1
|
Li C, Yang Y, Lin Y, Lian Y, Pan D, Lin L, Li L. Activation of ferritin light chain (FTL) by transcription factor salmonella pathogenicity island 1 modulates glycolysis to drive metastasis of ovarian cancer cells. Expert Rev Anticancer Ther 2024:1-12. [PMID: 39675923 DOI: 10.1080/14737140.2024.2439558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecological cancer often diagnosed at an advanced stage due to a lack of effective biomarkers. Ferritin light chain (FTL) is implicated in the development of various cancers, but its impact on OC remains unknown. RESEARCH DESIGN AND METHODS Bioinformatics methods were utilized to analyze FTL. Quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry were employed for expression detection, and cell counting kit- 8, and transwell assays were for cell biological functions assessment. Extracellular acidification rate, oxygen consumption rate, and glycolytic metabolite contents were measured. Dual-luciferase and chromatin immunoprecipitation assay validated binding relationship. Xenografted tumor models in nude mice verified the role of FTL in vivo. RESULTS Cell function experiments revealed that FTL facilitated proliferation, migration, and invasion of OC cells. Rescue experiments unveiled that 2-Deoxy-D-glucose attenuated stimulation on OC cell metastasis and glycolysis by FTL overexpression. Salmonella pathogenicity island 1 (SPI1) up-regulated FTL expression to promote glycolysis and metastasis. FTL knockdown inhibited tumor growth and suppressed glycolysis and cell metastasis in vivo, while SPI1 overexpression attenuated these effects. CONCLUSIONS This study demonstrated pro-metastatic mechanisms of transcription factor SPI1/FTL axis in OC and suggested it as a potential target for treating OC metastasis.
Collapse
Affiliation(s)
- Chunxiang Li
- Department of Integrative Medicine Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| | - Yubin Yang
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| | - Yuting Lin
- Department of Integrative Medicine Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| | - Yingbin Lian
- Department of Integrative Medicine Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| | - Dinglong Pan
- Department of Radiation, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| | - Lin Lin
- Department of Oncology, Longyan Traditional Chinese Medicine Hospital, Longyan City, China
| | - Luhong Li
- Department of Gynaecology and Obstetrucs, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| |
Collapse
|
2
|
Kimura TDC, Scarini JF, Gonçalves MWA, Ferreira IV, Egal ESA, Altemani A, Mariano FV. Interplay between miRNA expression and glucose metabolism in oral squamous cell carcinoma. Arch Oral Biol 2024; 171:106162. [PMID: 39700740 DOI: 10.1016/j.archoralbio.2024.106162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVE Given the urgent need for improved diagnostic and therapeutic strategies in oral squamous cell carcinoma (OSCC), this review aims to explore the intricate interplay between OSCC and alterations in glucose metabolism, with a particular focus on the pivotal role of microRNAs (miRNAs) in this context. MATERIAL AND METHODS Data were extracted from a vast literature survey by using PubMed, Embase, and Web of Science search engines with relevant keywords. RESULTS In OSCC, miRNAs exert regulatory control over the expression of genes involved in glucose metabolism pathways. Dysregulation of specific miRNAs has been implicated in the modulation of key glycolytic enzymes and glucose transporters, intracellular signaling cascades, and interaction with transcription factors, all of which collectively affect glucose uptake and glycolysis, contributing significantly to the observed metabolic alterations in OSCC cells. CONCLUSION A comprehensive understanding of these intricate molecular interactions holds significant promise for the development of targeted therapeutic interventions and refined diagnostic approaches to treat OSCC patients.
Collapse
Affiliation(s)
- Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Figueira Scarini
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Iara Vieira Ferreira
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Erika Said Abu Egal
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Alshehri B. Cytochrome c and cancer cell metabolism: A new perspective. Saudi Pharm J 2024; 32:102194. [PMID: 39564377 PMCID: PMC11570848 DOI: 10.1016/j.jsps.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
Cytochrome c is a vital electron carrier in the mitochondrial respiratory chain. When the outer membrane of mitochondria becomes permeable, cytochrome c is discharged into the cytoplasm, where it initiates the intrinsic apoptosis pathway. The complex interaction between cytochrome c and apoptosis protease-activating factor-1 (Apaf-1) leads to the formation of the apoptosome and activation of a cascade of caspases, highlighting the critical role of cytochrome c in controlling cell death mechanisms. Additionally, cytochrome c undergoes post-translational modifications, especially phosphorylation, which intricately regulate its roles in both respiration and apoptosis. These modifications add layers of complexity to how cytochrome c effectively controls cellular functions. cytochrome c becomes a lighthouse in the intricate web of cancer, its expression patterns providing hints about prognosis and paths toward treatment. Reduced levels of cytochrome c have been observed in cancer tissues, indicating a potential inhibition of apoptosis. For instance, in glioma tissues, cytochrome c levels were lower compared to healthy tissues, and this reduction became more pronounced in advanced stages of the disease. However, the role of cytochrome c in cancer becomes more intricate as it becomes intertwined with the metabolic reprogramming of cancer cells. This suggests that cytochrome c plays a crucial role in tumor progression and resistance to treatment. Viewing cytochrome c as a molecular mosaic reveals that it is not merely a protein, but also a central player in determining cellular fate. This realization opens up exciting avenues for potential advancements in cancer diagnosis and treatment strategies. Despite the advancements made, the narrative surrounding cytochrome c remains incomplete, urging further exploration into its complexities and the biological implications linked to cancer. cytochrome c stands as a beacon of hope and a promising target for therapy in the battle against cancer, particularly due to its significant involvement in tumor metabolism. It holds the potential for a future where innovative solutions can be developed to address the intricate challenges of cellular fate. In this review, we have endeavored to illuminate the multifaceted domain of cytochrome c drawing connections among apoptosis, metabolic reprogramming, and the Warburg effect in the context of cancer.
Collapse
Affiliation(s)
- Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Almajmaah-11952, Saudi Arabia
| |
Collapse
|
4
|
Zhao M, Chen YL, Yang LH. Advancements in the study of glucose metabolism in relation to tumor progression and treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 192:11-18. [PMID: 39111717 DOI: 10.1016/j.pbiomolbio.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Sugar serves as the primary energy source for mammals, with glucose metabolism facilitating energy acquisition in human cells. The proper functioning of intracellular glucose metabolism is essential for the maintenance of orderly and healthy physiological activities. Tumor cells, characterized by uncontrolled growth, exhibit dysregulated proliferation and apoptosis processes, leading to abnormal alterations in glucose metabolism. Specifically, tumor cells exhibit a shift towards aerobic glycolysis, resulting in the production of lactic acid that can be utilized as a metabolic intermediate for sustained tumor cell growth. This article provides a comprehensive overview of the enzymes involved in glucose metabolism and the alterations in gene expression that occur during tumor progression. It also examines the current research on targeting abnormal glucose metabolism processes for tumor treatment and discusses potential future directions for utilizing glucose metabolism as a therapeutic target.
Collapse
Affiliation(s)
- Meng Zhao
- Clinical Biochemistry Teaching and Research Office, Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- Department of Pathophysiology, College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Lian-He Yang
- Clinical Biochemistry Teaching and Research Office, Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
5
|
Yang L, Shi W, Li D, Shen Y, Li N, Meng Z. Study on the mechanism of 17-Hydroxy-jolkinolide B on anaplastic thyroid cancer cell. Am J Med Sci 2024:S0002-9629(24)01470-8. [PMID: 39326738 DOI: 10.1016/j.amjms.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) has a dismal prognosis, and the optimal treatment has not yet been confirmed. Euphorbia fischeriana Steud has been proven to exhibit pharmacological properties, including various antitumor effects, that can be used to treat numerous diseases and has been used to treat cancer. 17-Hydroxy-jolkinolide B (17-HJB) is one of the major diterpenoids produced from plants, but little research has investigated how it affects cancer. METHODS MTT assays, glucose and lactate concentration detection, Annexin V-FITC detection via cytometry, and Western blotting were performed to research the mechanism of 17-HJB. RESULTS Cell viability was inhibited in a concentration-dependent manner after 17-HJB treatment. 17-HJB inhibited glucose consumption and lactate production, and the expression of the glucose transporter GLUT1 and proteins associated with glycolysis, HK2, PFK1, and PKM2, was significantly downregulated. 17-HJB induced apoptosis, and the expression of signaling proteins related to apoptosis, such as Caspase-3 and cleaved Caspase-3, was upregulated. In vivo, 17-HJB effectively inhibited the growth of ATC tumors. The results of the expression of glycolysis-related enzyme proteins and apoptosis signaling proteins were consistent with those in vitro. CONCLUSIONS 17-HJB inhibited the growth of ATCs both in vivo and in vitro. The mechanism may be related to the effects on glucose metabolism and the inhibition of aerobic glycolysis. 17-HJB also induced ATC apoptosis.
Collapse
Affiliation(s)
- Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Wanying Shi
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China; Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard KarlsD University of Tuebingen, Tuebingen 72076, Germany
| | - Dihua Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Yiming Shen
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ning Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
6
|
Ji J, Bi F, Zhang X, Zhang Z, Xie Y, Yang Q. Single-cell transcriptome analysis revealed heterogeneity in glycolysis and identified IGF2 as a therapeutic target for ovarian cancer subtypes. BMC Cancer 2024; 24:926. [PMID: 39085784 PMCID: PMC11292870 DOI: 10.1186/s12885-024-12688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND As the most malignant tumor of the female reproductive system, ovarian cancer (OC) has garnered increasing attention. The Warburg effect, driven by glycolysis, accounts for tumor cell proliferation under aerobic conditions. However, the metabolic heterogeneity linked to glycolysis in OC remains elusive. METHODS We integrated single-cell data with OC to score glycolysis level in tumor cell subclusters. This led to the identification of a subcluster predominantly characterized by glycolysis, with a strong correlation to patient prognosis. Core transcription factors were pinpointed using hdWGCNA and metaVIPER. A specific transcription factor regulatory network was then constructed. A glycolysis-related prognostic model was developed and tested for estimating OC prognosis with a total of 85 machine-learning combinations, focusing on specific upregulated genes of two subtypes. We identified IGF2 as a key within the prognostic model and investigated its impact on OC progression and drug resistance through in vitro experiments, including the transwell assay, lactate production detection, and the CCK-8 assay. RESULTS Analysis showed that the Malignant 7 subcluster was primarily related to glycolysis. Two OC molecular subtypes, CS1 and CS2, were identified with distinct clinical, biological, and microenvironmental traits. A prognostic model was built, and IGF2 emerged as a key gene linked to prognosis. Experiments have proven that IGF2 can promote the glycolysis pathway and the malignant biological progression of OC cells. CONCLUSIONS We developed two novel OC subtypes based on glycolysis score, established a stable prognostic model, and identified IGF2 as the marker gene. These insights provided a new avenue for exploring OC's molecular mechanisms and personalized treatment approaches.
Collapse
Affiliation(s)
- Jinting Ji
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Fangfang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Xiaocui Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Zhiming Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Yichi Xie
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
7
|
Atiase Y, Effah K, Mawusi Wormenor C, Tekpor E, Aku Catherine Morkli E, Boafo E, Yorke E, Aryee R, Essel NOM, Danyo S, Kemawor S, Akpalu J. Prevalence of high-risk human papillomavirus infection among women with diabetes mellitus in Accra, Ghana. BMC Womens Health 2024; 24:260. [PMID: 38664791 PMCID: PMC11044360 DOI: 10.1186/s12905-024-03078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND There is increasing evidence of a higher risk and poorer prognosis of cervical cancer among women with diabetes mellitus (DM) compared to the general population. These are mediated by higher susceptibility to persistent high-risk human papillomavirus (hr-HPV) infection due to dysfunctional clearance in an immunocompromised state. We aimed to determine the prevalence of hr-HPV infection and cervical lesions in a cohort of women with DM in Ghana. We further disaggregated the prevalence according to DM type and explored factors associated with hr-HPV infection. METHODS This retrospective descriptive cross-sectional study assessed 198 women with DM who underwent cervical screening via concurrent hr-HPV DNA testing and visual inspection with acetic acid in an outpatient department of the National Diabetes Management and Research Centre in Korle-Bu Teaching Hospital, Accra from March to May 2022. Univariate and multivariable binary logistic regression were used to explore factors associated with hr-HPV positivity. RESULTS Among 198 women with DM (mean age, 60.2 ± 12.1 years), the overall hr-HPV prevalence rate was 21.7% (95% CI, 16.1-28.1), disaggregated as 1.5% (95% CI, 0.3-4.4) each for HPV16 and HPV18 and 20.7% (95% CI, 15.3-27.0) for other HPV genotype(s). Respective hr-HPV prevalence rates were 37.5% (95% CI, 15.2-64.6) for type 1 DM, 19.8% (95% CI, 13.9-26.7) for type 2 DM, and 25.0% (95% CI, 8.7-49.1) for unspecified/other DM types. Past use of the combined contraceptive pill independently increased the risk of hr-HPV infection by approximately three times (adjusted odds ratio [aOR] = 2.98; 95% CI, 1.03 - 8.64; p-value = 0.045), whereas each unit increase in FBG level increased the odds of hr-HPV infection by about 15% (aOR = 1.15; 95% CI, 1.02 - 1.30; p-value = 0.021). CONCLUSION Our study points to a high prevalence of hr-HPV among women with DM and highlights a need for glycemic control among them as this could contribute to lowering their odds of hr-HPV infection. The low overall rates of HPV vaccination and prior screening also indicate a need to build capacity and expand the scope of education and services offered to women with DM as regards cervical precancer screening.
