1
|
Seraj F, Khan KM, Iqbal J, Imran A, Hussain Z, Salar U, Hameed S, Taha M. Evaluation of synthetic aminoquinoline derivatives as urease inhibitors: in vitro, in silico and kinetic studies. Future Med Chem 2023; 15:1703-1717. [PMID: 37814798 DOI: 10.4155/fmc-2023-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Background: Quinoline and acyl thiourea scaffolds have major chemical significance in medicinal chemistry. Quinoline-based acyl thiourea derivatives may potentially target the urease enzyme. Materials & methods: Quinoline-based acyl thiourea derivatives 1-26 were synthesized and tested for urease inhibitory activity. Results: 19 derivatives (1-19) showed enhanced urease enzyme inhibitory potential (IC50 = 1.19-18.92 μM) compared with standard thiourea (IC50 = 19.53 ± 0.032 μM), whereas compounds 20-26 were inactive. Compounds with OCH3, OC2H5, Br and CH3 on the aryl ring showed significantly greater inhibitory potential than compounds with hydrocarbon chains of varying length. Molecular docking studies were conducted to investigate ligand interactions with the enzyme's active site. Conclusion: The identified hits can serve as potential leads against the drug target urease in advanced studies.
Collapse
Affiliation(s)
- Faiza Seraj
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Khalid Mohammed Khan
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, PO Box 31441, Dammam, Saudi Arabia
| | - Jamshed Iqbal
- Center of Advanced Drug Research, COMSATS University Islamabad, Abbottabad, 22060, Pakistan
| | - Aqeel Imran
- Center of Advanced Drug Research, COMSATS University Islamabad, Abbottabad, 22060, Pakistan
- Department of Pharmacy, COMSATS University Islamabad, Lahore, 54000, Pakistan
| | - Zahid Hussain
- Center of Advanced Drug Research, COMSATS University Islamabad, Abbottabad, 22060, Pakistan
| | - Uzma Salar
- Dr Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shehryar Hameed
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, PO Box 31441, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Kaushik S, Paliwal SK, Iyer MR, Patil VM. Promising Schiff bases in antiviral drug design and discovery. Med Chem Res 2023; 32:1063-1076. [PMID: 37305208 PMCID: PMC10171175 DOI: 10.1007/s00044-023-03068-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
Emerging and re-emerging illnesses will probably present a new hazard of infectious diseases and have fostered the urge to research new antiviral agents. Most of the antiviral agents are analogs of nucleosides and only a few are non-nucleoside antiviral agents. There is quite a less percentage of marketed/clinically approved non-nucleoside antiviral medications. Schiff bases are organic compounds that possess a well-demonstrated profile against cancer, viruses, fungus, and bacteria, as well as in the management of diabetes, chemotherapy-resistant cases, and malarial infections. Schiff bases resemble aldehydes or ketones with an imine/azomethine group instead of a carbonyl ring. Schiff bases have a broad application profile not only in therapeutics/medicine but also in industrial applications. Researchers have synthesized and screened various Schiff base analogs for their antiviral potential. Some of the important heterocyclic compounds like istatin, thiosemicarbazide, quinazoline, quinoyl acetohydrazide, etc. have been used to derive novel Schiff base analogs. Keeping in view the outbreak of viral pandemics and epidemics, this manuscript compiles a review of Schiff base analogs concerning their antiviral properties and structural-activity relationship analysis.
Collapse
Affiliation(s)
- Shikha Kaushik
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan India
| | | | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, NIAAA/NIH, Rockville, MD USA
| | - Vaishali M. Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
| |
Collapse
|
3
|
Panahi Y, Dadkhah M, Talei S, Gharari Z, Asghariazar V, Abdolmaleki A, Matin S, Molaei S. Can anti-parasitic drugs help control COVID-19? Future Virol 2022. [PMID: 35359702 PMCID: PMC8940209 DOI: 10.2217/fvl-2021-0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/28/2022] [Indexed: 01/18/2023]
Abstract
Novel COVID-19 is a public health emergency that poses a serious threat to people worldwide. Given the virus spreading so quickly, novel antiviral medications are desperately needed. Repurposing existing drugs is the first strategy. Anti-parasitic drugs were among the first to be considered as a potential treatment option for this disease. Even though many papers have discussed the efficacy of various anti-parasitic drugs in treating COVID-19 separately, so far, no single study comprehensively discussed these drugs. This study reviews some anti-parasitic recommended drugs to treat COVID-19, in terms of function and in vitro as well as clinical results. Finally, we briefly review the advanced techniques, such as artificial intelligence, that have been used to find effective drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Yasin Panahi
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Gharari
- Department of Biotechnology, Faculty of Biological Sciences, Al-Zahra University, Tehran, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.,Bio Science & Biotechnology Research center (BBRC), Sabalan University of Advanced Technologies (SUAT), Namin, Iran
| | - Somayeh Matin
- Department of Internal Medicine, Imam Khomeini Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soheila Molaei
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
4
|
Black SD. Molecular Modeling and Preliminary Clinical Data Suggesting Antiviral Activity for Chlorpheniramine (Chlorphenamine) Against COVID-19. Cureus 2022; 14:e20980. [PMID: 35154957 PMCID: PMC8820487 DOI: 10.7759/cureus.20980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 11/05/2022] Open
|
5
|
Gerlovin H, Posner DC, Ho YL, Rentsch CT, Tate JP, King JT, Kurgansky KE, Danciu I, Costa L, Linares FA, Goethert ID, Jacobson DA, Freiberg MS, Begoli E, Muralidhar S, Ramoni RB, Tourassi G, Gaziano JM, Justice AC, Gagnon DR, Cho K. Pharmacoepidemiology, Machine Learning, and COVID-19: An Intent-to-Treat Analysis of Hydroxychloroquine, With or Without Azithromycin, and COVID-19 Outcomes Among Hospitalized US Veterans. Am J Epidemiol 2021; 190:2405-2419. [PMID: 34165150 PMCID: PMC8384407 DOI: 10.1093/aje/kwab183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Hydroxychloroquine (HCQ) was proposed as an early therapy for coronavirus disease
2019 (COVID-19) after in vitro studies indicated possible
benefit. Previous in vivo observational studies have presented
conflicting results, though recent randomized clinical trials have reported no
benefit from HCQ amongst hospitalized COVID-19 patients. We examined the effects
of HCQ alone, and in combination with azithromycin, in a hospitalized COVID-19
positive, United States (US) Veteran population using a propensity score
adjusted survival analysis with imputation of missing data. From March 1, 2020
through April 30, 2020, 64,055 US Veterans were tested for COVID-19 based on
Veteran Affairs Healthcare Administration electronic health record data. Of the
7,193 positive cases, 2,809 were hospitalized, and 657 individuals were
prescribed HCQ within the first 48-hours of hospitalization for the treatment of
COVID-19. There was no apparent benefit associated with HCQ receipt, alone or in
combination with azithromycin, and an increased risk of intubation when used in
combination with azithromycin [Hazard Ratio (95% Confidence Interval):
1.55 (1.07, 2.24)]. In conclusion, we assessed the effectiveness of HCQ with or
without azithromycin in treating patients hospitalized with COVID-19 using a
national sample of the US Veteran population. Using rigorous study design and
analytic methods to reduce confounding and bias, we found no evidence of a
survival benefit from the administration of HCQ.
