1
|
Ozguner Y, Altınsoy S, Kültüroğlu G, Unal D, Ergil J, Neşelioğlu S, Erel Ö. The effects of dexmedetomidine on thiol/disulphide homeostasis in coronary artery bypass surgery: a randomized controlled trial. BMC Anesthesiol 2024; 24:402. [PMID: 39511476 PMCID: PMC11542366 DOI: 10.1186/s12871-024-02794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Thiol-disulfide homeostasis (TDH) plays a pivotal role in various physiological mechanisms, including antioxidant defence, detoxification, apoptosis, regulation of enzyme activities and cellular signal transduction. TDH can be used as a biomarker to detect oxidative stress (OS) levels and ischemia status in the tissues. Coronary artery bypass grafting (CABG) surgery is a procedure associated with high oxidative stress. Dexmedetomidine, an alpha-2 agonist anaesthetic agent, has antioxidant effects. In this study, the effects of dexmedetomidine on oxidative stress in CABG surgery were investigated. METHODS Patients who underwent on-pump CABG surgery were divided into two groups: those receiving dexmedetomidine (Group D) and those not receiving dexmedetomidine (Group C). From anesthesia induction to the end of surgery, patients in Group D received intravenous infusions of 0.05-0.2 mcg/kg/min remifentanil and 0.2-0.7 mcg/kg/h dexmedetomidine. Patients in Group C received intravenous infusion of 0.05-0.2 mcg/kg/min remifentanil. Blood samples were collected from the patients 30 min before induction of anesthesia (T1), 30 min after removal of the aortic cross-clamp (T2), and at the end of the surgery (T3). Thiol-disulfide homeostasis (TDH) was assessed using a novel method. A novel automated method enables the determination of native thiols, total thiols and disulfides levels in plasma, allowing the calculation of their respective ratios. RESULTS In patients receiving dexmedetomidine, lower postoperative levels of disulfide, disulfide/native thiol, and disulfide/total thiol, along with higher native thiol/total thiol, were observed compared to the control group. (p < 0.05) Postoperative native thiol and total thiol levels were similar for both groups. (p > 0.05) CONCLUSIONS: In our study, through dynamic thiol-disulfide measurements, we found that levels of oxidative stress (OS) were lower in patients who received dexmedetomidine. We believe that the positive effects of dexmedetomidine on OS could be beneficial in CABG surgery. Furthermore, we anticipate that with further studies conducted in larger patient cohorts, the clinical utilization of dexmedetomidine will become more widespread. TRIAL REGISTRATION NUMBER NCT05895331 / 06.07.2023.
Collapse
Affiliation(s)
- Yusuf Ozguner
- Department of Anesthesiology and Reanimation, Ankara Etlik City Hospital, Ankara, Turkey.
| | - Savaş Altınsoy
- Department of Anesthesiology and Reanimation, Ankara Etlik City Hospital, Ankara, Turkey
| | - Gökçen Kültüroğlu
- Department of Anesthesiology and Reanimation, Ankara Etlik City Hospital, Ankara, Turkey
| | - Dilek Unal
- Department of Anesthesiology and Reanimation, Ankara Etlik City Hospital, Ankara, Turkey
| | - Julide Ergil
- Department of Anesthesiology and Reanimation, Ankara Etlik City Hospital, Ankara, Turkey
| | - Salim Neşelioğlu
- Department of Clinical Biochemistry, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Özcan Erel
- Department of Clinical Biochemistry, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
2
|
Wang K, Wang Y, Zhang T, Chang B, Fu D, Chen X. The Role of Intravenous Anesthetics for Neuro: Protection or Toxicity? Neurosci Bull 2024:10.1007/s12264-024-01265-4. [PMID: 39153174 DOI: 10.1007/s12264-024-01265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/15/2024] [Indexed: 08/19/2024] Open
Abstract
The primary intravenous anesthetics employed in clinical practice encompass dexmedetomidine (Dex), propofol, ketamine, etomidate, midazolam, and remimazolam. Apart from their established sedative, analgesic, and anxiolytic properties, an increasing body of research has uncovered neuroprotective effects of intravenous anesthetics in various animal and cellular models, as well as in clinical studies. However, there also exists conflicting evidence pointing to the potential neurotoxic effects of these intravenous anesthetics. The role of intravenous anesthetics for neuro on both sides of protection or toxicity has been rarely summarized. Considering the mentioned above, this work aims to offer a comprehensive understanding of the underlying mechanisms involved both in the central nerve system (CNS) and the peripheral nerve system (PNS) and provide valuable insights into the potential safety and risk associated with the clinical use of intravenous anesthetics.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Bingcheng Chang
- The Second Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, Guiyang, 550003, China
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
3
|
Zhang X, Zhou H, Liu H, Xu P. Role of Oxidative Stress in the Occurrence and Development of Cognitive Dysfunction in Patients with Obstructive Sleep Apnea Syndrome. Mol Neurobiol 2024; 61:5083-5101. [PMID: 38159196 DOI: 10.1007/s12035-023-03899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Obstructive sleep apnea syndrome (OSAS) causes recurrent apnea and intermittent hypoxia at night, leading to several complications such as cognitive dysfunction. However, the molecular mechanisms underlying cognitive dysfunction in OSAS are unclear, and oxidative stress mediated by intermittent hypoxia is an important mechanism. In addition, the improvement of cognitive dysfunction in patients with OSAS varies by different treatment regimens; among them, continuous positive airway pressure therapy (CPAP) is mostly recognized for improving cognitive dysfunction. In this review, we discuss the potential mechanisms of oxidative stress in OSAS, the common factors of affecting oxidative stress and the Links between oxidative stress and inflammation in OSAS, focusing on the potential links between oxidative stress and cognitive dysfunction in OSAS and the potential therapies for neurocognitive dysfunction in patients with OSAS mediated by oxidative stress. Therefore, further analysis on the relationship between oxidative stress and cognitive dysfunction in patients with OSAS will help to clarify the etiology and discover new treatment options, which will be of great significance for early clinical intervention.
Collapse
Affiliation(s)
- XiaoPing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - HaiJun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
4
|
Israni DK, Patel ML, Dodiya RK. Exploring the versatility of miRNA-128: a comprehensive review on its role as a biomarker and therapeutic target in clinical pathways. Mol Biol Rep 2024; 51:860. [PMID: 39068606 DOI: 10.1007/s11033-024-09822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
MicroRNAs (miRNAs/ miRs) are short, noncoding RNAs, usually consisting of 18 to 24 nucleotides, that control gene expression after the process of transcription and have crucial roles in several clinical processes. This article seeks to provide an in-depth review and evaluation of the many activities of miR-128, accentuating its potential as a versatile biomarker and target for therapy; The circulating miR-128 has garnered interest because of its substantial influence on gene regulation and its simplicity in extraction. Several miRNAs, such as miR-128, have been extracted from circulating blood cells, cerebrospinal fluid, and plasma/serum. The miR-128 molecule can specifically target a diverse range of genes, enabling it to have intricate physiological impacts by concurrently regulating many interrelated pathways. It has a vital function in several biological processes, such as modulating the immune system, regulating brain plasticity, organizing the cytoskeleton, and inducing neuronal death. In addition, miR-128 modulates genes associated with cell proliferation, the cell cycle, apoptosis, plasma LDL levels, and gene expression regulation in cardiac development. The dysregulation of miR-128 expression and activity is associated with the development of immunological responses, changes in neural plasticity, programmed cell death, cholesterol metabolism, and heightened vulnerability to autoimmune illnesses, neuroimmune disorders, cancer, and cardiac problems; The paper highlights the importance of studying the consequences of miR-128 dysregulation in these specific locations. By examining the implications of miRNA-128 dysregulation in these areas, the article underscores its significance in diagnosis and treatment, providing a foundation for research and clinical applications.
Collapse
Affiliation(s)
- Dipa K Israni
- Department of Pharmacology, L.J. Institute of Pharmacy, LJ University, SG Highway, Sanand Cross-Road, Ahmedabad, Gujarat, 382210, India.
| | - Manish L Patel
- LJ Institute of Pharmacy, LJ University, Ahmedabad, Gujarat, India
| | - Rohinee K Dodiya
- Department of Pharmacology, L.J. Institute of Pharmacy, LJ University, SG Highway, Sanand Cross-Road, Ahmedabad, Gujarat, 382210, India
| |
Collapse
|
5
|
Zhang J, Wang QH, Miao BB, Wu RX, Li QQ, Tang BG, Liang ZB, Niu SF. Liver transcriptome analysis reveal the metabolic and apoptotic responses of Trachinotus ovatus under acute cold stress. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109476. [PMID: 38447780 DOI: 10.1016/j.fsi.2024.109476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Trachinotus ovatus is an economically important fish and has been recommended as a high-quality aquaculture fish breed for the high-quality development of sea ranches in the South China Sea. However, T. ovatus shows intolerance to low temperature, greatly limiting the extension of farming scale, reducing production efficiency in winter, and increasing farming risks. In this study, liver transcriptome analysis was investigated in T. ovatus under acute low temperature conditions (20 and 15 °C) using RNA sequencing (RNA-Seq) technology. Inter-groups differential expression analysis and trend analysis screened 1219 DEGs and four significant profiles (profiles 0, 3, 4, and 7), respectively. GO enrichment analysis showed that these DEGs were mainly related to metabolic process and cell growth and death process. KEGG enrichment analysis found that DEGs were mainly associated with lipid metabolism, carbohydrate metabolism, and cell growth and death, such as gluconeogenesis, glycolysis, fatty acid oxidation, cholesterol biosynthesis, p53 signaling pathway, cell cycle arrest, and apoptotic cell death. Moreover, protein-protein interaction networks identified two hub genes (FOS and JUNB) and some important genes related to metabolic process and cell growth and death process, that corresponding to enrichment analysis. Overall, gluconeogenesis, lipid mobilization, and fatty acid oxidation in metabolic process and cell cycle arrest and apoptotic cell death in cell growth and death process were enhanced, while glycolysis, liver glycogen synthesis and cholesterol biosynthesis in metabolic process were inhibited. The enhancement or attenuatment of metabolic process and cell growth and death process is conducive to maintain energy balance, normal fluidity of cell membrane, normal physiological functions of liver cell, enhancing the tolerance of T. ovatus to cold stress. These results suggested that metabolic process and cell growth and death process play important roles in response to acute cold stress in the liver of T. ovatus. Gene expreesion level analysis showed that acute cold stress at 15 °C was identified as a critical temperature point for T. ovatus in term of cellular metabolism alteration and apoptosis inducement, and rewarming intervention should be timely implemented above 15 °C. Our study can provide theoretical support for breeding cold-tolerant cultivars of T. ovatus, which is contributed to high-quality productions fish production.