Collapse
Affiliation(s)
- Yacoba Atiase
- Department of Medicine and Therapeutics, University of Ghana Medical School, P. O. Box GP 4236, Accra, Ghana.
- Department of Medicine and Therapeutics, Korle-Bu Teaching Hospital, Korle-Bu, P. O. Box KB 77, Accra, Ghana.
| | - Kofi Effah
- Catholic Hospital, Battor, P. O. Box 2, Battor, Ghana
| | | | - Ethel Tekpor
- Catholic Hospital, Battor, P. O. Box 2, Battor, Ghana
| | | | - Eunice Boafo
- Department of Medicine and Therapeutics, Korle-Bu Teaching Hospital, Korle-Bu, P. O. Box KB 77, Accra, Ghana
| | - Ernest Yorke
- Department of Medicine and Therapeutics, University of Ghana Medical School, P. O. Box GP 4236, Accra, Ghana
- Department of Medicine and Therapeutics, Korle-Bu Teaching Hospital, Korle-Bu, P. O. Box KB 77, Accra, Ghana
| | - Robert Aryee
- Department of Cardiology, University of Ghana Medical Center, P. O. Box LG 25, Accra, Ghana
| | - Nana Owusu Mensah Essel
- Department of Emergency Medicine, College of Health Sciences, Faculty of Medicine and Dentistry, University of Alberta, 730 University Terrace, Edmonton, AB, T6G 2T4, Canada
| | - Stephen Danyo
- Catholic Hospital, Battor, P. O. Box 2, Battor, Ghana
| | | | - Josephine Akpalu
- Department of Medicine and Therapeutics, University of Ghana Medical School, P. O. Box GP 4236, Accra, Ghana
- Department of Medicine and Therapeutics, Korle-Bu Teaching Hospital, Korle-Bu, P. O. Box KB 77, Accra, Ghana
| |
Collapse
|
8
|
Wang W, Niu Y, Zhang N, Wan Y, Xiao Y, Zhao L, Zhao B, Chen W, Huang D. Cascade-Catalyzed Nanogel for Amplifying Starvation Therapy by Nitric Oxide-Mediated Hypoxia Alleviation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17313-17322. [PMID: 38534029 DOI: 10.1021/acsami.4c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Glucose oxidase (Gox)-mediated starvation therapy offers a prospective advantage for malignancy treatment by interrupting the glucose supply to neoplastic cells. However, the negative charge of the Gox surface hinders its enrichment in tumor tissues. Furthermore, Gox-mediated starvation therapy infiltrates large amounts of hydrogen peroxide (H2O2) to surround normal tissues and exacerbate intracellular hypoxia. In this study, a cascade-catalyzed nanogel (A-NE) was developed to boost the antitumor effects of starvation therapy by glucose consumption and cascade reactive release of nitric oxide (NO) to relieve hypoxia. First, the surface cross-linking structure of A-NE can serve as a bioimmobilization for Gox, ensuring Gox stability while improving the encapsulation efficiency. Then, Gox-mediated starvation therapy efficiently inhibited the proliferation of tumor cells while generating large amounts of H2O2. In addition, covalent l-arginine (l-Arg) in A-NE consumed H2O2 derived from glucose decomposition to generate NO, which augmented starvation therapy on metastatic tumors by alleviating tumor hypoxia. Eventually, both in vivo and in vitro studies indicated that nanogels remarkably inhibited in situ tumor growth and hindered metastatic tumor recurrence, offering an alternative possibility for clinical intervention.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yafan Niu
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ni Zhang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yuqing Wan
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yiqing Xiao
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Lingzhi Zhao
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
9
|
Nie H, Hu X, Xiong H, Zeng L, Chen W, Su T. Change and pathological significance of glycogen content in oral squamous cell carcinoma and oral submucous fibrosis. Tissue Cell 2024; 87:102337. [PMID: 38430849 DOI: 10.1016/j.tice.2024.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE This study aimed to investigate the change and pathological significance of glycogen content in oral squamous cell carcinoma (OSCC) and oral submucous fibrosis (OSF). METHODS AND MATERIALS 13 normal oral mucosa (NOM), 12 OSF mucosa, and 35 pairs of OSCC tissues and their corresponding adjacent mucosa tissues (AT) were collected from Xiangya Hospital for PAS staining to detect glycogen. Transcriptome sequencing data from OSCC were used to compare glycogen metabolism gene expression differences. Kaplan-Meier method was conducted to estimate Recurrence-free survival (RFS). RESULTS Glycogen levels were lower in OSF than in NOM and lower in OSCC than in AT. Transcriptome sequencing data analysis showed the expression of most glycogenolysis genes was increased and the expression of glycogen synthesis genes including PPP1R3C and GBE1 was decreased in OSCC tissues. High glycogen level was correlated with poor prognosis in OSCC patients under the background of OSF. CONCLUSION Glycogen may be used as a potential diagnostic biomolecule for OSF and OSCC, as well as a potential prognostic factor for OSCC in the context of OSF.
Collapse
Affiliation(s)
- Huanquan Nie
- Department of Oral and Maxillofacial Surgery, Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Oral Cancer and Precancerous Lesions, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xin Hu
- Department of Oral and Maxillofacial Surgery, Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Oral Cancer and Precancerous Lesions, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Haofeng Xiong
- Department of Oral and Maxillofacial Surgery, Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Oral Cancer and Precancerous Lesions, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Liujun Zeng
- Department of Oral and Maxillofacial Surgery, Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Oral Cancer and Precancerous Lesions, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Wenxin Chen
- Department of Oral and Maxillofacial Surgery, Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Oral Cancer and Precancerous Lesions, Central South University, China; Department of Orthodontics, Shanghai Huangpu District Dental Disease Prevention and Treatment Institute, Shanghai, China.
| | - Tong Su
- Department of Oral and Maxillofacial Surgery, Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Oral Cancer and Precancerous Lesions, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
10
|
Zhang Z, Liang X, Yang X, Liu Y, Zhou X, Li C. Advances in Nanodelivery Systems Based on Metabolism Reprogramming Strategies for Enhanced Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6689-6708. [PMID: 38302434 DOI: 10.1021/acsami.3c15686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Tumor development and metastasis are closely related to the complexity of the metabolism network. Recently, metabolism reprogramming strategies have attracted much attention in tumor metabolism therapy. Although there is preliminary success of metabolism therapy agents, their therapeutic effects have been restricted by the effective reaching of the tumor sites of drugs. Nanodelivery systems with unique physical properties and elaborate designs can specifically deliver to the tumors. In this review, we first summarize the research progress of nanodelivery systems based on tumor metabolism reprogramming strategies to enhance therapies by depleting glucose, inhibiting glycolysis, depleting lactic acid, inhibiting lipid metabolism, depleting glutamine and glutathione, and disrupting metal metabolisms combined with other therapies, including chemotherapy, radiotherapy, photodynamic therapy, etc. We further discuss in detail the advantages of nanodelivery systems based on tumor metabolism reprogramming strategies for tumor therapy. As well as the opportunities and challenges for integrating nanodelivery systems into tumor metabolism therapy, we analyze the outlook for these emerging areas. This review is expected to improve our understanding of modulating tumor metabolisms for enhanced therapy.
Collapse
Affiliation(s)
- Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
11
|
Xing Y, Lin B, Liu B, Shao J, Jin Z. Tectorigenin Inhibits Glycolysis-induced Cell Growth and Proliferation by Modulating LncRNA CCAT2/miR-145 Pathway in Colorectal Cancer. Curr Cancer Drug Targets 2024; 24:1071-1079. [PMID: 38243936 PMCID: PMC11340290 DOI: 10.2174/0115680096274757231219072003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) places a heavy burden on global health. Tectorigenin (Tec) is a type of flavonoid-based compound obtained from the Chinese medical herb Leopard Lily Rhizome. It was found to exhibit remarkable anti-tumor properties in previous studies. However, the effect and molecular mechanisms of Tec in colorectal cancer have not been reported. OBJECTIVE The objective of this study was to explore the action of Tec in proliferation and glycolysis in CRC and the potential mechanism with regard to the long non-coding RNA (lncRNA) CCAT2/micro RNA-145(miR-145) pathway in vitro and in vivo . METHODS The anti-tumor effect of Tec in CRC was examined in cell and animal studies, applying Cell Counting Kit-8 (CCK-8) assay as well as xenograft model experiments. Assay kits were utilized to detect glucose consumption and lactate production in the supernatant of cells and animal serum. The expression of the glycolysis-related proteins was assessed by Western Blotting, and levels of lncRNA CCAT2 and miR-145 in CRC tissue specimens and cells were assessed by realtime quantitative PCR (RT-qPCR). RESULTS Tec significantly suppressed cell glycolysis and proliferative rate in CRC cells. It could decrease lncRNA CCAT2 in CRC cells but increase the expression of miR-145. LncRNA CCAT2 overexpression or inhibition of miR-145 could abolish the inhibitive effects of Tec on the proliferation and glycolysis of CRC cells. The miR-145 mimic rescued the increased cell viability and glycolysis levels caused by lncRNA CCAT2 overexpression. Tec significantly inhibited the growth and glycolysis of CRC xenograft tumor. The expression of lncRNA CCAT2 decreased while the expression of miR-145 increased after Tec treatment in vivo. CONCLUSION Tec can inhibit the proliferation and glycolysis of CRC cells through the lncRNA CCAT2/miR-145 axis. Altogether, the potential targets discovered in this research are of great significance for CRC treatment and new drug development.
Collapse
Affiliation(s)
- Ying Xing
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bofan Lin
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Baoxinzi Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jie Shao
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Zhichao Jin
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Liu Y, Jin A, Quan X, Shen X, Zhou H, Zhao X, Lin Z. miR-590-5p/Tiam1-mediated glucose metabolism promotes malignant evolution of pancreatic cancer by regulating SLC2A3 stability. Cancer Cell Int 2023; 23:301. [PMID: 38017477 PMCID: PMC10685474 DOI: 10.1186/s12935-023-03159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND T lymphoma invasion and metastasis 1 (Tiam1) is a tumor related gene that specifically activates Rho-like GTPases Rac1 and plays a critical role in the progression of various malignancies. Glycolysis plays an important role in cancer progression, it is crucial for supplying energy and producing metabolic end products, which can maintain the survival of tumor cells. As yet, however, the mechanism of Tiam1 in glycolysis reprogramming of pancreatic cancer (PC) remains to be clarified. Here, we investigated the functional role of Tiam1 in PC cell proliferation, metastasis and glycolysis reprogramming. It is expected to provide a new direction for clinical treatment. METHODS The clinical relevance of Tiam1 was evaluated in 66 patients with PC, the effect of Tiam1 on cell proliferation was detected via 5-Ethynyl-2'-deoxyuridine (EdU) and colony formation. The ability of cell migration was detected by the wound healing and Transwell. Quantitative real time polymerase chain reaction (qRT-PCR) and luciferase reporter gene experiments clarify the regulatory relationship of miR-590-5p inhibiting Tiam1. Detection of the molecular mechanism of Tiam1 regulating glucose metabolism reprogramming in PC by glucose metabolism kit. RNA sequencing and Co-Immunoprecipitation (CoIP) have identified glucose transporter protein 3 (SLC2A3) as a key downstream target gene for miR-590-5p/Tiam1. RESULTS We found that Tiam1 expression increased in PC tissues and was associated with lymph node metastasis. The silencing or exogenous overexpression of Tiam1 significantly altered the proliferation, invasion, and angiogenesis of PC cells through glucose metabolism pathway. In addition, Tiam1 could interact with the crucial SLC2A3 and promote the evolution of PC in a SLC2A3-dependent manner. Moreover, miR-590-5p was found to exacerbate the PC cell proliferation, migration and invasion by targeting Tiam1. Furthermore, the reversing effects on proliferation, migration and invasion were found in PC cells with miR-590-5p/Tiam1 overexpression after applying glucose metabolism inhibition. CONCLUSIONS Our findings demonstrate the critical role of Tiam1 in PC development and the miR-590-5p/Tiam1/SLC2A3 signaling pathway may serve as a target for new PC therapeutic strategies.