Collapse
|
6
|
Shahsavarinia K, Ghojazadeh M, Ghabousian A, Hatefnia F, Soleimanpour M, Soleimanpour H. An Umbrella Review of Clinical Efficacy and Adverse Cardiac Events Associated with Hydroxychloroquine or Chloroquine with or Without Azithromycin in Patients with COVID-19. Anesth Pain Med 2021; 11:e115827. [PMID: 34692436 PMCID: PMC8520677 DOI: 10.5812/aapm.115827] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 01/15/2023] Open
Abstract
Context The safety and efficacy of several repurposed drugs, including hydroxychloroquine and chloroquine, with or without azithromycin, were presumed to be miraculous in treating patients with COVID-19. However, as it later transpired, these therapeutic agents seem to be associated with critical adverse cardiac events. Objectives Given the skepticism around the advantages and disadvantages of the aforementioned treatment strategies, the present study aimed to investigate the clinical efficacy and cardiac toxicity of hydroxychloroquine or chloroquine with or without azithromycin in the setting of COVID-19 infection. Method This was an umbrella review conducted on patients with COVID-19 who received hydroxychloroquine or chloroquine with or without azithromycin from January 2020 to November 2020. We systematically searched PubMed, Scopus, Cochrane, ProQuest, Web of Science, and Embase databases. Results Three studies (systematic review and meta-analysis) were analyzed to evaluate the arrhythmogenic potential of hydroxychloroquine or chloroquine with or without azithromycin in patients with COVID-19 and identify the clinical efficacy of such a combination. Conclusions We found no benefit for patients with COVID-19 who received hydroxychloroquine or chloroquine alone or in combination with azithromycin. Moreover, it is noteworthy that these medications, particularly when considering co-administration, could result in both statistically and clinically elevated risks of notorious arrhythmias, such as TdP.
Collapse
Affiliation(s)
- Kavous Shahsavarinia
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Ghojazadeh
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghabousian
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Hatefnia
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Soleimanpour
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Soleimanpour
- Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
- Corresponding Author: Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran. Emails: ;
| |
Collapse
|
7
|
Abdurrahman L, Fang X, Zhang Y. Molecular Insights of SARS-CoV-2 Infection and Molecular Treatments. Curr Mol Med 2021; 22:621-639. [PMID: 34645374 DOI: 10.2174/1566524021666211013121831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/15/2021] [Accepted: 07/23/2021] [Indexed: 01/18/2023]
Abstract
The coronavirus disease emerged in December 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome-related coronavirus 2 (SARS-CoV-2) and its rapid global spread has brought an international health emergency and urgent responses for seeking efficient prevention and therapeutic treatment. This has led to imperative needs for illustration of the molecular pathogenesis of SARS-CoV-2, identification of molecular targets or receptors, and development of antiviral drugs, antibodies, and vaccines. In this study, we investigated the current research progress in combating SARS-CoV-2 infection. Based on the published research findings, we first elucidated, at the molecular level, SARS-CoV-2 viral structures, potential viral host-cell-invasion and pathogenic mechanisms, main virus-induced immune responses, and emerging SARS-CoV-2 variants. We then focused on the main virus- and host-based potential targets, summarized and categorized effective inhibitory molecules based on drug development strategies for COVID-19, that can guide efforts for the identification of new drugs and treatment for this problematic disease. Current research and development of antibodies and vaccines were also introduced and discussed. We concluded that the main virus entry route- SARS-CoV-2 spike protein interaction with ACE2 receptors has played a key role in guiding the development of therapeutic treatments against COVID-19, four main therapeutic strategies may be considered in developing molecular therapeutics, and drug repurposing is likely to be an easy, fast and low-cost approach in such a short period of time with urgent need of antiviral drugs. Additionally, the quick development of antibody and vaccine candidates has yielded promising results, but the wide-scale deployment of safe and effective COVID-19 vaccines remains paramount in solving the pandemic crisis. As new variants of the virus begun to emerge, the efficacy of these vaccines and treatments must be closely evaluated. Finally, we discussed the possible challenges of developing molecular therapeutics for COVID-19 and suggested some potential future efforts. Despite the limited availability of literatures, our attempt in this work to provide a relatively comprehensive overview of current SARS-CoV-2 studies can be helpful for quickly acquiring the key information of COVID-19 and further promoting this important research to control and diminish the pandemic.
