1
|
Hassanein EHM, Alotaibi MF, Alruhaimi RS, Abd El-Ghafar OAM, Mohammad MK, Atwa AM, Mahmoud AM. Diallyl disulfide prevents cadmium-induced testicular injury by attenuating oxidative stress, apoptosis, and TLR-4/NF-κB and JAK1/STAT3 signaling and upregulating SIRT1 in rats. J Trace Elem Med Biol 2024; 86:127560. [PMID: 39536426 DOI: 10.1016/j.jtemb.2024.127560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/17/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cadmium (Cd) is a heavy metal environmental pollutant that can cause serious health problems. Cd can cause structural changes in the testes and exposure to this heavy metal is associated with the loss of sperms and male infertility. The role of oxidative stress and inflammation in Cd toxicity has been acknowledged. Diallyl disulfide (DADS), an organo-sulfur compound found in garlic, possesses antioxidant, anti-inflammatory, and cytoprotective effects. This study evaluated the protective effect of DADS against Cd reproductive toxicity in male rats, emphasizing the involvement of redox imbalance, TLR-4/NF-κB and JAK1/STAT3 signaling, and SIRT1. METHODS DADS (10 mg/kg body weight) was administered orally to rats for 14 days and a single dose of Cd (1.2 mg/kg) was injected intraperitoneally on day 7. Blood and samples from the testes were collected for analysis. RESULTS Cd caused testicular injury manifested by multiple histopathological changes and loss of sperms from seminiferous tubules. Circulating levels of gonadotropins and testosterone were decreased in Cd-administered rats. DADS prevented Cd-induced testicular injury and ameliorated serum levels of gonadotropins and testosterone. Cd increased testicular reactive oxygen species (ROS) and malondialdehyde (MDA) and upregulated TLR-4, NF-κB, pro-inflammatory cytokines, JAK1 and STAT3 phosphorylation, Bax and caspase-3, while decreased antioxidants and Bcl-2. DADS effectively decreased ROS and MDA, downregulated TLR-4, NF-κB, JAK1, STAT3, pro-inflammatory cytokines and pro-apoptosis markers in Cd-administered rats. In addition, DADS enhanced antioxidants, Bcl-2, SIRT1 and cytoglobin in the testis of Cd-administered rats. CONCLUSION DADS prevents Cd-induced testicular injury by attenuating oxidative stress, apoptosis, and TLR-4/NF-κB and JAK1/STAT3 signaling, and upregulating SIRT1 and antioxidants.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut 71524, Egypt
| | - Mohammed F Alotaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62764, Egypt
| | - Mostafa K Mohammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Assiut, New Nasser City, West of Assiut, Assiut 71523, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
2
|
Zheng ZL, Ma JW, Luo Y, Liang GJ, Lei SJ, Yan KJ, Meng HB, Liu XJ. Mechanism of dexmedetomidine protection against cisplatin induced acute kidney injury in rats. Ren Fail 2024; 46:2337287. [PMID: 38627212 PMCID: PMC11022910 DOI: 10.1080/0886022x.2024.2337287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE This study explored the molecular mechanisms by which dexmedetomidine (Dex) alleviates cisplatin (CP)-induced acute kidney injury (AKI) in rats. METHODS CP-induced AKI models were established, and Dex was intraperitoneally injected at different concentrations into rats in the model groups. Subsequently, rats were assigned to the control, CP, CP + Dex 10 μg/kg, and CP + Dex 25 μg/kg groups. After weighing the kidneys of the rats, the kidney arterial resistive index was calculated, and CP-induced AKI was evaluated. In addition, four serum biochemical indices were measured: histopathological damage in rat kidneys was detected; levels of inflammatory factors, interleukin (IL)-1β, IL-18, IL-6, and tumor necrosis factor alpha, in kidney tissue homogenate of rats were assessed through enzyme-linked immunosorbent assay (ELISA); and levels of NLRP-3, caspase-1, cleaved caspase-1, gasdermin D (GSDMD), and GSDMD-N in kidney tissues of rats were determined via western blotting. RESULTS Dex treatment reduced nephromegaly and serum clinical marker upregulation caused by CP-induced AKI. In addition, hematoxylin and eosin staining revealed that Dex treatment relieved CP-induced kidney tissue injury in AKI rats. ELISA analyses demonstrated that Dex treatment reduced the upregulated levels of proinflammatory cytokines in the kidney tissue of AKI rats induced by CP, thereby alleviating kidney tissue injury. Western blotting indicated that Dex alleviated CP-induced AKI by inhibiting pyroptosis mediated by NLRP-3 and caspase-1. CONCLUSION Dex protected rats from CP-induced AKI, and the mechanism may be related to NLRP-3/Caspase-1-mediated pyroptosis.