Collapse
Affiliation(s)
- Ying Liu
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, 133000, People's Republic of China
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, 133000, People's Republic of China
| | - Aihua Jin
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, 133000, People's Republic of China
| | - Xianglan Quan
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, 133000, People's Republic of China
| | - Xionghu Shen
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, 133000, People's Republic of China
| | - Houkun Zhou
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, 133000, People's Republic of China
| | - Xingyu Zhao
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, 133000, People's Republic of China
| | - Zhenhua Lin
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, 133000, People's Republic of China.
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, 133000, People's Republic of China.
| |
Collapse
|
13
|
Deris Zayeri Z, Parsi A, Shahrabi S, Kargar M, Davari N, Saki N. Epigenetic and metabolic reprogramming in inflammatory bowel diseases: diagnostic and prognostic biomarkers in colorectal cancer. Cancer Cell Int 2023; 23:264. [PMID: 37936149 PMCID: PMC10631091 DOI: 10.1186/s12935-023-03117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND AND AIM "Inflammatory bowel disease" (IBD) is a chronic, relapsing inflammatory disease of the intestinal tract that typically begins at a young age and might transit to colorectal cancer (CRC). In this manuscript, we discussed the epigenetic and metabolic change to present a extensive view of IBDs transition to CRC. This study discusses the possible biomarkers for evaluating the condition of IBDs patients, especially before the transition to CRC. RESEARCH APPROACH We searched "PubMed" and "Google Scholar" using the keywords from 2000 to 2022. DISCUSSION In this manuscript, interesting titles associated with IBD and CRC are discussed to present a broad view regarding the epigenetic and metabolic reprogramming and the biomarkers. CONCLUSION Epigenetics can be the main reason in IBD transition to CRC, and Hypermethylation of several genes, such as VIM, OSM4, SEPT9, GATA4 and GATA5, NDRG4, BMP3, ITGA4 and plus hypomethylation of LINE1 can be used in IBD and CRC management. Epigenetic, metabolisms and microbiome-derived biomarkers, such as Linoleic acid and 12 hydroxy 8,10-octadecadienoic acid, Serum M2-pyruvate kinase and Six metabolic genes (NAT2, XDH, GPX3, AKR1C4, SPHK and ADCY5) expression are valuable biomarkers for early detection and transition to CRC condition. Some miRs, such as miR-31, miR-139-5p, miR -155, miR-17, miR-223, miR-370-3p, miR-31, miR -106a, miR -135b and miR-320 can be used as biomarkers to estimate IBD transition to CRC condition.
Collapse
Affiliation(s)
- Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abazar Parsi
- Alimentary Tract Research Center, Clinical Sciences Research Inistitute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Masoud Kargar
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
14
|
Karno B, Edwards DN, Chen J. Metabolic control of cancer metastasis: role of amino acids at secondary organ sites. Oncogene 2023; 42:3447-3456. [PMID: 37848626 PMCID: PMC11323979 DOI: 10.1038/s41388-023-02868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Most cancer-related deaths are caused by the metastases, which commonly develop at multiple organ sites including the brain, bone, and lungs. Despite longstanding observations that the spread of cancer is not random, our understanding of the mechanisms that underlie metastatic spread to specific organs remains limited. However, metabolism has recently emerged as an important contributor to metastasis. Amino acids are a significant nutrient source to cancer cells and their metabolism which can serve to fuel biosynthetic pathways capable of facilitating cell survival and tumor expansion while also defending against oxidative stress. Compared to the primary tumor, each of the common metastatic sites exhibit vastly different nutrient compositions and environmental stressors, necessitating the need of cancer cells to metabolically thrive in their new environment during colonization and outgrowth. This review seeks to summarize the current literature on amino acid metabolism pathways that support metastasis to common secondary sites, including impacts on immune responses. Understanding the role of amino acids in secondary organ sites may offer opportunities for therapeutic inhibition of cancer metastasis.
Collapse
Affiliation(s)
- Breelyn Karno
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Deanna N Edwards
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jin Chen
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
15
|
Li B, Chen Q, Feng Y, Wei T, Zhong Y, Zhang Y, Feng Q. Glucose restriction induces AMPK-SIRT1-mediated circadian clock gene Per expression and delays NSCLC progression. Cancer Lett 2023; 576:216424. [PMID: 37778683 DOI: 10.1016/j.canlet.2023.216424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/17/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
The rhythmic expression of the circadian clock is intimately linked to the health status of the body. Disturbed circadian clock rhythms might lead to a wide range of metabolic diseases and even cancers. Our previous study showed that glucose restriction was able to inhibit non-small cell lung cancer (NSCLC). In the current study, we found that glucose restriction enhanced apoptosis and cell growth delay in NSCLC cells. In addition, we used GEPIA database analysis to derive different effects of each circadian clock gene on lung cancer tissue. Among these circadian clock genes, Per (Period) is lowly expressed in cancer tissues and highly expressed in normal tissues. Moreover, the higher expression of Per in cancer patients has a better prognostic significance. Furthermore, we revealed that glucose restriction induced the expression of the circadian clock gene Per in NSCLC cells by upregulating SIRT1 (Sirtuin1) via activation of the energy response factor AMPK (AMP-activated protein kinase). Changes in Per expression following upregulation or downregulation of AMPK were consistent with AMPK expression. Additionally, a low-carbohydrate ketogenic diet significantly delayed tumor progression in a xenograft tumor model of severe combined immunodeficiency (SCID) mice. Meanwhile, the ketogenic diet increased the expression of AMPK, SIRT1 and Per in vivo. Besides, the ketogenic diet was found to restore the normal rhythmic level of Per by Zeitgeber Time (ZT) experiments. Taken these together, these results indicated a novel mechanism that glucose restriction induces AMPK-SIRT1 mediated circadian clock gene Per expression and delays NSCLC progression, which provided more evidence for glucose restriction as an adjuvant clinical therapeutic strategy in NSCLC.
Collapse
Affiliation(s)
- Bohan Li
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianfeng Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yucong Feng
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Wei
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuxia Zhong
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuandie Zhang
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
16
|
Wang C, Yu C, Chang H, Song J, Zhang S, Zhao J, Wang J, Wang T, Qi Q, Shan C. Glucose-6-phosphate dehydrogenase: a therapeutic target for ovarian cancer. Expert Opin Ther Targets 2023; 27:733-743. [PMID: 37571851 DOI: 10.1080/14728222.2023.2247558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Ovarian cancer (OC) is a gynecological tumor disease, which is usually diagnosed at an advanced stage and has a poor prognosis. It has been established that the glucose metabolism rate of cancer cells is significantly higher than that of normal cells, and the pentose phosphate pathway (PPP) is an important branch pathway for glucose metabolism. Glucose-6-phosphate dehydrogenase (G6PD) is the key rate-limiting enzyme in the PPP, which plays an important role in the initiation and development of cancer (such as OC), and has been considered as a promisinganti-cancer target. AREAS COVERED In this review, based on the structure and biological function of G6PD, recent research on the roles of G6PD in the progression, metastasis, and chemoresistance of OC are summarized and accompanied by proposed molecular mechanisms, which may provide a systematic understanding of targeting G6PD for the treatment of patients with OC. EXPERT OPINION Accumulating evidence demonstrates that G6PD is a promising target of cancer. The development of G6PD inhibitors for cancer treatment merits broad application prospects.
Collapse
Affiliation(s)
- Chenxi Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Chenxi Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Hongkai Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jiaqi Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianguo Zhao
- Tianjin Key Laboratory of human development and reproductive regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Jiyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Tao Wang
- Tianjin Key Laboratory of human development and reproductive regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Qi Qi
- MOE Key Laboratory of Tumor Molecular Biology, Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
17
|
Tossetta G, Fantone S, Marzioni D, Mazzucchelli R. Role of Natural and Synthetic Compounds in Modulating NRF2/KEAP1 Signaling Pathway in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15113037. [PMID: 37296999 DOI: 10.3390/cancers15113037] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer is the second most common cancer in men worldwide. Prostate cancer can be treated by surgery or active surveillance when early diagnosed but, when diagnosed at an advanced or metastatic stage, radiation therapy or androgen-deprivation therapy is needed to reduce cancer progression. However, both of these therapies can cause prostate cancer resistance to treatment. Several studies demonstrated that oxidative stress is involved in cancer occurrence, development, progression and treatment resistance. The nuclear factor erythroid 2-related factor 2 (NRF2)/KEAP1 (Kelch-Like ECH-Associated Protein 1) pathway plays an important role in protecting cells against oxidative damage. Reactive oxygen species (ROS) levels and NRF2 activation can determine cell fate. In particular, toxic levels of ROS lead physiological cell death and cell tumor suppression, while lower ROS levels are associated with carcinogenesis and cancer progression. On the contrary, a high level of NRF2 promotes cell survival related to cancer progression activating an adaptive antioxidant response. In this review, we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Roberta Mazzucchelli
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
18
|
Wang F, Yang K, Pan R, Xiang Y, Xiong Z, Li P, Li K, Sun H. A glycometabolic gene signature associating with immune infiltration and chemosensitivity and predicting the prognosis of patients with osteosarcoma. Front Med (Lausanne) 2023; 10:1115759. [PMID: 37293295 PMCID: PMC10244582 DOI: 10.3389/fmed.2023.1115759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Background Accumulating evidence has suggested that glycometabolism plays an important role in the pathogenesis of tumorigenesis. However, few studies have investigated the prognostic values of glycometabolic genes in patients with osteosarcoma (OS). This study aimed to recognize and establish a glycometabolic gene signature to forecast the prognosis, and provide therapeutic options for patients with OS. Methods Univariate and multivariate Cox regression, LASSO Cox regression, overall survival analysis, receiver operating characteristic curve, and nomogram were adopted to develop the glycometabolic gene signature, and further evaluate the prognostic values of this signature. Functional analyses including Gene Ontology (GO), kyoto encyclopedia of genes and genomes analyses (KEGG), gene set enrichment analysis, single-sample gene set enrichment analysis (ssGSEA), and competing endogenous RNA (ceRNA) network, were used to explore the molecular mechanisms of OS and the correlation between immune infiltration and gene signature. Moreover, these prognostic genes were further validated by immunohistochemical staining. Results A total of four genes including PRKACB, SEPHS2, GPX7, and PFKFB3 were identified for constructing a glycometabolic gene signature which had a favorable performance in predicting the prognosis of patients with OS. Univariate and multivariate Cox regression analyses revealed that the risk score was an independent prognostic factor. Functional analyses indicated that multiple immune associated biological processes and pathways were enriched in the low-risk group, while 26 immunocytes were down-regulated in the high-risk group. The patients in high-risk group showed elevated sensitivity to doxorubicin. Furthermore, these prognostic genes could directly or indirectly interact with other 50 genes. A ceRNA regulatory network based on these prognostic genes was also constructed. The results of immunohistochemical staining showed that SEPHS2, GPX7, and PFKFB3 were differentially expressed between OS tissues and adjacent normal tissues. Conclusion The preset study constructed and validated a novel glycometabolic gene signature which could predict the prognosis of patients with OS, identify the degree of immune infiltration in tumor microenvironment, and provide guidance for the selection of chemotherapeutic drugs. These findings may shed new light on the investigation of molecular mechanisms and comprehensive treatments for OS.
