1
|
Chen K, Ou B, Huang Q, Deng D, Xiang Y, Hu F. LncRNA NEAT1 aggravates human microvascular endothelial cell injury by inhibiting the Apelin/Nrf2/HO-1 signalling pathway in type 2 diabetes mellitus with obstructive sleep apnoea. Epigenetics 2024; 19:2293409. [PMID: 38232183 PMCID: PMC10795783 DOI: 10.1080/15592294.2023.2293409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate the progression of type 2 diabetes mellitus complicated with obstructive sleep apnoea (T2DM-OSA). However, the role of the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in T2DM-OSA remains unknown. This study aimed to reveal the function of NEAT1 in T2DM-OSA and the underlying mechanism. KKAy mice were exposed to intermittent hypoxia (IH) or intermittent normoxia to generate a T2DM-OSA mouse model. HMEC-1 cells were treated with high glucose (HG) and IH to construct a T2DM-OSA cell model. RNA expression was detected by qRT-PCR. The protein expression of Apelin, NF-E2-related factor 2 (Nrf2), haem oxygenase-1 (HO-1), and up-frameshift suppressor 1 (UPF1) was assessed using western blot. Cell injury was evaluated using flow cytometry, enzyme-linked immunosorbent assay, and oxidative stress kit assays. RIP, RNA pull-down, and actinomycin D assays were performed to determine the associations between NEAT1, UPF1, and Apelin. NEAT1 expression was upregulated in the aortic vascular tissues of mice with T2DM exposed to IH and HMEC-1 cells stimulated with HG and IH, whereas Apelin expression was downregulated. The absence of NEAT1 protected HMEC-1 cells from HG- and IH-induced damage. Furthermore, NEAT1 destabilized Apelin mRNA by recruiting UPF1. Apelin overexpression decreased HG- and IH-induced injury to HMEC-1 cells by activating the Nrf2/HO-1 pathway. Moreover, NEAT1 knockdown reduced HG- and IH-induced injury to HMEC-1 cells through Apelin. NEAT1 silencing reduced HMEC-1 cell injury through the Apelin/Nrf2/HO-1 signalling pathway in T2DM-OSA.Abbreviations: LncRNAs, long non-coding RNAs; T2DM, type 2 diabetes mellitus; OSA, obstructive sleep apnoea; NEAT1, nuclear paraspeckle assembly transcript 1; IH, intermittent hypoxia; HMEC-1, human microvascular endothelial cells; HG, high glucose; Nrf2, NF-E2-related factor 2; UPF1, up-frameshift suppressor 1; HO-1, haem oxygenase-1; qRT-PCR, quantitative real-time polymerase chain reaction; ELISA, enzyme-linked immunosorbent assay; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; TNF-α, tumour necrosis factor-α; CCK-8, Cell Counting Kit-8; IL-1β, interleukin-1β; ROS, reactive oxygen species; MDA, malondialdehyde; SOD, superoxide dismutase; RIP, RNA immunoprecipitation; SD, standard deviations; GSH, glutathione; AIS, acute ischaemic stroke; HMGB1, high mobility group box-1 protein; TLR4, toll-like receptor 4.
Collapse
Affiliation(s)
- Kai Chen
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Baiqing Ou
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Quan Huang
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Daqing Deng
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yi Xiang
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Fang Hu
- Comprehensive internal medicine of Hunan Provincial People’s Hospital, Changsha, Hunan, China
| |
Collapse
|
2
|
Pan Z, Huang K, Li N, Duan P, Huang J, Yang D, Cheng Z, Ha Y, Oh J, Yue M, Zhu X, He D. LncRNA TSIX knockdown restores spinal cord injury repair through miR-30a/SOCS3 axis. Biotechnol Genet Eng Rev 2024; 40:765-787. [PMID: 37013868 DOI: 10.1080/02648725.2023.2190948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 04/05/2023]
Abstract
Spinal cord injury (SCI) is a serious injury to the central nervous system. Previous studies have discovered that the development of SCI is associated with gene expression. The purpose of this study was to explore the significance of lncRNA TSIX in SCI and its underlying mechanism involved. An in vivo SCI mice model and an in vitro hypoxia-treated HT22 cells model were applied in this study. TSIX and SOCS3 expression in SCI tissues was measured by qRT-PCR, western blot and FISH assay. LV-sh-TSIX was injected into SCI mice intrathecally or subjected to HT22 cells to access the consequent alteration in inflammation response, cell apoptosis and functional recovery through ELISA, immunohistochemistry, TUNEL, flow cytometry assays and BMS scores. Then, the underlying mechanism of TSIX was analyzed by bioinformatics analysis and then confirmed by RIP, RNA pull-down and dual-luciferase reporter assay. It was identified that TSIX was up-regulated in HT22 cells under hypoxia operation and spinal cord tissues of SCI mice. TSIX knockdown improved the lesion size and BMS score and inhibited inflammation and cell apoptosis. MiR-30a was identified as a target for TSIX and SOCS3, and TSIX binds to miR-30a by competing with SOCS3, thereby counteracting miR-30a-mediated SOCS3 inhibition. In addition, LV-sh-TSIX effects were significantly overturned by miR-30a inhibition or SOCS3 over-expression. Knockdown of TSIX improved functional recovery and attenuated the inflammation response and cell apoptosis via miR-30a/SOCS3 axis. These results may provide a potential novel insight for SCI treatment.
Collapse
Affiliation(s)
- Zhimin Pan
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Kai Huang
- Department of Orthopedics, Zhabei Central Hospital, Shanghai, China
| | - Nan Li
- Department of Spine Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Pingguo Duan
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dong Yang
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zujue Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinsoo Oh
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mengyun Yue
- Department of Imaging, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Da He
- Department of Spine Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, China
| |
Collapse
|
3
|
Ngcobo NN, Sibiya NH. The role of high mobility group box-1 on the development of diabetes complications: A plausible pharmacological target. Diab Vasc Dis Res 2024; 21:14791641241271949. [PMID: 39271468 PMCID: PMC11406611 DOI: 10.1177/14791641241271949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Diabetes mellitus has emerged as a pressing global concern, with a notable increase in recent years. Despite advancements in treatment, existing medications struggle to halt the progression of diabetes and its associated complications. Increasing evidence underscores inflammation as a significant driver in the onset of diabetes mellitus. Therefore, perspectives on new therapies must consider shifting focus from metabolic stress to inflammation. High mobility group box (HMGB-1), a nuclear protein regulating gene expression, gained attention as an endogenous danger signal capable of sparking inflammatory responses upon release into the extracellular environment in the late 1990s. PURPOSE Given the parallels between inflammatory responses and type 2 diabetes (T2D) development, this review paper explores HMGB-1's potential involvement in onset and progression of diabetes complications. Specifically, we will review and update the understanding of HMGB-1 and its inflammatory pathways in insulin resistance, diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy. CONCLUSIONS HMGB-1 and its receptors i.e. receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs) present promising targets for antidiabetic interventions. Ongoing and future projects in this realm hold promise for innovative approaches targeting HMGB-1-mediated inflammation to ameliorate diabetes and its complications.
Collapse
Affiliation(s)
- Nokwanda N Ngcobo
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo H Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
4
|
Wang S, Tan J, Zhang Q. Cytosolic Escape of Mitochondrial DNA Triggers cGAS-STING Pathway-Dependent Neuronal PANoptosis in Response to Intermittent Hypoxia. Neurochem Res 2024; 49:2228-2248. [PMID: 38833090 DOI: 10.1007/s11064-024-04151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Intermittent hypoxia (IH) is the predominant pathophysiological disturbance in obstructive sleep apnea (OSA), characterized by neuronal cell death and neurocognitive impairment. We focus on the accumulated mitochondrial DNA (mtDNA) in the cytosol, which acts as a damage-associated molecular pattern (DAMP) and activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, a known trigger for immune responses and neuronal death in degenerative diseases. However, the specific role and mechanism of the mtDNA-cGAS-STING axis in IH-induced neural damage remain largely unexplored. Here, we investigated the involvement of PANoptosis, a novel type of programmed cell death linked to cytosolic mtDNA accumulation and the cGAS-STING pathway activation, in neuronal cell death induced by IH. Our study found that PANoptosis occurred in primary cultures of hippocampal neurons and HT22 cell lines exposed to IH. In addition, we discovered that during IH, mtDNA released into the cytoplasm via the mitochondrial permeability transition pore (mPTP) activates the cGAS-STING pathway, exacerbating PANoptosis-associated neuronal death. Pharmacologically inhibiting mPTP opening or depleting mtDNA significantly reduced cGAS-STING pathway activation and PANoptosis in HT22 cells under IH. Moreover, our findings indicated that the cGAS-STING pathway primarily promotes PANoptosis by modulating endoplasmic reticulum (ER) stress. Inhibiting or silencing the cGAS-STING pathway substantially reduced ER stress-mediated neuronal death and PANoptosis, while lentivirus-mediated STING overexpression exacerbated these effects. In summary, our study elucidates that cytosolic escape of mtDNA triggers cGAS-STING pathway-dependent neuronal PANoptosis in response to IH, mainly through regulating ER stress. The discovery of the novel mechanism provides theoretical support for the prevention and treatment of neuronal damage and cognitive impairment in patients with OSA.