Collapse
Affiliation(s)
- Jing Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ben-Ben Miao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Qian-Qian Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Bao-Gui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China.
| |
Collapse
|
6
|
Tian MY, Yang YD, Qin WT, Liu BN, Mou FF, Zhu J, Guo HD, Shao SJ. Electroacupuncture Promotes Nerve Regeneration and Functional Recovery Through Regulating lncRNA GAS5 Targeting miR-21 After Sciatic Nerve Injury. Mol Neurobiol 2024; 61:935-949. [PMID: 37672149 PMCID: PMC10861712 DOI: 10.1007/s12035-023-03613-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Although the benefits of electroacupuncture (EA) for peripheral nerve injury (PNI) are well accepted in clinical practice, the underlying mechanism remains incompletely elucidated. In our study, we observed that EA intervention led to a reduction in the expression of the long non-coding RNA growth-arrest-specific transcript 5 (GAS5) and an increased in miR-21 levels within the injured nerve, effectively promoting functional recovery and nerve regeneration following sciatic nerve injury (SNI). In contrast, administration of adeno-associated virus expressing GAS5 (AAV-GAS5) weakened the therapeutic effect of EA. On the other hand, both silencing GAS5 and introducing a miR-21 mimic prominently enhanced the proliferation activity and migration ability of Schwann cells (SCs), while also inhibiting SCs apoptosis. On the contrary, inhibition of SCs apoptosis was found to be mediated by miR-21. Additionally, overexpression of GAS5 counteracted the effects of the miR-21 mimic on SCs. Moreover, SCs that transfected with the miR-21 mimic promoted neurite growth in hypoxia/reoxygenation-induced neurons, which might be prevented by overexpressing GAS5. Furthermore, GAS5 was found to be widely distributed in the cytoplasm and was negatively regulated by miR-21. Consequently, the targeting of GAS5 by miR-21 represents a potential mechanism through which EA enhances reinnervation and functional restoration following SNI. Mechanistically, the GAS5/miR-21 axis can modulate the proliferation, migration, and apoptosis of SCs while potentially influencing the neurite growth of neurons.
Collapse
Affiliation(s)
- Ming-Yue Tian
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi-Duo Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wan-Ting Qin
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bao-Nian Liu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fang-Fang Mou
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hai-Dong Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shui-Jin Shao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
7
|
Wang QH, Wu RX, Ji JN, Zhang J, Niu SF, Tang BG, Miao BB, Liang ZB. Integrated Transcriptomics and Metabolomics Reveal Changes in Cell Homeostasis and Energy Metabolism in Trachinotus ovatus in Response to Acute Hypoxic Stress. Int J Mol Sci 2024; 25:1054. [PMID: 38256129 PMCID: PMC10815975 DOI: 10.3390/ijms25021054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Trachinotus ovatus is an economically important mariculture fish, and hypoxia has become a critical threat to this hypoxia-sensitive species. However, the molecular adaptation mechanism of T. ovatus liver to hypoxia remains unclear. In this study, we investigated the effects of acute hypoxic stress (1.5 ± 0.1 mg·L-1 for 6 h) and re-oxygenation (5.8 ± 0.3 mg·L-1 for 12 h) in T. ovatus liver at both the transcriptomic and metabolic levels to elucidate hypoxia adaptation mechanism. Integrated transcriptomics and metabolomics analyses identified 36 genes and seven metabolites as key molecules that were highly related to signal transduction, cell growth and death, carbohydrate metabolism, amino acid metabolism, and lipid metabolism, and all played key roles in hypoxia adaptation. Of these, the hub genes FOS and JUN were pivotal hypoxia adaptation biomarkers for regulating cell growth and death. During hypoxia, up-regulation of GADD45B and CDKN1A genes induced cell cycle arrest. Enhancing intrinsic and extrinsic pathways in combination with glutathione metabolism triggered apoptosis; meanwhile, anti-apoptosis mechanism was activated after hypoxia. Expression of genes related to glycolysis, gluconeogenesis, amino acid metabolism, fat mobilization, and fatty acid biosynthesis were up-regulated after acute hypoxic stress, promoting energy supply. After re-oxygenation for 12 h, continuous apoptosis favored cellular function and tissue repair. Shifting from anaerobic metabolism (glycolysis) during hypoxia to aerobic metabolism (fatty acid β-oxidation and TCA cycle) after re-oxygenation was an important energy metabolism adaptation mechanism. Hypoxia 6 h was a critical period for metabolism alteration and cellular homeostasis, and re-oxygenation intervention should be implemented in a timely way. This study thoroughly examined the molecular response mechanism of T. ovatus under acute hypoxic stress, which contributes to the molecular breeding of hypoxia-tolerant cultivars.
Collapse
Affiliation(s)
- Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Jiao-Na Ji
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
| | - Jing Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Bao-Gui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Ben-Ben Miao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
| |
Collapse
|
8
|
Pinky, Neha, Ali M, Tiwari P, Alam MM, Hattiwale HM, Jamal A, Parvez S. Unravelling of molecular biomarkers in synaptic plasticity of Alzheimer's disease: Critical role of the restoration of neuronal circuits. Ageing Res Rev 2023; 91:102069. [PMID: 37696304 DOI: 10.1016/j.arr.2023.102069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Learning and memory storage are the fundamental activities of the brain. Aberrant expression of synaptic molecular markers has been linked to memory impairment in AD. Aging is one of the risk factors linked to gradual memory loss. It is estimated that approximately 13 million people worldwide will have AD by 2050. A massive amount of oxidative stress is kept under control by a complex network of antioxidants, which occasionally fails and results in neuronal oxidative stress. Increasing evidence suggests that ROS may affect many pathological aspects of AD, including Aβ accumulation, tau hyperphosphorylation, synaptic plasticity, and mitochondrial dysfunction, which may collectively result in neurodegeneration in the brain. Further investigation into the relationship between oxidative stress and AD may provide an avenue for effective preservation and pharmacological treatment of this neurodegenerative disease. In this review, we briefly summarize the cellular mechanism underlying Aβ induced synaptic dysfunction. Since oxidative stress is common in the elderly and may contribute to the pathogenesis of AD, we also shed light on the role of antioxidant and inflammatory pathways in oxidative stress adaptation, which has a potential therapeutic target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Pinky
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mubashshir Ali
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Prachi Tiwari
- Department of Physiotherapy, School of Nursing Sciences and Allied Health, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Haroonrashid M Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
9
|
Yang X, Wu J, Cheng H, Chen S, Wang J. DEXMEDETOMIDINE AMELIORATES ACUTE BRAIN INJURY INDUCED BY MYOCARDIAL ISCHEMIA-REPERFUSION VIA UPREGULATING THE HIF-1 PATHWAY. Shock 2023; 60:678-687. [PMID: 37647083 DOI: 10.1097/shk.0000000000002217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
ABSTRACT Objective: Neurological complications after myocardial ischemia/reperfusion (IR) injury remain high and seriously burden patients and their families. Dexmedetomidine (Dex), an α 2 agonist, is endowed with analgesic-sedative and anti-inflammatory effects. Therefore, our study aims to explore the mechanism and effect of Dex on brain damage after myocardial IR injury. Methods C57BL/6 mice were randomly divided into sham, IR, and IR + Dex groups, and myocardial IR models were established. The impact of Dex on brain injury elicited by myocardial IR was assessed via ELISA for inflammatory factors in serum and brain; Evans blue for blood-brain barrier permeability; hematoxylin-eosin staining for pathological injury in brain; immunofluorescence for microglia activation in brain; Morris water maze for cognitive dysfunction; western blot for the expression level of HIF-1α, occludin, cleaved caspase-3, NF-κB p65, and p-NF-κB p65 in the brain. In addition, HIF-1α knockout mice were used to verify whether the neuroprotective function of Dex is associated with the HIF-1 pathway. Results: Dex was capable of reducing myocardial IR-induced brain damage including inflammatory factor secretion, blood-brain barrier disruption, neuronal edema, microglial activation, and acute cognitive dysfunction. However, the protective role of Dex was attenuated in HIF-1α knockout mice. Conclusion: Dex protects against myocardial IR-induced brain injury, and the neuroprotection of Dex is at least partially dependent on the activation of the HIF-1 pathway.
Collapse
Affiliation(s)
- Xue Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | | | | | | | | |
Collapse
|
10
|
Li X, Yi L, Liu X, Chen X, Chen S, Cai S. Isoquercitrin Played a Neuroprotective Role in Rats After Cerebral Ischemia/Reperfusion Through Up-Regulating Neuroglobin and Anti-Oxidative Stress. Transplant Proc 2023; 55:1751-1761. [PMID: 37391332 DOI: 10.1016/j.transproceed.2023.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND This study aims to investigate whether isoquercitrin (Iso) exerts a neuroprotective role effect after cerebral ischemia-reperfusion (CIR) via up-regulating neuroglobin (Ngb) or reducing oxidative stress. METHODS The middle cerebral artery occlusion/reperfusion (MCAO/R) model was constructed using Sprague Dawley rats. First, we divided 40 mice into 5 groups (n = 8): sham, MCAO/R, Low-dosed Iso (5 mg/kg Iso), Mid-dosed Iso (10 mg/kg Iso), and High-dosed Iso (20 mg/kg Iso). Then, 48 rats were separated into 6 groups (n = 8): sham, MCAO/R, Iso, artificial cerebrospinal fluid, Ngb antisense oligodeoxynucleotides (AS-ODNs), and AS-ODNs ± Iso. The effects of Iso on brain tissue injury and oxidative stress were evaluated using hematoxylin-eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, immunofluorescence, western blotting, and real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and reactive oxygen species (ROS) detection. RESULTS The neurologic score, infarct volume, histopathology, apoptosis rate, and ROS production were reduced in Iso dose-dependent. The Ngb expression enhanced in Iso dose-dependent. The oxidative stress-related factors SOD, GSH, CAT, Nrf2, HO-1, and HIF-1α levels also increased in Iso dose-dependent, whereas the MDA levels decreased. However, related regulation of Iso on brain tissue damage and oxidative stress were reversed after low expression of Ngb. CONCLUSION Isoquercitrin played a neuroprotective role after CIR through up-regulating of Ngb and anti-oxidative stress.