Collapse
Affiliation(s)
- Fengyan Wang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kun Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Runsang Pan
- School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Yang Xiang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhilin Xiong
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Pinhao Li
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ke Li
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Hong Sun
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
19
|
Fujinaga A, Hirashita T, Hirashita Y, Sakai K, Kawamura M, Masuda T, Endo Y, Ohta M, Murakami K, Inomata M. Glucose metabolic upregulation via phosphorylation of S6 ribosomal protein affects tumor progression in distal cholangiocarcinoma. BMC Gastroenterol 2023; 23:157. [PMID: 37193984 DOI: 10.1186/s12876-023-02815-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 05/09/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND The prognosis of distal cholangiocarcinoma (dCCA) remains poor; thus, the identification of new therapeutic targets is warranted. Phosphorylated S6 ribosomal protein indicates a mammalian target of rapamycin complex 1 (mTORC1) activity, and mTORC1 plays a central role in controlling cell growth and regulating glucose metabolism. We aimed to clarify the effect of S6 phosphorylation on tumor progression and the glucose metabolic pathway in dCCA. METHODS Thirty-nine patients with dCCA who underwent curative resection were enrolled in this study. S6 phosphorylation and the expression of GLUT1 were evaluated by immunohistochemistry, and their relationship with clinical factors was investigated. The effect of S6 phosphorylation on glucose metabolism with PF-04691502 treatment, an inhibitor of S6 phosphorylation, was examined in cancer cell lines by Western blotting and metabolomics analysis. Cell proliferation assays were performed with PF-04691502. RESULTS S6 phosphorylation and the expression of GLUT1 were significantly higher in patients with an advanced pathological stage. Significant correlations between GLUT1 expression, S6 phosphorylation, and SUV-max of FDG-PET were shown. In addition, cell lines with high S6 phosphorylation levels showed high GLUT1 levels, and the inhibition of S6 phosphorylation reduced the expression of GLUT1 on Western blotting. Metabolic analysis revealed that inhibition of S6 phosphorylation suppressed pathways of glycolysis and the TCA cycle in cell lines, and then, cell proliferation was effectively reduced by PF-04691502. CONCLUSION Upregulation of glucose metabolism via phosphorylation of S6 ribosomal protein appeared to play a role in tumor progression in dCCA. mTORC1 may be a therapeutic target for dCCA.
Collapse
Affiliation(s)
- Atsuro Fujinaga
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Oita, 879-5593, Japan.
| | - Teijiro Hirashita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Oita, 879-5593, Japan
| | - Yuka Hirashita
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
- Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kumiko Sakai
- Department of Division of Life Science Research, Faculty of Medicine, Oita University, Oita, Japan
| | - Masahiro Kawamura
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Oita, 879-5593, Japan
| | - Takashi Masuda
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Oita, 879-5593, Japan
| | - Yuichi Endo
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Oita, 879-5593, Japan
| | - Masayuki Ohta
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Oita, 879-5593, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Oita, 879-5593, Japan
| |
Collapse
|
20
|
Wawrzkiewicz-Jałowiecka A, Lalik A, Lukasiak A, Richter-Laskowska M, Trybek P, Ejfler M, Opałka M, Wardejn S, Delfino DV. Potassium Channels, Glucose Metabolism and Glycosylation in Cancer Cells. Int J Mol Sci 2023; 24:ijms24097942. [PMID: 37175655 PMCID: PMC10178682 DOI: 10.3390/ijms24097942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Potassium channels emerge as one of the crucial groups of proteins that shape the biology of cancer cells. Their involvement in processes like cell growth, migration, or electric signaling, seems obvious. However, the relationship between the function of K+ channels, glucose metabolism, and cancer glycome appears much more intriguing. Among the typical hallmarks of cancer, one can mention the switch to aerobic glycolysis as the most favorable mechanism for glucose metabolism and glycome alterations. This review outlines the interconnections between the expression and activity of potassium channels, carbohydrate metabolism, and altered glycosylation in cancer cells, which have not been broadly discussed in the literature hitherto. Moreover, we propose the potential mediators for the described relations (e.g., enzymes, microRNAs) and the novel promising directions (e.g., glycans-orinented drugs) for further research.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Anna Lalik
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Agnieszka Lukasiak
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Monika Richter-Laskowska
- The Centre for Biomedical Engineering, Łukasiewicz Research Network-Krakow Institute of Technology, 30-418 Krakow, Poland
| | - Paulina Trybek
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Maciej Ejfler
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Maciej Opałka
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Sonia Wardejn
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Domenico V Delfino
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| |
Collapse
|
21
|
Luo X, Peng Y, Fan X, Xie X, Jin Z, Zhang X. The Crosstalk and Clinical Implications of CircRNAs and Glucose Metabolism in Gastrointestinal Cancers. Cancers (Basel) 2023; 15:cancers15082229. [PMID: 37190158 DOI: 10.3390/cancers15082229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The majority of glucose in tumor cells is converted to lactate despite the presence of sufficient oxygen and functional mitochondria, a phenomenon known as the "Warburg effect" or "aerobic glycolysis". Aerobic glycolysis supplies large amounts of ATP, raw material for macromolecule synthesis, and also lactate, thereby contributing to cancer progression and immunosuppression. Increased aerobic glycolysis has been identified as a key hallmark of cancer. Circular RNAs (circRNAs) are a type of endogenous single-stranded RNAs characterized by covalently circular structures. Accumulating evidence suggests that circRNAs influence the glycolytic phenotype of various cancers. In gastrointestinal (GI) cancers, circRNAs are related to glucose metabolism by regulating specific glycolysis-associated enzymes and transporters as well as some pivotal signaling pathways. Here, we provide a comprehensive review of glucose-metabolism-associated circRNAs in GI cancers. Furthermore, we also discuss the potential clinical prospects of glycolysis-associated circRNAs as diagnostic and prognostic biomarkers and therapeutic targets in GI cancers.
Collapse
Affiliation(s)
- Xiaonuan Luo
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yin Peng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xinmin Fan
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Zhe Jin
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiaojing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
22
|
Ren S, Yang D, Dong Y, Ni W, Wang M, Xing L, Liu T, Hou W, Sun W, Zhang H, Yu Z, Liu Y, Cao J, Yan H, Feng Y, Fang X, Wang Q, Chen F. Protamine 1 as a secreted colorectal cancer-specific antigen facilitating G1/S phase transition under nutrient stress conditions. Cell Oncol (Dordr) 2023; 46:357-373. [PMID: 36593375 PMCID: PMC10060357 DOI: 10.1007/s13402-022-00754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Cancer testis antigens (CTAs) are optimal tumor diagnostic markers and involved in carcinogenesis. However, colorectal cancer (CRC) related CTAs are less reported with impressive diagnostic capability or relevance with tumor metabolism rewiring. Herein, we demonstrated CRC-related CTA, Protamine 1 (PRM1), as a promising diagnostic marker and involved in regulation of cellular growth under nutrient deficiency. METHODS Transcriptomics of five paired CRC tissues was used to screen CRC-related CTAs. Capability of PRM1 to distinguish CRC was studied by detection of clinical samples through enzyme linked immunosorbent assay (ELISA). Cellular functions were investigated in CRC cell lines through in vivo and in vitro assays. RESULTS By RNA-seq and detection in 824 clinical samples from two centers, PRM1 expression were upregulated in CRC tissues and patients` serum. Serum PRM1 showed impressive accuracy to diagnose CRC from healthy controls and benign gastrointestinal disease patients, particularly more sensitive for early-staged CRC. Furthermore, we reported that when cells were cultured in serum-reduced medium, PRM1 secretion was upregulated, and secreted PRM1 promoted CRC growth in culture and in mice. Additionally, G1/S phase transition of CRC cells was facilitated by PRM1 protein supplementation and overexpression via activation of PI3K/AKT/mTOR pathway in serum deficient medium. CONCLUSIONS In general, our research presented PRM1 as a specific CRC antigen and illustrated the importance of PRM1 in CRC metabolism rewiring. The new vulnerability of CRC cells was also provided with the potential to be targeted in future. Diagnostic value and grow factor-like biofunction of PRM1 A represents the secretion process of PRM1 regulated by nutrient deficiency. B represents activation of PI3K/AKT/mTOR pathway of secreted PRM1.
Collapse
Affiliation(s)
- Shengnan Ren
- Key Laboratory of Zoonoses Research, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dingquan Yang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yongli Dong
- Department of Gastrointestinal Surgery, Heze Municipal Hospital, Heze, China
| | - Weidong Ni
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meiqi Wang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lei Xing
- Key Laboratory of Zoonoses Research, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tong Liu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wenjia Hou
- Department of Burn Surgery, The First Hospital of Naval Medical University, Shanghai, China
| | - Weixuan Sun
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haolong Zhang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhentao Yu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yi Liu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingrui Cao
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongbo Yan
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ye Feng
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Quan Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Fangfang Chen
- Key Laboratory of Zoonoses Research, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China.
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
23
|
Sun Y, Duan X, Wang F, Tan H, Hu J, Bai W, Wang X, Wang B, Hu J. Inhibitory effects of flavonoids on glucose transporter 1 (GLUT1): From library screening to biological evaluation to structure-activity relationship. Toxicology 2023; 488:153475. [PMID: 36870413 DOI: 10.1016/j.tox.2023.153475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Glucose transporter 1 (GLUT1) is mainly responsible for glucose uptake and energy metabolism, especially in the aerobic glycolysis process of tumor cells, which is closely associated with the advancement of tumors. Numerous studies have demonstrated that the inhibition of GLUT1 can decrease the growth of tumor cells and enhance drug sensitivity, so GLUT1 is considered to be a promising therapeutic target for cancer treatment. Flavonoids are a group of phenolic secondary metabolites present in vegetables, fruits, and herbal products, some of which were reported to increase cancer cells' sensitivity to sorafenib by inhibiting GLUT1. Our objective was to screen potential inhibitors of GLUT1 from 98 flavonoids and assess the sensitizing effect of sorafenib on cancer cells. and illuminate the structure-activity relationships of flavonoids with GLUT1. Eight flavonoids, including apigenin, kaempferol, eupatilin, luteolin, hispidulin, isosinensetin, sinensetin, and nobiletin exhibited significant inhibition (>50%) on GLUT1 in GLUT1-HEK293T cells. Among them, sinensetin and nobiletin showed stronger sensitizing effects and caused a sharp downward shift of the cell viability curves in HepG2 cells, illustrating these two flavonoids might become sensitizers to enhance the efficacy of sorafenib by inhibiting GLUT1. Molecular docking analysis elucidated inhibitory effect of flavonoids on GLUT1 was related to conventional hydrogen bonds, but not Pi interactions. The pharmacophore model clarified the critical pharmacophores of flavonoids inhibitors are hydrophobic groups in 3'positions and hydrogen bond acceptors. Thus, our findings would provide useful information for optimizing flavonoid structure to design novel GLUT1 inhibitors and overcome drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Yanhong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoyan Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fenghe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Huixin Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiahuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wanting Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xinbo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
24
|
Liu W, Li J, Zhao R, Lu Y, Huang P. The Uridine diphosphate (UDP)-glycosyltransferases (UGTs) superfamily: the role in tumor cell metabolism. Front Oncol 2023; 12:1088458. [PMID: 36741721 PMCID: PMC9892627 DOI: 10.3389/fonc.2022.1088458] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
UDP-glycosyltransferases (UGTs), important enzymes in biotransformation, control the levels and distribution of numerous endogenous signaling molecules and the metabolism of a wide range of endogenous and exogenous chemicals. The UGT superfamily in mammals consists of the UGT1, UGT2, UGT3, and UGT8 families. UGTs are rate-limiting enzymes in the glucuronate pathway, and in tumors, they are either overexpressed or underexpressed. Alterations in their metabolism can affect gluconeogenesis and lipid metabolism pathways, leading to alterations in tumor cell metabolism, which affect cancer development and prognosis. Glucuronidation is the most common mammalian conjugation pathway. Most of its reactions are mainly catalyzed by UGT1A, UGT2A and UGT2B. The body excretes UGT-bound small lipophilic molecules through the bile, urine, or feces. UGTs conjugate a variety of tiny lipophilic molecules to sugars, such as galactose, xylose, acetylglucosamine, glucuronic acid, and glucose, thereby inactivating and making water-soluble substrates, such as carcinogens, medicines, steroids, lipids, fatty acids, and bile acids. This review summarizes the roles of members of the four UGT enzyme families in tumor function, metabolism, and multiple regulatory mechanisms, and its Inhibitors and inducers. The function of UGTs in lipid metabolism, drug metabolism, and hormone metabolism in tumor cells are among the most important topics covered.