Collapse
Affiliation(s)
- Shuying Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China.
| |
Collapse
|
5
|
Ni W, Niu Y, Cao S, Fan C, Fan J, Zhu L, Wang X. Intermittent hypoxia exacerbates anxiety in high-fat diet-induced diabetic mice by inhibiting TREM2-regulated IFNAR1 signaling. J Neuroinflammation 2024; 21:166. [PMID: 38956653 PMCID: PMC11218348 DOI: 10.1186/s12974-024-03160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and obstructive sleep apnea (OSA) are mutual risk factors, with both conditions inducing cognitive impairment and anxiety. However, whether OSA exacerbates cognitive impairment and anxiety in patients with T2DM remains unclear. Moreover, TREM2 upregulation has been suggested to play a protective role in attenuating microglia activation and improving synaptic function in T2DM mice. The aim of this study was to explore the regulatory mechanisms of TREM2 and the cognitive and anxiety-like behavioral changes in mice with OSA combined with T2DM. METHODS A T2DM with OSA model was developed by treating mice with a 60% kcal high-fat diet (HFD) combined with intermittent hypoxia (IH). Spatial learning memory capacity and anxiety in mice were investigated. Neuronal damage in the brain was determined by the quantity of synapses density, the number and morphology of brain microglia, and pro-inflammatory factors. For mechanism exploration, an in vitro model of T2DM combined with OSA was generated by co-treating microglia with high glucose (HG) and IH. Regulation of TREM2 on IFNAR1-STAT1 pathway was determined by RNA sequencing and qRT-PCR. RESULTS Our results showed that HFD mice exhibited significant cognitive dysfunction and anxiety-like behavior, accompanied by significant synaptic loss. Furthermore, significant activation of brain microglia and enhanced microglial phagocytosis of synapses were observed. Moreover, IH was found to significantly aggravate anxiety in the HFD mice. The mechanism of HG treatment may potentially involve the promotion of TREM2 upregulation, which in turn attenuates the proinflammatory microglia by inhibiting the IFNAR1-STAT1 pathway. Conversely, a significant reduction in TREM2 in IH-co-treated HFD mice and HG-treated microglia resulted in the further activation of the IFNAR1-STAT1 pathway and consequently increased proinflammatory microglial activation. CONCLUSIONS HFD upregulated the IFNAR1-STAT1 pathway and induced proinflammatory microglia, leading to synaptic damage and causing anxiety and cognitive deficits. The upregulated TREM2 inT2DM mice brain exerted a negative regulation of the IFNAR1-STAT1 pathway. Mice with T2DM combined with OSA exacerbated anxiety via the downregulation of TREM2, causing heightened IFNAR1-STAT1 pathway activation and consequently increasing proinflammatory microglia.
Collapse
MESH Headings
- Animals
- Mice
- Diet, High-Fat/adverse effects
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Anxiety/etiology
- Anxiety/metabolism
- Signal Transduction/physiology
- Signal Transduction/drug effects
- Hypoxia/metabolism
- Hypoxia/complications
- Male
- Mice, Inbred C57BL
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/psychology
- Receptor, Interferon alpha-beta/metabolism
- Receptor, Interferon alpha-beta/genetics
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Microglia/metabolism
- STAT1 Transcription Factor/metabolism
- Sleep Apnea, Obstructive/complications
- Sleep Apnea, Obstructive/metabolism
- Sleep Apnea, Obstructive/psychology
Collapse
Affiliation(s)
- Wenyu Ni
- Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong Liver Cancer Institute, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226000, China
| | - Yun Niu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Sitong Cao
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chunsun Fan
- Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong Liver Cancer Institute, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226000, China
| | - Jian Fan
- Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong Liver Cancer Institute, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226000, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Medical Research Center Affiliated Hospital 2 of Nantong University, Nantong, China.
| |
Collapse
|
6
|
Chen R, Zou J, Zhong X, Li J, Kang R, Tang D. HMGB1 in the interplay between autophagy and apoptosis in cancer. Cancer Lett 2024; 581:216494. [PMID: 38007142 DOI: 10.1016/j.canlet.2023.216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
Lysosome-mediated autophagy and caspase-dependent apoptosis are dynamic processes that maintain cellular homeostasis, ensuring cell health and functionality. The intricate interplay and reciprocal regulation between autophagy and apoptosis are implicated in various human diseases, including cancer. High-mobility group box 1 (HMGB1), a nonhistone chromosomal protein, plays a pivotal role in coordinating autophagy and apoptosis levels during tumor initiation, progression, and therapy. The regulation of autophagy machinery and the apoptosis pathway by HMGB1 is influenced by various factors, including the protein's subcellular localization, oxidative state, and interactions with binding partners. In this narrative review, we provide a comprehensive overview of the structure and function of HMGB1, with a specific focus on the interplay between autophagic degradation and apoptotic death in tumorigenesis and cancer therapy. Gaining a comprehensive understanding of the significance of HMGB1 as a biomarker and its potential as a therapeutic target in tumor diseases is crucial for advancing our knowledge of cell survival and cell death.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ju Zou
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiao Zhong
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jie Li
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Zhang Y, Ye S, Hou X, Yu W, Wang X, Mu Q, Han F, Guo J. Possible genetic cross-talk between Down syndrome and obstructive sleep apnea revealed by transcriptomic analysis. Sleep Breath 2023; 27:2469-2478. [PMID: 37213066 DOI: 10.1007/s11325-023-02845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE Down syndrome (DS) is linked to a higher prevalence of obstructive sleep apnea (OSA) than in the general population, which in turn contributes to worse cognitive impairment in DS. However, the shared pathogenic mechanisms for DS and OSA remain incompletely illustrated. This study was designed to decipher the genetic cross-talk between DS and OSA by bioinformatics approach. METHODS Transcriptomic datasets of DS (GSE59630) and OSA (GSE135917) were accessed from the Gene Expression Omnibus (GEO) repository. After screening out the common differentially expressed genes (DEGs) for DS and OSA, gene ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were carried out. A protein-protein interaction (PPI) network was then constructed to determine essential modules and hub genes. Finally, based on hub genes, transcriptional factor (TF)-gene interaction and TF-miRNA regulatory networks were constructed. RESULTS DS and OSA showed 229 DEGs. Functional analyses revealed how oxidative stress and inflammatory response were critical in the progression of DS and OSA. Ten significant hub genes were identified, including TLR4, SOD1, IGF1, FGF2, NFE2L2, PECAM1, S100A8, S100A9, FCGR3A, and KCNA1, which were candidate targets for DS and OSA. CONCLUSIONS We found that DS and OSA display similarities in their pathogenesis. Key genes and signaling pathways revealed to be in common between the two conditions could lead us to new therapeutic targets for DS and OSA.
Collapse
Affiliation(s)
- Yang Zhang
- Peking University People's Hospital, Beijing, China
| | - Shuai Ye
- Peking University People's Hospital, Beijing, China
| | - Xueyu Hou
- Peking University People's Hospital, Beijing, China
| | - Weidong Yu
- Peking University People's Hospital, Beijing, China
| | - Xinjuan Wang
- Peking University People's Hospital, Beijing, China
| | - Qing Mu
- Peking University People's Hospital, Beijing, China
| | - Fang Han
- Peking University People's Hospital, Beijing, China.
| | - Jingzhu Guo
- Peking University People's Hospital, Beijing, China.
| |
Collapse
|
8
|
Mázala-de-Oliveira T, Silva BT, Campello-Costa P, Carvalho VF. The Role of the Adrenal-Gut-Brain Axis on Comorbid Depressive Disorder Development in Diabetes. Biomolecules 2023; 13:1504. [PMID: 37892186 PMCID: PMC10604999 DOI: 10.3390/biom13101504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetic patients are more affected by depression than non-diabetics, and this is related to greater treatment resistance and associated with poorer outcomes. This increase in the prevalence of depression in diabetics is also related to hyperglycemia and hypercortisolism. In diabetics, the hyperactivity of the HPA axis occurs in parallel to gut dysbiosis, weakness of the intestinal permeability barrier, and high bacterial-product translocation into the bloodstream. Diabetes also induces an increase in the permeability of the blood-brain barrier (BBB) and Toll-like receptor 4 (TLR4) expression in the hippocampus. Furthermore, lipopolysaccharide (LPS)-induced depression behaviors and neuroinflammation are exacerbated in diabetic mice. In this context, we propose here that hypercortisolism, in association with gut dysbiosis, leads to an exacerbation of hippocampal neuroinflammation, glutamatergic transmission, and neuronal apoptosis, leading to the development and aggravation of depression and to resistance to treatment of this mood disorder in diabetic patients.
Collapse
Affiliation(s)
- Thalita Mázala-de-Oliveira
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.M.-d.-O.); (B.T.S.)
| | - Bruna Teixeira Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.M.-d.-O.); (B.T.S.)
- Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil;
| | - Paula Campello-Costa
- Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil;
| | - Vinicius Frias Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.M.-d.-O.); (B.T.S.)
- Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil;
- Laboratório de Inflamação, Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação—INCT-NIM, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
9
|
Li X, Su X, Xia F, Qiu J, Zhang J, Wu H, Xie X, Xu M. Bibliometric and visual analysis of diabetes mellitus and pyroptosis from 2011 to 2022. Eur J Med Res 2023; 28:235. [PMID: 37443131 DOI: 10.1186/s40001-023-01175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVE To visualize and analyze the published literature on diabetes mellitus and pyroptosis based on a bibliometric approach, so as to provide a comprehensive picture of the hot research directions and dynamic progress in this field. METHODS This study was based on the web of science core collection database to conduct a comprehensive search of the published literature in the field of diabetes mellitus and Pyroptosis from January 1985 to August 2022, including the published research literature in this field, as well as a visual analysis of the number of citations, year of publication, journal, author, research institution, country, and research topic. RESULTS A total of 139 literature on research related to diabetes mellitus and cellular scorch from 2011 to 2022 were retrieved, with a total of 3009 citations and a maximum of 255 citations for a single article, which had a first author Schmid-Burgk, JL The first author of this article is from Germany; among 20 publishing countries, China leads with 100 articles; among 222 publishing institutions, Harbin Medical University leads with 18 articles and 184 citations; among 980 authors, Chen, X from China tops the list of high-impact authors with 5 articles and 29 citations. Among the 98 journals, "CELL DEATH DISEASE" ranked first in both volume and high-impact journals with 4 articles and 29 citations. Among 349 keywords, "pyroptosis" ranked first with a cumulative frequency of 65 times. The cluster analysis was divided into three categories, chronic complications of diabetes mellitus and pyroptosis (67 articles), diabetes mellitus and pyroptosis (60 articles), and diabetes mellitus combined with other diseases and pyroptosis (12 articles), and the number of articles related to diabetes mellitus and its chronic complications increased rapidly from 2019, among which, diabetic cardiomyopathy (27 articles) had the highest number of articles. CONCLUSIONS Based on a comprehensive analysis of published literature in the field of diabetes mellitus and pyroptosis from 2011 to 2022, this study achieved a visual analysis of studies with significant and outstanding contributions to the field, thus framing a picture showing the development and changes in the field. At the same time, this study provides research information and direction for clinicians and investigators to conduct diabetes mellitus and pyroptosis-related research in the future.