Collapse
Affiliation(s)
- Xiuping Li
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Liming Yi
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Xing Liu
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Xia Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Sanchun Chen
- Hunan Bestcome Traditional Medicine Co, Ltd, Huaihua, China
| | - Shichang Cai
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China.
| |
Collapse
|
11
|
Jimenez-Tellez N, Pehar M, Visser F, Casas-Ortiz A, Rice T, Syed NI. Sevoflurane Exposure in Neonates Perturbs the Expression Patterns of Specific Genes That May Underly the Observed Learning and Memory Deficits. Int J Mol Sci 2023; 24:ijms24108696. [PMID: 37240038 DOI: 10.3390/ijms24108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Exposure to commonly used anesthetics leads to neurotoxic effects in animal models-ranging from cell death to learning and memory deficits. These neurotoxic effects invoke a variety of molecular pathways, exerting either immediate or long-term effects at the cellular and behavioural levels. However, little is known about the gene expression changes following early neonatal exposure to these anesthetic agents. We report here on the effects of sevoflurane, a commonly used inhalational anesthetic, on learning and memory and identify a key set of genes that may likely be involved in the observed behavioural deficits. Specifically, we demonstrate that sevoflurane exposure in postnatal day 7 (P7) rat pups results in subtle, but distinct, memory deficits in the adult animals that have not been reported previously. Interestingly, when given intraperitoneally, pre-treatment with dexmedetomidine (DEX) could only prevent sevoflurane-induced anxiety in open field testing. To identify genes that may have been altered in the neonatal rats after sevoflurane and DEX exposure, specifically those impacting cellular viability, learning, and memory, we conducted an extensive Nanostring study examining over 770 genes. We found differential changes in the gene expression levels after exposure to both agents. A number of the perturbed genes found in this study have previously been implicated in synaptic transmission, plasticity, neurogenesis, apoptosis, myelination, and learning and memory. Our data thus demonstrate that subtle, albeit long-term, changes observed in an adult animal's learning and memory after neonatal anesthetic exposure may likely involve perturbation of specific gene expression patterns.
Collapse
Affiliation(s)
- Nerea Jimenez-Tellez
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marcus Pehar
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Frank Visser
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alberto Casas-Ortiz
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tiffany Rice
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Naweed I Syed
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
12
|
Zhou W, Tao T, Yu W, Wu W, Hui Z, Xu H, Li Y, Zhang Y, Yang X. Recombinant Adenovirus-Mediated HIF-lα Ameliorates Neurological Dysfunction by Improving Energy Metabolism in Ischemic Penumbra After Cerebral Ischemia-Reperfusion in Rats. Neuropsychiatr Dis Treat 2023; 19:775-784. [PMID: 37051416 PMCID: PMC10085005 DOI: 10.2147/ndt.s389022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Background Hypoxia inducible factor-1α (HIF-1α) regulates glucose metabolism during ischemia. This study investigated the effect of recombinant adenovirus HIF-1ɑ on neurological function and energy metabolism in a rat cerebral ischemia-reperfusion model. Methods Rats were divided into four groups: sham-operated (Sham) group, cerebral ischemia-reperfusion (CIR) group, recombinant adenovirus empty vector (Ad) group, and recombinant adenovirus-mediated HIF-1α (AdHIF-1α) group. The AdHIF-1α group and the Ad group were injected with AdHIF-1α and Ad in the lateral ventricle. The mNSS was performed at post-ischemia day 0 (P0) and P1, P14 and P28. At P14, the cerebral infarct volume was compared. At P28, HE staining, Nissl stains and TUNEL staining were performed. The expression of HIF-1α, GLUT1 and PFKFB3 were evaluated by Western Blot and immunohistochemistry. High performance liquid chromatography (HPLC) was used to determine the expression of GLUT1 and PFKFB3, and the level of energy metabolites: ATP, ADP and AMP. Results mNSS scores in the AdHIF-1α group were consistently lower than those in the CIR and Ad groups from P14 (P < 0.05) and Ad groups (P < 0.05). The cerebral infarct volume was reduced in the AdHIF-1α group compared with that in CIR group and Ad group (P < 0.05). At P28, HE showed better pathological changes in AdHIF-1α group. The number of Nissl bodies was increased in the AdHIF-1α group compared with the CIR and Ad groups (P < 0.05). The number of apoptotic cells in the AdHIF-1α group was fewer than that in the CIR and Ad groups (P < 0.05). The expression of HIF-1α, GLUT1 and PFKFB3 was significantly higher in the AdHIF-1α group compared with the CIR and Ad groups (P < 0.05). The ATP, ADP and AMP in the ischemic penumbra were also higher in the AdHIF-1α group (P < 0.05). Conclusion HIF-lα promoted neurological function recovery and decreased cerebral infarct volume in rats after cerebral ischemia-reperfusion injury by improving energy metabolism.
Collapse
Affiliation(s)
- Wenmei Zhou
- Department of Rehabilitation Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| | - Tao Tao
- Department of Rehabilitation Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
- Correspondence: Tao Tao, Tel +86 13985162824, Email
| | - Wenfeng Yu
- Department of Human Anatomy, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Wanfu Wu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Zhirong Hui
- Department of Rehabilitation Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| | - Hongliang Xu
- Department of Rehabilitation Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| | - Yaqi Li
- Emergency Department, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| | - Ying Zhang
- Department of Chinese Traditional Medicine, Zunyi Medical and Pharmaceutical College, Zunyi, Guizhou, 563006, People’s Republic of China
| | - Xiaohui Yang
- Department of Rehabilitation Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
- Department of Rehabilitation Medicine, The Affiliated Hospital Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| |
Collapse
|
13
|
Liu C, Li Z, Xi H. Bioinformatics analysis and in vivo validation of ferroptosis-related genes in ischemic stroke. Front Pharmacol 2022; 13:940260. [PMID: 36506580 PMCID: PMC9729703 DOI: 10.3389/fphar.2022.940260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Ischemic stroke (IS) is a neurological condition associated with high mortality and disability rates. Although the molecular mechanisms underlying IS remain unclear, ferroptosis was shown to play an important role in its pathogenesis. Hence, we applied bioinformatics analysis to identify ferroptosis-related therapeutic targets in IS. IS-related microarray data from the GSE61616 dataset were downloaded from the Gene Expression Omnibus (GEO) database and intersected with the FerrDb database. In total, 33 differentially expressed genes (DEGs) were obtained and subjected to functional enrichment and protein-protein interaction (PPI) network analyses. Four candidate genes enriched in the HIF-1 signaling pathway (HMOX1, STAT3, CYBB, and TLR4) were selected based on the hierarchical clustering of the PPI dataset. We also downloaded the IR-related GSE35338 dataset and GSE58294 dataset from the GEO database to verify the expression levels of these four genes. ROC monofactor analysis demonstrated a good performance of HMOX1, STAT3, CYBB, and TLR4 in the diagnosis of ischemic stroke. Transcriptional levels of the above four genes, and translational level of GPX4, the central regulator of ferroptosis, were verified in a mouse model of middle cerebral artery occlusion (MCAO)-induced IS by qRT-PCR and western blotting. Considering the regulation of the HIF-1 signaling pathway, dexmedetomidine was applied to the MCAO mice. We found that expression of these four genes and GPX4 in MCAO mice were significantly reduced, while dexmedetomidine reversed these changes. In addition, dexmedetomidine significantly reduced MCAO-induced cell death, improved neurobehavioral deficits, and reduced the serum and brain levels of inflammatory factors (TNF-α and IL-6) and oxidative stress mediators (MDA and GSSG). Further, we constructed an mRNA-miRNA-lncRNA network based on the four candidate genes and predicted possible transcription factors. In conclusion, we identified four ferroptosis-related candidate genes in IS and proposed, for the first time, a possible mechanism for dexmedetomidine-mediated inhibition of ferroptosis during IS. These findings may help design novel therapeutic strategies for the treatment of IS.
Collapse
Affiliation(s)
- Chang Liu
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China,The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China,Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhixi Li
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China,The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China,Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjie Xi
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China,Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,*Correspondence: Hongjie Xi,
| |
Collapse
|
14
|
Hu Y, Zhou H, Zhang H, Sui Y, Zhang Z, Zou Y, Li K, Zhao Y, Xie J, Zhang L. The neuroprotective effect of dexmedetomidine and its mechanism. Front Pharmacol 2022; 13:965661. [PMID: 36204225 PMCID: PMC9531148 DOI: 10.3389/fphar.2022.965661] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Dexmedetomidine (DEX) is a highly selective α2 receptor agonist that is routinely used in the clinic for sedation and anesthesia. Recently, an increasing number of studies have shown that DEX has a protective effect against brain injury caused by traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), cerebral ischemia and ischemia–reperfusion (I/R), suggesting its potential as a neuroprotective agent. Here, we summarized the neuroprotective effects of DEX in several models of neurological damage and examined its mechanism based on the current literature. Ultimately, we found that the neuroprotective effect of DEX mainly involved inhibition of inflammatory reactions, reduction of apoptosis and autophagy, and protection of the blood–brain barrier and enhancement of stable cell structures in five way. Therefore, DEX can provide a crucial advantage in neurological recovery for patients with brain injury. The purpose of this study was to further clarify the neuroprotective mechanisms of DEX therefore suggesting its potential in the clinical management of the neurological injuries.
