1
|
Qin S, Zeng H, Wu Q, Li Q, Zeeshan M, Ye L, Jiang Y, Zhang R, Jiang X, Li M, Zhang R, Chen W, Chou WC, Dong GH, Li DC, Zeng XW. An integrative analysis of lipidomics and transcriptomics in various mouse brain regions in response to real-ambient PM 2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165112. [PMID: 37364843 DOI: 10.1016/j.scitotenv.2023.165112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Exposure to Fine particulate matter (PM2.5) has been associated with various neurological disorders. However, the underlying mechanisms of PM2.5-induced adverse effects on the brain are still not fully defined. Multi-omics analyses could offer novel insights into the mechanisms of PM2.5-induced brain dysfunction. In this study, a real-ambient PM2.5 exposure system was applied to male C57BL/6 mice for 16 weeks, and lipidomics and transcriptomics analysis were performed in four brain regions. The findings revealed that PM2.5 exposure led to 548, 283, 304, and 174 differentially expressed genes (DEGs), as well as 184, 89, 228, and 49 distinctive lipids in the hippocampus, striatum, cerebellum, and olfactory bulb, respectively. Additionally, in most brain regions, PM2.5-induced DEGs were mainly involved in neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, and calcium signaling pathway, while PM2.5-altered lipidomic profile were primarily enriched in retrograde endocannabinoid signaling and biosynthesis of unsaturated fatty acids. Importantly, mRNA-lipid correlation networks revealed that PM2.5-altered lipids and DEGs were obviously enriched in pathways involving in bile acid biosynthesis, De novo fatty acid biosynthesis, and saturated fatty acids beta-oxidation in brain regions. Furthermore, multi-omics analyses revealed that the hippocampus was the most sensitive part to PM2.5 exposure. Specifically, dysregulation of Pla2g1b, Pla2g, Alox12, Alox15, and Gpx4 induced by PM2.5 were closely correlated to the disruption of alpha-linolenic acid, arachidonic acid and linoleic acid metabolism in the hippocampus. In summary, our findings highlight differential lipidomic and transcriptional signatures of various brain regions by real-ambient PM2.5 exposure, which will advance our understanding of potential mechanisms of PM2.5-induecd neurotoxicity.
Collapse
Affiliation(s)
- Shuangjian Qin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huixian Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qizhen Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qingqing Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lizhu Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinhang Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Miao Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Chun Chou
- Center for Environmental and Human Toxicology, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, United States
| | - Guang-Hui Dong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dao-Chuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao-Wen Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Nicotine exposure during breastfeeding alters the expression of endocannabinoid system biomarkers in female but not in male offspring at adulthood. J Dev Orig Health Dis 2023; 14:415-425. [PMID: 36815400 DOI: 10.1017/s2040174423000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Early nicotine exposure compromises offspring's phenotype at long-term in both sexes. We hypothesize that offspring exposed to nicotine during breastfeeding show deregulated central and peripheral endocannabinoid system (ECS), compromising several aspects of their metabolism. Lactating rats received nicotine (NIC, 6 mg/Kg/day) or saline from postnatal day (PND) 2 to 16 through implanted osmotic minipumps. Offspring were analyzed at PND180. We evaluated protein expression of N-acylphosphatidylethanolamide-phospholipase D (NAPE-PLD), fatty acid amide hydrolase (FAAH), diacylglycerol lipase (DAGL), monoacylglycerol lipase (MAGL) and cannabinoid receptors (CB1 and/or CB2) in lateral hypothalamus, paraventricular nucleus of the hypothalamus, liver, visceral adipose tissue (VAT), adrenal and thyroid. NIC offspring from both sexes did not show differences in hypothalamic ECS markers. Peripheral ECS markers showed no alterations in NIC males. In contrast, NIC females had lower liver DAGL and CB1, higher VAT DAGL, higher adrenal NAPE-PLD and higher thyroid FAAH. Endocannabinoids biosynthesis was affected by nicotine exposure during breastfeeding only in females; alterations in peripheral tissues suggest lower action in liver and higher action in VAT, adrenal and thyroid. Effects of nicotine exposure during lactation on ECS markers are sex- and tissue-dependent. This characterization helps understanding the phenotype of the adult offspring in this model and may contribute to the development of new pharmacological targets for the treatment of several metabolic diseases that originate during development.