Collapse
Affiliation(s)
- Lama Abdurrahman
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas 78539. United States
| | - Xiaoqian Fang
- Department of Molecular Science, School of Medicine, The University of Texas Rio Grande Valley, Edinburg, Texas 78539. United States
| | - Yonghong Zhang
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas 78539. United States
| |
Collapse
|
8
|
Seifi T, Reza Kamali A. Antiviral performance of graphene-based materials with emphasis on COVID-19: A review. MEDICINE IN DRUG DISCOVERY 2021; 11:100099. [PMID: 34056572 PMCID: PMC8151376 DOI: 10.1016/j.medidd.2021.100099] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease-2019 has been one of the most challenging global epidemics of modern times with a large number of casualties combined with economic hardships across the world. Considering that there is still no definitive cure for the recent viral crisis, this article provides a review of nanomaterials with antiviral activity, with an emphasis on graphene and its derivatives, including graphene oxide, reduced graphene oxide and graphene quantum dots. The possible interactions between surfaces of such nanostructured materials with coronaviruses are discussed. The antiviral mechanisms of graphene materials can be related to events such as the inactivation of virus and/or the host cell receptor, electrostatic trapping and physico-chemical destruction of viral species. These effects can be enhanced by functionalization and/or decoration of carbons with species that enhances graphene-virus interactions. The low-cost and large-scale preparation of graphene materials with enhanced antiviral performances is an interesting research direction to be explored.
Collapse
Affiliation(s)
- Tahereh Seifi
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
9
|
Farouq MA, Al Qaraghuli MM, Kubiak-Ossowska K, Ferro VA, Mulheran PA. Biomolecular interactions with nanoparticles: applications for coronavirus disease 2019. Curr Opin Colloid Interface Sci 2021; 54:101461. [PMID: 33907504 PMCID: PMC8062422 DOI: 10.1016/j.cocis.2021.101461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanoparticles are small particles sized 1-100 nm, which have a large surface-to-volume ratio, allowing efficient adsorption of drugs, proteins, and other chemical compounds. Consequently, functionalized nanoparticles have potential diagnostic and therapeutic applications. A variety of nanoparticles have been studied, including those constructed from inorganic materials, biopolymers, and lipids. In this review, we focus on recent work targeting the severe acute respiratory syndrome coronavirus 2 virus that causes coronavirus disease (COVID-19). Understanding the interactions between coronavirus-specific proteins (such as the spike protein and its host cell receptor angiotensin-converting enzyme 2) with different nanoparticles paves the way to the development of new therapeutics and diagnostics that are urgently needed for the fight against COVID-19, and indeed for related future viral threats that may emerge.
Collapse
Affiliation(s)
- Mohammed A.H. Farouq
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK,Corresponding author: Farouq, M.A.H
| | - Mohammed M. Al Qaraghuli
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
| | - Karina Kubiak-Ossowska
- Department of Physics/Archie-West HPC, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| | - Valerie A. Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Paul A. Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
| |
Collapse
|
10
|
Azhar A, Hassan N, Singh M, Al-Hosaini K, Kamal MA. Synopsis on Pharmotechnological Approaches in Diagnostic to Management Strategies in Fighting Against COVID-19. Curr Pharm Des 2021; 27:4086-4099. [PMID: 34269664 DOI: 10.2174/1381612827666210715154004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Nanoparticles (NPs) are projected to play a significant role in fighting against coronavirus disease (COVID-19). The various properties of NPs like magnetic and optical can be exploited to build diagnostic test kits. The unembellished morphological and physiochemical resemblances of SARS-CoV-2 with synthetic NPs make them a potent tool for mediation. Nanoparticles can be analytically functionalized with different proteins, polymers, and functional groups to perform specific inhibitory functions while also serving as delivery vehicles . Moreover, NPs can also be employed to prepare broad-spectrum respiratory drugs and vaccines that can guard seasonal flu and prepare the human race for the pandemic in the future. The present review outlines the role of NPs in detection, diagnostic and therapeutic against members of the coronavirus family. We emphasize nanomaterial-based approaches to address coronaviruses in general and SARS-CoV-2 in particular. We discuss NPs based detection systems like graphene (G-FET), biosensors, and plasmonic photothermal associated sensors. Inorganic, organic virus-like & self-assembly protein (VLP), and photodynamic inactivation of SARS-CoV-2 are also presented as therapeutic approaches exploiting NPs.
Collapse
Affiliation(s)
- Asim Azhar
- Aligarh College of Education, Aligarh Uttar Pradesh, India
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Manvi Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Khaled Al-Hosaini
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh 11451. Saudi Arabia
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
11
|
Lozano-Cruz OA, Jiménez JV, Olivas-Martinez A, Ortiz-Brizuela E, Cárdenas-Fragoso JL, Azamar-Llamas D, Rodríguez-Rodríguez S, Oseguera-Moguel JC, Dorantes-García J, Barrón-Magdaleno C, Cázares-Diazleal AC, Román-Montes CM, Tamez-Torres KM, Martínez-Guerra BA, Gulias-Herrero A, González-Lara MF, Ponce-de-León-Garduño A, Kershenobich-Stalnikowitz D, Sifuentes-Osornio J. Adverse Effects Associated With the Use of Antimalarials During The COVID-19 Pandemic in a Tertiary Care Center in Mexico City. Front Pharmacol 2021; 12:668678. [PMID: 34149420 PMCID: PMC8210417 DOI: 10.3389/fphar.2021.668678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Antimalarial drugs were widely used as experimental therapies against COVID-19 in the initial stages of the pandemic. Despite multiple randomized controlled trials demonstrating unfavorable outcomes in both efficacy and adverse effects, antimalarial drugs are still prescribed in developing countries, especially in those experiencing recurrent COVID-19 crises (India and Brazil). Therefore, real-life experience and pharmacovigilance studies describing the use and side effects of antimalarials for COVID-19 in developing countries are still relevant. Objective: To describe the adverse effects associated with the use of antimalarial drugs in hospitalized patients with COVID-19 pneumonia at a reference center in Mexico City. Methods: We integrated a retrospective cohort with all adult patients hospitalized for COVID-19 pneumonia from March 13th, 2020, to May 17th, 2020. We compared the baseline characteristics (demographic and clinical) and the adverse effects between the groups of patients treated with and without antimalarial drugs. The mortality analysis was performed in 491 patients who received optimal care and were not transferred to other institutions (210 from the antimalarial group and 281 from the other group). Results: We included 626 patients from whom 38% (n = 235) received an antimalarial drug. The mean age was 51.2 ± 13.6 years, and 64% were males. At baseline, compared with the group treated with antimalarials, the group that did not receive antimalarials had more dyspnea (82 vs. 73%, p = 0.017) and cyanosis (5.3 vs. 0.9%, p = 0.009), higher respiratory rate (median of 28 vs. 24 bpm, p < 0.001), and lower oxygen saturation (median of 83 vs. 87%, p < 0.001). In the group treated with antimalarials, 120 patients had two EKG evaluations, from whom 12% (n = 16) prolonged their QTc from baseline in more than 50 ms, and six developed a ventricular arrhythmia. Regarding the trajectories of the liver function tests over time, no significant differences were found for the change in the mean value per day between the two groups. Among patients who received optimal care, the mortality was 16% (33/210) in those treated with antimalarials and 15% (41/281) in those not receiving antimalarials (RR 1.08, 95% 0.75–1.64, and adjusted RR 1.12, 95% CI 0.69–1.82). Conclusion: The adverse events in patients with COVID-19 treated with antimalarials were similar to those who did not receive antimalarials at institutions with rigorous pharmacological surveillance. However, they do not improve survival in patients who receive optimal medical care.