Collapse
Affiliation(s)
- Yijun Hu
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
- Graduate School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong Zhou
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Huanxin Zhang
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yunlong Sui
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhen Zhang
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yuntao Zou
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Kunquan Li
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yunyi Zhao
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jiangbo Xie
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Lunzhong Zhang
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
- *Correspondence: Lunzhong Zhang,
| |
Collapse
|
15
|
Niu N, Li H, Du X, Wang C, Li J, Yang J, Liu C, Yang S, Zhu Y, Zhao W. Effects of NRF-1 and PGC-1α cooperation on HIF-1α and rat cardiomyocyte apoptosis under hypoxia. Gene 2022; 834:146565. [PMID: 35569770 DOI: 10.1016/j.gene.2022.146565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hypoxia is a primary inducer of cardiomyocyte injury, its significant marker being hypoxia-induced cardiomyocyte apoptosis. Nuclear respiratory factor-1 (NRF-1) and hypoxia-inducible factor-1α (HIF-1α) are transcriptional regulatory elements implicated in multiple biological functions, including oxidative stress response. However, their roles in hypoxia-induced cardiomyocyte apoptosis remain unknown. The effect HIF-1α, together with NRF-1, exerts on cardiomyocyte apoptosis also remains unclear. METHODS We established a myocardial hypoxia model and investigated the effects of these proteins on the proliferation and apoptosis of rat cardiomyocytes (H9C2) under hypoxia. Further, we examined the association between NRF-1 and HIF-1α to improve the current understanding of NRF-1 anti-apoptotic mechanisms. RESULTS The results show that NRF-1 and HIF-1α are important anti-apoptotic molecules in H9C2 cells under hypoxia, although their regulatory mechanisms differ. NRF-1 could bind to the promoter region of Hif1a and negatively regulate its expression. Additionally, HIF-1β exhibited competitive binding with NRF-1 and HIF-1α, demonstrating a synergism between NRF-1 and the peroxisome proliferator-activated receptor-gamma coactivator-1α. CONCLUSION These results indicate that cardiomyocytes can regulate different molecular patterns to tolerate hypoxia, providing a novel methodological framework for studying cardiomyocyte apoptosis under hypoxia.
Collapse
Affiliation(s)
- Nan Niu
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Hui Li
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Xiancai Du
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Chan Wang
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Junliang Li
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Jihui Yang
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Cheng Liu
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Songhao Yang
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Yazhou Zhu
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Wei Zhao
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
16
|
Wang W, Ma Y, Liu Y, Wang P, Liu Y. Effects of Dexmedetomidine Anesthesia on Early Postoperative Cognitive Dysfunction in Elderly Patients. ACS Chem Neurosci 2022; 13:2309-2314. [PMID: 35864562 DOI: 10.1021/acschemneuro.2c00173] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The stimulation of tracheal extraction and anesthesia may lead to early postoperative cognitive dysfunction (POCD) in elderly patients, especially within 72 h after surgery, due to the insufficient compensatory and regulatory effects of their cardiovascular system. This study was performed to demonstrate the effects of additional dexmedetomidine (DEX) administration on alleviating early POCD (72 h post intubation) and inflammation in elderly patients who underwent intubation. A parallel-randomized trial was performed in this study. A total of 100 patients aged 60-85 years were randomly divided into two groups (DEX, n = 50; control, n = 50). They received traditional anesthesia and additional DEX medications. Mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA) were used to assess the cognitive dysfunction of patients. The enzyme-linked immunosorbent assay (ELISA) was used to detect the stress and inflammatory response of the two groups of patients. Administration of DEX significantly improved the MMSE and MoCA scores 24 and 72 h post operation. The S100β and neuron-specific enolase (NSE) levels in serum were downregulated by DEX 6 and 24 h post operation. The norepinephrine and cortisol levels in serum were downregulated by DEX 15 and 30 min post operation. The interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α) levels in serum were also downregulated by DEX 15 and 30 min post operation. DEX alleviated POCD and inflammation in elderly patients who underwent intubation.
Collapse
Affiliation(s)
- Wenhao Wang
- Department of Internal Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061001, Heibei, China
| | - Yuxia Ma
- Department of Internal Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061001, Heibei, China
| | - Yi Liu
- Cangzhou Prison, No.47 Hexi North Street, Cangzhou 061001, Heibei, China
| | - Pengsheng Wang
- Department of Internal Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061001, Heibei, China
| | - Yunfeng Liu
- Department of Internal Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061001, Heibei, China
| |
Collapse
|
17
|
Upregulation of PGC-1 α Attenuates Oxygen-Glucose Deprivation-Induced Hippocampal Neuronal Injury. Neural Plast 2022; 2022:9682999. [PMID: 35719138 PMCID: PMC9203239 DOI: 10.1155/2022/9682999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Hippocampal neuronal damage likely underlies cognitive impairment in vascular dementia (VaD). PPARγ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis. However, the role and the precise mechanism of how PGC-1α alleviates hippocampal neuronal injury remain unknown. To address this question, HT-22 cells, an immortalized hippocampal neuron cell line, with or without PGC-1α overexpression were subjected to oxygen-glucose deprivation (OGD), which mimics the circumstance of chronic cerebral hypoperfusion in VaD. After OGD, cell viability was assessed using the MTS assay. The mitochondrial function and reactive oxygen species (ROS) were both detected. ChIP-Seq analysis was employed to discover the underlying molecular mechanism of PGC-1α-mediated neuroprotective effects. Our results showed that mitochondrial membrane potentials were increased and ROS production was decreased in PGC-1α overexpressing cells, which increased cell viability. The further bioinformatics analysis from ChIP-Seq data indicated that PGC-1α may participate in the regulation of apoptosis, autophagy, and mitophagy pathways in HT-22 cells. We found that PGC-1α promoted the LC3-II formation and reduced the neuronal apoptosis determined by TUNEL staining. In addition, PGC-1α upregulated the expressions of mitochondrial antioxidants, including SOD2, Trx2, and Prx3. In summary, our findings indicate that PGC-1α may attenuate OGD-induced hippocampal neuronal damage by regulating multiple mechanisms, like autophagy and mitochondrial function. Thus, PGC-1α may be a potential therapeutic target for hippocampal damage associated with cognitive impairment.
Collapse
|
18
|
Zhang Y, Gao Y, Yang F, Wu X, Tang Z, Liu H. Neuroglobin alleviates the neurotoxicity of sevoflurane to fetal rats by inhibiting neuroinflammation and affecting microglial polarization. Brain Res Bull 2022; 183:142-152. [DOI: 10.1016/j.brainresbull.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/20/2023]
|
19
|
Fan J, Du J, Zhang Z, Shi W, Hu B, Hu J, Xue Y, Li H, Ji W, Zhuang J, Lv P, Cheng K, Chen K. The Protective Effects of Hydrogen Sulfide New Donor Methyl S-(4-Fluorobenzyl)- N-(3,4,5-Trimethoxybenzoyl)-l-Cysteinate on the Ischemic Stroke. Molecules 2022; 27:1554. [PMID: 35268655 PMCID: PMC8911759 DOI: 10.3390/molecules27051554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/29/2023] Open
Abstract
In this paper, we report the design, synthesis and biological evaluation of a novel S-allyl-l-cysteine (SAC) and gallic acid conjugate S-(4-fluorobenzyl)-N-(3,4,5-trimethoxybenzoyl)-l-cysteinate (MTC). We evaluate the effects on ischemia-reperfusion-induced PC12 cells, primary neurons in neonatal rats, and cerebral ischemic neuronal damage in rats, and the results showed that MTC increased SOD, CAT, GPx activity and decreased LDH release. PI3K and p-AKT protein levels were significantly increased by activating PI3K/AKT pathway. Mitochondrial pro-apoptotic proteins Bax and Bim levels were reduced while anti-apoptotic protein Bcl-2 levels were increased. The levels of cleaved caspase-9 and cleaved caspase-3 were also reduced in the plasma. The endoplasmic reticulum stress (ERS) was decreased, which in turns the survival rate of nerve cells was increased, so that the ischemic injury of neurons was protected accordingly. MTC activated the MEK-ERK signaling pathway and promoted axonal regeneration in primary neurons of the neonatal rat. The pretreatment of MEK-ERK pathway inhibitor PD98059 and PI3K/AKT pathway inhibitor LY294002 partially attenuated the protective effect of MTC. Using a MCAO rat model indicated that MTC could reduce cerebral ischemia-reperfusion injury and decrease the expression of proinflammatory factors. The neuroprotective effect of MTC may be due to inhibition of the over-activation of the TREK-1 channel and reduction of the current density of the TREK1 channel. These results suggested that MTC has a protective effect on neuronal injury induced by ischemia reperfusion, so it may have the potential to become a new type of neuro-ischemic drug candidate.
Collapse
Affiliation(s)
- Jing Fan
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Junxi Du
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Zhongwei Zhang
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Wenjing Shi
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Binyan Hu
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Jiaqin Hu
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Yan Xue
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou 510080, China; (Y.X.); (W.J.); (J.Z.)
| | - Haipeng Li
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Wenjin Ji
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou 510080, China; (Y.X.); (W.J.); (J.Z.)
