculty, University of Firat, 23119 Elazig, Turkey; (C.O.); (E.S.); (N.S.)
| | - Besir Er
- Division of Biology, Science Faculty, Firat University, 23119 Elazig, Turkey; (B.E.); (M.T.)
| | - Mehmet Tuzcu
- Division of Biology, Science Faculty, Firat University, 23119 Elazig, Turkey; (B.E.); (M.T.)
| | - Andrey P. Lopes
- Department of Development & Innovation, Lonza, Rio de Janeiro 22793, Brazil;
| | - Nurhan Sahin
- Animal Nutrition Department, Veterinary Faculty, University of Firat, 23119 Elazig, Turkey; (C.O.); (E.S.); (N.S.)
| | - Vijaya Juturu
- Department of Research & Development, Lonza, Morristown, NJ 07960, USA;
| | - Kazim Sahin
- Animal Nutrition Department, Veterinary Faculty, University of Firat, 23119 Elazig, Turkey; (C.O.); (E.S.); (N.S.)
| |
Collapse
|
23
|
Casin KM, Calvert JW. Harnessing the Benefits of Endogenous Hydrogen Sulfide to Reduce Cardiovascular Disease. Antioxidants (Basel) 2021; 10:antiox10030383. [PMID: 33806545 PMCID: PMC8000539 DOI: 10.3390/antiox10030383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/02/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in the U.S. While various studies have shown the beneficial impact of exogenous hydrogen sulfide (H2S)-releasing drugs, few have demonstrated the influence of endogenous H2S production. Modulating the predominant enzymatic sources of H2S-cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase-is an emerging and promising research area. This review frames the discussion of harnessing endogenous H2S within the context of a non-ischemic form of cardiomyopathy, termed diabetic cardiomyopathy, and heart failure. Also, we examine the current literature around therapeutic interventions, such as intermittent fasting and exercise, that stimulate H2S production.
Collapse
|
24
|
Sympathetic neural responses in heart failure during exercise and after exercise training. Clin Sci (Lond) 2021; 135:651-669. [DOI: 10.1042/cs20201306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022]
Abstract
Abstract
The sympathetic nervous system coordinates the cardiovascular response to exercise. This regulation is impaired in both experimental and human heart failure with reduced ejection fraction (HFrEF), resulting in a state of sympathoexcitation which limits exercise capacity and contributes to adverse outcome. Exercise training can moderate sympathetic excess at rest. Recording sympathetic nerve firing during exercise is more challenging. Hence, data acquired during exercise are scant and results vary according to exercise modality. In this review we will: (1) describe sympathetic activity during various exercise modes in both experimental and human HFrEF and consider factors which influence these responses; and (2) summarise the effect of exercise training on sympathetic outflow both at rest and during exercise in both animal models and human HFrEF. We will particularly highlight studies in humans which report direct measurements of efferent sympathetic nerve traffic using intraneural recordings. Future research is required to clarify the neural afferent mechanisms which contribute to efferent sympathetic activation during exercise in HFrEF, how this may be altered by exercise training, and the impact of such attenuation on cardiac and renal function.
Collapse
|
25
|
Rankovic M, Jakovljevic V, Bradic J, Jakovljevic B, Zivkovic V, Srejovic I, Bolevich S, Milosavljevic I, Jeremic J, Ravic M, Mijanovic O, Turnic TN, Jeremic N. Effects of High Intensity Interval vs. Endurance Training on Cardiac Parameters in Ischemia/Reperfusion of Male Rats: Focus on Oxidative Stress. Front Physiol 2021; 12:534127. [PMID: 33692698 PMCID: PMC7937794 DOI: 10.3389/fphys.2021.534127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 01/22/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Marina Rankovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Human Pathology, First Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Jakovljevic
- Department of Health Care, High Medical College of Professional Studies in Belgrade, Belgrade, Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, First Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Isidora Milosavljevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marko Ravic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Olja Mijanovic
- Institute of Regenerative Medicine, First Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Tamara Nikolic Turnic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
26
|
Soares TS, Moraes-Souza RQ, Carneiro TB, Araujo-Silva VC, Schavinski AZ, Gratão TB, Damasceno DC, Volpato GT. Maternal-fetal outcomes of exercise applied in rats with mild hyperglycemia after embryonic implantation. Birth Defects Res 2020; 113:287-298. [PMID: 33058545 DOI: 10.1002/bdr2.1818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Exercise is commonly recommended to control hyperglycemia, including during pregnancy. We conducted this study to understand the potential benefits and risks of exercise during pregnancy of women with diabetes. Specifically, we evaluated the effects of swimming on a diabetic rat during pregnancy and assayed maternal-fetal parameters. METHODS Diabetes was induced in the female newborn from Wistar rats by the streptozotocin administration on first postnatal day. At 110 days of life, after confirm mild symptoms