Collapse
Affiliation(s)
- Oscar Arturo Lozano-Cruz
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Víctor Jiménez
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Antonio Olivas-Martinez
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Department of Biostatistics, University of WA, Seattle, WA, United States
| | - Edgar Ortiz-Brizuela
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Luis Cárdenas-Fragoso
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Daniel Azamar-Llamas
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sergio Rodríguez-Rodríguez
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jorge Carlos Oseguera-Moguel
- Department of Cardiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Joel Dorantes-García
- Department of Cardiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Clemente Barrón-Magdaleno
- Department of Cardiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Aldo C Cázares-Diazleal
- Department of Cardiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Carla Marina Román-Montes
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Karla María Tamez-Torres
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Alfonso Gulias-Herrero
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Fernanda González-Lara
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alfredo Ponce-de-León-Garduño
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - José Sifuentes-Osornio
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
12
|
Rossi FV, Gentili D, Marcantoni E. Metal-Promoted Heterocyclization: A Heterosynthetic Approach to Face a Pandemic Crisis. Molecules 2021; 26:2620. [PMID: 33947170 PMCID: PMC8124705 DOI: 10.3390/molecules26092620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
The outbreak of SARS-CoV-2 has drastically changed our everyday life and the life of scientists from all over the world. In the last year, the scientific community has faced this worldwide threat using any tool available in order to find an effective response. The recent formulation, production, and ongoing administration of vaccines represent a starting point in the battle against SARS-CoV-2, but they cannot be the only aid available. In this regard, the use of drugs capable to mitigate and fight the virus is a crucial aspect of the pharmacological strategy. Among the plethora of approved drugs, a consistent element is a heterocyclic framework inside its skeleton. Heterocycles have played a pivotal role for decades in the pharmaceutical industry due to their high bioactivity derived from anticancer, antiviral, and anti-inflammatory capabilities. In this context, the development of new performing and sustainable synthetic strategies to obtain heterocyclic molecules has become a key focus of scientists. In this review, we present the recent trends in metal-promoted heterocyclization, and we focus our attention on the construction of heterocycles associated with the skeleton of drugs targeting SARS-CoV-2 coronavirus.
Collapse
Affiliation(s)
- Federico Vittorio Rossi
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy; (D.G.); (E.M.)
- Laboratori Alchemia Srl, Via San Faustino, 20134 Milano, Italy
| | - Dario Gentili
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy; (D.G.); (E.M.)
| | - Enrico Marcantoni
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy; (D.G.); (E.M.)
| |
Collapse
|
13
|
Ross M, Avni-Magen N, Pe'er O, Berkowitz A, Ofri R. Treatment with chloroquine is retinotoxic in captive African penguins (Speniscus demersus). Attenuation and recovery of electroretinographic responses. Vet Ophthalmol 2021; 24:336-345. [PMID: 33900010 DOI: 10.1111/vop.12890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE To evaluate the effect of prophylactic anti-malarial chloroquine treatment, and its cessation, on electroretinographic (ERG) responses of captive African penguins. METHODS A brief ERG protocol ("QuickRetCheck") was recorded under mesopic conditions with manual restraint and no sedation or pupil dilation. Birds were recorded on two separate occasions, first while being treated with a daily chloroquine dose of 10 mg/kg for 12 days (n = 15, treatment group) and second after 4 months without chloroquine treatment (n = 6, off-treatment group). Three birds were recorded on both occasions. Three other birds from the flock that died were studied histopathologically. RESULTS Scotopic responses were unmeasurable in either recording and therefore were not analyzed. Mean a- and b-wave amplitudes of the mixed rod-cone responses to standard (3 cd·s/m2 ) and high (10 cd·s/m2 ) intensity flashes were higher in the off-treatment group. No difference in implicit times was observed. Sex, age, and number of previous chloroquine treatments did not affect ERG responses. Histopathology revealed Plasmodium spp.in the lungs, liver, and brain, but not in the eyes, of the necropsied birds, and there were no signs of retinitis or retinopathy. CONCLUSIONS Daily chloroquine treatment was associated with attenuated ERG responses in penguins, which improve following cessation of treatment. Further work is warranted to establish a chloroquine dose that is efficacious yet has minimal adverse effects. Our results suggest that ERG responses of captive penguins undergoing ERG for any indication (such as prior to cataract surgery), must be evaluated in light of the birds' anti-malaria treatment status.