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou 510080, China; (Y.X.); (W.J.); (J.Z.)
| | - Pengcheng Lv
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Kui Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kun Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| |
Collapse
|
20
|
Yang FY, Zhang L, Zheng Y, Dong H. Dexmedetomidine attenuates ischemia and reperfusion-induced cardiomyocyte injury through p53 and forkhead box O3a (FOXO3a)/p53-upregulated modulator of apoptosis (PUMA) signaling signaling. Bioengineered 2022; 13:1377-1387. [PMID: 34974801 PMCID: PMC8805856 DOI: 10.1080/21655979.2021.2017611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Dexmedetomidine (DEX) has been reported to attenuate the ischemia and reperfusion (I/R) induced cardiomyocyte apoptosis. However, mechanisms underlying these protective effect remain to be fully elucidated. Cardiomyocyte apoptosis is associated with ischemic heart disease. Here we investigated the role of DEX in I/R -induced cardiomyocyte apoptosis. Mice and H9c2 cardiomyocyte cells were subjected to cardiomyocyte I/R injury and hypoxia/reoxygenation (H/R) injury, respectively. The roles and mechanisms of DEX on H9c2 cardiomyocyte cells and mice cardiomyocyte cells exposured to H/R or I/R injury were explored. The results showed that DEX attenuates H/R injury-induced H9c2 cell apoptosis and alleviated mitochondrial oxidative stress; it also reduced myocardial infarct size and protected the cardiac function following cardiomyocyte I/R injury. In addition, H/R and I/R injury increased p53 expression and forkhead box O3a (FOXO3a)/p53-upregulated modulator of apoptosis (PUMA) signaling in H9c2 cardiomyocyte cells and cardiomyocytes. Targeting p53 expression or FOXO3a/PUMA signaling inhibited cell apoptosis and protected against H/R injury in H9c2 cardiomyocyte cells and cardiomyocytes. Pretreatment with DEX reduced the H/R or I/R injury-induced activation of p53 expression and FOXO3a/PUMA signaling, and alleviated H/R or I/R injury-induced apoptosis and mitochondrial oxidative stress. Therefore, DEX could alleviate H/R- or I/R-induced cardiomyocytes injury by reducing cell apoptosis and blocking p53 expression and FOXO3a/PUMA signaling. Targeting p53 or/and FOXO3a/PUMA signaling could alleviate cardiomyocyte I/R injury.
Collapse
Affiliation(s)
- Feng Yun Yang
- Departments of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lu Zhang
- Emergency, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Zheng
- Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - He Dong
- Departments of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
21
|
Tian M, Wang W, Wang K, Jin P, Lenahan C, Wang Y, Tan J, Wen H, Deng S, Zhao F, Gong Y. Dexmedetomidine alleviates cognitive impairment by reducing blood-brain barrier interruption and neuroinflammation via regulating Th1/Th2/Th17 polarization in an experimental sepsis model of mice. Int Immunopharmacol 2021; 101:108332. [PMID: 34785141 DOI: 10.1016/j.intimp.2021.108332] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023]
Abstract
Clinical studies have shown that dexmedetomidine (DEX) reduces mortality and inflammation in patients with sepsis, and ameliorates cognitive decline in both postoperative and critical care patients. This study aims to explain the neuroprotective effects provided by DEX in mice with cecal ligation and puncture (CLP)-induced polymicrobial sepsis. Mice were treated with DEX intraperitoneally three times every two hours after CLP. The survival rate, body weight, and clinical scores were recorded each day. Morris water maze (MWM) and fear conditioning tests were used to evaluate cognitive function. Blood brain barrier (BBB) permeability, hippocampal inflammation, hippocampal neural apoptosis, and T helper (Th) cell subgroups were assessed. Furthermore, Atipamezole was used to verify that the potential neuroprotective effects in the sepsis-associated encephalopathy (SAE) were mediated by DEX. Compared with the Sham group, CLP mice showed significant cognitive impairment, BBB interruption, excessive neuroinflammation, and neuronal apoptosis. These detrimental effects of CLP were attenuated by DEX. Furthermore, we found that DEX corrects peripheral Th1/Th2/Th17 shift and reduces proinflammatory cytokines in the hippocampus. Additionally, atipamezole prevented DEX's protective effect. Taken together, DEX alleviates cognitive impairments by reducing blood-brain barrier interruption and neuroinflammation by regulating Th1/Th2/Th17 polarization.
Collapse
Affiliation(s)
- Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei Wang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kai Wang
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Peng Jin
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Cameron Lenahan
- Burrell college of Osteopathic Medicine, Las Cruses, NM 88003 United States
| | - Yao Wang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiaying Tan
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Huimei Wen
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feng Zhao
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
22
|
Unchiti K, Leurcharusmee P, Samerchua A, Pipanmekaporn T, Chattipakorn N, Chattipakorn SC. The potential role of dexmedetomidine on neuroprotection and its possible mechanisms: Evidence from in vitro and in vivo studies. Eur J Neurosci 2021; 54:7006-7047. [PMID: 34561931 DOI: 10.1111/ejn.15474] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
Neurological disorders following brain injuries and neurodegeneration are on the rise worldwide and cause disability and suffering in patients. It is crucial to explore novel neuroprotectants. Dexmedetomidine, a selective α2-adrenoceptor agonist, is commonly used for anxiolysis, sedation and analgesia in clinical anaesthesia and critical care. Recent studies have shown that dexmedetomidine exerts protective effects on multiple organs. This review summarized and discussed the current neuroprotective effects of dexmedetomidine, as well as the underlying mechanisms. In preclinical studies, dexmedetomidine reduced neuronal injury and improved functional outcomes in several models, including hypoxia-induced neuronal injury, ischaemic-reperfusion injury, intracerebral haemorrhage, post-traumatic brain injury, anaesthetic-induced neuronal injury, substance-induced neuronal injury, neuroinflammation, epilepsy and neurodegeneration. Several mechanisms are associated with the neuroprotective function of dexmedetomidine, including neurotransmitter regulation, inflammatory response, oxidative stress, apoptotic pathway, autophagy, mitochondrial function and other cell signalling pathways. In summary, dexmedetomidine has the potential to be a novel neuroprotective agent for a wide range of neurological disorders.
Collapse
Affiliation(s)
- Kantarakorn Unchiti
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prangmalee Leurcharusmee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Artid Samerchua
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tanyong Pipanmekaporn
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
23
|
Sun K, Zhang J, Yang Q, Zhu J, Zhang X, Wu K, Li Z, Xie W, Luo X. Dexmedetomidine exerts a protective effect on ischemic brain injury by inhibiting the P2X7R/NLRP3/Caspase-1 signaling pathway. Brain Res Bull 2021; 174:11-21. [PMID: 33991606 DOI: 10.1016/j.brainresbull.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022]
Abstract
Dexmedetomidine (Dex) has been suggested to exert a protective function in ischemic brain injury. In this study, we aimed to elucidate the intrinsic mechanisms of Dex in regulating microglia pyroptosis in ischemic brain injury via the purinergic 2X7 receptor (P2X7R)/NLRP3/Caspase-1 signaling pathway. First, permanent middle cerebral artery occlusion (p-MCAO) rat model was established, followed by the measurement of behavioral deficit, neuronal injury, the volume of brain edema and the infarct size. Dex treatment was suggested to alleviate the neurological deficits in p-MCAO rats and reduce the brain water content and infarct size. Additionally, rat microglia were cultured in vitro and a model of oxygen and glucose (OGD) was established. Microglia cell activity and ultrastructure were detected. Dex could increase cell activity and reduce LDH activity, partially reversing the changes in cell morphology. Furthermore, the activation of P2X7R/NLRP3/Caspase-1 pathway was tested. The obtained findings indicated Dex suppressed microglial pyroptosis by inhibiting the P2X7R/NLRP3/Caspase-1 pathway. Inhibition of P2X7R or NLRP3 could inhibit Caspase-1 p10 expression, improve cell activity, and reduce LDH activity. The same result was verified in vivo experiments. This study indicated that Dex inhibited microglia pyroptosis by blocking the P2X7R/NLRP3/Caspase-1 pathway, thus playing a protective role against ischemic brain injury.
Collapse
Affiliation(s)
- Ke Sun
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China
| | - Jiangang Zhang
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China
| | - Qingcheng Yang
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China.
| | - Jinzhao Zhu
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China
| | - Xiangdong Zhang
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China
| | - Kun Wu
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China
| | - Zhenhua Li
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China
| | - Weizheng Xie
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China
| | - Xue Luo
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China
| |
Collapse
|
24
|
Liu W, Shao C, Zang C, Sun J, Xu M, Wang Y. Protective effects of dexmedetomidine on cerebral ischemia/reperfusion injury via the microRNA-214/ROCK1/NF-κB axis. BMC Anesthesiol 2021; 21:203. [PMID: 34399695 PMCID: PMC8365892 DOI: 10.1186/s12871-021-01423-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/27/2021] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury (CIRI) is a complication of surgical procedure associated with high mortality. The protective effect of dexmedetomidine (DEX) on CIRI has been explored in previous works, yet the underlying molecular mechanism remains unclear. Our study explored the protective effect of DEX and its regulatory mechanism on CIRI. METHODS A CIRI rat model was established using middle cerebral artery occlusion (MCAO). Neurological deficit scores for rats received MCAO modeling or DEX treatment were measured. Cerebral infarction area of rats was detected by TTC staining, while damage of neurons in hippocampal regions of rats was determined by hematoxylin-eosin (HE) staining. Apoptosis rate of neurons in hippocampal regions was examined by TUNEL staining. The dual-luciferase assay was performed to detect the binding of microRNA-214 (miR-214) to Rho-associated kinase 1 (ROCK1). RESULTS DEX treatment significantly reduced infarction area of MCAO rats and elevated miR-214 expression. Injection of miR-214 inhibitor attenuated the effect of DEX in MCAO rats by increasing the area of cerebral infarction in rats and apoptosis rate of hippocampal neurons. ROCK1 was targeted and negatively regulated by miR-214. The overexpression of ROCK1 led to activation of NF-κB to aggravate CIRI. CONCLUSION Therapeutic effects of DEX on CIRI was elicited by overexpressing miR-214 and impairing ROCK1 expression and NF-κB activation. Our finding might provide novel insights into the molecular mechanism of DEX in rats with CIRI.