Collapse
Affiliation(s)
- Zeng-lu Zheng
- Department of Anesthesiology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Jun-wei Ma
- Department of Nephrology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Yi Luo
- Department of Respiratory, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Gui-jin Liang
- Department of Anesthesiology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Shi-jie Lei
- Department of Proctology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Ke-jin Yan
- Department of Proctology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Hai-bing Meng
- Department of Anesthesiology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Xiu-juan Liu
- Department of Nephrology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| |
Collapse
|
3
|
Li Y, Qin K, Liang W, Yan W, Fragoulis A, Pufe T, Buhl EM, Zhao Q, Greven J. Kidney Injury in a Murine Hemorrhagic Shock/Resuscitation Model Is Alleviated by sulforaphane's Anti-Inflammatory and Antioxidant Action. Inflammation 2024; 47:2215-2227. [PMID: 39023831 DOI: 10.1007/s10753-024-02106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Hemorrhagic shock/resuscitation (HS/R) can lead to acute kidney injury, mainly manifested as oxidative stress and inflammatory injury in the renal tubular epithelial cells, as well as abnormal autophagy and apoptosis. Sulforaphane (SFN), an agonist of the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) signaling pathway, is involved in multiple biological activities, such as anti-inflammatory, antioxidant, autophagy, and apoptosis regulation. This study investigated the effect of SFN on acute kidney injury after HS/R in mice. Hemorrhagic shock was induced in mice by controlling the arterial blood pressure at a range of 35-45 mmHg for 90 min within arterial blood withdrawal. Fluid resuscitation was carried out by reintroducing withdrawn blood and 0.9% NaCl. We found that SFN suppressed the elevation of urea nitrogen and serum creatinine levels in the blood induced by HS/R. SFN mitigated pathological alterations including swollen renal tubules and renal casts in kidney tissue of HS/R mice. Inflammation levels and oxidative stress were significantly downregulated in mouse kidney tissue after SFN administration. In addition, the kidney tissue of HS/R mice showed high levels of autophagosomes as observed by electron microscopy. However, SFN can further enhance the formation of autophagosomes in the HS/R + SFN group. SFN also increased autophagy-related proteins Beclin1 expression and suppressed P62 expression, while increasing the ratio of microtubule-associated protein 1 light chain 3 (LC3)-II and LC3-I (LC3-II/LC3-I). SFN also effectively decreased cleaved caspase-3 level and enhanced the ratio of anti-apoptotic protein B cell lymphoma 2 and Bcl2-associated X protein (Bcl2/Bax). Collectively, SFN effectively inhibited inflammation and oxidative stress, enhanced autophagy, thereby reducing HS/R-induced kidney injury and apoptosis levels in mouse kidneys.
Collapse
Affiliation(s)
- You Li
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Kang Qin
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany.