Collapse
Affiliation(s)
- Maya Ross
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nili Avni-Magen
- Tisch Family Zoological Gardens in Jerusalem, Jerusalem, Israel
| | - Oren Pe'er
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Berkowitz
- Ministry of Agriculture, Kimron Veterinary Institute, Bet-Dagan, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
14
|
Villoutreix BO, Krishnamoorthy R, Tamouza R, Leboyer M, Beaune P. Chemoinformatic Analysis of Psychotropic and Antihistaminic Drugs in the Light of Experimental Anti-SARS-CoV-2 Activities. Adv Appl Bioinform Chem 2021; 14:71-85. [PMID: 33880039 PMCID: PMC8051956 DOI: 10.2147/aabc.s304649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction There is an urgent need to identify therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. Objective Based upon clinical observations, we proposed that some psychotropic and antihistaminic drugs could protect psychiatric patients from SARS-CoV-2 infection. This observation is investigated in the light of experimental in vitro data on SARS-CoV-2. Methods SARS-CoV-2 high-throughput screening results are available at the NCATS COVID-19 portal. We investigated the in vitro anti-viral activity of many psychotropic and antihistaminic drugs using chemoinformatics approaches. Results and Discussion We analyze our clinical observations in the light of SARS-CoV-2 experimental screening results and propose that several cationic amphiphilic psychotropic and antihistaminic drugs could protect people from SARS-CoV-2 infection; some of these molecules have very limited adverse effects and could be used as prophylactic drugs. Other cationic amphiphilic drugs used in other disease areas are also highlighted. Recent analyses of patient electronic health records reported by several research groups indicate that some of these molecules could be of interest at different stages of the disease progression. In addition, recently reported drug combination studies further suggest that it might be valuable to associate several cationic amphiphilic drugs. Taken together, these observations underline the need for clinical trials to fully evaluate the potentials of these molecules, some fitting in the so-called category of broad-spectrum antiviral agents. Repositioning orally available drugs that have moderate side effects and should act on molecular mechanisms less prone to drug resistance would indeed be of utmost importance to deal with COVID-19.
Collapse
Affiliation(s)
- Bruno O Villoutreix
- INSERM U1141, NeuroDiderot, Université de Paris, Hôpital Robert-Debré, Paris, F-75019, France
| | - Rajagopal Krishnamoorthy
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuropsychiatrie Translationnelle, AP-HP, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Hôpital Henri Mondor, Fondation FondaMental, Créteil, F-94010, France
| | - Ryad Tamouza
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuropsychiatrie Translationnelle, AP-HP, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Hôpital Henri Mondor, Fondation FondaMental, Créteil, F-94010, France
| | - Marion Leboyer
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuropsychiatrie Translationnelle, AP-HP, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Hôpital Henri Mondor, Fondation FondaMental, Créteil, F-94010, France
| | - Philippe Beaune
- INSERM U1138, Centre de Recherche des Cordeliers, Université de Paris, Paris, 75006, France
| |
Collapse
|
15
|
Stella GM, Piloni D, Accordino G, Grosso A, Albicini F, Gini E, Mancinelli S, Della Zoppa M, Marchelli APG, Bortolotto C, Corsico AG. COVID-19 epidemic in a Respiratory Diseases Unit: predictor ranking and mining. J Thorac Dis 2021; 13:2569-2574. [PMID: 34012603 PMCID: PMC8107544 DOI: 10.21037/jtd-20-2934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Giulia M Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| | - Davide Piloni
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| | - Giulia Accordino
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| | - Amelia Grosso
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| | - Federica Albicini
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| | - Erica Gini
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| | - Silvia Mancinelli
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| | - Matteo Della Zoppa
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| | - Andrea P G Marchelli
- Analog and Power FMT and Smart Power Technology, ST Microelectronics, Agrate Brianza, Italy
| | - Chandra Bortolotto
- Department of Intensive Medicine, Unit of Radiology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| | - Angelo G Corsico
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| |
Collapse
|
16
|
Souza DDO. Cloroquina e hidroxicloroquina no Brasil: um caso de ineficácia na gestão da saúde pública. Rev Salud Publica (Bogota) 2021. [DOI: 10.15446/rsap.v23n2.89741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objetivo Analisar a decisão do governo federal brasileiro no âmbito da gestão da saúde pública, ao adotar o uso da cloroquina e da hidroxicloroquina como uma das principais medidas contra a Covid-19.Metodologia Estudo teórico de base documental, a partir da triangulação de métodos. As três etapas foram: revisão de literatura na Biblioteca Virtual de Saúde, com os descritores efficacy AND coronavirus infections AND chloroquine; análise dos documentos referentes aos contratos do governo federal para compras durante a pandemia; e análise de documentos produzidos por instâncias de controle e sociedades científicas brasileiras. A análise se deu pela perspectiva da Saúde Coletiva, de viés crítico.Resultado A revisão de literatura revelou que ainda não há eficácia clínica comprovada no uso da cloroquina e da hidroxicloroquina contra a Covid-19. Os gastos com esses dois medicamentos totalizaram R$ 1.769.824,73 (até julho de 2020), revelando um uso considerável de recursos públicos em uma medida sem eficácia comprovada. A decisão também rompe a gestão participativa, uma vez que as instâncias de controle social e sociedades científicas pediram cautela no uso desses medicamentos, em alguns casos, pediram a suspensão do protocolo implementado pelo Ministério da Saúde do Brasil.Conclusão A linha de ação adotada pelo governo federal no Brasil toma um caminho ineficaz e que desrespeita a essência do que é Sistema Único de Saúde, priorizando o curativismo em detrimento de medidas protetivas.
Collapse
|
17
|
Li D, Hu J, Li D, Yang W, Yin SF, Qiu R. Reviews on Biological Activity, Clinical Trial and Synthesis Progress of Small Molecules for the Treatment of COVID-19. Top Curr Chem (Cham) 2021; 379:4. [PMID: 33428032 PMCID: PMC7797499 DOI: 10.1007/s41061-020-00318-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 has broken out rapidly in nearly all countries worldwide, and has blossomed into a pandemic. Since the beginning of the spread of COVID-19, many scientists have been cooperating to study a vast array of old drugs and new clinical trial drugs to discover potent drugs with anti-COVID-19 activity, including antiviral drugs, antimalarial drugs, immunosuppressants, Chinese medicines, Mpro inhibitors, JAK inhibitors, etc. The most commonly used drugs are antiviral compounds, antimalarial drugs and JAK inhibitors. In this review, we summarize mainly the antimalarial drugs chloroquine and hydroxychloroquine, the antiviral drugs Favipiravir and Remdesivir, and JAK inhibitor Ruxolitinib, discussing their biological activities, clinical trials and synthesis progress.