Collapse
Affiliation(s)
- Wenyi Liu
- Department of Anesthesiology|, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao, 266003, Shandong, PR China
| | - Cuihua Shao
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, PR China
| | - Chuanshan Zang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, PR China
| | - Jian Sun
- Department of Anesthesiology|, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao, 266003, Shandong, PR China
| | - Min Xu
- Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, PR China
| | - Yuna Wang
- Department of Anesthesiology|, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao, 266003, Shandong, PR China.
| |
Collapse
|
25
|
Dexmedetomidine reduces the apoptosis of rat hippocampal neurons via mediating ERK1/2 signal pathway by targeting miR-155. Acta Histochem 2021; 123:151734. [PMID: 34048989 DOI: 10.1016/j.acthis.2021.151734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022]
Abstract
Rat hippocampal neurons were isolated and divided into Normal, oxygen glucose deprivation/reoxygenation (OGD/R), OGD/R + DEX, OGD/R + NC mimic, OGD/R + miR-155 mimic and OGD/R + DEX + miR-155 mimic groups. In OGD/R group, LDH, ROS and MDA levels and apoptosis rate was increased, with up-regulations of miR-155, Cyt c and Bax/Bcl-2 ratio, but decreases of SOD, GSH-Px and MMP levels, as well as down-regulations of p-ERK1/2/ERK1/2. As compared to the OGD/R group, parameters above in the OGD/R + DEX group were ameliorated evidently, while OGD/R + miR-155 mimic group manifested the opposite changes. Besides, miR-155 mimic could abolish the protective effect of DEX on the hippocampal neurons under OGD/R. DEX, via down-regulating the expression of miR-155, could activate the ERK1/2 pathway, thereby mitigating the apoptosis and oxidative stress injury and increasing the MMP, thereby protecting hippocampal cells from OGD/R injury.
Collapse
|
26
|
Hirota K. Hypoxia-dependent signaling in perioperative and critical care medicine. J Anesth 2021; 35:741-756. [PMID: 34003375 PMCID: PMC8128984 DOI: 10.1007/s00540-021-02940-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/24/2021] [Indexed: 12/14/2022]
Abstract
A critical goal of patient management for anesthesiologists and intensivists is to maintain oxygen homeostasis in patients admitted to operation theaters and intensive care units. For this purpose, it is imperative to understand the strategies of the body against oxygen imbalance—especially oxygen deficiency (hypoxia). Adaptation to hypoxia and maintenance of oxygen homeostasis involve a wide range of responses that occur at different organizational levels in the body. These responses are greatly influenced by perioperative patient management including factors such as perioperative drugs. Herein, the influence of perioperative patient management on the body's response to oxygen imbalance was reviewed with a special emphasis on hypoxia-inducible factors (HIFs), transcription factors whose activity are regulated by the perturbation of oxygen metabolism. The 2019 Nobel Prize in Physiology or Medicine was awarded to three researchers who made outstanding achievements in this field. While previous studies have reported the effect of perioperatively used drugs on hypoxia-induced gene expression mediated by HIFs, this review focused on effects of subacute or chronic hypoxia changes in gene expression that are mediated by the transcriptional regulator HIFs. The clinical implications and perspectives of these findings also will be discussed. Understanding the basic biology of the transcription factor HIF can be informative for us since anesthesiologists manage patients during the perioperative period facing the imbalances the oxygen metabolism in organ and tissue. The clinical implications of hypoxia-dependent signaling in critical illness, including Coronavirus disease (COVID-19), in which disturbances in oxygen metabolism play a major role in its pathogenesis will also be discussed.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan.
| |
Collapse
|
27
|
Liu L, Huang S, Xu M, Gong Y, Li D, Wan C, Wu H, Tang Q. Isoquercitrin protects HUVECs against high glucose‑induced apoptosis through regulating p53 proteasomal degradation. Int J Mol Med 2021; 48:122. [PMID: 33982778 PMCID: PMC8121554 DOI: 10.3892/ijmm.2021.4955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
High glucose (HG)-induced endothelial apoptosis serves an important role in the vascular dysfunction associated with diabetes mellitus (DM). It has been reported that isoquercitrin (IQC), a flavonoid glucoside, possesses an anti-DM effect, but the mechanism requires further investigation. The present study investigated the effect of IQC against HG-induced apoptosis in human umbilical vein endothelial cells (HUVECs) and explored its molecular mechanism. HUVECs were treated with 5 or 30 mM glucose for 48 h. Endothelial cell viability was monitored using the Cell Counting Kit-8 assay. Mitochondrial membrane potential was detected by JC-1 staining. Apoptosis was observed by TUNEL staining and flow cytometry. Western blotting was used for the analysis of apoptosis-associated proteins Bax, Bcl-2, cleaved (C)-caspase3, total-caspase3, p53 and phosphorylated p53. Reverse transcription-quantitative PCR was used to analyze the mRNA expression levels of Bax, Bcl-2 and p53. Immunofluorescence staining was utilized to detect the expression levels and distribution of p53 and ubiquitin specific peptidase 10 (USP10) in HUVECs. The results revealed that IQC significantly attenuated HG-induced endothelial apoptosis, as shown by decreased apoptotic cells observed by TUNEL, JC-1 staining and flow cytometry. Moreover, under HG stress, IQC treatment markedly inhibited the increased expression levels of the pro-apoptotic proteins p53, Bax and C-caspase3, and increased the expression levels of the anti-apoptotic protein Bcl-2 in HUVECs. However, the anti-apoptotic effect of IQC against HG was partially blunted by increasing p53 protein levels in vitro. IQC influenced the mRNA expression levels of Bax and Bcl-2 in response to HG, but it did not affect the transcription of p53. Notably, IQC inhibited the HG-induced phosphorylation of p53 at Ser15 and the nuclear transport of USP10, destabilizing p53 and increasing the proteasomal degradation of the p53 protein. The current findings revealed that IQC exerted a protective effect against the HG-induced apoptosis of endothelial cells by regulating the proteasomal degradation of the p53 protein, suggesting that IQC may be used as a novel therapeutic compound to ameliorate DM-induced vascular complications.
Collapse
Affiliation(s)
- Libo Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sihui Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Gong
- Pharmacy Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chunxia Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Haiming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
28
|
Niu K, Qin JL, Lu GF, Guo J, Williams JP, An JX. Dexmedetomidine Reverses Postoperative Spatial Memory Deficit by Targeting Surf1 and Cytochrome c. Neuroscience 2021; 466:148-161. [PMID: 33895343 DOI: 10.1016/j.neuroscience.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Anesthesia and surgery are associated with perioperative neurocognitive disorders (PND). Dexmedetomidine is known to improve PND in rats; however, little is known about the mechanisms. Male Sprague-Dawley rats were subjected to resection of the hepatic apex under propofol anesthesia to clinically mimic human abdominal surgery. The rats were divided into four groups: control group (C), anesthesia group (A), model group (M), and model + dex group (D). Cognitive function was evaluated with the Morris water maze (MWM). Neuronal morphology was observed with H&E staining, Nissl's staining and immunohistochemistry. Transcriptome analysis and quantitative real-time PCR were performed to investigate functional mitochondrial mRNA changes in the hippocampus. Protein levels were measured by Western blotting at 1, 3, and 7 days after surgery. Surgery-induced cognitive decline lasted for three days, but not seven days after surgery in the M group; however, rats in the D group were significantly improved by dexmedetomidine. No significant differences in the number of neurons were observed between the groups after surgery. Rats from the M group showed significantly greater expression levels of Iba-1 and GFAP compared with the C group and the D group. Rats in the M group demonstrated increased Surf1 and Cytochrome c expression on days 1 and 3, but not day 7; similar changes were not induced in rats in the D group. Dexmedetomidine appears to reverse surgery-induced behavior, mitigate the higher density of Iba-1 and GFAP, and downregulate the expression of Surf1 and Cytochrome c protein in the hippocampus of rats in a PND model.
Collapse
Affiliation(s)
- Kun Niu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing 100012, China.
| | - Jia-Lin Qin
- Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing 100012, China.
| | - Guo-Fang Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Jian Guo
- Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing 100012, China
| | - John P Williams
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburg 15213, PA, USA.
| | - Jian-Xiong An
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing 100012, China; School of Medical Science & Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
29
|
Meng X, Fu M, Wang S, Chen W, Wang J, Zhang N. Naringin ameliorates memory deficits and exerts neuroprotective effects in a mouse model of Alzheimer's disease by regulating multiple metabolic pathways. Mol Med Rep 2021; 23:332. [PMID: 33760152 PMCID: PMC7974313 DOI: 10.3892/mmr.2021.11971] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the neuroprotective effects of naringin on the memory impairment of hydrocortisone mice, and to elucidate the potential underlying molecular mechanisms. In the present study, a hydrocortisone model was constructed. Novel object recognition, Morris water maze and step‑down tests were performed in order to assess the learning and memory abilities of mice. Hematoxylin and eosin staining was used to observe pathological changes in the hippocampus and hypothalamus. Transmission electron microscopy was used to observe the ultrastructural changes in the hippocampus. Immunohistochemistry was used to detect the expression of ERα and ERβ. Western blotting was performed to detect the expression of each protein in the relevant system. It was found that naringin can significantly improve cognitive, learning and memory dysfunction in mice with hydrocortisone memory impairment. In addition, naringin can exert neuroprotective effects through a variety of mechanisms, including amyloid β metabolism, Tau protein hyperphosphorylation, acetylcholinergic system, glutamate receptor system, oxidative stress and cell apoptosis. Naringin can also affect the expression of phosphorylated‑P38/P38, indicating that the neuroprotective effect of naringin may also involve the MAPK/P38 pathway. The results of the present study concluded that naringin can effectively improve the cognitive abilities of mice with memory impairment and exert neuroprotective effects. Thus, naringin may be a promising target drug candidate for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xiangdong Meng
- Nanchong Central Hospital, Second Clinical Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Mingming Fu
- Foreign Language Department, North Sichuan Medical College (University), Nanchong, Sichuan 637000, P.R. China
| | - Shoufeng Wang
- Affiliated First Hospital, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Weida Chen
- Affiliated First Hospital, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Jianjie Wang
- College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Ning Zhang
- Jiamusi College, College of Pharmacy, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang 154007, P.R. China
| |
Collapse
|
30
|
Lv H, Li Y, Cheng Q, Chen J, Chen W. Neuroprotective Effects Against Cerebral Ischemic Injury Exerted by Dexmedetomidine via the HDAC5/NPAS4/MDM2/PSD-95 Axis. Mol Neurobiol 2021; 58:1990-2004. [PMID: 33411316 DOI: 10.1007/s12035-020-02223-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/19/2020] [Indexed: 01/16/2023]
Abstract
Numerous evidences have highlighted the efficient role of dexmedetomidine (DEX) in multi-organ protection. In the present study, the neuroprotective role of DEX on cerebral ischemic injury and the underlining signaling mechanisms were explored. In order to simulate cerebral ischemic injury, we performed middle cerebral artery occlusion in mice and oxygen-glucose deprivation in neurons. Immunohistochemistry, Western blot analysis, and RT-qPCR were used to examine expression of HDAC5, NPAS4, MDM2, and PSD-95 in hippocampus tissues of MCAO mice and OGD-treated neurons. MCAO mice received treatment with DEX and sh-PSD-95, followed by neurological function evaluation, behavioral test, infarct volume detection by TTC staining, and apoptosis by TUNEL staining. Additionally, gain- and loss-of-function approaches were conducted in OGD-treated neuron after DEX treatment. Cell viability and apoptosis were assessed with the application of CCK-8 and flow cytometry. The interaction between MDM2 and PSD-95 was evaluated using Co-IP assay, followed by ubiquitination of PSD-95 detection. As per the results, HDAC5 and MDM2 were abundantly expressed, while NPAS4 and PSD-95 were poorly expressed in hippocampus tissues of MCAO mice and OGD-treated neurons. DEX elevated viability, and reduced LDH leakage rate and apoptosis rate of OGD-treated neurons, which was reversed following the overexpression of HDAC5. Moreover, HDAC5 augmented MDM2 expression via NPAS4 inhibition. MDM2 induced PSD-95 ubiquitination and degradation. In MCAO mice, DEX improved neurological function and behaviors and decreased infarct volume and apoptosis, which was negated as a result of PSD-95 silencing. DEX plays a neuroprotective role against cerebral ischemic injury by disrupting MDM2-induced PSD-95 ubiquitination and degradation via HDAC5 and NPAS4.