Collapse
Affiliation(s)
| | | | | | - Yao Lu
- *Correspondence: Yao Lu, ; Panpan Huang,
| | | |
Collapse
|
25
|
Lv N, Shen S, Chen Q, Tong J. Long noncoding RNAs: glycolysis regulators in gynaecologic cancers. Cancer Cell Int 2023; 23:4. [PMID: 36639695 PMCID: PMC9838043 DOI: 10.1186/s12935-023-02849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The three most common gynaecologic cancers that seriously threaten female lives and health are ovarian cancer, cervical cancer, and endometrial cancer. Glycolysis plays a vital role in gynaecologic cancers. Several long noncoding RNAs (lncRNAs) are known to function as oncogenic molecules. LncRNAs impact downstream target genes by acting as ceRNAs, guides, scaffolds, decoys, or signalling molecules. However, the role of glycolysis-related lncRNAs in regulating gynaecologic cancers remains poorly understood. In this review, we emphasize the functional roles of many lncRNAs that have been found to promote glycolysis in gynaecologic cancers and discuss reasonable strategies for future research.
Collapse
Affiliation(s)
- Nengyuan Lv
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Siyi Shen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Qianying Chen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Jinyi Tong
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| |
Collapse
|
26
|
Zeković M, Bumbaširević U, Živković M, Pejčić T. Alteration of Lipid Metabolism in Prostate Cancer: Multifaceted Oncologic Implications. Int J Mol Sci 2023; 24:ijms24021391. [PMID: 36674910 PMCID: PMC9863986 DOI: 10.3390/ijms24021391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Cancer is increasingly recognized as an extraordinarily heterogeneous disease featuring an intricate mutational landscape and vast intra- and intertumor variability on both genetic and phenotypic levels. Prostate cancer (PCa) is the second most prevalent malignant disease among men worldwide. A single metabolic program cannot epitomize the perplexing reprogramming of tumor metabolism needed to sustain the stemness of neoplastic cells and their prominent energy-consuming functional properties, such as intensive proliferation, uncontrolled growth, migration, and invasion. In cancerous tissue, lipids provide the structural integrity of biological membranes, supply energy, influence the regulation of redox homeostasis, contribute to plasticity, angiogenesis and microenvironment reshaping, mediate the modulation of the inflammatory response, and operate as signaling messengers, i.e., lipid mediators affecting myriad processes relevant for the development of the neoplasia. Comprehensive elucidation of the lipid metabolism alterations in PCa, the underlying regulatory mechanisms, and their implications in tumorigenesis and the progression of the disease are gaining growing research interest in the contemporary urologic oncology. Delineation of the unique metabolic signature of the PCa featuring major aberrant pathways including de novo lipogenesis, lipid uptake, storage and compositional reprogramming may provide novel, exciting, and promising avenues for improving diagnosis, risk stratification, and clinical management of such a complex and heterogeneous pathology.
Collapse
Affiliation(s)
- Milica Zeković
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Uros Bumbaširević
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marko Živković
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Tomislav Pejčić
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
27
|
Zhou D, Duan Z, Li Z, Ge F, Wei R, Kong L. The significance of glycolysis in tumor progression and its relationship with the tumor microenvironment. Front Pharmacol 2022; 13:1091779. [PMID: 36588722 PMCID: PMC9795015 DOI: 10.3389/fphar.2022.1091779] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
It is well known that tumor cells rely mainly on aerobic glycolysis for energy production even in the presence of oxygen, and glycolysis is a known modulator of tumorigenesis and tumor development. The tumor microenvironment (TME) is composed of tumor cells, various immune cells, cytokines, and extracellular matrix, among other factors, and is a complex niche supporting the survival and development of tumor cells and through which they interact and co-evolve with other tumor cells. In recent years, there has been a renewed interest in glycolysis and the TME. Many studies have found that glycolysis promotes tumor growth, metastasis, and chemoresistance, as well as inhibiting the apoptosis of tumor cells. In addition, lactic acid, a metabolite of glycolysis, can also accumulate in the TME, leading to reduced extracellular pH and immunosuppression, and affecting the TME. This review discusses the significance of glycolysis in tumor development, its association with the TME, and potential glycolysis-targeted therapies, to provide new ideas for the clinical treatment of tumors.
Collapse
Affiliation(s)
- Daoying Zhou
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Department of Provincial Clinical College, Wannan Medical College, Wuhu, China
| | - Zhen Duan
- Function Examination Center, Anhui Chest Hospital, Hefei, China
| | - Zhenyu Li
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Department of Provincial Clinical College, Wannan Medical College, Wuhu, China
| | - Fangfang Ge
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Department of Provincial Clinical College, Wannan Medical College, Wuhu, China
| | - Ran Wei
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingsuo Kong
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,*Correspondence: Lingsuo Kong,
| |
Collapse
|
28
|
Temre MK, Kumar A, Singh SM. An appraisal of the current status of inhibition of glucose transporters as an emerging antineoplastic approach: Promising potential of new pan-GLUT inhibitors. Front Pharmacol 2022; 13:1035510. [PMID: 36386187 PMCID: PMC9663470 DOI: 10.3389/fphar.2022.1035510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 07/23/2023] Open
Abstract
Neoplastic cells displayed altered metabolism with accelerated glycolysis. Therefore, these cells need a mammoth supply of glucose for which they display an upregulated expression of various glucose transporters (GLUT). Thus, novel antineoplastic strategies focus on inhibiting GLUT to intersect the glycolytic lifeline of cancer cells. This review focuses on the current status of various GLUT inhibition scenarios. The GLUT inhibitors belong to both natural and synthetic small inhibitory molecules category. As neoplastic cells express multiple GLUT isoforms, it is necessary to use pan-GLUT inhibitors. Nevertheless, it is also necessary that such pan-GLUT inhibitors exert their action at a low concentration so that normal healthy cells are left unharmed and minimal injury is caused to the other vital organs and systems of the body. Moreover, approaches are also emerging from combining GLUT inhibitors with other chemotherapeutic agents to potentiate the antineoplastic action. A new pan-GLUT inhibitor named glutor, a piperazine-one derivative, has shown a potent antineoplastic action owing to its inhibitory action exerted at nanomolar concentrations. The review discusses the merits and limitations of the existing GLUT inhibitory approach with possible future outcomes.
Collapse
Affiliation(s)
- Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Deparment of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
29
|
Mikaeili Namini A, Jahangir M, Mohseni M, Kolahi AA, Hassanian-Moghaddam H, Mazloumi Z, Motallebi M, Sheikhpour M, Movafagh A. An in silico comparative transcriptome analysis identifying hub lncRNAs and mRNAs in brain metastatic small cell lung cancer (SCLC). Sci Rep 2022; 12:18063. [PMID: 36302939 PMCID: PMC9613661 DOI: 10.1038/s41598-022-22252-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
Small cell lung cancer (SCLC) is a particularly lethal subtype of lung cancer. Metastatic lung tumours lead to most deaths from lung cancer. Predicting and preventing tumour metastasis is crucially essential for patient survivability. Hence, in the current study, we focused on a comprehensive analysis of lung cancer patients' differentially expressed genes (DEGs) on brain metastasis cell lines. DEGs are analysed through KEGG and GO databases for the most critical biological processes and pathways for enriched DEGs. Additionally, we performed protein-protein interaction (PPI), GeneMANIA, and Kaplan-Meier survival analyses on our DEGs. This article focused on mRNA and lncRNA DEGs for LC patients with brain metastasis and underlying molecular mechanisms. The expression data was gathered from the Gene Expression Omnibus database (GSE161968). We demonstrate that 30 distinct genes are up-expressed in brain metastatic SCLC patients, and 31 genes are down-expressed. All our analyses show that these genes are involved in metastatic SCLC. PPI analysis revealed two hub genes (CAT and APP). The results of this article present three lncRNAs, Including XLOC_l2_000941, LOC100507481, and XLOC_l2_007062, also notable mRNAs, have a close relation with brain metastasis in lung cancer and may have a role in the epithelial-mesenchymal transition (EMT) in tumour cells.
Collapse
Affiliation(s)
- Arsham Mikaeili Namini
- grid.412265.60000 0004 0406 5813Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Motahareh Jahangir
- grid.412502.00000 0001 0686 4748Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Maryam Mohseni
- grid.411600.2Department of Social Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Kolahi
- grid.411600.2Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hassanian-Moghaddam
- grid.411600.2Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Mazloumi
- grid.449262.fDepartment of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Marzieh Motallebi
- grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Sheikhpour
- grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Movafagh
- grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Mechanism underlying circRNA dysregulation in the TME of digestive system cancer. Front Immunol 2022; 13:951561. [PMID: 36238299 PMCID: PMC9550895 DOI: 10.3389/fimmu.2022.951561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) are a new series of noncoding RNAs (ncRNAs) that have been reported to be expressed in eukaryotic cells and have a variety of biological functions in the regulation of cancer pathogenesis and progression. The TME, as a microscopic ecological environment, consists of a variety of cells, including tumor cells, immune cells and other normal cells, ECM and a large number of signaling molecules. The crosstalk between circRNAs and the TME plays a complicated role in affecting the malignant behaviors of digestive system cancers. Herein, we summarize the mechanisms underlying aberrant circRNA expression in the TME of the digestive system cancers, including immune surveillance, angiogenesis, EMT, and ECM remodelling. The regulation of the TME by circRNA is expected to be a new therapeutic method.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| |
Collapse
|
31
|
Liu K, Du Y, Li H, Lin X. Identification of super-enhancer-associated transcription factors regulating glucose metabolism in poorly differentiated thyroid carcinoma. Genet Mol Biol 2022; 45:e20210370. [PMID: 36121916 PMCID: PMC9495016 DOI: 10.1590/1678-4685-gmb-2021-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/05/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to uncover transcription factors that regulate super-enhancers involved in glucose metabolism reprogramming in poorly differentiated thyroid carcinoma (PDTC). TCA cycle and pyruvate metabolism were significantly enriched in PDTC. Differentially expressed genes in PDTC vs. normal control tissues were located in key steps in TCA cycle and pyruvate metabolism. A total of 23 upregulated genes localized in TCA cycle and pyruvate metabolism were identified as super-enhancer-controlled genes. Transcription factor analysis of these 23 super-enhancer-controlled genes related to glucose metabolism was performed, and 20 transcription factors were obtained, of which KLF12, ZNF281 and RELA had a significant prognostic impact. Regulatory network of KLF12, ZNF281 and RELA controlled the expression of these four prognostic target genes (LDHA, ACLY, ME2 and IDH2). In vitro validation showed that silencing of KLF12, ZNF281 and RELA suppressed proliferation, glucose uptake, lactate production and ATP level, but increased ADP/ATP ratio in PDTC cells. In conclusion, KLF12, ZNF281 and RELA were identified as the key transcription factors that regulate super-enhancer-controlled genes related to glucose metabolism in PDTC. Our findings contribute to a deeper understanding of the regulatory mechanisms associated with glucose metabolism in PDTC, and advance the theoretical development of PDTC-targeted therapies.