of diabetes, the rats were mated and randomly distributed into four experimental groups (minimum of 13 animals/group): Control (C)-nondiabetic animals without swimming; Control and Exercise (CEx)-nondiabetic animals submitted to swimming; Mild Diabetic (MD)-diabetic animals without swimming; Mild Diabetic and Exercise (MDEx)-diabetic animals submitted to swimming. The swimming program was performed from day 7 to 21 of pregnancy. Maternal parameters were evaluated during the pregnancy period. On day 21 of pregnancy, the rats were sacrificed and maternal and fetal parameters analyzed. RESULTS There are no alterations in body weight, food consumption, water intake, and reproductive outcomes among the groups. The swimming program did not normalize maternal glycemia and other biochemical biomarkers. The diabetes and exercise combination increased organ weight. The fetuses born to these exercising diabetic rats had reduced fetal weight and increased skeletal anomalies (mainly incomplete ossification of sternebra). CONCLUSION The intense swimming exercise imposed on female rats during pregnancy impaired maternal metabolic repercussions, contributing to intrauterine growth restriction and fetal skeletal anomalies.
Collapse
Affiliation(s)
- Thaigra S Soares
- Laboratory of General Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, University Center of Araguaia, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil.,Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo State, Brazil
| | - Rafaianne Q Moraes-Souza
- Laboratory of General Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, University Center of Araguaia, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil.,Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo State, Brazil
| | - Thalita B Carneiro
- Laboratory of General Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, University Center of Araguaia, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Vanessa C Araujo-Silva
- Laboratory of General Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, University Center of Araguaia, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Aline Z Schavinski
- Laboratory of General Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, University Center of Araguaia, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Thamires B Gratão
- Laboratory of General Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, University Center of Araguaia, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Débora C Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo State, Brazil
| | - Gustavo T Volpato
- Laboratory of General Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, University Center of Araguaia, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| |
Collapse
|
27
|
Sharp M, Sahin K, Stefan M, Orhan C, Gheith R, Reber D, Sahin N, Tuzcu M, Lowery R, Durkee S, Wilson J. Phytoplankton Supplementation Lowers Muscle Damage and Sustains Performance across Repeated Exercise Bouts in Humans and Improves Antioxidant Capacity in a Mechanistic Animal. Nutrients 2020; 12:nu12071990. [PMID: 32635494 PMCID: PMC7400322 DOI: 10.3390/nu12071990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to investigate the impact of antioxidant-rich marine phytoplankton supplementation (Oceanix, OCX) on performance and muscle damage following a cross-training event in endurance-trained subjects. Additionally, an animal model was carried out to assess the effects of varying dosages of OCX, with exercise, on intramuscular antioxidant capacity. METHODS In the human trial, endurance-trained subjects (average running distance = 29.5 ± 2.6 miles × week-1) were randomly divided into placebo (PLA) and OCX (25 mg) conditions for 14 days. The subjects were pre-tested on a one-mile uphill run, maximal isometric strength, countermovement jump (CMJ) and squat jump (SJ) power, and for muscle damage (creatine kinase (CK)). On Day 12, the subjects underwent a strenuous cross-training event. Measures were reassessed on Day 13 and 14 (24 h and 48 h Post event). In the animal model, Wistar rats were divided into four groups (n = 7): (i) Control (no exercise and placebo (CON)), (ii) Exercise (E), (iii) Exercise + OCX 1 (Oceanix, 2.55 mg/day, (iv) Exercise + OCX 2 (5.1 mg/day). The rats performed treadmill exercise five days a week for 6 weeks. Intramuscular antioxidant capacity (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px)) and muscle damage (CK and myoglobin (MYOB) were collected. The data were analyzed using repeated measures ANOVA and t-test for select variables. The alpha value was set at p < 0.05. RESULTS For the human trial, SJ power lowered in PLA relative to OCX at 24 h Post (-15%, p < 0.05). Decrements in isometric strength from Pre to 48 h Post were greater in the PLA group (-12%, p < 0.05) than in the OCX. Serum CK levels were greater in the PLA compared to the OCX (+14%, p < 0.05). For the animal trial, the intramuscular antioxidant capacity was increased in a general dose-dependent manner (E + Oc2 > E + Oc1 > E > CON). Additionally, CK and MYOB were lower in supplemented compared to E alone. CONCLUSIONS Phytoplankton supplementation (Oceanix) sustains performance and lowers muscle damage across repeated exercise bouts. The ingredient appears to operate through an elevating oxidative capacity in skeletal muscle.