- Department of Shoulder and Elbow Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| | - Weiqiang Liang
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Weining Yan
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Eva Miriam Buhl
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
- Electron Microscopy Facility, Institute for Pathology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Qun Zhao
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Johannes Greven
- Department of Thoracic Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| |
Collapse
|
4
|
Liu M, Sun H, Fu H, Fu L, Zheng X, Chen Y. 7-hydroxycoumarin ameliorates ulcerative colitis in mice by inhibiting the MAPK pathway and alleviating gut microbiota dysbiosis. BMC Gastroenterol 2024; 24:405. [PMID: 39533196 PMCID: PMC11555800 DOI: 10.1186/s12876-024-03499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE This research aimed to delineate the pharmacological mechanisms of 7-Hydroxycoumarin (7-HC) on ulcerative colitis (UC) employing network pharmacology and experimental validation. METHODS To investigate the therapeutic effects of 7-HC on UC, a UC mouse model was established through the unrestricted intake of 3.0% dextran sulfate sodium (DSS) in their drinking water. Subsequently, we predicted the core targets and signaling pathways of 7-HC for the treatment of UC using the network pharmacology approach. Finally, the insights gained from network pharmacology were further validated by molecular docking, molecular dynamics simulation as well as in vivo experiments. RESULTS Administering 7-HC orally to mice with UC led to a marked improvement in colitis indicators. Furthermore, 7-HC significantly lowered the levels of inflammatory cytokines (TNF-α, IL-1β) in the colon and modulated oxidative stress markers (MPO, SOD). Subsequent studies identified 2 core targets (AKT1 and EGFR) in the colon of UC mice that were inhibited by 7-HC. Network pharmacology and experimental validation showed that 7-HC can reduce the expression of MAPK pathway markers P38, JNK, ERK, and their phosphorylation; 7-HC can also ameliorate UC by regulating the gut microbiome. CONCLUSION 7-HC demonstrates considerable efficacy in alleviating UC in mice, primarily through substantial diminution of tissue inflammation and oxidative stress. This is the first time that 7-HC has been found to treat UC by inhibiting the MAPK pathway and modulating the gut microbiota, providing a fresh perspective on the pharmacological mechanisms through which 7-HC operates in the management of UC.
Collapse
Affiliation(s)
- Mengqi Liu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Huayi Sun
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Fu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingping Fu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Zheng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Ali GF, Hassanein EHM, Mohamed WR. Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8165-8188. [PMID: 38822868 PMCID: PMC11522073 DOI: 10.1007/s00210-024-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.
Collapse
Affiliation(s)
- Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt.
| |
Collapse
|
6
|
Cengiz M, Gür B, Gür F, Şahintürk V, Bayrakdar A, Şahin IK, Başkoy SA, Bilici N, Onur S, Kaya Y, Kıran İ, Yıldırım Ö, Akkaya NB, Sezer CV, Ayhanci A. The protective effects of selenium and boron on cyclophosphamide-induced hepatic oxidative stress, inflammation, and apoptosis in rats. Heliyon 2024; 10:e38713. [PMID: 39416834 PMCID: PMC11481652 DOI: 10.1016/j.heliyon.2024.e38713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Cyclophosphamide (CP) is an alkylating anticancer drug with broad clinical application that is highly effective in the treatment of cancer and non-malignant diseases. However, the main limiting effect of CP is multi-organ toxicity due to damage to normal tissues. The aim of this study is to compare the hepatoprotective potential of selenium (Se) and boron (B) in CP-induced liver injury in experimental rats. The rats were randomly divided into six equal groups: Control (saline), 200 mg/kg CP (administered once on the fourth day of the experiment), 1.5 mg/kg Se (administered once/time daily for 6 days), 20 mg/kg B (administered once/time daily for 6 days), Se + CP and B + CP administered intraperitoneally (i.p.). Administration of CP leads to an increase in the levels of apoptotic markers (Bax, caspase-3), the apoptotic signaling pathway (Nrf2), oxidative stress indicators (TOS, OSI), lipid peroxidation markers (MPO, MDA), inflammation levels (NF-kB, TNF-α, IL-1β, IL -6), liver function markers (ALT, AST, ALP), while apoptosis markers (Bcl-2), apoptosis pathway (Keap-1), oxidative stress indicator (TAS), inflammation (IL -10) and intracellular antioxidant defense system (SOD, CAT, GPx and GSH) decreased. In addition, degeneration of hepatocytes and congestion in the central veins were observed. In contrast, in the groups administered Se and B with CP, the changes that occurred were reversed. However, it was found that Se protects the liver slightly better against CP damage than B. The protective effect of Se and B against the toxic effects of CP on the antioxidant markers SOD, CAT and GPx1 was also investigated in silico. The in silico results were consistent with the in vivo results for SOD and CAT, but not for GPx1.