Collapse
Affiliation(s)
- Xiaodong Li
- The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, 550000, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xiaojuan Su
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Fenglin Xia
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Qiu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jiaqi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Haiyan Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Mingchao Xu
- Traditional Chinese Medicine Hospital of Meishan, Meishan, 620010, China.
| |
Collapse
|
10
|
Wątroba M, Grabowska AD, Szukiewicz D. Effects of Diabetes Mellitus-Related Dysglycemia on the Functions of Blood-Brain Barrier and the Risk of Dementia. Int J Mol Sci 2023; 24:10069. [PMID: 37373216 DOI: 10.3390/ijms241210069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases worldwide, and its long-term complications include neuropathy, referring both to the peripheral and to the central nervous system. Detrimental effects of dysglycemia, especially hyperglycemia, on the structure and function of the blood-brain barrier (BBB), seem to be a significant backgrounds of diabetic neuropathy pertaining to the central nervous system (CNS). Effects of hyperglycemia, including excessive glucose influx to insulin-independent cells, may induce oxidative stress and secondary innate immunity dependent inflammatory response, which can damage cells within the CNS, thus promoting neurodegeneration and dementia. Advanced glycation end products (AGE) may exert similar, pro-inflammatory effects through activating receptors for advanced glycation end products (RAGE), as well as some pattern-recognition receptors (PRR). Moreover, long-term hyperglycemia can promote brain insulin resistance, which may in turn promote Aβ aggregate accumulation and tau hyperphosphorylation. This review is focused on a detailed analysis of the effects mentioned above towards the CNS, with special regard to mechanisms taking part in the pathogenesis of central long-term complications of diabetes mellitus initiated by the loss of BBB integrity.
Collapse
Affiliation(s)
- Mateusz Wątroba
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| | - Anna D Grabowska
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| | - Dariusz Szukiewicz
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
11
|
Xie J, Hong S, Zhang X, Li Y, Xie R. Inhibition of glycolysis prevents behavioural changes in mice with MK801-induced SCZ model by alleviating lactate accumulation and lactylation. Brain Res 2023; 1812:148409. [PMID: 37207839 DOI: 10.1016/j.brainres.2023.148409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/23/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Schizophrenia (SCZ) is a debilitating neuropsychiatric disorder with a complex aetiology. Cognitive symptoms and hippocampal changes have been implicated in the pathophysiology of SCZ. Changes in metabolites level and up-regulated glycolysis have been reported in previous studies, which may be related to the hippocampal dysfunction in SCZ. However, the pathological mechanism of glycolysis involved in the pathogenesis of SCZ remains unclear. Therefore, the change of glycolysis level and the involvement in SCZ need to be further studied. In our study, MK801 was used to induce an SCZ mouse model and cell model in vivo and in vitro. Western blotting was performed to evaluate the levels of glycolysis, metabolites, and lactylation in hippocampal tissue of mice with SCZ or cell models. The level of high mobility group protein 1 (HMGB1) in the medium of MK801-treated primary hippocampal neurons was examined. Apoptosis was evaluated in HMGB1-treated hippocampal neurons by flow cytometry. The glycolysis inhibitor 2-DG prevented behavioural changes in the MK801-induced SCZ mouse model. The lactate accumulation and level of lactylation were alleviated in the hippocampal tissue of MK801-treated mice. Glycolysis was enhanced, and lactate accumulated in MK-801-treated primary hippocampal neurons. In addition, the level of HMGB1 increased in the medium and induced apoptosis in primary hippocampal neurons. Together, the data showed that glycolysis and lactylation increased in the MK801-induced SCZ model in vivo and in vitro, and this effect could be prevented by 2-DG (a glycolysis inhibitor). Glycolytic related HMGB1 upregulation may induce apoptosis in hippocampal neurons downstream.
Collapse
Affiliation(s)
- Jiming Xie
- Cardiothoracic Surgery Department, The Third People's Hospital, Kunming 650011, Yunnan, P.R. China
| | - Shijun Hong
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, Kunming Medical University, Kunming 650500, Yunnan, P.R. China
| | - Xiufeng Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, Kunming Medical University, Kunming 650500, Yunnan, P.R. China
| | - Yuwen Li
- Tangshuang Community, The Third People's Hospital, Kunming 650011, Yunnan, P.R. China
| | - Runfang Xie
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, Kunming Medical University, Kunming 650500, Yunnan, P.R. China.
| |
Collapse
|
12
|
Cordyceps militaris polysaccharide alleviates diabetic symptoms by regulating gut microbiota against TLR4/NF-κB pathway. Int J Biol Macromol 2023; 230:123241. [PMID: 36641024 DOI: 10.1016/j.ijbiomac.2023.123241] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat diet (HFD)- and streptozotocin (STZ)-induced T2DM mice. The results revealed that AEPSa reshaped gut microbiota by increasing Allobaculum, Alistipes, Lachnospiraceae_NK4A136_group and norank_f_Muribaculaceae and decreasing Enterococcus and Ruminococcus_torques_group to inhibit the colonic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and upregulate intestinal tight junction protein expression, thereby improving glucose and serum lipid metabolism, hormone secretion and complications. Fecal microbiota transplantation (FMT) also confirmed these findings. These results indicated that symptomatic relief of T2DM might be related to AEPSa regulating the gut microbiota against the TLR4/NF-κB pathway to protect the intestinal barrier. Therefore, AEPSa might be developed as a prebiotic agent against T2DM by regulating gut microbiota.
Collapse
|
13
|
Su T, Li C, Zhang Y, Yue L, Chen Y, Qian X, Shi S. Upregulation of HMGB1 promotes vascular dysfunction in the soft palate of patients with obstructive sleep apnea via the TLR4/NF-κB/VEGF pathway. FEBS Open Bio 2023; 13:246-256. [PMID: 36479843 PMCID: PMC9900083 DOI: 10.1002/2211-5463.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by the collapse of the soft palate in the upper airway, resulting in chronic intermittent hypoxia during sleep. Therefore, an understanding of the molecular mechanisms underlying pathophysiological dysfunction of the soft palate in OSA is necessary for the development of new therapeutic strategies. In the present study, we observed that high mobility group protein box 1 (HMGB1) was released by a large infiltration of macrophages in the soft palate of OSA patients. The toll-like receptor 4/nuclear factor kappa B pathway was observed to be activated by the release of HMGB1, and this was accompanied by an increased expression of pro-inflammatory factors, including tumor necrosis factor-α and interleukin-6. Importantly, increased expression of toll-like receptor 4 was observed in endothelial cells, contributing to upregulation of the angiogenesis-related factors vascular endothelial-derived growth factor and matrix metalloproteinase 9. Moreover, we confirmed the effect of the HMGB1-mediated toll-like receptor 4/nuclear factor kappa B pathway on cell proliferation and angiogenesis in an in vitro cell model of human umbilical vein endothelial cells. We conclude that HMGB1 may be a potential therapeutic target for preventing angiogenesis and pathology in OSA.
Collapse
Affiliation(s)
- Tiantian Su
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Cong Li
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Yu Zhang
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Lei Yue
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Yuqin Chen
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Xiaoqiong Qian
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Song Shi
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| |
Collapse
|
14
|
Tian Y, Chen R, Su Z. HMGB1 is a Potential and Challenging Therapeutic Target for Parkinson's Disease. Cell Mol Neurobiol 2023; 43:47-58. [PMID: 34797463 DOI: 10.1007/s10571-021-01170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/14/2021] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is one of the most common degenerative diseases of the human nervous system and has a wide range of serious impacts on human health and quality of life. Recently, research targeting high mobility group box 1 (HMGB1) in PD has emerged, and a variety of laboratory methods for inhibiting HMGB1 have achieved good results to a certain extent. However, given that HMGB1 undergoes a variety of intracellular modifications and three different forms of extracellular redox, the possible roles of these forms in PD are likely to be different. General inhibition of all forms of HMGB1 is obviously not ideal and has become one of the biggest obstacles in the clinical application of targeting HMGB1. In this review, pure mechanistic research of HMGB1 and in vivo research targeting HMGB1 were combined, the effects of HMGB1 on neurons and immune cell responses in PD are discussed in detail, and the problems that need to be focused on in the future are addressed.