Collapse
Affiliation(s)
- Matthew Sharp
- The Applied Science & Performance Institute, Research Division, Tampa, FL 33607, USA; (M.S.); (R.G.); (D.R.); (R.L.); (J.W.)
- Correspondence: ; Tel.: +1-813-673-8888
| | - Kazim Sahin
- Animal Nutrition Department, School of Veterinary Medicine, Firat University, Elazig 23200, Turkey; (K.S.); (C.O.); (N.S.); (M.T.)
| | - Matthew Stefan
- The Applied Science & Performance Institute, Research Division, Tampa, FL 33607, USA; (M.S.); (R.G.); (D.R.); (R.L.); (J.W.)
| | - Cemal Orhan
- Animal Nutrition Department, School of Veterinary Medicine, Firat University, Elazig 23200, Turkey; (K.S.); (C.O.); (N.S.); (M.T.)
| | - Raad Gheith
- The Applied Science & Performance Institute, Research Division, Tampa, FL 33607, USA; (M.S.); (R.G.); (D.R.); (R.L.); (J.W.)
| | - Dallen Reber
- The Applied Science & Performance Institute, Research Division, Tampa, FL 33607, USA; (M.S.); (R.G.); (D.R.); (R.L.); (J.W.)
| | - Nurhan Sahin
- Animal Nutrition Department, School of Veterinary Medicine, Firat University, Elazig 23200, Turkey; (K.S.); (C.O.); (N.S.); (M.T.)
| | - Mehmet Tuzcu
- Animal Nutrition Department, School of Veterinary Medicine, Firat University, Elazig 23200, Turkey; (K.S.); (C.O.); (N.S.); (M.T.)
| | - Ryan Lowery
- The Applied Science & Performance Institute, Research Division, Tampa, FL 33607, USA; (M.S.); (R.G.); (D.R.); (R.L.); (J.W.)
| | - Shane Durkee
- Lonza Consumer Health Inc., Morristown, NJ 07960, USA;
| | - Jacob Wilson
- The Applied Science & Performance Institute, Research Division, Tampa, FL 33607, USA; (M.S.); (R.G.); (D.R.); (R.L.); (J.W.)
| |
Collapse
|
28
|
Diverse styles of running-wheel behavior in antelope ground squirrels. Behav Processes 2020; 177:104149. [PMID: 32473279 DOI: 10.1016/j.beproc.2020.104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 11/23/2022]
Abstract
The running-wheel behavior of white-tailed antelope squirrels was studied in the laboratory by quantitative analysis of wheel revolutions and by visual inspection of video recordings with the assistance of Google Nest's detection algorithm. There was great interindividual diversity of running styles, although no systematic difference was found between male and female squirrels. Some animals ran on the outside of the wheel instead of inside, some ran consistently inside the wheel but alternating directions every few seconds, some ran on a virtual wheel while avoiding the actual wheel and doing back flips in the air instead, and some ran around the cage and occasionally hit the wheel thus generating a stable record of wheel revolutions. On average, the squirrels woke up an hour after lights-on, started activity on the running wheel about 40 minutes later, ran for 10 hours covering a distance of 2 km, and fell asleep about an hour after lights-off. This pattern of running-wheel behavior partially resembles that of laboratory mice, but its extreme diversity is unique to this species.