Collapse
Affiliation(s)
- Mustafa Cengiz
- Department of Elementary Education, Faculty of Education, Siirt University, Siirt, Turkiye
| | - Bahri Gür
- Department of Biochemistry, Faculty of Sciences and Arts, Iğdır University, Iğdır, Turkiye
| | - Fatma Gür
- Department of Dentistry Services, Atatürk University, Erzurum, Turkiye
| | - Varol Şahintürk
- Department of Histology and Embryology, Medical Faculty, Eskisehir Osmangazi University, Eskişehir, Turkiye
| | - Alpaslan Bayrakdar
- Vocational School of Healthcare Services, Iğdır University, Iğdır, Turkiye
| | | | | | - Namık Bilici
- Department of Medical Pharmacology, Faculty of Medicine, Karabük University, Karabük, Turkiye
| | - Suzan Onur
- Faculty of Health Sciences, Karabük University, Karabük, Turkiye
| | - Yağmur Kaya
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Turkiye
| | - İsa Kıran
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Turkiye
| | - Özge Yıldırım
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Turkiye
| | - Nur Banu Akkaya
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Turkiye
| | - Canan Vejselova Sezer
- Department of Biology, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkiye
| | - Adnan Ayhanci
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Turkiye
| |
Collapse
|
7
|
Eid BG, Binmahfouz LS, Shaik RA, Bagher AM, Sirwi A, Abdel-Naim AB. Icariin inhibits cisplatin-induced ovarian toxicity via modulating NF-κB and PTEN/AKT/mTOR/AMPK axis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03395-y. [PMID: 39212737 DOI: 10.1007/s00210-024-03395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Cisplatin (CP) is a highly effective broad-spectrum chemotherapeutic agent for several solid tumors. However, its clinical use is associated with ovarian toxicity. Icariin (ICA) is a bioactive flavonoid of Epimedium brevicornum with reported protective activities against inflammation, oxidative stress and ovarian failure. This study aimed to explore the protective effects of ICA against CP-associated ovarian toxicity in rats. Rats were randomized into five groups and treated for 17 days: control, ICA (10 mg/kg/day, for 17 days. p.o.), CP (6 mg/kg, i.p. on days 7 and 14), CP + ICA (CP 6 mg/kg i.p. on days 7 and 14 and ICA 5 mg/kg p.o. daily), and CP + ICA (CP 6 mg/kg i.p. on days 7 and 14 and ICA 10 mg/kg p.o. daily). Our results indicated that ICA effectively improved ovarian reserve as indicated by attenuating CP-induced histolopathological changes and enhancing serum anti-müllerian hormone (AMH). Furthermore, co-administration of ICA with CP showed restoration of the oxidant-anti-oxidant balance in ovarian tissues, evidenced by decreased malondialdehyde (MDA) concentrations and elevated superoxide dismutase (SOD) and catalase (CAT) activities. Also, ICA suppressed ovarian inflammation as evidenced by down-regulation of the expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and nuclear factor kappa B (NF-κB). ICA inhibited ovarian apoptosis in CP-treated rats by down-regulation of CASP3 and Bax and up-regulation of Bcl-2 mRNA expression. Further, ICA enhanced PTEN, p-AKT, p-mTOR, and p-AMPKα expression. In conclusion, ICA possesses a protective activity against CP-induced ovarian toxicity in rats by exhibiting antioxidant, antiinflammatory, anti-apoptotic activities and modulating NF-κB expression and PTEN/AKT/mTOR/AMPK axis in ovarian tissues.