Collapse
Affiliation(s)
- Dingzhong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Jianbing Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| | - Dian Li
- Department of Modern Economy and Trade, Hunan Vocational College of Engineering, Changsha, 410151, People's Republic of China
| | - Weijun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
18
|
ElBini Dhouib I. Does coronaviruses induce neurodegenerative diseases? A systematic review on the neurotropism and neuroinvasion of SARS-CoV-2. Drug Discov Ther 2020; 14:262-272. [PMID: 33390561 DOI: 10.5582/ddt.2020.03106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in 2019 in Wuhan, China. Clinically, respiratory tract symptoms as well as other organs disorders are observed in patients positively diagnosed coronavirus disease 2019 (COVID-19). In addition, neurological symptoms, mainly anosmia, ageusia and headache were observed in many patients. Once in the central nervous system (CNS), the SARS-CoV-2 can reside either in a quiescent latent state, or eventually in actively state leading to severe acute encephalitis, characterized by neuroinflammation and prolonged neuroimmune activation. SRAS-CoV-2 requires angiotensin-converting enzyme 2 (ACE2) as a cell entry receptor. The expression of this receptor in endothelial cells of blood-brain barrier (BBB) shows that SRAS-CoV-2 may have higher neuroinvasive potential compared to known coronaviruses. This review summarizes available information regarding the impact of SRAS-CoV-2 in the brain and tended to identify its potential pathways of neuroinvasion. We offer also an understanding of the long-term impact of latently form of SARS-CoV-2 on the development of neurodegenerative disorders. As a conclusion, the persistent infection of SRAS-CoV-2 in the brain could be involved on human neurodegenerative diseases that evolve a gradual process, perhapes, over several decades.
Collapse
Affiliation(s)
- Ines ElBini Dhouib
- Institut Pasteur de Tunis, Laboratoire des Biomolécules, Venins et Applications Théranostiques, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
19
|
Hsieh K, Wang Y, Chen L, Zhao Z, Savitz S, Jiang X, Tang J, Kim Y. Drug Repurposing for COVID-19 using Graph Neural Network with Genetic, Mechanistic, and Epidemiological Validation. RESEARCH SQUARE 2020:rs.3.rs-114758. [PMID: 33330858 PMCID: PMC7743080 DOI: 10.21203/rs.3.rs-114758/v1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Amid the pandemic of 2019 novel coronavirus disease (COVID-19) infected by SARS-CoV-2, a vast amount of drug research for prevention and treatment has been quickly conducted, but these efforts have been unsuccessful thus far. Our objective is to prioritize repurposable drugs using a drug repurposing pipeline that systematically integrates multiple SARS-CoV-2 and drug interactions, deep graph neural networks, and in-vitro/population-based validations. We first collected all the available drugs (n= 3,635) involved in COVID-19 patient treatment through CTDbase. We built a SARS-CoV-2 knowledge graph based on the interactions among virus baits, host genes, pathways, drugs, and phenotypes. A deep graph neural network approach was used to derive the candidate drug’s representation based on the biological interactions. We prioritized the candidate drugs using clinical trial history, and then validated them with their genetic profiles, in vitro experimental efficacy, and electronic health records. We highlight the top 22 drugs including Azithromycin, Atorvastatin, Aspirin, Acetaminophen, and Albuterol. We further pinpointed drug combinations that may synergistically target COVID-19. In summary, we demonstrated that the integration of extensive interactions, deep neural networks, and rigorous validation can facilitate the rapid identification of candidate drugs for COVID-19 treatment. This paper had been uploaded to arXiv : https://arxiv.org/abs/2009.10931.
Collapse
Affiliation(s)
- Kanglin Hsieh
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yinyin Wang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Luyao Chen
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sean Savitz
- Institute for Stroke and Cerebrovascular Disease, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaoqian Jiang
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Yejin Kim
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
20
|
Mukherjee S, Mazumder P, Joshi M, Joshi C, Dalvi SV, Kumar M. Biomedical application, drug delivery and metabolic pathway of antiviral nanotherapeutics for combating viral pandemic: A review. ENVIRONMENTAL RESEARCH 2020; 191:110119. [PMID: 32846177 PMCID: PMC7443328 DOI: 10.1016/j.envres.2020.110119] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/19/2020] [Accepted: 08/12/2020] [Indexed: 05/20/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a neoteric virus belonging to the beta coronavirus class has created a global health concern, responsible for an outbreak of severe acute respiratory illness, the COVID-19 pandemic. Infected hosts exhibit diverse clinical features, ranging from asymptomatic to severe symptoms in their genital organs, respiratory, digestive, and circulatory systems. Considering the high transmissibility (R0: ≤6.0) compared to Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV, the quest for the clinical development of suitable antiviral nanotherapeutics (NTPs) is incessant. We are presenting a systematic review of the literature published between 2003 and 2020 to validate the hypothesis that the pharmacokinetics, collateral acute/chronic side effects of nano drugs and spike proteins arrangement of coronaviruses can revolutionize the therapeutic approach to cure COVID-19. Our aim is also to critically assess the slow release kinetics and specific target site chemical synthesis influenced competence of NTPs and nanotoxicity based antiviral actions, which are commonly exploited in the synthesis of modulated nanomedicines. The pathogenesis of novel virulent pathogens at the cellular and molecular levels are also considered, which is of utmost importance to characterize the emerging nano-drug agents as diagnostics or therapeutics or viral entry inhibitors. Such types of approaches trigger the scientists and policymakers in the development of a conceptual framework of nano-biotechnology by linking nanoscience and virology to present a smart molecular diagnosis/treatment for pandemic viral infections.