Collapse
|
3
|
Almeida MM, Dias-Rocha CP, Calviño C, Trevenzoli IH. Lipid endocannabinoids in energy metabolism, stress and developmental programming. Mol Cell Endocrinol 2022; 542:111522. [PMID: 34843899 DOI: 10.1016/j.mce.2021.111522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) regulates brain development and function, energy metabolism and stress in a sex-, age- and tissue-dependent manner. The ECS comprises mainly the bioactive lipid ligands anandamide (AEA) and 2-aracdonoylglycerol (2-AG), cannabinoid receptors 1 and 2 (CB1 and CB2), and several metabolizing enzymes. The endocannabinoid tonus is increased in obesity, stimulating food intake and a preference for fat, reward, and lipid accumulation in peripheral tissues, as well as favoring a positive energy balance. Energy balance and stress responses share adaptive mechanisms regulated by the ECS that seem to underlie the complex relationship between feeding and emotional behavior. The ECS is also a key regulator of development. Environmental insults (diet, toxicants, and stress) in critical periods of developmental plasticity, such as gestation, lactation and adolescence, alter the ECS and may predispose individuals to the development of chronic diseases and behavioral changes in the long term. This review is focused on the ECS and the developmental origins of health and disease (DOHaD).
Collapse
Affiliation(s)
- Mariana Macedo Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Camila Calviño
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis Hara Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Lisboa PC, Miranda RA, Souza LL, Moura EG. Can breastfeeding affect the rest of our life? Neuropharmacology 2021; 200:108821. [PMID: 34610290 DOI: 10.1016/j.neuropharm.2021.108821] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
The breastfeeding period is one of the most important critical windows in our development, since milk, our first food after birth, contains several compounds, such as macronutrients, micronutrients, antibodies, growth factors and hormones that benefit human health. Indeed, nutritional, and environmental alterations during lactation, change the composition of breast milk and induce alterations in the child's development, such as obesity, leading to the metabolic dysfunctions, cardiovascular diseases and neurobehavioral disorders. This review is based on experimental animal models, most of them in rodents, and summarizes the impact of an adequate breast milk supply in view of the developmental origins of health and disease (DOHaD) concept, which has been proposed by researchers in the areas of epidemiology and basic science from around the world. Here, experimental advances in understanding the programming during breastfeeding were compiled with the purpose of generating knowledge about the genesis of chronic noncommunicable diseases and to guide the development of public policies to deal with and prevent the problems arising from this phenomenon. This review article is part of the special issue on "Cross talk between periphery and brain".
Collapse
Affiliation(s)
- Patricia C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luana L Souza
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto G Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Al-Sawalha NA, Bdeir R, Sohaib A, Saad M, Inghaimesh T, Khabour OF, Alzoubi KH, Shihadeh A. Effect of E-cigarettes aerosol exposure during lactation in rats: Hormonal and biochemical aspects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103759. [PMID: 34695539 PMCID: PMC8957699 DOI: 10.1016/j.etap.2021.103759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 05/03/2023]
Abstract
Electronic cigarettes (e-cigarettes) have been marketed as a less lethal substitute for smoking traditional cigarettes. This study aims to investigate the impact of e-cigarettes aerosol exposure on lactating dams and pups, whose dams were exposed. Lactating dams received fresh air (control) or e-cigarettes aerosol during lactation (day 4-21). Maternal exposure to e-cigarettes aerosol during lactation induced significant reduction (P < 0.0001) in the fat content of the milk and serum Leptin level (P < 0.005) compared to control dams. Furthermore, pups whose dams were exposed to e-cigarettes during lactation showed an increased level of glucose, thyroxine and decreased level of insulin. The exposure to e-cigarettes aerosol during lactation altered the composition of milk as well as the hormonal and biochemical profile in dams and pups. This result, if observed in women using e-cigarettes, suggests that e-cigarettes' use during lactation may have consequences on the milk production and hormonal and biochemical profile in breastfeeding mothers and nursing babies.