Collapse
Affiliation(s)
- Yu Tian
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Rong Chen
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China. .,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
15
|
Yang K, Cao F, Wang W, Tian Z, Yang L. The relationship between HMGB1 and autophagy in the pathogenesis of diabetes and its complications. Front Endocrinol (Lausanne) 2023; 14:1141516. [PMID: 37065747 PMCID: PMC10090453 DOI: 10.3389/fendo.2023.1141516] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose levels and has become the third leading threat to human health after cancer and cardiovascular disease. Recent studies have shown that autophagy is closely associated with diabetes. Under normal physiological conditions, autophagy promotes cellular homeostasis, reduces damage to healthy tissues and has bidirectional effects on regulating diabetes. However, under pathological conditions, unregulated autophagy activation leads to cell death and may contribute to the progression of diabetes. Therefore, restoring normal autophagy may be a key strategy to treat diabetes. High-mobility group box 1 protein (HMGB1) is a chromatin protein that is mainly present in the nucleus and can be actively secreted or passively released from necrotic, apoptotic, and inflammatory cells. HMGB1 can induce autophagy by activating various pathways. Studies have shown that HMGB1 plays an important role in insulin resistance and diabetes. In this review, we will introduce the biological and structural characteristics of HMGB1 and summarize the existing knowledge on the relationship between HMGB1, autophagy, diabetes, and diabetic complications. We will also summarize potential therapeutic strategies that may be useful for the prevention and treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Kun Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Cao
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
- Department of Acupuncture, Haidian District Shuangyushu Community Health Service Center, Beijing, China
| | - Weili Wang
- Institute of Basic Research in Clinical Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyu Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Lu Yang, ; Zhenyu Tian,
| | - Lu Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lu Yang, ; Zhenyu Tian,
| |
Collapse
|
16
|
Knockdown of lncRNA XIST Ameliorates IL-1 β-Induced Apoptosis of HUVECs and Change of Tissue Factor Level via miR-103a-3p/HMGB1 Axis in Deep Venous Thrombosis by Regulating the ROS/NF- κB Signaling Pathway. Cardiovasc Ther 2022; 2022:6256384. [PMID: 36474713 PMCID: PMC9699739 DOI: 10.1155/2022/6256384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
Background The effect of lncRNA X inactive-specific transcript (XIST) inducing cardiovascular diseases on deep vein thrombosis (DVT) and its mechanism has not been reported. In this study, we uncovered the mystery that lncRNA XIST causes DVT with HUVEC dysfunction. Method The expression levels of lncRNA XIST and miR-103a-3p were detected by qRT-PCR, and HMGB1 expression was determined by qRT-PCR and western blot. The correlations among the expression levels of lncRNA XIST, miR-103a-3p, and HMGB1 were determined by Spearman's rank-order correlation test. XIST siRNA (si-XIST) was transfected into HUVECs to knock down the intrinsic expression of lncRNA XIST. The influences of si-XIST on interleukin-1 beta- (IL-1β-) treated HUVEC viability and apoptosis and the level of tissue factor (TF) were detected by MTT, flow cytometry, and ELISA kit, respectively. The relationships between lncRNA XIST, miR-103a-3p, and HMGB1 were predicted by the Encyclopedia of RNA Interactomes (ENCORI) database and verified by dual luciferase reporter assay. The effects of lncRNA XIST and miR-103a-3p on HMGB1 expression were detected by qRT-PCR, western blot, and immunofluorescence analysis. The levels of ROS/NF-κB pathway-related proteins were detected to study the regulatory mechanism of lncRNA XIST/miR-103a-3p/HMGB1 on IL-1β-treated HUVECs apoptosis and change of TF level. Results The upregulated expression levels of lncRNA XIST and HMGB1 and downregulated level of miR-103a-3p were found in the plasma of DVT patients and IL-1β-treated HUVECs. Si-XIST promoted cell viability and inhibited HUVEC apoptosis and ameliorated the change of TF level triggered by IL-1β. lncRNA XIST sponged miR-103a-3p and miR-103a-3p targeted HMGB1. Si-XIST inhibited the ROS/NF-κB pathway to suppress HUVEC apoptosis and ameliorate the change of TF level induced by IL-1β via the miR-103a-3p/HMGB1 axis. Conclusion lncRNA XIST sponged miR-103a-3p improving HMGB1 expression to exacerbate DVT by activating the ROS/NF-κB signaling pathway. Our findings indicated that lncRNA XIST can be used as a potential therapeutic target in DVT.
Collapse
|
17
|
Deng C, Deng L, Lv J, Sun L. Therapeutic effects and long-term outcomes of HMGB1-targeted therapy in rats and mice with traumatic spinal cord injury: A systematic review and meta-analysis. Front Neurosci 2022; 16:968791. [PMID: 36161176 PMCID: PMC9489835 DOI: 10.3389/fnins.2022.968791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/18/2022] [Indexed: 12/09/2022] Open
Abstract
BackgroundTo date, the clinical need for therapeutic methods to prevent traumatic spinal cord injury (TSCI) progression and improve functional recovery has not been met. High mobility group box-1 (HMGB1) is released by necrotic neurons or secreted by glial cells after TSCI and plays an important role in pathophysiology.ObjectiveThe purpose of this study was to evaluate the effects of HMGB1-targeted therapy on locomotor function recovery, inflammation reduction, edema attenuation, and apoptosis reduction in rat and mouse models of TSCI.MethodsWe reviewed the literature on HMGB1-targeted therapy in the treatment and prognosis of TSCI. Twelve articles were identified and analyzed from four online databases (PubMed, Web of Science, Cochrane Library and Embase) based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and strict inclusion criteria.ResultsThe methodological quality of the 12 articles was poor. The results of the meta-analysis showed that compared with the SCI group, the treatment group had significantly increased locomotor function scores after SCI [n = 159, standardized mean difference (SMD) = 2.31, 95% confidence interval (CI) (1.52, 3.10), P < 0.00001], and the change in locomotor function scores was significantly increased in both the drug and anti-HMGB1 Ab groups (P < 0.000001 and P < 0.000001). A subgroup analysis showed significant differences (P > 0.05) between the drug group [(SMD) = 1.95, 95% CI (0.95, 2.94), P = 0.0001] and the anti-HMGB1 Ab group [(SMD) = 2.89, 95% CI (1.66, 4.13), P < 0.00001]. Compared with the SCI group, HMGB1 expression was significantly diminished [n = 76, SMD = −2.31, 95% CI (−3.71, −0.91), P = 0.001], TNF-α levels were significantly reduced [n = 76, SMD = −2.52, 95% CI (−3.77, −1.27), P < 0.0001], water content was significantly reduced [n = 44, SMD = −3.94, 95% CI (−6.28, −1.61), P = 0.0009], and the number of apoptotic cells was significantly diminished [n = 36, SMD = −3.31, 95% CI (−6.40, −0.22), P = 0.04] in the spinal cord of the treatment group.ConclusionHMGB1-targeted therapy improves locomotor function, reduces inflammation, attenuates edema, and reduces apoptosis in rats and mice with TSCI. Intrathecal injection of anti-HMGB1 Ab 0-3 h after SCI may be the most efficacious treatment.Systematic review registrationPROSPERO, identifier: CRD42022326114.
Collapse
|
18
|
Ge X, Wang L, Fei A, Ye S, Zhang Q. Research progress on the relationship between autophagy and chronic complications of diabetes. Front Physiol 2022; 13:956344. [PMID: 36003645 PMCID: PMC9393249 DOI: 10.3389/fphys.2022.956344] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
Diabetes is a common metabolic disease whose hyperglycemic state can induce diverse complications and even threaten human health and life security. Currently, the treatment of diabetes is restricted to drugs that regulate blood glucose and have certain accompanying side effects. Autophagy, a research hotspot, has been proven to be involved in the occurrence and progression of the chronic complications of diabetes. Autophagy, as an essential organismal defense mechanism, refers to the wrapping of cytoplasmic proteins, broken organelles or pathogens by vesicles, which are then degraded by lysosomes to maintain the stability of the intracellular environment. Here, we review the relevant aspects of autophagy and the molecular mechanisms of autophagy in diabetic chronic complications, and further analyze the impact of improving autophagy on diabetic chronic complications, which will contribute to a new direction for further prevention and treatment of diabetic chronic complications.
Collapse
Affiliation(s)
- Xia Ge
- Department of Endocrinology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Ling Wang
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Aihua Fei
- Department of Endocrinology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Shandong Ye
- Department of Endocrinology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- *Correspondence: Shandong Ye, ; Qingping Zhang,
| | - Qingping Zhang
- College of Acupuncture-Moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Shandong Ye, ; Qingping Zhang,
| |
Collapse
|
19
|
Mulberry Leaf Flavonoids Inhibit Liver Inflammation in Type 2 Diabetes Rats by Regulating TLR4/MyD88/NF-κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3354062. [PMID: 35845591 PMCID: PMC9279020 DOI: 10.1155/2022/3354062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022]
Abstract
The incidence of liver-related complications in type 2 diabetes mellitus (T2DM) is rapidly increasing, which affects the physical and mental health of T2DM patients. Mulberry leaf flavonoids (MLF) were confirmed to have certain effects on lowering blood glucose and anti-inflammation. In this study, the high-fat diet (HFD) + STZ method was used to establish T2DM rat model and the MLF was administered by gavage for eight weeks. During the experiment, body weight and blood glucose level were measured at different time points. The pathological changes of rat liver were observed by H&E staining. The serum glucolipid metabolic indicators of serum, fasting insulin (FINS), and inflammatory factors levels were detected by ELISA. The expression levels of toll-like receptor 4 (TLR4), TNF receptor-associated factor 6 (TRAF6), myeloid differentiation factor 88 (MyD88), inhibitor of NF-κB alpha (IκΒα), p-IκΒα, and nuclear factor kappa-B (NF-κB)/p65 protein in liver tissue were measured by Western Blot. After 8 weeks' MLF treatment, the blood glucose of rats showed a downward trend; glycolipid metabolism level and insulin resistance were improved, which suggested that MLF could improve the disorder of glucose and lipid metabolism. The pathological damage and inflammation of the liver in T2DM rats were significantly improved, the levels of related serum inflammatory factors were reduced, and the expression of liver tissue-related proteins was downregulated. Our results indicated that MLF could reduce blood glucose and inhibit the development of liver inflammation. The mechanisms may be associated with the activation of TLR4/MyD88/NF-κB signal pathway to reduce the levels of inflammatory factors in serum.