Collapse
Affiliation(s)
- Hu Lv
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ying Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Qian Cheng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Jiawei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China.
| | - Wei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
31
|
Toricelli M, Pereira AAR, Souza Abrao G, Malerba HN, Maia J, Buck HS, Viel TA. Mechanisms of neuroplasticity and brain degeneration: strategies for protection during the aging process. Neural Regen Res 2021; 16:58-67. [PMID: 32788448 PMCID: PMC7818866 DOI: 10.4103/1673-5374.286952] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aging is a dynamic and progressive process that begins at conception and continues until death. This process leads to a decrease in homeostasis and morphological, biochemical and psychological changes, increasing the individual’s vulnerability to various diseases. The growth in the number of aging populations has increased the prevalence of chronic degenerative diseases, impairment of the central nervous system and dementias, such as Alzheimer’s disease, whose main risk factor is age, leading to an increase of the number of individuals who need daily support for life activities. Some theories about aging suggest it is caused by an increase of cellular senescence and reactive oxygen species, which leads to inflammation, oxidation, cell membrane damage and consequently neuronal death. Also, mitochondrial mutations, which are generated throughout the aging process, can lead to changes in energy production, deficiencies in electron transport and apoptosis induction that can result in decreased function. Additionally, increasing cellular senescence and the release of proinflammatory cytokines can cause irreversible damage to neuronal cells. Recent reports point to the importance of changing lifestyle by increasing physical exercise, improving nutrition and environmental enrichment to activate neuroprotective defense mechanisms. Therefore, this review aims to address the latest information about the different mechanisms related to neuroplasticity and neuronal death and to provide strategies that can improve neuroprotection and decrease the neurodegeneration caused by aging and environmental stressors.
Collapse
Affiliation(s)
- Mariana Toricelli
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | - Arthur Antonio Ruiz Pereira
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Guilherme Souza Abrao
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Helena Nascimento Malerba
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Julia Maia
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Hudson Sousa Buck
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | - Tania Araujo Viel
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
32
|
Fang H, Li HF, Yan JY, Yang M, Zhang JP. Dexmedetomidine-up-regulated microRNA-381 exerts anti-inflammatory effects in rats with cerebral ischaemic injury via the transcriptional factor IRF4. J Cell Mol Med 2020; 25:2098-2109. [PMID: 33314611 PMCID: PMC7882963 DOI: 10.1111/jcmm.16153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Dexmedetomidine (Dex) possesses analgesic and anaesthetic values and reported being used in cerebral ischaemic injury therapeutics. Accumulating studies have determined the effect of microRNAs (miRNAs) on the cerebral ischaemic injury. Thus, the present study aimed to unravel the molecular mechanism of miR-381 and Dex in cerebral ischaemic injury. For this purpose, the cerebral ischaemic injury rat model was established by induction of middle cerebral artery occlusion (MCAO) and expression of miR-381 and IRF4 was determined. Thereafter, MCAO rats were treated with Dex, miR-381 mimic, miR-381 inhibitor and oe-IRF4 respectively, followed by evaluation of neurological function. Furthermore, neuron cells were isolated from the hippocampus of rats and subjected to oxygen-glucose deprivation (OGD). Then, OGD-treated neuron cells and primary neuron cells were examined by gain- and loss-of-function assay. Neuron cell apoptosis was detected using TUNEL staining and flow cytometry. The correlation between interferon regulatory factor 4 (IRF4) and interleukin (IL)-9 was detected. Our results showed down-regulated miR-38 and up-regulated IRF4 in MCAO rats. Besides, IRF4 was targeted by miR-381 in neuron cells. Dex and overexpressed miR-381, or silenced IRF4 improved the neurological function and inhibited neuron cell apoptosis in MCAO rats. Additionally, in MCAO rats, Dex was found to increase the miR-381 expression and reduced IRF4 expression to decrease the IL-9 expression, which suppressed the inflammatory response and cell apoptosis both in vivo and in vitro. Importantly, our study demonstrated that Dex elevated the expression of miR-381, which ultimately results in the inhibition of inflammation response in rats with cerebral ischaemic injury.
Collapse
Affiliation(s)
- Hua Fang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, China.,Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, China
| | - Hua-Feng Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jian-Yong Yan
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, China.,Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, China
| | - Miao Yang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, China.,Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, China
| | - Jian-Ping Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, China.,Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, China
| |
Collapse
|
33
|
Guo Y, Wu Y, Li N, Wang Z. Up-regulation of miRNA-151-3p enhanced the neuroprotective effect of dexmedetomidine against β-amyloid by targeting DAPK-1 and TP53. Exp Mol Pathol 2020; 118:104587. [PMID: 33275947 DOI: 10.1016/j.yexmp.2020.104587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is the leading lethal disease among the elderly. Dexmedetomidine (Dex) has been reported to have multiple neuroprotective effects, but its effect against beta-amyloid (Aβ) has not been completely determined and understood. Dex can activate both α2 adrenoceptor/cAMP/PKA and imidazoline I receptors/ERK1/2 signals. To determine which signal is critical for the effect of Dex on Aβ toxicity, we treated SH-SY5Y and PC12 cells with inhibitors of α2 adrenoceptor and ERK1/2. Dex suppressed the apoptosis of neuronal cells and production of reactive oxygen species induced by Aβ. These suppressive effects were attenuated by both inhibitors. As indicated by western blot, Dex stimulates both pro-apoptosis (activating death-associated protein kinase 1 [DAPK-1] and p53) and anti-apoptotic (up-regulating bcl-2 and bcl-xL) signals in Aβ-treated neuronal cells. This effect is likely associated with ERK1/2 signaling because ERK1/2 inhibitor disrupts the effect of Dex on these signals. To eliminate the pro-apoptotic effect of Dex while retaining its anti-apoptosis action, we screened miRNA-151-3p to target DAPK-1 and p53. Transfection with miRNA-151-3p mimics suppressed DAPK-1 and TP53 expression induced by Dex and increased Nrf-2 and SOD expression. More importantly, increasing miRNA-151-3p enhanced the anti-apoptotic and antioxidative effects of Dex in Aβ-treated neuronal cells. Overall, this study revealed that Dex additionally stimulated pro-apoptosis signaling, although it suppressed Aβ-induced apoptosis of neuronal cells. miRNA-151-3p enhanced the neuroprotective effect of Dex against Aβ by targeting DAPK-1 and TP53.
Collapse
Affiliation(s)
- Yan Guo
- Department of Anesthesiology, Changzhi Medical College, No.271, Taihang East Street, Changzhi City, Shanxi Province 046011, China
| | - Yipeng Wu
- Department of Anesthesiology, Changzhi Medical College, No.271, Taihang East Street, Changzhi City, Shanxi Province 046011, China
| | - Na Li
- Department of Ophthalmology, Changzhi people's Hospital, No.053, Yingbin West Street, Changzhi County, Changzhi City, Shanxi Province 046000, China
| | - Zehua Wang
- Department of Anesthesiology, Changzhi Medical College, No.271, Taihang East Street, Changzhi City, Shanxi Province 046011, China.
| |
Collapse
|
34
|
Gao Y, Zhang Y, Dong Y, Wu X, Liu H. Dexmedetomidine Mediates Neuroglobin Up-Regulation and Alleviates the Hypoxia/Reoxygenation Injury by Inhibiting Neuronal Apoptosis in Developing Rats. Front Pharmacol 2020; 11:555532. [PMID: 33117159 PMCID: PMC7577010 DOI: 10.3389/fphar.2020.555532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Background Exploring the effective therapy for neonatal hypoxic-ischemic brain injury is an important goal. This study was designed to investigate how dexmedetomidine (DEX) contribute to hypoxic brain injury. Methods Developing Sprague-Dawley rat models of hypoxia/reoxygenation (H/R) injury were constructed to simulate neonatal hypoxic brain injury for DEX treatment. Immunohistochemistry and western blot were performed to measure neuroglobin (Ngb) protein expression in hippocampal tissues. Hippocampal neuron injury and apoptosis were detected by Nissl staining and TUNEL assay, respectively. A Morris water maze (MWM) test was performed to evaluate the long-term learning and memory function. Results The expression of Ngb was increased following H/R model establishment and up-regulated by medium and high doses of DEX, but not up-regulated by low doses of DEX. Medium and high doses of DEX alleviated the H/R injury as well as induced the reduction of Nissl bodies and apoptosis. Besides, medium and high doses of DEX down-regulated cytosolic Cyt-c, Apaf-1, and caspase-3 in H/R injury model. MWM test showed that medium and high doses of DEX significantly shortened the escape latency and enhanced the number of platform crossings. However, low doses of DEX have no effect on Nissl bodies, mitochondrial apoptosis, expression of apoptosis-related proteins and long-term learning functions. Conclusions DEX induced Ngb expression in H/R rat models. The neuroprotection of DEX-mediated Ngb up-regulation may be achieved by inhibiting neuronal apoptosis through the mitochondrial pathway. Findings indicated that DEX may be useful as an effective therapy for neonatal hypoxic brain injury.