Collapse
Affiliation(s)
- Santanu Mukherjee
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, 382355, India
| | - Payal Mazumder
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Gujarat, 382016, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Gujarat, 382016, India
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, 382355, India
| | - Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, 382355, India.
| |
Collapse
|
21
|
Sahebnasagh A, Avan R, Saghafi F, Mojtahedzadeh M, Sadremomtaz A, Arasteh O, Tanzifi A, Faramarzi F, Negarandeh R, Safdari M, Khataminia M, Rezai Ghaleno H, Habtemariam S, Khoshi A. Pharmacological treatments of COVID-19. Pharmacol Rep 2020; 72:1446-1478. [PMID: 32816200 PMCID: PMC7439639 DOI: 10.1007/s43440-020-00152-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
The viral infection due to the new coronavirus or coronavirus disease 2019 (COVID-19), which was reported for the first time in December 2019, was named by the World Health Organization (WHO) as Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV2), because of the very similar genome and also its related symptoms to SARS-CoV1. The ongoing COVID-19 pandemic with significant mortality, morbidity, and socioeconomic impact is considered by the WHO as a global public health emergency. Since there is no specific treatment available for SARS-CoV2 infection, and or COVID-19, several clinical and sub-clinical studies are currently undertaken to find a gold-standard therapeutic regimen with high efficacy and low side effect. Based on the published scientific evidence published to date, we summarized herein the effects of different potential therapies and up-to-date clinical trials. The review is intended to help readers aware of potentially effective COVID-19 treatment and provide useful references for future studies.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Razieh Avan
- Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mojataba Mojtahedzadeh
- Department of Clinical Pharmacy, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Sadremomtaz
- XB20 Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Omid Arasteh
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asal Tanzifi
- Sepanta Faragene Azma Research Laboratory. Co. LTD., Gorgan, Iran
- Department of Parasitology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Negarandeh
- Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Masoud Khataminia
- Student Research Committee, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent, ME4 4TB UK
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Arkan roadway, Bojnurd, Iran
| |
Collapse
|
22
|
de Almeida SMV, Santos Soares JC, Dos Santos KL, Alves JEF, Ribeiro AG, Jacob ÍTT, da Silva Ferreira CJ, Dos Santos JC, de Oliveira JF, de Carvalho Junior LB, de Lima MDCA. COVID-19 therapy: What weapons do we bring into battle? Bioorg Med Chem 2020; 28:115757. [PMID: 32992245 PMCID: PMC7481143 DOI: 10.1016/j.bmc.2020.115757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/29/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Urgent treatments, in any modality, to fight SARS-CoV-2 infections are desired by society in general, by health professionals, by Estate-leaders and, mainly, by the scientific community, because one thing is certain amidst the numerous uncertainties regarding COVID-19: knowledge is the means to discover or to produce an effective treatment against this global disease. Scientists from several areas in the world are still committed to this mission, as shown by the accelerated scientific production in the first half of 2020 with over 25,000 published articles related to the new coronavirus. Three great lines of publications related to COVID-19 were identified for building this article: The first refers to knowledge production concerning the virus and pathophysiology of COVID-19; the second regards efforts to produce vaccines against SARS-CoV-2 at a speed without precedent in the history of science; the third comprehends the attempts to find a marketed drug that can be used to treat COVID-19 by drug repurposing. In this review, the drugs that have been repurposed so far are grouped according to their chemical class. Their structures will be presented to provide better understanding of their structural similarities and possible correlations with mechanisms of actions. This can help identifying anti-SARS-CoV-2 promising therapeutic agents.
Collapse
Affiliation(s)
- Sinara Mônica Vitalino de Almeida
- Laboratório de Biologia Molecular, Universidade de Pernambuco, Garanhuns, PE, Brazil; Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - José Cleberson Santos Soares
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Keriolaine Lima Dos Santos
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Amélia Galdino Ribeiro
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Íris Trindade Tenório Jacob
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | - Jamerson Ferreira de Oliveira
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Maria do Carmo Alves de Lima
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
23
|
The Potential Benefit of Beta-Blockers for the Management of COVID-19 Protocol Therapy-Induced QT Prolongation: A Literature Review. Sci Pharm 2020. [DOI: 10.3390/scipharm88040055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The World Health Organization (WHO) officially announced coronavirus disease 2019 (COVID-19) as a pandemic in March 2020. Unfortunately, there are still no approved drugs for either the treatment or the prevention of COVID-19. Many studies have focused on repurposing established antimalarial therapies, especially those that showed prior efficacy against Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV), such as chloroquine and hydroxychloroquine, against COVID-19 combined with azithromycin. These classes of drugs potentially induce prolongation of the QT interval, which might lead to lethal arrhythmia. Beta-blockers, as a β-adrenergic receptor (β-AR) antagonist, can prevent an increase in the sympathetic tone, which is the most important arrhythmia trigger. In this literature review, we aimed to find the effect of administering azithromycin, chloroquine, and hydroxychloroquine on cardiac rhythm disorders and our findings show that bisoprolol, as a cardio-selective beta-blocker, is effective for the management of the QT (i.e., the start of the Q wave to the end of the T wave) interval prolongation in COVID-19 patients.
Collapse
|
24
|
Mohanty S, Harun Ai Rashid M, Mridul M, Mohanty C, Swayamsiddha S. Application of Artificial Intelligence in COVID-19 drug repurposing. Diabetes Metab Syndr 2020; 14:1027-1031. [PMID: 32634717 PMCID: PMC7332938 DOI: 10.1016/j.dsx.2020.06.068] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIM COVID-19 outbreak has created havoc and a quick cure for the disease will be a therapeutic medicine that has usage history in patients to resolve the current pandemic. With technological advancements in Artificial Intelligence (AI) coupled with increased computational power, the AI-empowered drug repurposing can prove beneficial in the COVID-19 scenario. METHODS The recent literature is studied and analyzed from various sources such as Scopus, Google Scholar, PubMed, and IEEE Xplore databases. The search terms used are 'COVID-19', ' AI ', and 'Drug Repurposing'. RESULTS AI is implemented in the field design through the generation of the learning-prediction model and performs a quick virtual screening to accurately display the output. With a drug-repositioning strategy, AI can quickly detect drugs that can fight against emerging diseases such as COVID-19. This technology has the potential to improve the drug discovery, planning, treatment, and reported outcomes of the COVID-19 patient, being an evidence-based medical tool. CONCLUSIONS Thus, there are chances that the application of the AI approach in drug discovery is feasible. With prior usage experiences in patients, few of the old drugs, if shown active against SARS-CoV-2, can be readily applied to treat the COVID-19 patients. With the collaboration of AI with pharmacology, the efficiency of drug repurposing can improve significantly.