Collapse
|
20
|
The Yin and Yang of toll-like receptors in endothelial dysfunction. Int Immunopharmacol 2022; 108:108768. [DOI: 10.1016/j.intimp.2022.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
21
|
Tao Z, Helms MN, Leach BCB, Wu X. Molecular insights into the multifaceted functions and therapeutic targeting of high mobility group box 1 in metabolic diseases. J Cell Mol Med 2022; 26:3809-3815. [PMID: 35706377 PMCID: PMC9279590 DOI: 10.1111/jcmm.17448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 10/27/2022] Open
Abstract
HMGB1 is a ubiquitously expressed protein localized in nucleus, cytoplasm, as well as secreted into extracellular space. Nuclear HMGB1 binds to DNAs and RNAs, regulating genomic stability and transcription. Cytoplasmic HMGB1 regulates autophagy through binding to core autophagy regulators. Secreted extracellular HMGB1 functions as a ligand to various receptors (RAGE and TLRs, etc.), regulating multiple signalling pathways, such as MAPK, PI3K and NF-κB signallings. Trafficking and localization of HMGB1 across cellular compartments could be regulated by its posttranslational modifications, which fine-tune its functions in metabolic diseases, inflammation and cancers. The current review examines the up-to-date findings pertaining to the biological functions of HMGB1, with focus on its posttranslational modifications and roles in downstream signalling pathways involved in metabolic diseases. This review also discusses the feasibility of targeting HMGB1 as a potential pharmacological intervention for metabolic diseases.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - My N Helms
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Benjamin C B Leach
- Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Jeong JH, Lee DH, Song J. HMGB1 signaling pathway in diabetes-related dementia: Blood-brain barrier breakdown, brain insulin resistance, and Aβ accumulation. Biomed Pharmacother 2022; 150:112933. [PMID: 35413600 DOI: 10.1016/j.biopha.2022.112933] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetes contributes to the onset of various diseases, including cancer and cardiovascular and neurodegenerative diseases. Recent studies have highlighted the similarities and relationship between diabetes and dementia as an important issue for treating diabetes-related cognitive deficits. Diabetes-related dementia exhibits several features, including blood-brain barrier disruption, brain insulin resistance, and Aβ over-accumulation. High-mobility group box1 (HMGB1) is a protein known to regulate gene transcription and cellular mechanisms by binding to DNA or chromatin via receptor for advanced glycation end-products (RAGE) and toll-like receptor 4 (TLR4). Recent studies have demonstrated that the interplay between HMGB1, RAGE, and TLR4 can impact both neuropathology and diabetic alterations. Herein, we review the recent research regarding the roles of HMGB1-RAGE-TLR4 axis in diabetes-related dementia from several perspectives and emphasize the importance of the influence of HMGB1 in diabetes-related dementia.
Collapse
Affiliation(s)
- Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Dong Hoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School, and Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
23
|
Lei Y, Chen L, Liu J, Zhong Y, Deng L. The MicroRNA-Based Strategies to Combat Cancer Chemoresistance via Regulating Autophagy. Front Oncol 2022; 12:841625. [PMID: 35211417 PMCID: PMC8861360 DOI: 10.3389/fonc.2022.841625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance frequently occurs in cancer treatment, which results in chemotherapy failure and is one of the most leading causes of cancer-related death worldwide. Understanding the mechanism of chemoresistance and exploring strategies to overcome chemoresistance have become an urgent need. Autophagy is a highly conserved self-degraded process in cells. The dual roles of autophagy (pro-death or pro-survival) have been implicated in cancers and chemotherapy. MicroRNA (miRNA) is a class of small non-coding molecules that regulate autophagy at the post-transcriptional level in cancer cells. The association between miRNAs and autophagy in cancer chemoresistance has been emphasized. In this review, we focus on the dual roles of miRNA-mediated autophagy in facilitating or combating chemoresistance, aiming to shed lights on the potential role of miRNAs as targets to overcome chemoresistance.
Collapse
Affiliation(s)
- Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lei Chen
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yinqin Zhong
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
He Y, Wang F, Yao N, Wu Y, Zhao Y, Tian Z. Serum superoxide dismutase level is a potential biomarker of disease prognosis in patients with HEV-induced liver failure. BMC Gastroenterol 2022; 22:14. [PMID: 35000581 PMCID: PMC8742945 DOI: 10.1186/s12876-022-02095-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/05/2022] [Indexed: 01/11/2024] Open
Abstract
Background Viral hepatitis E clinically ranges from self-limiting hepatitis to lethal liver failure. Oxidative stress has been shown to mediate hepatic inflammation during HBV-induced liver failure. We investigated whether a biomarker of oxidative stress may be helpful in assessing severity and disease outcomes of patients with HEV-induced liver failure. Methods Clinical data were obtained from patients with HEV-induced acute viral hepatitis (AVH, n = 30), acute liver failure (ALF, n = 17), and acute-on-chronic liver failure (ACLF, n = 36), as well as from healthy controls (HC, n = 30). The SOD and HMGB1 levels were measured in serum by ELISA. HL-7702 cells were cultured and stimulated by serum from HEV-infected patients or by HMGB1; oxidative status was investigated by CellROX and apoptosis was investigated by flow cytometry. Results Patients with HEV-induced liver failure (including ALF and ACLF) showed increased SOD levels compared with HEV-AVH patients and healthy controls. SOD levels > 400 U/mL were associated with a significantly higher risk of mortality in HEV-ALF and HEV-ACLF patients. Serum from HEV-infected patients led to ROS accumulation, HMGB1 secretion, and apoptosis in HL-7702 cells. Antioxidant treatment successfully inhibited HEV-induced HMGB1 secretion, and HMGB1 promoted apoptosis in HL-7702 cells. Conclusion HEV increased oxidative stress in the pathogenesis of HEV-induced hepatic diseases. Early testing of serum SOD may serve as a predictor of both HEV-ALF and HEV-ACLF outcomes. Moreover, development of strategies for modulating oxidative stress might be a potential target for treating HEV-induced liver failure patients.
Collapse
Affiliation(s)
- Yajuan He
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an City, 710061, Shaanxi Province, China
| | - Fei Wang
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an City, 710061, Shaanxi Province, China
| | - Naijuan Yao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Yuchao Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Yingren Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Zhen Tian
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an City, 710061, Shaanxi Province, China. .,Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China.
| |
Collapse
|
25
|
Shi M, Zhang X, Zhang R, Zhang H, Zhu D, Han X. Glycyrrhizic acid promotes sciatic nerves recovery in type 1 diabetic rats and protects Schwann cells from high glucose-induced cytotoxicity. J Biomed Res 2022; 36:181-194. [PMID: 35578754 PMCID: PMC9179113 DOI: 10.7555/jbr.36.20210198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Min Shi
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
- Department of Endocrinology, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Xiangcheng Zhang
- Department of Intensive Care Unit, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Ridong Zhang
- Department of Endocrinology, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Hong Zhang
- Department of Endocrinology, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
- Hong Zhang, Department of Endocrinology, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, 6 West Beijing Road, Huai'an, Jiangsu 223300, China. Tel: +86-517-80872128, E-mail:
| | - Dalong Zhu
- Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
- Dalong Zhu, Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China. Tel: +86-25-83304616, E-mail:
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Xiao Han, Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869426, E-mail:
| |
Collapse
|
26
|
Sun HM, Yu Y, Gao XR, Wei YD, Qi CZ, Ma MD, Xu DD, Xu YY, Ge JF. Potential role of 25(OH)D insufficiency in the dysfunction of glycolipid metabolism and cognitive impairment in patients with T2DM. Front Endocrinol (Lausanne) 2022; 13:1068199. [PMID: 36619542 PMCID: PMC9822724 DOI: 10.3389/fendo.2022.1068199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To investigate the changes of plasma 25(OH)D levels in type 2 diabetes mellitus (T2DM) patients and explore its role in the dysfunction of glucose and lipid metabolism and cognition. METHODS One hundred and thirty-two T2DM patients were enrolled and the demographic and clinical data were collected. The plasma concentration of 25(OH)D was detected and the patients were divided into two groups including a Vitamin D insufficient (VDI) group and a normal VD group according to the clinical diagnostic criterial of VDI with the plasma 25(OH)D level less than 29 ng/mL. The glycolipid metabolic and routine blood biochemical indices were detected, the plasma concentrations of C-reactive protein (CRP), interleukin-6 (IL-6), soluble myeloid soluble trigger receptor 1 (sTREM1) were measured. The cognitive function was assessed using the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A). The depressive symptomatology was assessed using the Center for Epidemiological Survey Depression Scale (CES-D). Sleep quality was assessed using the Pittsburgh sleep quality index (PSQI). RESULTS There were 70 T2DM patients with VDI (70/132, 53.03%) in this study. The plasma concentrations of glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), postprandial blood glucose (PBG), IL-6, and sTREM1 were remarkably increased in T2DM patients with VDI as compared with that with the normal VD, accompanied with an elevated BRIEF-A scores. There was no significant difference between groups with regard to the indices of blood lipid, liver function, and scores in CES-D and PSQI. Moreover, results of Pearson correlation test showed that the plasma 25(OH)D levels were negatively correlated with HbA1c, FPG, PBG, CRP, IL-6, sTREM1, CES-D sum scores, and PSQI sum scores, but positively correlated with the plasma levels of Serum creatinine (Scr). Furthermore, result of Receiver Operating Characteristic (ROC) curve analysis showed a predictive role of VDI levels in discriminating T2DM patients with higher cognitive impairments, with the sensitivity and specificity being 62.12% and 62.12%, respectively. CONCLUSION VDI is harmful for T2DM patients with a significant relation with the hyperglycosemia and cognitive dysfunction.