Collapse
Affiliation(s)
- Yan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yongfang Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunxia Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongtao Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Wan X, Yao B, Ma Y, Liu Y, Tang Y, Hu J, Li M, Fu S, Zheng X, Yin D. MicroRNA-128-1-5p attenuates myocardial ischemia/reperfusion injury by suppressing Gadd45g-mediated apoptotic signaling. Biochem Biophys Res Commun 2020; 530:314-321. [PMID: 32828305 DOI: 10.1016/j.bbrc.2020.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/03/2020] [Indexed: 12/30/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a clinically fatal disease, caused by restoring myocardial blood supply after a period of ischemia or hypoxia. However, the underlying mechanism remains unclear. Recently, increasing evidence reveal that microRNAs (miRs) participate in myocardial I/R injury. This study aimed to investigate whether miR-128-1-5p contributed to cardiomyocyte apoptosis induced by myocardial I/R injury. Here, we showed that the expression of miR-128-1-5p was decreased in mice following myocardial I/R injury. Down-regulation of miR-128-1-5p was also showed in H9c2 cardiomyocytes after hypoxia/reoxygenation (H/R), and in neonatal rat cardiomyocytes (NRCMs) with H2O2 treatment. Importantly, we found that overexpression of miR-128-1-5p ameliorates cardiomyocyte apoptosis both in H9c2 cardiomyocytes and NRCMs. Moreover, we also found that growth arrest DNA damage-inducible gene 45 gamma (Gadd45g) is identified as a direct target of miR-128-1-5p, which negatively regulated Gadd45g expression. Additionally, silencing of Gadd45g inhibits cardiomyocyte apoptosis in H9c2 cardiomyocytes and NRCMs. These results reveal a novel mechanism by which miR-128-1-5p regulates Gadd45g-mediated cardiomyocyte apoptosis in myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaoya Wan
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, 41008, China
| | - Bifeng Yao
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, 41008, China
| | - Yeshuo Ma
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, 41008, China
| | - Yaxiu Liu
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, 41008, China
| | - Yao Tang
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, 41008, China
| | - Jia Hu
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, 41008, China
| | - Mingrui Li
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, 41008, China
| | - Shuang Fu
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, 41008, China
| | - Xinbin Zheng
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, 41008, China
| | - Deling Yin
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, 41008, China; Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN, 37614, United States.
| |
Collapse
|
36
|
Yao B, Wan X, Zheng X, Zhong T, Hu J, Zhou Y, Qin A, Ma Y, Yin D. Critical roles of microRNA-141-3p and CHD8 in hypoxia/reoxygenation-induced cardiomyocyte apoptosis. Cell Biosci 2020; 10:20. [PMID: 32123560 PMCID: PMC7035710 DOI: 10.1186/s13578-020-00384-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Background Cardiovascular diseases are currently the leading cause of death in humans. The high mortality of cardiac diseases is associated with myocardial ischemia and reperfusion (I/R). Recent studies have reported that microRNAs (miRNAs) play important roles in cell apoptosis. However, it is not known yet whether miR-141-3p contributes to the regulation of cardiomyocyte apoptosis. It has been well established that in vitro hypoxia/reoxygenation (H/R) model can follow in vivo myocardial I/R injury. This study aimed to investigate the effects of miR-141-3p and CHD8 on cardiomyocyte apoptosis following H/R. Results We found that H/R remarkably reduces the expression of miR-141-3p but enhances CHD8 expression both in mRNA and protein in H9c2 cardiomyocytes. We also found either overexpression of miR-141-3p by transfection of miR-141-3p mimics or inhibition of CHD8 by transfection of small interfering RNA (siRNA) significantly decrease cardiomyocyte apoptosis induced by H/R. Moreover, miR-141-3p interacts with CHD8. Furthermore, miR-141-3p and CHD8 reduce the expression of p21. Conclusion MiR-141-3p and CHD8 play critical roles in cardiomyocyte apoptosis induced by H/R. These studies suggest that miR-141-3p and CHD8 mediated cardiomyocyte apoptosis may offer a novel therapeutic strategy against myocardial I/R injury-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Bifeng Yao
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Xiaoya Wan
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Xinbin Zheng
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Ting Zhong
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Jia Hu
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Yu Zhou
- 2Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Anna Qin
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Yeshuo Ma
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Deling Yin
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China.,3Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37604 USA
| |
Collapse
|
37
|
Li J, Tao T, Xu J, Liu Z, Zou Z, Jin M. HIF‑1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia‑reperfusion injury in a rat MCAO model. Int J Mol Med 2020; 45:1027-1036. [PMID: 32124933 PMCID: PMC7053873 DOI: 10.3892/ijmm.2020.4480] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/30/2019] [Indexed: 01/16/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a key transcriptional factor in response to hypoxia and is involved in ischemic stroke. In the present study, the potential for HIF-1α to inhibit neuronal apoptosis through upregulating erythropoietin (EPO) was investigated in a transient middle cerebral artery occlusion (tMCAO) rat stroke model. For this purpose, a recombinant adenovirus expressing HIF-1α was engineered (Ad-HIF-1α). Control adenovirus (Ad group), Ad-HIF-1α (Ad-HIF-1α group) or Ad-HIF-1α in addition to erythropoietin mimetic peptide-9 (EMP9), an EPO-receptor (-R) antagonist (Ad-HIF-1α+EMP9 group), were used for an intracranial injection into rat ischemic penumbra 1 h following MCAO. All rats demonstrated functional improvement following tMCAO, while the improvement rate was faster in rats treated by Ad-HIF-1α compared with all other groups. The EPO-R inhibitor partially reversed the benefits of Ad-HIF-1α. Apoptosis induced by tMCAO was significantly inhibited by Ad-HIF-1α (P<0.05). The expression of HIF-1α, evaluated by immunohistochemistry either in neurons or astrocytes, was upregulated by Ad-HIF-1α. Both EPO mRNA and protein expression were increased by Ad-HIF-1α, however, there was no significant change of EPO-R either on an mRNA level or protein level. Furthermore, EMP9 did not change the EPO expression which was upregulated by Ad-HIF-1α. Activated caspase 3 in neurons was suppressed by Ad-HIF-1α. Activated caspase 3 downregulated by HIF-1α was partially blocked by EMP9. Altogether, the present data demonstrated that HIF-1α attenuates neuronal apoptosis partially through upregulating EPO following cerebral ischemia in rat. Thus, upregulating HIF-1α subsequent to a stroke may be a potential treatment for ischemic stroke.
Collapse
Affiliation(s)
- Jun Li
- Department of Rehabilitation Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Tao Tao
- Department of Rehabilitation Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Jian Xu
- Department of Neurology, The Affiliated Hospital Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Zhi Liu
- Department of Pharmacy, The Affiliated Hospital Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Zhehua Zou
- Department of General Practice, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Minglu Jin
- Department of Neurology, Qijiang Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing 404100, P.R. China
| |
Collapse
|
38
|
Zhai M, Liu C, Li Y, Zhang P, Yu Z, Zhu H, Zhang L, Zhang Q, Wang J, Wang J. Dexmedetomidine inhibits neuronal apoptosis by inducing Sigma-1 receptor signaling in cerebral ischemia-reperfusion injury. Aging (Albany NY) 2019; 11:9556-9568. [PMID: 31682592 PMCID: PMC6874446 DOI: 10.18632/aging.102404] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/26/2019] [Indexed: 12/17/2022]
Abstract
Dexmedetomidine is known to alleviate cerebral ischemia-reperfusion injury (CIRI). We established a rat model of CIRI, which exhibited higher neurological deficit scores and a greater number of apoptotic cells in the cerebral ischemic penumbra than controls. Dexmedetomidine reversed the neuronal apoptosis and improved neurological function in this model. We then examined Sigma-1 receptor (Sig-1R) expression on the endoplasmic reticulum (ER) in brain tissues at different reperfusion time points. Sig-1R expression increased with CIRI and decreased with increasing reperfusion times. After 24 hours of reperfusion, dexmedetomidine upregulated Sig-1R expression, and ER stress proteins (GRP78, CHOP, JNK and Caspase-3) were detected in brain tissues with Western blotting. Moreover, GRP78 expression followed a pattern similar to Sig-1R. Dexmedetomidine induced GRP78 expression but inhibited CHOP, Caspase-3 and phosphorylated-JNK expression in brain tissues. A Sig-1R-specific inhibitor reduced GRP78 expression and partially inhibited the upregulation of GRP78 by dexmedetomidine. The inhibitor also increased CHOP and Caspase-3 expression and partially reversed the inhibitory effects of dexmedetomidine on these pro-apoptotic ER stress proteins. These results suggest that dexmedetomidine at least partially inhibits ER stress-induced apoptosis by activating Sig-1R, thereby attenuating brain damage after 24 hours of ischemia-reperfusion.
Collapse
Affiliation(s)
- Meili Zhai
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Chong Liu
- Department of Anesthesiology, Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin 300140, China
| | - Yuexiang Li
- Department of Anesthesiology, Tianjin Xiqing Hospital, Tianjin 300380, China
| | - Peijun Zhang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Zhiqiang Yu
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - He Zhu
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Li Zhang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Qian Zhang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Jianbo Wang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Jinhua Wang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province 318000, China
| |
Collapse
|