Collapse
Affiliation(s)
- Kun Liu
- Tianjin Hospital, Endocrinology Department, Tianjin, P. R. China
| | - Yongrui Du
- 80th Group Military Hospital, Chinese Peoples Liberation Army, Endocrinology Department, Weifang, Shandong, P. R. China
| | - Hui Li
- XingTai Medical College, Basic Experiment Center, Xingtai, Hebei, P. R. China
| | - Xuexia Lin
- XingTai Medical College, Basic Experiment Center, Xingtai, Hebei, P. R. China
| |
Collapse
|
32
|
Zhou J, Wei XC, Xu HY, Hu HB, Li FX, Zhou WJ, Chen Y, Liu Z. Blood glucose levels and the risk of HPV multiple infections in high-grade squamous intraepithelial lesions: A retrospective cross-sectional study of Chinese patients. Medicine (Baltimore) 2022; 101:e30494. [PMID: 36123844 PMCID: PMC9478326 DOI: 10.1097/md.0000000000030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Besides the controversy of the association of high glycemic index and glycemic load with precancerous cervical lesions, only a few studies have examined the impact of fasting blood glucose levels on human papillomavirus (HPV) multiple infections. In the present study, we appraised the relationship between blood glucose levels and multiple HPV infections in a population of HPV-positive women with cervical high-grade squamous intraepithelial lesions (HSIL). The present study was designed as a cross-sectional correlative analysis. A total of 560 participants with a pathologically confirmed HSIL with HPV infection were included from a hospital in China during January 1, 2018, and December 31, 2019. The target variables and the outcome variables were the glucose levels at the baseline and HPV multiplicity, respectively. The odds ratio and 95% confidence intervals were calculated to estimate the risk of multiple infections via logistic regression analysis. The average age of the 560 participants was 44.63 ± 10.61 years; the nonlinear relationship was detected between the glucose levels and multiplicity of HPV, with an inflection point at 5.4. After adjusting for the full range of variables, the effect sizes and confidence intervals for the left and right sides of the inflection points were found to be 0.379 (0.196-0.732) and 5.083 (1.592-16.229), respectively. In this cross-sectional study, both high and low blood glucose levels increased the risk of multiple HPV infections, demonstrating a U-shaped relationship between the blood glucose levels and multiple HPV infections.
Collapse
Affiliation(s)
- Jie Zhou
- Jinan University, Guangzhou, Guangdong, China
| | - Xiang Cai Wei
- Jinan University, Guangzhou, Guangdong, China
- * Correspondence: Xiang Cai Wei, Jinan University, Guangzhou, Guangdong, China (e-mail: )
| | - Hong Yan Xu
- Department of gynecology, Yuebei People’s Hospital, Shaoguan, Guangdong, China
| | - Hong Bo Hu
- Department of gynecology, Yuebei People’s Hospital, Shaoguan, Guangdong, China
| | - Fan Xiang Li
- Department of gynecology, Yuebei People’s Hospital, Shaoguan, Guangdong, China
| | | | - Ye Chen
- Department of gynecology, Yuebei People’s Hospital, Shaoguan, Guangdong, China
| | - Zhen Liu
- Department of gynecology, Yuebei People’s Hospital, Shaoguan, Guangdong, China
| |
Collapse
|
33
|
Yang G, Jiang J, Yin R, Li Z, Li L, Gao F, Liu C, Zhan X. Two novel predictive biomarkers for osteosarcoma and glycolysis pathways: A profiling study on HS2ST1 and SDC3. Medicine (Baltimore) 2022; 101:e30192. [PMID: 36086752 PMCID: PMC10980373 DOI: 10.1097/md.0000000000030192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/08/2022] [Indexed: 10/14/2022] Open
Abstract
INTRODUCTION Prognostic biomarkers for osteosarcoma (OS) are still very few, and this study aims to examine 2 novel prognostic biomarkers for OS through combined bioinformatics and experimental approach. MATERIALS AND METHODS Expression profile data of OS and paraneoplastic tissues were downloaded from several online databases, and prognostic genes were screened by differential expression analysis, Univariate Cox analysis, least absolute shrinkage and selection operator regression analysis, and multivariate Cox regression analysis to construct prognostic models. The accuracy of the model was validated using principal component analysis, constructing calibration plots, and column line plots. We also analyzed the relationship between genes and drug sensitivity. Gene expression profiles were analyzed by immunocytotyping. Also, protein expressions of the constructed biomarkers in OS and paraneoplastic tissues were verified by immunohistochemistry. RESULTS Heparan sulfate 2-O-sulfotransferase 1 (HS2ST1) and Syndecan 3 (SDC3, met all our requirements after screening. The constructed prognostic model indicated that patients in the high-risk group had a much lower patient survival rate than in the low-risk group. Moreover, these genes were closely related to immune cells (P < .05). Drug sensitivity analysis showed that the 2 genes modeled were strongly correlated with multiple drugs. Immunohistochemical analysis showed significantly higher protein expression of both genes in OS than in paraneoplastic tissues. CONCLUSIONS HS2ST1 and SDC3 are significantly dysregulated in OS, and the prognostic models constructed based on these 2 genes have much lower survival rates in the high-risk group than in the low-risk group. HS2ST1 and SDC3 can be used as glycolytic and immune-related prognostic biomarkers in OS.
Collapse
Affiliation(s)
- Guozhi Yang
- Department of Spine Osteopathic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Jie Jiang
- Guangxi Medical University, Nanning, P. R. China
| | - Ruifeng Yin
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Zhian Li
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Lei Li
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Feng Gao
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Chong Liu
- Department of Spine Osteopathic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xinli Zhan
- Department of Spine Osteopathic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
34
|
Zhang C, Cui J, Cao L, Tian X, Miao Y, Wang Y, Qiu S, Guo W, Ma L, Xia J, Zhang X. ISGylation of EMD promotes its interaction with PDHA to inhibit aerobic oxidation in lung adenocarcinoma. J Cell Mol Med 2022; 26:5078-5094. [PMID: 36071546 PMCID: PMC9549505 DOI: 10.1111/jcmm.17536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Abnormal nuclear structure caused by dysregulation of skeletal proteins is a common phenomenon in tumour cells. However, how skeletal proteins promote tumorigenesis remains uncovered. Here, we revealed the mechanism by which skeletal protein Emerin (EMD) promoted glucose metabolism to induce lung adenocarcinoma (LUAD). Firstly, we identified that EMD was highly expressed and promoted the malignant phenotypes in LUAD. The high expression of EMD might be due to its low level of ubiquitination. Additionally, the ISGylation at lysine 37 of EMD inhibited lysine 36 ubiquitination and upregulated EMD stability. We further explored that EMD could inhibit aerobic oxidation and stimulate glycolysis. Mechanistically, via its β‐catenin interaction domain, EMD bound with PDHA, stimulated serine 293 and 300 phosphorylation and inhibited PDHA expression, facilitated glycolysis of glucose that should enter the aerobic oxidation pathway, and EMD ISGylation was essential for EMD‐PDHA interaction. In clinical LUAD specimens, EMD was negatively associated with PDHA, while positively associated with EMD ISGylation, tumour stage and diameter. In LUAD with higher glucose level, EMD expression and ISGylation were higher. Collectively, EMD was a stimulator for LUAD by inhibiting aerobic oxidation via interacting with PDHA. Restricting cancer‐promoting role of EMD might be helpful for LUAD treatment.
Collapse
Affiliation(s)
- Congcong Zhang
- Anhui University of Science and Technology School of Medicine, Huainan, Anhui, China
| | - Jiangtao Cui
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leiqun Cao
- Anhui University of Science and Technology School of Medicine, Huainan, Anhui, China
| | - Xiaoting Tian
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yayou Miao
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikun Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyu Qiu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanxin Guo
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjing Xia
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Zhou F, Ma J, Zhu Y, Wang T, Yang Y, Sun Y, Chen Y, Song H, Huo X, Zhang J. The role and potential mechanism of O-Glycosylation in gastrointestinal tumors. Pharmacol Res 2022; 184:106420. [PMID: 36049664 DOI: 10.1016/j.phrs.2022.106420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 10/15/2022]
Abstract
Glycosylation is a critical post-translational modification (PTM) that affects the function of proteins and regulates cell signaling, thereby regulating various biological processes. Protein oxygen-N-acetylglucosamine (O-GlcNAc) glycosylation modifications are glycochemical modifications that occur within cells in the signal transduction and are frequently found in the cytoplasm and nucleus. Due to the rapid and reversible addition and removal, O-GlcNAc modifications are able to reversibly compete with certain phosphorylation modifications, immediately regulate the activity of proteins, and participate in kinds of cellular metabolic and signal transduction pathways, playing a pivotal role in the regulation of tumors, diabetes, and other diseases. This article provided a brief overview of O-GlcNAc glycosylation modification, introduced its role in altering the progression and immune response regulation of gastrointestinal tumors, and discussed its potential use as a marker of tumor neogenesis.
Collapse
Affiliation(s)
- Feinan Zhou
- The department of Spleen and Stomach Diseases of Cadres Healthcare Centre, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Jia Ma
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Yongfu Zhu
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Tianming Wang
- Laboratory of Infection and Immunity, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Yue Yang
- Laboratory of Infection and Immunity, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Yehan Sun
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Youmou Chen
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Xingxing Huo
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangdong Province 510799, China.
| |
Collapse
|
36
|
Zheng X, Pan Y, Yang G, Liu Y, Zou J, Zhao H, Yin G, Wu Y, Li X, Wei Z, Yu S, Zhao Y, Wang A, Chen W, Lu Y. Kaempferol impairs aerobic glycolysis against melanoma metastasis via inhibiting the mitochondrial binding of HK2 and VDAC1. Eur J Pharmacol 2022; 931:175226. [PMID: 36007607 DOI: 10.1016/j.ejphar.2022.175226] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 01/10/2023]
Abstract
Metastasis is the leading cause of death in melanoma patients. Aerobic glycolysis is a common metabolic feature in tumor and is closely related to cell growth and metastasis. Kaempferol (KAM) is one of the active ingredients in the total flavonoids of Chinese traditional medicine Sparganii Rhizoma. Studies have shown that it interferes with the cell cycle, apoptosis, angiogenesis and metastasis of tumor cells, but whether it can affect the aerobic glycolysis of melanoma is still unclear. Here, we explored the effects and mechanisms of KAM on melanoma metastasis and aerobic glycolysis. KAM inhibited the migration and invasion of A375 and B16F10 cells, and reduced the lung metastasis of melanoma cells. Extracellular acidification rates (ECAR) and glucose consumption were obviously suppressed by KAM, as well as the production of ATP, pyruvate and lactate. Mechanistically, the activity of hexokinase (HK), the first key kinase of aerobic glycolysis, was significantly inhibited by KAM. Although the total protein expression of HK2 was not significantly changed, the binding of HK2 and voltage-dependent anion channel 1 (VDAC1) on mitochondria was inhibited by KAM through AKT/GSK-3β signal pathway. In conclusion, KAM inhibits melanoma metastasis via blocking aerobic glycolysis of melanoma cells, in which the binding of HK2 and VDAC1 on mitochondria was broken.
Collapse
Affiliation(s)
- Xiuqin Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanhong Pan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Department of Pharmacy, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gejun Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jueyao Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gang Yin
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China.
| |
Collapse
|
37
|
Wang H, Wang Q, Dong J, Jiang W, Kong L, Zhang Q, Liu H. New perspective of ceria nanodots for precise tumor therapy via oxidative stress pathway. Heliyon 2022; 8:e10370. [PMID: 36061010 PMCID: PMC9429517 DOI: 10.1016/j.heliyon.2022.e10370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
Ceria-based nanomaterials have aroused major attentions among the biomedical application research field in recent years. Most of the researches have mainly focused on promoting the functional healing therapies of normal cells/organs with cerium oxide compounds, while the applications of ceria-based materials employed on cancer curing processes have been merely mentioned. To explore the possible capabilities of cerium oxide nanomaterials exterminating tumor cells, innovatively, we synthesized the eco-friendly pure cerium oxide nanodots (CNDs), proving the prominent ability of CNDs used in tumor chemotherapy (CDT) via Fenton reaction with the highly presence of H2O2 (acidic pH) in tumor tissues. CNDs reacted with the self-produced H2O2 of tumor cells, which generated piled up toxic hydroxyl radical (·OH). The accumulated virulent ·OH restrained the growth of cancer cells intensively. This peroxidase-like activity, provided a distinguished paradigm for effective cancer curing treatment. We also verified the biosafety of CNDs applied on normal cells. Notably, not only did CNDs be harmless to normal cells, but also it protected them from the damages of reactive oxygen species (ROS). In normal cells/tissues, under the microenvironment of neutral pH and low level of H2O2, the CNDs could effectively function as an annihilator inhibiting ROS. They reduced the damages caused by ROS, exhibiting catalase-like activity. The research we studied, which estimated CNDs thoroughly, has provided a new perspective to the future researches of the cerium oxide biomaterial applications.