Collapse
Affiliation(s)
- Hui-min Sun
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial laboratory of inflammatory and immunity disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Yue Yu
- School of Pharmacy, Anhui Medical University, Hefei, China
- Department of Pharmacy, North district of The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin-ran Gao
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial laboratory of inflammatory and immunity disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Ya-dong Wei
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial laboratory of inflammatory and immunity disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Chuan-zong Qi
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial laboratory of inflammatory and immunity disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Meng-die Ma
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial laboratory of inflammatory and immunity disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Dan-dan Xu
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial laboratory of inflammatory and immunity disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Ya-yun Xu
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Jin-fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial laboratory of inflammatory and immunity disease, Anhui Institute of Innovative Drugs, Hefei, China
- *Correspondence: Jin-fang Ge,
| |
Collapse
|
27
|
Liu L, Cao Q, Gao W, Li BY, Zeng C, Xia Z, Zhao B. Melatonin ameliorates cerebral ischemia-reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1-BMAL1 pathway. FASEB J 2021; 35:e22040. [PMID: 34800293 DOI: 10.1096/fj.202002718rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
Diabetic brains are more vulnerable to ischemia-reperfusion injury. Previous studies have proved that melatonin could protect against cerebral ischemia-reperfusion (CIR) injury in non-diabetic stroke models; however, its roles and the underlying mechanisms against CIR injury in diabetic mice remain unknown. Streptozotocin-induced diabetic mice and high-glucose-cultured HT22 cells were exposed to melatonin, with or without administration of the autophagy inhibitor 3-methyladenine (3-MA) and the specifically silent information regulator 1 (SIRT1) inhibitor EX527, and then subjected to CIR or oxygen-glucose deprivation/reperfusion operation. We found that diabetic mice showed aggravated brain damage, increased apoptosis and oxidative stress, and deficient autophagy following CIR compared with non-diabetic counterparts. Melatonin treatment exhibited improved histological damage, neurological outcomes, and cerebral infarct size. Intriguingly, melatonin markedly increased cell survival, anti-oxidative and anti-apoptosis effects, and significantly enhanced autophagy. However, these effects were largely attenuated by 3-MA or EX527. Additionally, our cellular experiments demonstrated that melatonin increased the SIRT1-BMAL1 pathway-related proteins' expression in a dose-dependent manner. In conclusion, these results indicate that melatonin treatment can protect against CIR-induced brain damage in diabetic mice, which may be achieved by the autophagy enhancement mediated by the SIRT1-BMAL1 pathway.
Collapse
Affiliation(s)
- Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Quan Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenwei Gao
- Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bing-Yu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Zeng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Andersson U, Tracey KJ, Yang H. Post-Translational Modification of HMGB1 Disulfide Bonds in Stimulating and Inhibiting Inflammation. Cells 2021; 10:cells10123323. [PMID: 34943830 PMCID: PMC8699546 DOI: 10.3390/cells10123323] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
High mobility group box 1 protein (HMGB1), a highly conserved nuclear DNA-binding protein, is a “damage-associated molecular pattern” molecule (DAMP) implicated in both stimulating and inhibiting innate immunity. As reviewed here, HMGB1 is an oxidation-reduction sensitive DAMP bearing three cysteines, and the post-translational modification of these residues establishes its proinflammatory and anti-inflammatory activities by binding to different extracellular cell surface receptors. The redox-sensitive signaling mechanisms of HMGB1 also occupy an important niche in innate immunity because HMGB1 may carry other DAMPs and pathogen-associated molecular pattern molecules (PAMPs). HMGB1 with DAMP/PAMP cofactors bind to the receptor for advanced glycation end products (RAGE) which internalizes the HMGB1 complexes by endocytosis for incorporation in lysosomal compartments. Intra-lysosomal HMGB1 disrupts lysosomal membranes thereby releasing the HMGB1-transported molecules to stimulate cytosolic sensors that mediate inflammation. This HMGB1-DAMP/PAMP cofactor pathway slowed the development of HMGB1-binding antagonists for diagnostic or therapeutic use. However, recent discoveries that HMGB1 released from neurons mediates inflammation via the TLR4 receptor system, and that cancer cells express fully oxidized HMGB1 as an immunosuppressive mechanism, offer new paths to targeting HMGB1 for inflammation, pain, and cancer.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
- Correspondence: ; Tel.: +46-(70)-7401740
| | - Kevin J. Tracey
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; (K.J.T.); (H.Y.)
| | - Huan Yang
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; (K.J.T.); (H.Y.)
| |
Collapse
|
29
|
Chen Y, Qie X, Quan W, Zeng M, Qin F, Chen J, Adhikari B, He Z. Omnifarious fruit polyphenols: an omnipotent strategy to prevent and intervene diabetes and related complication? Crit Rev Food Sci Nutr 2021:1-37. [PMID: 34792409 DOI: 10.1080/10408398.2021.2000932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a metabolic syndrome which cannot be cured. Recently, considerable interest has been focused on food ingredients to prevent and intervene in complications of diabetes. Polyphenolic compounds are one of the bioactive phytochemical constituents with various biological activities, which have drawn increasing interest in human health. Fruits are part of the polyphenol sources in daily food consumption. Fruit-derived polyphenols possess the anti-diabetic activity that has already been proved either from in vitro studies or in vivo studies. The mechanisms of fruit polyphenols in treating diabetes and related complications are under discussion. This is a comprehensive review on polyphenols from the edible parts of fruits, including those from citrus, berries, apples, cherries, mangoes, mangosteens, pomegranates, and other fruits regarding their potential benefits in preventing and treating diabetes mellitus. The signal pathways of characteristic polyphenols derived from fruits in reducing high blood glucose and intervening hyperglycemia-induced diabetic complications were summarized.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuejiao Qie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
30
|
Zhang Y. MiR-92d-3p suppresses the progression of diabetic nephropathy renal fibrosis by inhibiting the C3/HMGB1/TGF-β1 pathway. Biosci Rep 2021; 41:BSR20203131. [PMID: 33729484 PMCID: PMC8485393 DOI: 10.1042/bsr20203131] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of diabetic nephropathy (DN) has not been fully elucidated. MicroRNAs (miRNAs) play an important role in the onset and development of DN renal fibrosis. Thus, the present study aimed to investigate the effect of miR-92d-3p on the progression of DN renal fibrosis. We used qRT-PCR to detect the expression levels of miR-92d-3p in the kidneys of patients with DN. Then, after transfecting lentiviruses containing miR-92d-3p into the kidneys of a DN mouse model and HK-2 cell line, we used qRT-PCR to detect the expression levels of miR-92d-3p, C3, HMGB1, TGF-β1, α-SMA, E-cadherin, and Col I. The expression levels of interleukin (IL) 1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) in the HK-2 cells were detected through enzyme-linked immunosorbent assay (ELISA), and Western blotting and immunofluorescence were used in detecting the expression levels of fibronectin, α-SMA, E-cadherin, and vimentin. Results showed that the expression levels of miR-92d-3p in the kidney tissues of patients with DN and DN animal model mice decreased, and C3 stimulated HK-2 cells to produce inflammatory cytokines. The C3/HMGB1/TGF-β1 pathway was activated, and epithelial-to-interstitial transition (EMT) was induced in the HK-2 cells after human recombinant C3 and TGF-β1 protein were added. miR-92d-3p inhibited inflammatory factor production by C3 in the HK-2 cells and the activation of the C3/HMGB1/TGF-β1 pathway and EMT by C3 and TGF-β1. miR-92d-3p suppressed the progression of DN renal fibrosis by inhibiting the activation of the C3/HMGB1/TGF-β1 pathway and EMT.
Collapse
Affiliation(s)
- Yuhua Zhang
- College of Medicine, Jiangxi University of Technology, Nanchang 330098, Jiangxi, China
| |
Collapse
|
31
|
Parkitny L, Maletic-Savatic M. Glial PAMPering and DAMPening of Adult Hippocampal Neurogenesis. Brain Sci 2021; 11:1299. [PMID: 34679362 PMCID: PMC8533961 DOI: 10.3390/brainsci11101299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Adult neurogenesis represents a mature brain's capacity to integrate newly generated neurons into functional circuits. Impairment of neurogenesis contributes to the pathophysiology of various mood and cognitive disorders such as depression and Alzheimer's Disease. The hippocampal neurogenic niche hosts neural progenitors, glia, and vasculature, which all respond to intrinsic and environmental cues, helping determine their current state and ultimate fate. In this article we focus on the major immune communication pathways and mechanisms through which glial cells sense, interact with, and modulate the neurogenic niche. We pay particular attention to those related to the sensing of and response to innate immune danger signals. Receptors for danger signals were first discovered as a critical component of the innate immune system response to pathogens but are now also recognized to play a crucial role in modulating non-pathogenic sterile inflammation. In the neurogenic niche, viable, stressed, apoptotic, and dying cells can activate danger responses in neuroimmune cells, resulting in neuroprotection or neurotoxicity. Through these mechanisms glial cells can influence hippocampal stem cell fate, survival, neuronal maturation, and integration. Depending on the context, such responses may be appropriate and on-target, as in the case of learning-associated synaptic pruning, or excessive and off-target, as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Luke Parkitny
- Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA;
| | | |
Collapse
|
32
|
Qin M, Xu C, Yu J. The Soluble (Pro)Renin Receptor in Health and Diseases: Foe or Friend? J Pharmacol Exp Ther 2021; 378:251-261. [PMID: 34158404 DOI: 10.1124/jpet.121.000576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
The (pro)renin receptor (PRR) is a single-transmembrane protein that regulates the local renin-angiotensin system and participates in various intracellular signaling pathways, thus exhibiting a significant physiopathologic relevance in cellular homeostasis. A soluble form of PRR (sPRR) is generated through protease-mediated cleavage of the full-length PRR and secreted into extracellular spaces. Accumulating evidence indicates pivotal biologic functions of sPRR in various physiopathological processes. sPRR may be a novel biomarker for multiple diseases. SIGNIFICANCE STATEMENT: Circulating sPRR concentrations are elevated in patients and animals under various physiopathological conditions. This minireview highlights recent advances in sPRR functions in health and pathophysiological conditions. Results suggest that sPRR may be a novel biomarker for multiple diseases, but further studies are needed to determine the diagnostic value of sPRR.