Collapse
Affiliation(s)
- Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Lenah S Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Rasheed A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
8
|
Ageena SA, Bakr AG, Mokhlis HA, Abd-Ellah MF. Renoprotective effects of apocynin and/or umbelliferone against acrylamide-induced acute kidney injury in rats: role of the NLRP3 inflammasome and Nrf-2/HO-1 signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03271-9. [PMID: 39028331 DOI: 10.1007/s00210-024-03271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Acrylamide (ACR) is a toxic, probably carcinogenic compound commonly found in fried foods and used in the production of many industrial consumer products. ACR-induced acute kidney injury is mediated through several signals. In this research, we investigated, for the first time, the therapeutic effects of phytochemicals apocynin (APO) and/or umbelliferone (UMB) against ACR-induced nephrotoxicity in rats and emphasized the underlying molecular mechanism. To achieve this goal, five groups of rats were randomly assigned: the control group received vehicle (0.5% CMC; 1 ml/rat), ACR (40 mg/kg, i.p.), ACR + APO (100 mg/kg, P.O.), ACR + UMB (50 mg/kg, P.O.), and combination group for 10 days. In ACR-intoxicated rats, there was a significant reduction in weight gain while the levels of blood urea, uric acid, creatinine, and Kim-1 were elevated, indicating renal injury. Histopathological injury was also observed in the kidneys of ACR-intoxicated rats, confirming the biochemical data. Moreover, MDA, TNF-α, and IL-1β levels were raised; and GSH and SOD levels were decreased. In contrast, treatment with APO, UMB, and their combination significantly reduced the kidney function biomarkers, prevented tissue damage, and decreased inflammatory cytokines and MDA. Mechanistically, it suppressed the expression of NLRP-3, ASC, GSDMD, caspase-1, and IL-1β, while it upregulated Nrf-2 and HO-1 in the kidneys of ACR-intoxicated rats. In conclusion, APO, UMB, and their combination prevented ACR-induced nephrotoxicity in rats by attenuating oxidative injury and inflammation, suppressing NLRP-3 inflammasome signaling, enhancing antioxidants, and upregulating Nrf-2 and HO-1 in the kidneys of ACR-induced rats.
Collapse
Affiliation(s)
- Saad A Ageena
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Adel G Bakr
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hamada A Mokhlis
- Department of Pharmacology & Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Kantara Branch, Sinai University, Cairo, Egypt
| | - Mohamed F Abd-Ellah
- Department of Pharmacology & Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
9
|
Zhao Y, Zhang Y, Yang H, Xu Z, Li Z, Zhang Z, Zhang W, Deng J. A comparative metabolomics analysis of phytochemcials and antioxidant activity between broccoli floret and by-products (leaves and stalks). Food Chem 2024; 443:138517. [PMID: 38295564 DOI: 10.1016/j.foodchem.2024.138517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Leaves and stalks, which account for about 45% and 25% of broccoli biomass, respectively, are usually discarded during broccoli production, leading to the waste of green resources. In this study, the phytochemical composition and antioxidant capacity of broccoli florets and their by-products (leaves and stalks) were comprehensively analyzed. The metabolomics identified several unique metabolites (e.g., scopoletin, Harpagoside, and sinalbin) in the leaves and stalks compared to florets. Notably, the leaves were found to be a rich source of flavonoids and coumarins, with superior antioxidant capacity. The random forest model and correlation analysis indicated that flavonoids, coumarin, and indole compounds were the important factors contributing to the antioxidant activity. Moreover, the stalks contained higher levels of carbohydrates and exhibited better antioxidant enzyme activity. Together, these results provided valuable data to support the comprehensive utilization of broccoli waste, the development of new products, and the expansion of the broccoli industry chain.
Collapse
Affiliation(s)
- Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
10
|
Hassanein EHM, Abdel-Reheim MA, Althagafy HS, Hemeda MS, Gad RA, Abdel-Sattar AR. Nifuroxazide attenuates indomethacin-induced renal injury by upregulating Nrf2/HO-1 and cytoglobin and suppressing NADPH-oxidase, NF-κB, and JAK-1/STAT3 signals. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3985-3994. [PMID: 37994949 DOI: 10.1007/s00210-023-02851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Indomethacin (INDO) is an NSAID with remarkable efficacy and widespread utilization for alleviating pain. Nevertheless, renal function impairment is an adverse reaction linked to INDO usage. Nifuroxazide (NFX), an oral nitrofuran antibiotic, is frequently employed as an intestinal anti-infective agent. Our study aimed to investigate the renoprotective effects of NFX against INDO-induced nephrotoxicity and explore the protection mechanisms. Four groups of rats were allocated to (I) the normal control, (II) the NFX-treated (50 mg/kg), (III) INDO control (20 mg/kg), and (IV) NFX + INDO. NFX attenuates renal impairment in INDO-induced renal injury, proved by decreasing serum levels of urea, creatinine, uric acid, and NGAL while the albumin was elevated. NFX mitigates renal oxidative stress by decreasing MDA levels and restoring the antioxidants' GSH and SOD levels mediated by upregulating Nrf2, HO-1, and cytoglobin pathways. NFX mitigated renal inflammation and effectively decreased MPO, IL-1β, and TNF-α levels in the rat's kidney mediated by significant downregulation of NADPH-oxidase and NF-κB expression and suppression of JAK-1 and STAT3 phosphorylation. NFX mitigates renal apoptosis by decreasing the expression of cleaved caspase-3 expression. In conclusion, NFX treatment prevents INDO nephrotoxicity by regulating Nrf2/HO-1, cytoglobin, NADPH-oxidase, NF-κB, and JAK-1/STAT3 signals.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62521, Egypt.