Collapse
Affiliation(s)
- Hui Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qi Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jianyue Dong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Weiwei Jiang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Linghong Kong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qiong Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Hanping Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
38
|
Meng W, Li Y, Chai B, Liu X, Ma Z. miR-199a: A Tumor Suppressor with Noncoding RNA Network and Therapeutic Candidate in Lung Cancer. Int J Mol Sci 2022; 23:8518. [PMID: 35955652 PMCID: PMC9369015 DOI: 10.3390/ijms23158518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. miR-199a, which has two mature molecules: miR-199a-3p and miR-199a-5p, plays an important biological role in the genesis and development of tumors. We collected recent research results on lung cancer and miR-199a from Google Scholar and PubMed databases. The biological functions of miR-199a in lung cancer are reviewed in detail, and its potential roles in lung cancer diagnosis and treatment are discussed. With miR-199a as the core point and a divergence outward, the interplay between miR-199a and other ncRNAs is reviewed, and a regulatory network covering various cancers is depicted, which can help us to better understand the mechanism of cancer occurrence and provide a means for developing novel therapeutic strategies. In addition, the current methods of diagnosis and treatment of lung cancer are reviewed. Finally, a conclusion was drawn: miR-199a inhibits the development of lung cancer, especially by inhibiting the proliferation, infiltration, and migration of lung cancer cells, inhibiting tumor angiogenesis, increasing the apoptosis of lung cancer cells, and affecting the drug resistance of lung cancer cells. This review aims to provide new insights into lung cancer therapy and prevention.
Collapse
Affiliation(s)
| | | | | | | | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Science, Shanghai University, Shanghai 200444, China; (W.M.); (Y.L.); (B.C.); (X.L.)
| |
Collapse
|
39
|
Sun L, Li Y, Yu Y, Wang P, Zhu S, Wu K, Liu Y, Wang R, Min L, Chang C. Inhibition of Cancer Cell Migration and Glycolysis by Terahertz Wave Modulation via Altered Chromatin Accessibility. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9860679. [PMID: 39759157 PMCID: PMC11697589 DOI: 10.34133/2022/9860679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/24/2022] [Indexed: 01/07/2025]
Abstract
Metastasis and metabolic disorders contribute to most cancer deaths and are potential drug targets in cancer treatment. However, corresponding drugs inevitably induce myeloid suppression and gastrointestinal toxicity. Here, we report a nonpharmaceutical and noninvasive electromagnetic intervention technique that exhibited long-term inhibition of cancer cells. Firstly, we revealed that optical radiation at the specific wavelength of 3.6 μm (i.e., 83 THz) significantly increased binding affinity between DNA and histone via molecular dynamics simulations, providing a theoretical possibility for THz modulation- (THM-) based cancer cell intervention. Subsequent cell functional assays demonstrated that low-power 3.6 μm THz wave could successfully inhibit cancer cell migration by 50% and reduce glycolysis by 60%. Then, mRNA sequencing and assays for transposase-accessible chromatin using sequencing (ATAC-seq) indicated that low-power THM at 3.6 μm suppressed the genes associated with glycolysis and migration by reducing the chromatin accessibility of certain gene loci. Furthermore, THM at 3.6 μm on HCT-116 cancer cells reduced the liver metastasis by 60% in a metastatic xenograft mouse model by splenic injection, successfully validated the inhibition of cancer cell migration by THM in vivo. Together, this work provides a new paradigm for electromagnetic irradiation-induced epigenetic changes and represents a theoretical basis for possible innovative therapeutic applications of THM as the future of cancer treatments.
Collapse
Affiliation(s)
- Lan Sun
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071China
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
| | - Yangmei Li
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071China
| | - Yun Yu
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071China
| | - Peiliang Wang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071China
- Aerospace Information Research Institute, School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Electromagnetic Illumination and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Shengquan Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, National Clinical Research Center for Digestive Disease, Beijing 100171China
| | - Kaijie Wu
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071China
| | - Yan Liu
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071China
| | - Ruixing Wang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, National Clinical Research Center for Digestive Disease, Beijing 100171China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071China
- School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
40
|
Du K, Zou J, Wang B, Liu C, Khan M, Xie T, Huang X, Shen P, Tian Y, Yuan Y. A Metabolism-Related Gene Prognostic Index Bridging Metabolic Signatures and Antitumor Immune Cycling in Head and Neck Squamous Cell Carcinoma. Front Immunol 2022; 13:857934. [PMID: 35844514 PMCID: PMC9282908 DOI: 10.3389/fimmu.2022.857934] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/18/2022] [Indexed: 12/26/2022] Open
Abstract
Background In the era of immunotherapy, predictive or prognostic biomarkers for head and neck squamous cell carcinoma (HNSCC) are urgently needed. Metabolic reprogramming in the tumor microenvironment (TME) is a non-negligible reason for the low therapeutic response to immune checkpoint inhibitor (ICI) therapy. We aimed to construct a metabolism-related gene prognostic index (MRGPI) for HNSCC bridging metabolic characteristics and antitumor immune cycling and identified the immunophenotype, genetic alternations, potential targeted inhibitors, and the benefit of immunotherapy in MRGPI-defined subgroups of HNSCC. Methods Based on The Cancer Genome Atlas (TCGA) HNSCC dataset (n = 502), metabolism-related hub genes were identified by the weighted gene co-expression network analysis (WGCNA). Seven genes were identified to construct the MRGPI by using the Cox regression method and validated with an HNSCC dataset (n = 270) from the Gene Expression Omnibus (GEO) database. Afterward, the prognostic value, metabolic activities, genetic alternations, gene set enrichment analysis (GSEA), immunophenotype, Connectivity map (cMAP), and benefit of immunotherapy in MRGPI-defined subgroups were analyzed. Results The MRGPI was constructed based on HPRT1, AGPAT4, AMY2B, ACADL, CKM, PLA2G2D, and ADA. Patients in the low-MRGPI group had better overall survival than those in the high-MRGPI group, consistent with the results in the GEO cohort (cutoff value = 1.01). Patients with a low MRGPI score display lower metabolic activities and an active antitumor immunity status and more benefit from immunotherapy. In contrast, a higher MRGPI score was correlated with higher metabolic activities, more TP53 mutation rate, lower antitumor immunity ability, an immunosuppressive TME, and less benefit from immunotherapy. Conclusion The MRGPI is a promising indicator to distinguish the prognosis, the metabolic, molecular, and immune phenotype, and the benefit from immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Kunpeng Du
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jingwen Zou
- Department of Liver Surgery of the Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Chunshan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Muhammad Khan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Tao Xie
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Piao Shen
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yunhong Tian, ; Yawei Yuan,
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yunhong Tian, ; Yawei Yuan,
| |
Collapse
|
41
|
Phytochemicals as Regulators of Tumor Glycolysis and Hypoxia Signaling Pathways: Evidence from In Vitro Studies. Pharmaceuticals (Basel) 2022; 15:ph15070808. [PMID: 35890106 PMCID: PMC9315613 DOI: 10.3390/ph15070808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
The full understanding of the complex nature of cancer still faces many challenges, as cancers arise not as a result of a single target disruption but rather involving successive genetic and epigenetic alterations leading to multiple altered metabolic pathways. In this light, the need for a multitargeted, safe and effective therapy becomes essential. Substantial experimental evidence upholds the potential of plant-derived compounds to interfere in several important pathways, such as tumor glycolysis and the upstream regulating mechanisms of hypoxia. Herein, we present a comprehensive overview of the natural compounds which demonstrated, in vitro studies, an effective anticancer activity by affecting key regulators of the glycolytic pathway such as glucose transporters, hexokinases, phosphofructokinase, pyruvate kinase or lactate dehydrogenase. Moreover, we assessed how phytochemicals could interfere in HIF-1 synthesis, stabilization, accumulation, and transactivation, emphasizing PI3K/Akt/mTOR and MAPK/ERK pathways as important signaling cascades in HIF-1 activation. Special consideration was given to cell culture-based metabolomics as one of the most sensitive, accurate, and comprising approaches for understanding the response of cancer cell metabolome to phytochemicals.
Collapse
|
42
|
Zhang P, Li B, Chen Q, Wang H, Feng Q. Glucose restriction induces ROS-AMPK-mediated CTR1 expression and increases cisplatin efficiency in NSCLC. Cancer Lett 2022; 543:215793. [PMID: 35716782 DOI: 10.1016/j.canlet.2022.215793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
Cisplatin is one of the principal platinum-based chemotherapeutic agents for many types of cancer, including non-small-cell lung cancer (NSCLC). Copper transporter 1 (CTR1) plays a significant role in increasing cellular cisplatin uptake and sensitivity. The current study found that glucose restriction upregulated AMPK (AMP-activated protein kinase) through reactive oxygen species (ROS) to induce CTR1 expression in NSCLC cells. Direct upregulation of ROS levels also activated AMPK expression. The changes in CTR1 expression were consistent with glucose concentrations and AMPK expression. Feeding a low-carbohydrate ketogenic diet (a glucose restriction diet) to a severe combined immune deficiency (SCID) mouse xenograft model significantly enhanced the efficacy of cisplatin. The tumor size was significantly smaller in the group treated with cisplatin plus the low-carbohydrate ketogenic diet than in the group treated with cisplatin alone. Survival was longer in mice treated with the low-carbohydrate ketogenic diet than in the controls. Mice fed the low-carbohydrate ketogenic diet showed increased expression of CTR1 and AMPK in tumor tissues. These results suggest a novel mechanism whereby glucose restriction induces ROS-AMPK-mediated CTR1 expression in NSCLC, indicating glucose restriction as an effective adjuvant NSCLC therapy.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bohan Li
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianfeng Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Wang
- Clinical Nutrition Department, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
43
|
Arendowski A, Sagandykova G, Mametov R, Rafińska K, Pryshchepa O, Pomastowski P. Nanostructured Layer of Silver for Detection of Small Biomolecules in Surface-Assisted Laser Desorption Ionization Mass Spectrometry. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4076. [PMID: 35744134 PMCID: PMC9227941 DOI: 10.3390/ma15124076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023]
Abstract
A facile approach for the synthesis of a silver nanostructured layer for application in surface-assisted laser desorption/ionization mass spectrometry of low-molecular-weight biomolecules was developed using electrochemical deposition. The deposition was carried out using the following silver salts: trifluoroacetate, acetate and nitrate, varying the voltage and time. The plate based on trifluoroacetate at 10 V for 15 min showed intense SALDI-MS responses for standards of various classes of compounds: fatty acids, cyclitols, saccharides and lipids at a concentration of 1 nmol/spot, with values of the signal-to-noise ratio ≥50. The values of the limit of detection were 0.71 µM for adonitol, 2.08 µM for glucose and 0.39 µM for palmitic acid per spot. SEM analysis of the plate showed anisotropic flower-like microstructures with nanostructures on their surface. The reduced chemical background in the low-mass region can probably be explained by the absence of stabilizers and reducing agents during the synthesis. The plate synthesized with the developed approach showed potential for future use in the analysis of low-molecular-weight compounds of biological relevance. The absence of the need for the utilization of sophisticated equipment and the synthesis time (10 min) may benefit large-scale applications of the layer for the detection of various types of small biomolecules.
Collapse
Affiliation(s)
- Adrian Arendowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (A.A.); (R.M.); (O.P.); (P.P.)
| | - Gulyaim Sagandykova
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (A.A.); (R.M.); (O.P.); (P.P.)
| | - Radik Mametov
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (A.A.); (R.M.); (O.P.); (P.P.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Oleksandra Pryshchepa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (A.A.); (R.M.); (O.P.); (P.P.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (A.A.); (R.M.); (O.P.); (P.P.)
| |
Collapse
|
44
|
Ni S, Liu Y, Zhong J, Shen Y. Inhibition of LncRNA-NEAT1 alleviates intestinal epithelial cells (IECs) dysfunction in ulcerative colitis by maintaining the homeostasis of the glucose metabolism through the miR-410-3p-LDHA axis. Bioengineered 2022; 13:8961-8971. [PMID: 35735114 PMCID: PMC9161899 DOI: 10.1080/21655979.2022.2037957] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dysfunction of intestinal epithelial cells (IECs) leads to intestinal epithelial barrier damage and critically involves in the pathogenesis and development of ulcerative colitis (UC). Accumulating studies revealed essential functions of non-coding RNAs in UC. LncRNA NEAT1 (long non-coding RNA nuclear paraspeckle assembly transcript 1) is frequently dysregulated in diverse human diseases. Currently, the precise roles of NEAT1 in the dysfunction of IECs during UC remain unclear. We report NEAT1 was significantly upregulated in IECs from UC patients. In addition, microRNA-410-3p was remarkedly suppressed in IECs from UC patients. Silencing NEAT1 effectively ameliorates the LPS-induced IECs dysfunction. Bioinformatical analysis, RNA pull-down and luciferase assays illustrated that NEAT1 sponged miR-410-3p to downregulate its expression in IECs. Interestingly, the glucose metabolism was obviously elevated in IECs from UC compared with normal colon tissues. Furthermore, NEAT1 promoted and miR-410-3p suppressed glucose metabolism of IECs. We identified lactate dehydrogenase A (LDHA), a glucose metabolism key enzyme, was a direct target of miR-410-3p in IECs. Rescue experiments verified that restoration of miR-410-3p in NEAT1-overexpressing IECs successfully overcame the NEAT1-promoted cell death under LPS treatment by targeting LDHA. In summary, these results unveiled new roles and molecular mechanisms for the NEAT1-mediated IECs dysfunction during the ulcerative colitis.