Collapse
Affiliation(s)
- Manman Qin
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| | - Jun Yu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| |
Collapse
|
33
|
Liu L, Cao Q, Gao W, Li B, Xia Z, Zhao B. Melatonin protects against focal cerebral ischemia-reperfusion injury in diabetic mice by ameliorating mitochondrial impairments: involvement of the Akt-SIRT3-SOD2 signaling pathway. Aging (Albany NY) 2021; 13:16105-16123. [PMID: 34118791 PMCID: PMC8266371 DOI: 10.18632/aging.203137] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
Diabetic patients are more vulnerable to cerebral ischemia-reperfusion (CIR) injury and have a worse prognosis and higher mortality after ischemic stroke than non-diabetic counterparts. Melatonin can exert neuroprotective effects against CIR injury in nondiabetic animal models. However, its effects on diabetic CIR injury and the underlying mechanisms remain unclarified. Herein, we found that melatonin administration improved neurological deficit, cerebral infarct volume, brain edema, and cell viability, reduced mitochondrial swelling, reactive oxygen species generation, and cytoplasmic cytochrome C release, and increased mitochondrial antioxidant enzymes activities, adenosine triphosphate production, and mitochondrial membrane potential in both streptozotocin-induced diabetic mice and high glucose-treated HT22 cells. Importantly, melatonin also activated protein kinase B (Akt) and sirtuin 3 (SIRT3)/superoxide dismutase 2 (SOD2) signaling and upregulated mitochondrial biogenesis-related transcription factors. However, these effects were largely attenuated by LY294002 (a specific Akt signaling blocker) administration. Additionally, 3-TYP (a selective SIRT3 inhibitor) and SIRT3 siRNA inhibited the above protective effects of melatonin as well as the upregulation of SIRT3 and the decrease of SOD2 acetylation but did not affect the p-Akt/Akt ratio. Overall, we demonstrate that melatonin can alleviate CIR injury in diabetic mice by activating Akt-SIRT3-SOD2 signaling and subsequently improving mitochondrial damage.
Collapse
Affiliation(s)
- Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Quan Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wenwei Gao
- Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bingyu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
34
|
Ding HS, Yang J, Yang J, Guo X, Tang YH, Huang Y, Chen Z, Fan ZX, Huang CX. Fluvastatin attenuated ischemia/reperfusion-induced autophagy and apoptosis in cardiomyocytes through down-regulation HMGB1/TLR4 signaling pathway. Mol Biol Rep 2021; 48:3893-3901. [PMID: 34032975 DOI: 10.1007/s11033-021-06326-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/31/2021] [Indexed: 11/10/2022]
Abstract
Fluvastatin, a traditional fat-decreasing drug, is widely used for curing cardiovascular disease. Previous reports demonstrated that fluvastatin pretreatment protected against myocardial ischemia/reperfusion (I/R) by inhibiting TLR4 signaling pathway and/or reducing proinflammatory cytokines. However, whether fluvastatin has a cardioprotective effect against apoptosis and autophagy remains unknown. This study aims to evaluate whether the cardioprotective role of fluvastatin in I/R is mediated by high-mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4) pathway via anti-apoptotic and anti-autophagic functions. Sprague-Dawley rats were anesthetized, artificially ventilated and subjected to 30 min of coronary occlusion, followed by 4 h of reperfusion. The animals were randomized into four groups: (i) Sham operation; (ii) I/R; (iii) I/R + low-dosage fluvastatin (10 mg/kg); and (iv) I/R + high-dosage fluvastatin (20 mg/kg). After reperfusion, the hemodynamic parameters, myocardial infarct size, structural alteration of myocardium, apoptosis index, pro-inflammatory cytokine production, Beclin-1, Light chain 3 (LC3), HMGB1, TLR4 and Nuclear factor kappa B (NF-κB) protein levels were measured and recorded. It was found that fluvastatin preconditioning improved left ventricular dysfunction, reduced HMGB1/TLR4/NF-κB expressions, and inhibited cardiomyocyte apoptosis, autophagy, and inflammation reaction. Moreover, treatment with fluvastatin ameliorated myocardial injury by reducing infarct size, causing less damage to cardiac structure, downregulating autophagy-related protein expression and releasing pro-inflammation mediators. Our findings indicate that fluvastatin exerts beneficial effects on cardiac ischemic damage, which may be associated with its anti-autophagic and anti-apoptotic functions via inhibition of HMGB1/TLR4-related pathway during I/R injury.
Collapse
Affiliation(s)
- Hua-Sheng Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Cardiovascular Diseases, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Jun Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, 443000, People's Republic of China
| | - Jian Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, 443000, People's Republic of China
| | - Xin Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Cardiovascular Diseases, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Cardiovascular Diseases, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Cardiovascular Diseases, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Zhen Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Cardiovascular Diseases, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Zhi-Xing Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Cardiovascular Diseases, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, People's Republic of China. .,Institute of Cardiovascular Diseases, Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
35
|
Tian J, Zhao Y, Wang L, Li L. Role of TLR4/MyD88/NF-κB signaling in heart and liver-related complications in a rat model of type 2 diabetes mellitus. J Int Med Res 2021; 49:300060521997590. [PMID: 33787393 PMCID: PMC8020098 DOI: 10.1177/0300060521997590] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aims To analyze expression of members of the Toll-like receptor (TLR)4/myeloid
differentiation primary response 88 (MyD88)/nuclear factor (NF)-κB signaling
pathway in the heart and liver in a rat model of type 2 diabetes mellitus
(T2DM). Our overall goal was to understand the underlying pathophysiological
mechanisms. Methods We measured fasting blood glucose (FBG) and insulin (FINS) in a rat model of
T2DM. Expression of members of the TLR4/MyD88/NF-κB signaling pathway as
well as downstream cytokines was investigated. Levels of mRNA and protein
were assessed using quantitative real-time polymerase chain reaction and
western blotting, respectively. Protein content of tissue homogenates was
assessed using enzyme-linked immunosorbent assays. Results Diabetic rats had lower body weights, higher FBG, higher FINS, and higher
intraperitoneal glucose tolerance than normal rats. In addition, biochemical
indicators related to heart and liver function were elevated in diabetic
rats compared with normal rats. TLR4 and MyD88 were involved in the
occurrence of T2DM as well as T2DM-related heart and liver complications.
TLR4 caused T2DM-related heart and liver complications through activation of
NF-κB. Conclusions TLR4/MyD88/NF-κB signaling induces production of tumor necrosis factor-α,
interleukin-6, and monocyte chemoattractant protein-1, leading to the heart-
and liver-related complications of T2DM.
Collapse
Affiliation(s)
- Jiajia Tian
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, P.R. China
| | - Yanyan Zhao
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, P.R. China
| | - Lingling Wang
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, P.R. China
| | - Lin Li
- The PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| |
Collapse
|
36
|
Liu L, Liu C, Fang L. AMPK‑SIRT1 pathway dysfunction contributes to neuron apoptosis and cognitive impairment induced by sevoflurane. Mol Med Rep 2020; 23:56. [PMID: 33200801 PMCID: PMC7706003 DOI: 10.3892/mmr.2020.11694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
The anesthetic sevoflurane (Sev) is widely used because of its low blood-gas partition coefficient and lack of pungency. However, the application of Sevmay lead to cognitive impairment later in life. Previous results have indicated that exposure to Sev-induced neuronal apoptosis and cognitive dysfunction in a rat model, but much work remains to elucidate the mechanism. In the present study, inhibition in the AMP-activated protein kinase/Sirtuin 1 (AMPK/SIRT1) signaling pathway and a decrease in AMPK/SIRT1 activity was found to occur concomitantly in neuronal apoptosis induced by Sev. AICAR, an activator of AMPK, was able to suppress Sev-induced neuronal apoptosis and SIRT1 activity reduction in vitro. Further animal studies also showed that AICAR treatment blocked the deleterious cognition and AMPK/SIRT1 activity reduction in the cognition impairment rats induced by Sev. Taken together, it was concluded that the AMPK/SIRT1 signaling pathway mediates neuronal apoptosis and cognition impairment induced by Sev. The study provides evidence that AMPK activation ameliorates Sev-induced cognitive deficits.