Collapse
Affiliation(s)
- Nour A Al-Sawalha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Roba Bdeir
- Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Aiman Sohaib
- Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Marwan Saad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Tasneem Inghaimesh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE; Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Alan Shihadeh
- Mechanical Engineering Department, American University of Beirut, Beirut 1107 2020, Lebanon; Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
6
|
de Melo Reis RA, Isaac AR, Freitas HR, de Almeida MM, Schuck PF, Ferreira GC, Andrade-da-Costa BLDS, Trevenzoli IH. Quality of Life and a Surveillant Endocannabinoid System. Front Neurosci 2021; 15:747229. [PMID: 34776851 PMCID: PMC8581450 DOI: 10.3389/fnins.2021.747229] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is an important brain modulatory network. ECS regulates brain homeostasis throughout development, from progenitor fate decision to neuro- and gliogenesis, synaptogenesis, brain plasticity and circuit repair, up to learning, memory, fear, protection, and death. It is a major player in the hypothalamic-peripheral system-adipose tissue in the regulation of food intake, energy storage, nutritional status, and adipose tissue mass, consequently affecting obesity. Loss of ECS control might affect mood disorders (anxiety, hyperactivity, psychosis, and depression), lead to drug abuse, and impact neurodegenerative (Alzheimer's, Parkinson, Huntington, Multiple, and Amyotrophic Lateral Sclerosis) and neurodevelopmental (autism spectrum) disorders. Practice of regular physical and/or mind-body mindfulness and meditative activities have been shown to modulate endocannabinoid (eCB) levels, in addition to other players as brain-derived neurotrophic factor (BDNF). ECS is involved in pain, inflammation, metabolic and cardiovascular dysfunctions, general immune responses (asthma, allergy, and arthritis) and tumor expansion, both/either in the brain and/or in the periphery. The reason for such a vast impact is the fact that arachidonic acid, a precursor of eCBs, is present in every membrane cell of the body and on demand eCBs synthesis is regulated by electrical activity and calcium shifts. Novel lipid (lipoxins and resolvins) or peptide (hemopressin) players of the ECS also operate as regulators of physiological allostasis. Indeed, the presence of cannabinoid receptors in intracellular organelles as mitochondria or lysosomes, or in nuclear targets as PPARγ might impact energy consumption, metabolism and cell death. To live a better life implies in a vigilant ECS, through healthy diet selection (based on a balanced omega-3 and -6 polyunsaturated fatty acids), weekly exercises and meditation therapy, all of which regulating eCBs levels, surrounded by a constructive social network. Cannabidiol, a diet supplement has been a major player with anti-inflammatory, anxiolytic, antidepressant, and antioxidant activities. Cognitive challenges and emotional intelligence might strengthen the ECS, which is built on a variety of synapses that modify human behavior. As therapeutically concerned, the ECS is essential for maintaining homeostasis and cannabinoids are promising tools to control innumerous targets.