Collapse
|
29
|
A Dose-Dependent Effect of Carnipure ® Tartrate Supplementation on Endurance Capacity, Recovery, and Body Composition in an Exercise Rat Model. Nutrients 2020; 12:nu12051519. [PMID: 32456174 PMCID: PMC7284330 DOI: 10.3390/nu12051519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/10/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022] Open
Abstract
The objective of this work is to investigate the effects of Carnipure® Tartrate (CT) supplementation with or without exercise on endurance capacity, recovery, and fatigue by assessing time to exhaustion as well as body weight and composition in rats. In addition, antioxidant capacity has been evaluated by measuring malondialdehyde (MDA) levels and antioxidant enzyme (superoxide dismutase, SOD; catalase, CAT; glutathioneperoxidase; GSHPx) activities. Fifty-six male Wistar rats were divided into eight groups including seven rats each. A control group did not receive CT nor exercise. Another control group received 200 mg/kg CT without exercise. The other six groups of rats went through an exercise regimen consisting of a 5-day training period with incremental exercise capacity, which was followed by 6 weeks of the run at 25 m/min for 45 min every day. CT was supplemented at 0, 25, 50, 100, 200, and 400 mg/kg per day during the 6 weeks. Rats submitted to exercise and supplemented with CT had a significant and dose-dependent increase in time to exhaustion and this effect seems to be independent of exercise (p < 0.05). Additionally, recovery and fatigue were improved, as shown by a significant and dose-dependent decrease in myoglobin and lactic acid plasma levels, which are two markers of muscle recovery. CT supplementation led to a dose-response decrease in body weight and visceral fat. These effects become significant at 200 and 400 mg/kg doses (p < 0.05). Additionally, the antioxidant capacity was improved, as shown by a significant and dose-dependent increase in SOD, CAT, and GSHPx. Serum MDA concentrations decreased in exercising rats with CT supplementation. CT supplementation led to a decrease in serum glucose, triglycerides, and total cholesterol concentrations with the lowest levels observed at 400 mg/kg dose (p < 0.05). These effects correlated with a significant dose-dependent increase in serum total L-carnitine, free L-carnitine, and acetyl-carnitine, which linked the observed efficacy to CT supplementation. These results demonstrate that CT supplementation during exercise provides benefits on exercise performance, recovery, and fatigue as well as improved the lipid profile and antioxidant capacity. The lowest dose leads to some of these effects seen in rats where 25 mg/kg corresponds to 250 mg/day as a human equivalent.
Collapse
|
30
|
Guo S, Huang Y, Zhang Y, Huang H, Hong S, Liu T. Impacts of exercise interventions on different diseases and organ functions in mice. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:53-73. [PMID: 31921481 PMCID: PMC6943779 DOI: 10.1016/j.jshs.2019.07.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/09/2019] [Accepted: 04/29/2019] [Indexed: 05/20/2023]
Abstract
Background In recent years, much evidence has emerged to indicate that exercise can benefit people when performed properly. This review summarizes the exercise interventions used in studies involving mice as they are related to special diseases or physiological status. To further understand the effects of exercise interventions in treating or preventing diseases, it is important to establish a template for exercise interventions that can be used in future exercise-related studies. Methods PubMed was used as the data resource for articles. To identify studies related to the effectiveness of exercise interventions for treating various diseases and organ functions in mice, we used the following search language: (exercise [Title] OR training [Title] OR physical activity [Title]) AND (mice [title/abstract] OR mouse [title/abstract] OR mus [title/abstract]). To limit the range of search results, we included 2 filters: one that limited publication dates to "in 10 years" and one that sorted the results as "best match". Then we grouped the commonly used exercise methods according to their similarities and differences. We then evaluated the effectiveness of the exercise interventions for their impact on diseases and organ functions in 8 different systems. Results A total of 331 articles were included in the analysis procedure. The articles were then segmented into 8 systems for which the exercise interventions were used in targeting and treating disorders: motor system (60 studies), metabolic system (45 studies), cardio-cerebral vascular system (58 studies), nervous system (74 studies), immune system (32 studies), respiratory system (7 studies), digestive system (1 study), and the system related to the development of cancer (54 studies). The methods of exercise interventions mainly involved the use of treadmills, voluntary wheel-running, forced wheel-running, swimming, and resistance training. It was found that regardless of the specific exercise method used, most of them demonstrated positive effects on various systemic diseases and organ functions. Most diseases were remitted with exercise regardless of the exercise method used, although some diseases showed the best remission effects when a specific method was used. Conclusion Our review strongly suggests that exercise intervention is a cornerstone in disease prevention and treatment in mice. Because exercise interventions in humans typically focus on chronic diseases, national fitness, and body weight loss, and typically have low intervention compliance rates, it is important to use mice models to investigate the molecular mechanisms underlying the health benefits from exercise interventions in humans.
Collapse
Affiliation(s)
- Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yiru Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Yan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - He Huang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
31
|
Abstract
Endurance testing simultaneously assesses a wide variety of physiological systems including the cardiovascular, respiratory, metabolic, and neuromuscular systems (Gabriel and Zierath, Cell Metab 25:1000-1011, 2017). Treadmill running is a noninvasive method to evaluate fitness capacity in a longitudinal or cross-sectional manner. High-intensity exercise tests can be used to determine peak physical capacity in mice. However, because aging is associated with a progressive loss of physical capacity the running protocols can be adapted and optimized for aged mice.