Collapse
Affiliation(s)
- Siyi Ni
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yingchao Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jihong Zhong
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yan Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
45
|
Wang GM, Fu JP, Mo WC, Zhang HT, Liu Y, He RQ. Shielded geomagnetic field accelerates glucose consumption in human neuroblastoma cells by promoting anaerobic glycolysis. Biochem Biophys Res Commun 2022; 601:101-108. [PMID: 35240496 DOI: 10.1016/j.bbrc.2022.01.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022]
Abstract
A shielded geomagnetic field, also called the hypomagnetic field (HMF), interferes with the metabolic processes of various cells and animals exhibiting diverse effects in different models, however, its underlying mechanism remains largely unknown. In this study, we assessed the effect on the energy metabolism of SH-SY5Y cells in HMF and found that HMF-induced cell proliferation depends on glucose supply. HMF promoted SH-SY5Y cell proliferation by increasing glucose consumption rate via up-regulating anaerobic glycolysis in the cells. Increased activity of LDH, a key member of glycolysis, was possibly a direct response to HMF-induced cell proliferation. Thus, we unveiled a novel subcellular mechanism underlying the HMF-induced cellular response: the up-regulation of anaerobic glycolysis and repression of oxidative stress shifted cellular metabolism more towards the Warburg effect commonly observed in cancer metabolism. We suggest that cellular metabolic profiles of various cell types may determine HMF-induced cellular effects, and a magnetic field can be applied as a non-invasive regulator of cell metabolism.
Collapse
Affiliation(s)
- Guo-Mi Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jing-Peng Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Wei-Chuan Mo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Hai-Tao Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Rong-Qiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
46
|
Xu YJ, Wei RS, Li XH, Li Q, Yu JR, Zhuang XF. MiR-421 promotes lipid metabolism by targeting PTEN via activating PI3K/AKT/mTOR pathway in non-small cell lung cancer. Epigenomics 2022; 14:121-138. [PMID: 35045733 DOI: 10.2217/epi-2021-0229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aims: We aim to investigate the effects of miR-421 on lipid metabolism in non-small cell lung cancer (NSCLC). Methods: The miR-421 expression and PTEN mRNA level in tumor tissues, adjacent normal tissues, human lung epithelial cells and NSCLC cell lines were detected with reverse transcription quantitative real-time PCR. Results: MiR-421 was increased, and PTEN was reduced remarkably in tumor tissues and NSCLC cell lines. Down-regulated miR-421 suppressed lipid accumulation, cell proliferation, migration and invasion, whereas overexpression of miR-421 had the opposite effects. MiR-421 directly targeted PTEN and negatively regulated PTEN expression. MiR-421 activated PI3K/AKT/mTOR pathway through regulating PTEN. Conclusion: MiR-421 promotes lipid metabolism through targeting PTEN via PI3K/AKT/mTOR pathway activation in NSCLC, indicating that miR-421 can be a latent therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yong-Jie Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, 030000, Shanxi Province, China
| | - Rui-Shi Wei
- Department of Thoracic Surgery, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, 213001, Jiangsu Province, China
| | - Xin-Hua Li
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, 030000, Shanxi Province, China
| | - Qiang Li
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, 030000, Shanxi Province, China
| | - Jian-Rong Yu
- Department of Thoracic Surgery, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, 213001, Jiangsu Province, China
| | - Xiao-Fei Zhuang
- Department of Thoracic Surgery, Shanxi Cancer Hospital, Taiyuan, 030000, Shanxi Province, China
| |
Collapse
|
47
|
Zou J, Gu Y, Zhu Q, Li X, Qin L. Identifying Glycolysis-related LncRNAs for predicting prognosis in breast cancer patients. Cancer Biomark 2022; 34:393-401. [PMID: 35068448 PMCID: PMC9198763 DOI: 10.3233/cbm-210446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE: Functions associated with glycolysis could serve as targets or biomarkers for therapy cancer. Our purpose was to establish a prognostic model that could evaluate the importance of Glycolysis-related lncRNAs in breast cancer. METHODS: Gene expressions were evaluated for breast cancer through The Cancer Genome Atlas (TCGA) database, and we calculated Pearson correlations to discover potential related lncRNAs. Differentially expressed genes were identified via criteria of FDR < 0.05 and |FC|> 2. Total samples were separated into training and validating sets randomly. Univariate Cox regression identified 14 prognostic lncRNAs in training set. A prognostic model was constructed to evaluate the accuracy in predicting prognosis. The univariate and multivariate Cox analysis were performed to verify whether lncRNA signature could be an independent prognostic factor The signature was validated in validating set. Immune infiltration levels were assessed. RESULTS: Eighty-nine differentially expressed lncRNAs were identified from 420 Glycolysis-related lncRNAs. 14 lncRNAs were correlated with prognosis in training set and were selected to establish the prognostic model. Low risk group had better prognosis in both training (p= 9.025 e -10) and validating (p= 4.272 e -3) sets. The univariate and multivariate Cox analysis revealed that risk score of glycolysis-related lncRNAs (P< 0.001) was an independent prognostic factor in both training and validating sets. The neutrophils (p= 4.214 e -13, r=-0.223), CD4+ T cells (p= 1.833 e -20, r=-0.283), CD8+ T cells (p= 7.641 e -12, r=-0.211), B cells (p= 2.502 e -10, r=-0.195) and dendritic cells (p= 5.14 e -18, r=-0.265) were negatively correlated with risk score of prognostic model. The Macrophage (p= 0.016, r= 0.0755) was positively correlated with the risk score. CONCLUSION: Our study indicated that glycolysis-related lncRNAs had a significant role to facilitate the individualized survival prediction in breast cancer patients, which would be a potential therapeutic target.
Collapse
Affiliation(s)
- Jiayue Zou
- Department of Hepatobiliary Surgery, General Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanlin Gu
- Department of Thyroid and Breast Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Zhu
- Department of Thyroid and Breast Surgery, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Xiaohua Li
- Department of Thyroid and Breast Surgery, Wuzhong People’s Hospital of Suzhou City, Suzhou, Jiangsu, China
| | - Lei Qin
- Department of Hepatobiliary Surgery, General Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
48
|
Qiu Q, Zou H, Zou H, Jing T, Li X, Yan G, Geng N, Zhang B, Zhang Z, Zhang S, Yao B, Zhang G, Zou C. 3-Bromopyruvate-induced glycolysis inhibition impacts larval growth and development and carbohydrate homeostasis in fall webworm, Hyphantria cunea Drury. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104961. [PMID: 34802511 DOI: 10.1016/j.pestbp.2021.104961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
As a typical glycolytic inhibitor, 3-bromopyruvate (3-BrPA) has been extensively studied in cancer therapy in recent decades. However, few studies focused on 3-BrPA in regulating the growth and development of insects, and the relationship and regulatory mechanism between glycolysis and chitin biosynthesis remain largely unknown. The Hyphantria cunea, named fall webworm, is a notorious defoliator, which caused a huge economic loss to agriculture and forestry. Here, we investigated the effects of 3-BrPA on the growth and development, glycolysis, carbohydrate homeostasis, as well as chitin synthesis in H. cunea larvae. To elucidate the action mechanism of 3-BrPA on H. cunea will provide a new insight for the control of this pest. The results showed that 3-BrPA dramatically restrained the growth and development of H. cunea larvae and resulted in larval lethality. Meanwhile, we confirmed that 3-BrPA caused a significant decrease in carbohydrate, adenosine triphosphate (ATP), pyruvic acid (PA), and triglyceride (TG) levels by inhibiting glycolysis in H. cunea larvae. Further studies indicated that 3-BrPA significantly affected the activities of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and trehalase, as well as expressions of the genes related to glycolysis, resulting in carbohydrate homeostasis disorder. Moreover, it was found that 3-BrPA enhanced 20-hydroxyecdysone (20E) signaling by upregulating HcCYP306A1 and HcCYP314A1, two critical genes in 20E synthesis pathway, and accelerated chitin synthesis by upregulating transcriptional levels of genes in the chitin synthesis pathway in H. cunea larvae. Taken together, our findings provide a novel insight into the mechanism of glycolytic inhibitor in regulating the growth and development of insects, and lay a foundation for the potential application of glycolytic inhibitors in pest control as well.
Collapse
Affiliation(s)
- Qian Qiu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Haifeng Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Tianzhong Jing
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - XingPeng Li
- School of Forestry, Beihua University, Jilin 132013, PR China
| | - Gaige Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Nannan Geng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Bihan Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Zhidong Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Shengyu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Bin Yao
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
49
|
Leite TC, Watters RJ, Weiss KR, Intini G. Avenues of research in dietary interventions to target tumor metabolism in osteosarcoma. J Transl Med 2021; 19:450. [PMID: 34715874 PMCID: PMC8555297 DOI: 10.1186/s12967-021-03122-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary bone cancer, affecting mostly children and adolescents. Although much progress has been made throughout the years towards treating primary OS, the 5-year survival rate for metastatic OS has remained at only 20% for the last 30 years. Therefore, more efficient treatments are needed. Recent studies have shown that tumor metabolism displays a unique behavior, and plays important roles in tumor growth and metastasis, making it an attractive potential target for novel therapies. While normal cells typically fuel the oxidative phosphorylation (OXPHOS) pathway with the products of glycolysis, cancer cells acquire a plastic metabolism, uncoupling these two pathways. This allows them to obtain building blocks for proliferation from glycolytic intermediates and ATP from OXPHOS. One way to target the metabolism of cancer cells is through dietary interventions. However, while some diets have shown anticancer effects against certain tumor types in preclinical studies, as of yet none have been tested to treat OS. Here we review the features of tumor metabolism, in general and about OS, and propose avenues of research in dietary intervention, discussing strategies that could potentially be effective to target OS metabolism.
Collapse
Affiliation(s)
- Taiana Campos Leite
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
- Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Rebecca Jean Watters
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kurt Richard Weiss
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Giuseppe Intini
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
- Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
50
|
Quantification of 2-NBDG, a probe for glucose uptake, in GLUT1 overexpression in HEK293T cells by LC-MS/MS. Anal Biochem 2021; 631:114357. [PMID: 34469746 DOI: 10.1016/j.ab.2021.114357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/06/2023]
Abstract
The growth and proliferation of most cancer cells involve the excessive uptake of glucose mediated by glucose transporters. An effective strategy for cancer therapy has been to inhibit the GLUTs that are usually overexpressed in a variety of tumor cells. 2-NBDG is a GLUT1 substrate that can be used as a probe for GLUT1 inhibitors. An accurate and simple assay for 2-NBDG in a HEK293T cell model overexpressing GLUT1 was developed using liquid chromatography-tandem mass spectrometry. Chromatographic separation was achieved using a Xbridge® Amide column (3.5 μm, 2.1 mm × 150 mm, Waters) with acetonitrile-water containing 2 μM ammonium acetate (80:20, v/v) at a flow rate of 0.25 mL/min. Mass detection was conducted in the parallel reaction monitoring (PRM) mode. The calibration curve for 2-NBDG showed good linearity in the concentration range of 5-500 ng/mL with satisfactory precision, a relative standard deviation ranging from 2.92 to 9.59% and accuracy with a relative error ranging from -13.14 to 7.34%. This method was successfully applied to quantify the uptake of GLUT1-mediated 2-NBDG, and the results clearly indicated inhibition of GLUT1 by WZB117 and quercetin (two potent glucose transporter inhibitors) in the GLUT1-HEK293T cell model. This study provides a convenient and accurate method for high-throughput screening of selective and promising GLUT1 inhibitors.
Collapse
|