Collapse
Affiliation(s)
- Liwei Liu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Chao Liu
- Institute of Cardiovascular Diseases, Tianjin Chest Hospital, Tianjin 300457, P.R. China
| | - Lin Fang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
37
|
Ashrafizadeh M, Zarrabi A, Orouei S, Kiavash Hushmandi, Hakimi A, Amirhossein Zabolian, Daneshi S, Samarghandian S, Baradaran B, Najafi M. MicroRNA-mediated autophagy regulation in cancer therapy: The role in chemoresistance/chemosensitivity. Eur J Pharmacol 2020; 892:173660. [PMID: 33310181 DOI: 10.1016/j.ejphar.2020.173660] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Chemoresistance has doubled the effort needed to reach an effective treatment for cancer. Now, scientists should consider molecular pathways and mechanisms involved in chemoresistance to overcome cancer. Autophagy is a "self-digestion" mechanism in which potentially toxic and aged organelles and macromolecules are degraded. Increasing evidence has shown that autophagy possesses dual role in cancer cells (onco-suppressor or oncogene). So, it is vital to identify its role in cancer progression and malignancy. MicroRNAs (miRs) are epigenetic factors capable of modulation of autophagy in cancer cells. In the current review, we emphasize on the relationship between miRs and autophagy in cancer chemotherapy. Besides, we discuss upstream mediators of miR/autophagy axis in cancer chemotherapy including long non-coding RNAs, circular RNAs, Nrf2 c-Myc, and HIF-1α. At the final section, we provide a discussion about how anti-tumor compounds affect miR/autophagy axis in ensuring chemosensitivity. These topics are described in this review to show how autophagy inhibition/induction can lead to chemosensitivity/chemoresistance, and miRs are considered as key players in these discussions.
Collapse
Affiliation(s)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Sima Orouei
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azadeh Hakimi
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
38
|
Xu X, Piao HN, Aosai F, Zeng XY, Cheng JH, Cui YX, Li J, Ma J, Piao HR, Jin X, Piao LX. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways. Br J Pharmacol 2020; 177:5224-5245. [PMID: 32964428 DOI: 10.1111/bph.15261] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Arctigenin, a major bioactive component of Fructus arctii, has been reported to have antidepressant-like effects. However, the mechanisms underlying these effects are still unclear. Neuroinflammation can be caused by excessive production of proinflammatory cytokines in microglia via high-mobility group box 1 (HMGB1)/TLR4/NF-κB and TNF-α/TNFR1/NF-κB signalling pathways, leading to depression. In this study, we have investigated the antidepressant mechanism of arctigenin by conducting in vitro and in vivo studies. EXPERIMENTAL APPROACH The effects of chronic unpredictable mild stress (CUMS) on wild-type (WT) and TLR4-/- mice were examined. Antidepressant-like effects of arctigenin were tested using the CUMS-induced model of depression in WT mice. The effects of arctigenin were assessed on the HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB signalling pathways in the prefrontal cortex (PFC) of mouse brain and HMGB1- or TNF-α-stimulated primary cultured microglia. The interaction between HMGB1 and TLR4 or TNF-α and TNFR1 with or without arctigenin was examined by localized surface plasmon resonance (LSPR) and co-immunoprecipitation assays. KEY RESULTS The immobility times in the tail suspension test (TST) and forced swimming test (FST) were reduced in TLR4-/- mice, compared with WT mice. Arctigenin exhibited antidepressant-like effects. Arctigenin also inhibited microglia activation and inflammatory responses in the PFC of mouse brain. Arctigenin inhibited HMGB1 and TLR4 or TNF-α and TNFR1 interactions, and suppressed both HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB signalling pathways. CONCLUSIONS AND IMPLICATIONS Arctigenin has antidepressant-like effects by attenuating excessive microglial activation and neuroinflammation through the HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB signalling pathways. This suggests that arctigenin has potential as a new drug candidate suitable for clinical trials to treat depression.
Collapse
Affiliation(s)
- Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hu-Nan Piao
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Fumie Aosai
- Department of Infection and Host Defense, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Xiao-Yu Zeng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Jia-Hui Cheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Yue-Xian Cui
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Jing Li
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hu-Ri Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
39
|
Liu X, Ma Y, Ouyang R, Zeng Z, Zhan Z, Lu H, Cui Y, Dai Z, Luo L, He C, Li H, Zong D, Chen Y. The relationship between inflammation and neurocognitive dysfunction in obstructive sleep apnea syndrome. J Neuroinflammation 2020; 17:229. [PMID: 32738920 PMCID: PMC7395983 DOI: 10.1186/s12974-020-01905-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS), a state of sleep disorder, is characterized by repetitive apnea, chronic hypoxia, oxygen desaturation, and hypercapnia. Previous studies have revealed that intermittent hypoxia (IH) conditions in OSAS patients elicited neuron injury (especially in the hippocampus and cortex), leading to cognitive dysfunction, a significant and extraordinary complication of OSAS patients. The repeated courses of airway collapse and obstruction in OSAS patients resulted in apnea and arousal during sleep, leading to IH and excessive daytime sleepiness (EDS) and subsequently contributing to the development of inflammation. IH-mediated inflammation could further trigger various types of cognitive dysfunction. Many researchers have found that, besides continuous positive airway pressure (CPAP) treatment and surgery, anti-inflammatory substances might alleviate IH-induced neurocognitive dysfunction. Clarifying the role of inflammation in IH-mediated cognitive impairment is crucial for potentially valuable therapies and future research in the related domain. The objective of this article was to critically review the relationship between inflammation and cognitive deficits in OSAS.
Collapse
Affiliation(s)
- Xiangming Liu
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Yiming Ma
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Zihang Zeng
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Zijie Zhan
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Huanhuan Lu
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Yanan Cui
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Zhongshang Dai
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Lijuan Luo
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Chenjie He
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Herui Li
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Dandan Zong
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
40
|
Endo M, Ohba K, Sato S, Yokota Y, Takahashi K. Increased soluble (pro)renin receptor protein by autophagy inhibition in cultured cancer cells. Genes Cells 2020; 25:483-497. [PMID: 32314441 DOI: 10.1111/gtc.12776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/17/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022]
Abstract
(Pro)renin receptor ((P)RR) regulates the renin-angiotensin system and functions as an essential accessory subunit of vacuolar H+ -ATPase. There is accumulating evidence that shows close relationship between (P)RR and autophagy. Soluble (P)RR consisting of the extracellular domain of (P)RR is generated from (P)RR by proteolytic enzymes. The aim of the present study was to clarify the influence of autophagy inhibition on soluble (P)RR expression in cancer cells. Autophagy was inhibited by treatment of bafilomycin A1 or chloroquine in MCF-7 and A549 cells for 72 hr. Western blot analysis showed that protein levels of soluble (P)RR were markedly elevated by autophagy inhibition, whereas no noticeable increases were observed in full-length (P)RR. Secretion of soluble (P)RR into the medium was increased dose-dependently by bafilomycin A1 or chloroquine. Autophagy inhibition was confirmed by enhanced accumulation of autophagy-related proteins, LC3, p62 and LAMP1 in intracellular vesicles. Increased amount of soluble (P)RR by autophagy inhibition was decreased by site-1 protease inhibitor, whereas no noticeable increase in site-1 protease immunoreactivity was observed in cells with autophagy inhibition by immunocytochemistry. These findings suggest that soluble (P)RR protein accumulates by autophagy inhibition, possibly because of the reduced degradation of soluble (P)RR in the intracellular vesicles during autophagy inhibition.
Collapse
Affiliation(s)
- Moe Endo
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Ohba
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigemitsu Sato
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yurina Yokota
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
41
|
Du P, Wang J, Han Y, Feng J. Blocking the LncRNA MALAT1/miR-224-5p/NLRP3 Axis Inhibits the Hippocampal Inflammatory Response in T2DM With OSA. Front Cell Neurosci 2020; 14:97. [PMID: 32477065 PMCID: PMC7235443 DOI: 10.3389/fncel.2020.00097] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Studies have shown that diabetes can cause cognitive dysfunction, and cognitive dysfunction in patients with diabetes combined with obstructive sleep apnea (OSA) is more severe. LncRNAs are known to be associated with type 2 diabetes mellitus (T2DM) with OSA. This study aimed to investigate the role and underlying mechanism of the lncRNA MALAT1/miR-224-5p/NLRP3 axis in T2DM with OSA. qRT-PCR was used to quantify the expression of MALAT1, miR-224-5p, and NLRP3 in brain tissues. NLRP3 expression was assessed by immunohistochemistry (IHC) and immunofluorescent labeling. The interaction involving MALAT1, miR-224-5p, and NLRP3 was evaluated by transfection. Western blotting was utilized to evaluate the expression levels of the pathway-related proteins NLRP3, caspase 1, tumor necrosis factor-α (TNF-α) and interleukin-1 β (IL-1β) both in vitro and in vivo. qRT-PCR was used to assess the mRNA expression levels of NLRP3, caspase 1, TNF-α and IL-1β both in vitro and in vivo. In brain tissues of T2DM with OSA, MALAT1 and NLRP3 were overexpressed, while miR-224-5p was downregulated, which was consistent with subsequent cell experiments. We screened the miRNAs that could bind to MALAT1 and NLRP3 by the StarBase database and the TargetScanMouse7.2 website. Our research showed that among these miRNAs, the level of miR-224-5p was most significantly negatively correlated with the levels of MALAT1 and NLRP3. Also, a firefly luciferase assay showed that miR-224-5p, which is a target of MALAT1, directly reduced the expression of the downstream protein NLRP3. Overexpression of miR-224-5p significantly inhibited the expression levels of NLRP3, caspase 1, TNF-α and IL-1β in vitro. MALAT1 promoted NLRP3 expression by acting as a competing endogenous RNA and sponging miR-224-5p. MiR-224-5p reduces microglial inflammation activation through the regulation of NLRP3 expression, which ultimately affected the NLRP3/IL-1β pathway in the hippocampus. This suggests that miR-224-5p may serve as a potential target for T2DM and OSA therapy.
Collapse
Affiliation(s)
- Ping Du
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiahui Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yelei Han
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|