Collapse
Affiliation(s)
- Ricardo Augusto de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny Rosendo Isaac
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hércules Rezende Freitas
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Macedo de Almeida
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Fernanda Schuck
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Peixoto TC, Moura EG, Soares PN, Rodrigues VST, Claudio-Neto S, Oliveira E, Manhães AC, Lisboa PC. Nicotine exposure during lactation causes disruption of hedonic eating behavior and alters dopaminergic system in adult female rats. Appetite 2021; 160:105115. [PMID: 33453337 DOI: 10.1016/j.appet.2021.105115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/18/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022]
Abstract
Tobacco smoke during gestation is associated with increased consumption of palatable foods by the offspring in humans and rats. Postpartum relapse is observed in lactating women who quit smoking during pregnancy, putting their children at risk of adverse health outcomes caused by secondhand smoke. Nicotine is transferred through milk and alters the dopaminergic reward system of adult male rats, reducing dopamine action in the nucleus accumbens (NAc) and hypothalamic arcuate nucleus. Here, we evaluated the long-term effects of nicotine-only exposure during lactation on eating behavior, anxiety, locomotion, dopaminergic system, hypothalamic leptin signaling and nicotinic receptor in the adult female rat progeny. Two days after birth (PN2), Wistar rat dams were separated into control and nicotine (Nic) groups for implantation of osmotic minipumps that released respectively saline or 6 mg/kg nicotine. Lactating dams were kept with 6 pups. After weaning (PN21; nicotine withdrawal), only the female offspring were studied. Euthanasia occurred at PN180. Nic females showed hyperphagia, preference for a high-sucrose diet, increased anxiety-like behavior, lower tyrosine hydroxylase (TH), lower dopamine transporter and higher dopamine receptor (Drd2) in NAc; lower Drd1 in prefrontal cortex and lower TH in dorsal striatum (DS). These animals showed changes that can explain their hyperphagia, such as: lower leptin signaling pathway (Leprb, pJAK2, pSTAT3) and Chrna7 expression in hypothalamus. Neonatal nicotine exposure affects the brain reward system of the female progeny differently from males, mainly decreasing dopamine production in NAc and DS. Therefore, Nic females are more susceptible to develop food addiction and obesity.
Collapse
Affiliation(s)
- T C Peixoto
- Laboratory of Endocrine Physiology, RJ, Brazil
| | - E G Moura
- Laboratory of Endocrine Physiology, RJ, Brazil
| | - P N Soares
- Laboratory of Endocrine Physiology, RJ, Brazil
| | | | - S Claudio-Neto
- Neurophysiology Laboratory, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - E Oliveira
- Laboratory of Endocrine Physiology, RJ, Brazil
| | - A C Manhães
- Neurophysiology Laboratory, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - P C Lisboa
- Laboratory of Endocrine Physiology, RJ, Brazil.
| |
Collapse
|
8
|
Miranda RA, Gaspar de Moura E, Lisboa PC. Tobacco smoking during breastfeeding increases the risk of developing metabolic syndrome in adulthood: Lessons from experimental models. Food Chem Toxicol 2020; 144:111623. [PMID: 32738371 DOI: 10.1016/j.fct.2020.111623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MetS) is characterized by increased abdominal fat, dyslipidemia, diabetes mellitus and hypertension. A high MetS prevalence is strongly associated with obesity. Obesity is a public health problem in which several complex factors have been implicated, including environmental pollutants. For instance, maternal smoking seems to play a role in obesogenesis in childhood. Given the association between endocrine disruptors, obesity and metabolic programming, over the past 10 years, our research group has contributed to studies based on the hypothesis that early exposure to nicotine/tobacco causes offspring to become MetS-prone. The mechanism by which tobacco smoking during breastfeeding induces metabolic dysfunctions is not completely understood; however, increased metabolic programming has been shown in studies that focus on this topic. Here, we reviewed the literature mainly based in light of our latest data from experimental models. Nicotine or tobacco exposure during breastfeeding induces several endocrine dysfunctions in a sex- and tissue-specific manner. This review provides an updated summary regarding the hypothesis that early exposure to nicotine/tobacco causes offspring to become MetS-prone. An understanding of this issue can provide support to prevent long-term disorders, mainly related to the risk of obesity and its comorbidities, in future generations.
Collapse
Affiliation(s)
- Rosiane A Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
Zhao WH, Wen X, Qu W, Liu HX, Yan HY, Hou LF, Ping J. Attenuated Tregs increase susceptibility to type 1 diabetes in prenatal nicotine exposed female offspring mice. Toxicol Lett 2019; 315:39-46. [DOI: 10.1016/j.toxlet.2019.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022]
|