Collapse
Affiliation(s)
- Joseph C Reynolds
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA. .,USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA. .,Biomedical Science, Graduate School, Ajou University, Suwon, South Korea.
| |
Collapse
|
32
|
Prokic V, Plecevic S, Bradic J, Petkovic A, Srejovic I, Bolevich S, Jeremic J, Bolevich S, Jakovljevic V, Zivkovic V. The impact of nine weeks swimming exercise on heart function in hypertensive and normotensive rats: role of cardiac oxidative stress. J Sports Med Phys Fitness 2019; 59:2075-2083. [PMID: 31240902 DOI: 10.23736/s0022-4707.19.09798-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The purpose of this study was to estimate the effects of 9-week swimming training on cardiodynamic parameters and coronary flow in a rat model of high salt-induced hypertension with a special focus on the role of oxidative stress. METHODS Rats involved in the research were divided randomly into four groups: healthy sedentary (SA), healthy trained (TA), sedentary hypertensive (SHA) and trained hypertensive animals (THA). Trained rats were exposed to 9-week swimming training (5 days/week, 60 min/day). Additionally, in order to induce hypertension animals from SHA and THA groups were on high sodium (8% NaCl solution) diet during 4 weeks. Afterwards all rats were sacrificed and hearts were isolated and retrogradely perfused according to Langendorff technique. The following parameters of cardiac function were continuously recorded: maximum and minimum rate of pressure development in left ventricle, systolic and diastolic left ventricular pressure and heart rate. Coronary flow was measured flowmetrically. Oxidative stress markers were determined in coronary venous effluent. RESULTS Our findings demonstrated that 9 weeks of swimming training led to improvement of cardiac contractility, relaxation and systolic capacity of normotensive rats, while this training protocol induced enhanced diastolic function in hypertensive conditions. More pronounced effects of exercise in alleviating oxidative stress were observed in hypertensive rats. CONCLUSIONS Obvious beneficial exercise-induced cardiac adaptations provide scientific basis for further researches which would thoroughly clarify the mechanisms through which swimming training alters myocardial function both in healthy conditions and in the presence of chronic diseases.
Collapse
Affiliation(s)
- Veljko Prokic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sasa Plecevic
- Sports Medicine Association of Serbia, Belgrade, Serbia
| | - Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Anica Petkovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Stefani Bolevich
- Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia -
| |
Collapse
|
33
|
Temporal dynamics of pre and post myocardial infarcted tissue with concomitant preconditioning of aerobic exercise in chronic diabetic rats. Life Sci 2019; 225:79-87. [PMID: 30946838 DOI: 10.1016/j.lfs.2019.03.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 12/12/2022]
Abstract
The different ailments of heart including myocardial infarction (MI) and ischemic heart diseases are the foremost trigger of high mortality across the world which is instigated by sedentary life style, chronic hyperglycaemia and atherosclerosis. Albeit strenuous exercise itself induces temporary hypoxia which causes myocardial damage and this vitiosus circulus is poorly understood and has been assumed difficult to break. Present investigation targets temporal dynamics of aerobic exercise treatment induced preconditioning against diabetes associated pre- and post- myocardial injury. The persisting high blood sugar level leads to several biochemical alterations at pre- and post-MI phase. Here, we present the assessment of temporal expression of cardiac biomarkers (CKMB, LDH, cTnI and serum nitrite/nitrate), oxidative stress (myocardial TBARS and reduced NBT), inflammatory cytokines (IL-6, TNF-α and IL-10), renal biomarkers (BUN, serum creatinine and microproteinuria) and structural alterations of cardio-renal tissue. Aerobic exercise preconditioning significantly downregulate the pathological events or biomarkers and upsurge the physiological biomarkers at both pre- and post-MI phase. The attenuation or returning of pathological makers to lowest level at different time points endorses the therapeutic management of aerobic exercise against diabetic MI. Furthermore, the temporal expression of various cardio-renal biomarkers pattern elucidates that aerobic exercise preconditioning boost the strength and consolidate the cardiac muscles to work under stress. Despite the presence of traditional knowledge about health benefits of aerobic exercise, it is yet to be brought into the clinical arena. In spite of few impending challenges subjected to additional investigations, aerobic exercise preconditioning shows a high degree of promise.
Collapse
|