Collapse
Affiliation(s)
- Sweta Mohanty
- School of Applied Science, KIIT University, Bhubaneswar, Odisha, India
| | | | - Mayank Mridul
- School of Computer Engineering, KIIT University, Bhubaneswar, Odisha, India
| | - Chandana Mohanty
- School of Applied Science, KIIT University, Bhubaneswar, Odisha, India.
| | - Swati Swayamsiddha
- School of Electronics Engineering, KIIT University, Bhubaneswar, Odisha, India.
| |
Collapse
|
25
|
Hazra S, Chaudhuri AG, Tiwary BK, Chakrabarti N. Matrix metallopeptidase 9 as a host protein target of chloroquine and melatonin for immunoregulation in COVID-19: A network-based meta-analysis. Life Sci 2020; 257:118096. [PMID: 32679150 PMCID: PMC7361122 DOI: 10.1016/j.lfs.2020.118096] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
AIMS The molecular pathogenesis of COVID-19 is similar to other coronavirus (CoV) infections viz. severe acute respiratory syndrome (SARS) in human. Due to scarcity of the suitable treatment strategy, the present study was undertaken to explore host protein(s) targeted by potent repurposed drug(s) in COVID-19. MATERIALS AND METHODS The differentially expressed genes (DEGs) were identified from microarray data repository of SARS-CoV patient blood. The repurposed drugs for COVID-19 were selected from available literature. Using DEGs and drugs, the protein-protein interaction (PPI) and chemo-protein interaction (CPI) networks were constructed and combined to develop an interactome model of PPI-CPI network. The top-ranked sub-network with its hub-bottleneck nodes were evaluated with their functional annotations. KEY FINDINGS A total of 120 DEGs and 65 drugs were identified. The PPI-CPI network (118 nodes and 293 edges) exhibited a top-ranked sub-network (35 nodes and 174 connectivities) with 12 hub-bottleneck nodes having two drugs chloroquine and melatonin in association with 10 proteins corresponding to six upregulated and four downregulated genes. Two drugs interacted directly with the hub-bottleneck node i.e. matrix metallopeptidase 9 (MMP9), a host protein corresponding to its upregulated gene. MMP9 showed functional annotations associated with neutrophil mediated immunoinflammation. Moreover, literature survey revealed that angiotensin converting enzyme 2, a membrane receptor of SARS-CoV-2 virus, might have functional cooperativity with MMP9 and a possible interaction with both drugs. SIGNIFICANCE The present study reveals that between chloroquine and melatonin, melatonin appears to be more promising repurposed drug against MMP9 for better immunocompromisation in COVID-19.
Collapse
Affiliation(s)
- Suvojit Hazra
- CPEPA-UGC Centre for "Electro-physiological and Neuro-imaging studies including Mathematical Modelling", University of Calcutta, Kolkata, West Bengal, India; Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | | | - Basant K Tiwary
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India.
| | - Nilkanta Chakrabarti
- CPEPA-UGC Centre for "Electro-physiological and Neuro-imaging studies including Mathematical Modelling", University of Calcutta, Kolkata, West Bengal, India; Department of Physiology, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
26
|
Affiliation(s)
- A A M Wilde
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, Heart Centre, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - J A Offerhaus
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, Heart Centre, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Abstract
In the late autumn of 2019, a new potentially lethal human coronavirus designated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China. The pandemic spread of this zoonotic virus has created a global health emergency and an unprecedented socioeconomic crisis. The severity of coronavirus disease 2019 (COVID-19), the illness caused by SARS-CoV‑2, is highly variable. Most patients (~85%) develop no or mild symptoms, while others become seriously ill, some succumbing to disease-related complications. In this review, the SARS-CoV‑2 life cycle, its transmission and the clinical and immunological features of COVID-19 are described. In addition, an overview is presented of the virological assays for detecting ongoing SARS-CoV‑2 infections and the serological tests for SARS-CoV-2-specific antibody detection. Also discussed are the different approaches to developing a COVID-19 vaccine and the perspectives of treating COVID-19 with antiviral drugs, immunomodulatory agents and anticoagulants/antithrombotics. Finally, the cardiovascular manifestations of COVID-19 are briefly touched upon. While there is still much to learn about SARS-CoV‑2, the tremendous recent advances in biomedical technology and knowledge and the huge amount of research into COVID-19 raise the hope that a remedy for this disease will soon be found. COVID-19 will nonetheless have a lasting impact on human society.
Collapse
Affiliation(s)
- A A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
28
|
Amin SA, Ghosh K, Gayen S, Jha T. Chemical-informatics approach to COVID-19 drug discovery: Monte Carlo based QSAR, virtual screening and molecular docking study of some in-house molecules as papain-like protease (PLpro) inhibitors. J Biomol Struct Dyn 2020; 39:4764-4773. [PMID: 32568618 PMCID: PMC7332872 DOI: 10.1080/07391102.2020.1780946] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
World Health Organization characterized novel coronavirus disease (COVID-19), caused by severe acute respiratory syndrome (SARS) coronavirus-2 (SARS-CoV-2) as world pandemic. This infection has been spreading alarmingly by causing huge social and economic disruption. In order to response quickly, the inhibitors already designed against different targets of previous human coronavirus infections will be a great starting point for anti-SARS-CoV-2 inhibitors. In this study, our approach integrates different ligand based drug design strategies of some in-house chemicals. The study design was composed of some major aspects: (a) classification QSAR based data mining of diverse SARS-CoV papain-like protease (PLpro) inhibitors, (b) QSAR based virtual screening (VS) to identify in-house molecules that could be effective against putative target SARS-CoV PLpro and (c) finally validation of hits through receptor-ligand interaction analysis. This approach could be used to aid in the process of COVID-19 drug discovery. It will introduce key concepts, set the stage for QSAR based screening of active molecules against putative SARS-CoV-2 PLpro enzyme. Moreover, the QSAR models reported here would be of further use to screen large database. This study will assume that the reader is approaching the field of QSAR and molecular docking based drug discovery against SARS-CoV-2 PLpro with little prior knowledge. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Kalyan Ghosh
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|