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed S Hemeda
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Rania A Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| | - Asmaa Ramadan Abdel-Sattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| |
Collapse
|
11
|
Liu Y, Luo J, Xu B. Elucidation of Anti-Obesity Mechanisms of Phenolics in Artemisiae argyi Folium (Aiye) by Integrating LC-MS, Network Pharmacology, and Molecular Docking. Life (Basel) 2024; 14:656. [PMID: 38929640 PMCID: PMC11205026 DOI: 10.3390/life14060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/19/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
The global prevalence of obesity is a pressing health issue, increasing the medical burden and posing significant health risks to humans. The side effects and complications associated with conventional medication and surgery have spurred the search for anti-obesity drugs from plant resources. Previous studies have suggested that Artemisiae argyi Folium (Aiye) water extracts could inhibit pancreatic lipase activities, control body weight increase, and improve the plasma lipids profile. However, the exact components and mechanisms were not precisely understood. Therefore, this research aims to identify the chemical profile of Aiye and provide a comprehensive prediction of its anti-obesity mechanisms. The water extract of Aiye was subjected to LC-MS analysis, which identified 30 phenolics. The anti-obesity mechanisms of these phenolics were then predicted, employing network pharmacology and molecular docking. Among the 30 phenolics, 21 passed the drug-likeness screening and exhibited 486 anti-obesity targets. The enrichment analysis revealed that these phenolics may combat obesity through PI3K-Akt signaling and MAPK, prolactin, and cAMP signaling pathways. Eight phenolics and seven central targets were selected for molecular docking, and 45 out of 56 docking had a binding affinity of less than -5 kcal/mol. This research has indicated the potential therapy targets and signaling pathways of Aiye in combating obesity.
Collapse
Affiliation(s)
- Yongxiang Liu
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (Y.L.); (J.L.)
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jinhai Luo
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (Y.L.); (J.L.)
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Baojun Xu
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (Y.L.); (J.L.)
| |
Collapse
|
12
|
Luo L, Wang H, Xiong J, Chen X, Shen X, Zhang H. Echinatin attenuates acute lung injury and inflammatory responses via TAK1-MAPK/NF-κB and Keap1-Nrf2-HO-1 signaling pathways in macrophages. PLoS One 2024; 19:e0303556. [PMID: 38753858 PMCID: PMC11098428 DOI: 10.1371/journal.pone.0303556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/27/2024] [Indexed: 05/18/2024] Open
Abstract
Echinatin is an active ingredient in licorice, a traditional Chinese medicine used in the treatment of inflammatory disorders. However, the protective effect and underlying mechanism of echinatin against acute lung injury (ALI) is still unclear. Herein, we aimed to explore echinatin-mediated anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated ALI and its molecular mechanisms in macrophages. In vitro, echinatin markedly decreased the levels of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated murine MH-S alveolar macrophages and RAW264.7 macrophages by suppressing inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) expression. Furthermore, echinatin reduced LPS-induced mRNA expression and release of interleukin-1β (IL-1β) and IL-6 in RAW264.7 cells. Western blotting and CETSA showed that echinatin repressed LPS-induced activation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathways through targeting transforming growth factor-beta-activated kinase 1 (TAK1). Furthermore, echinatin directly interacted with Kelch-like ECH-associated protein 1 (Keap1) and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway to enhance heme oxygenase-1 (HO-1) expression. In vivo, echinatin ameliorated LPS-induced lung inflammatory injury, and reduced production of IL-1β and IL-6. These findings demonstrated that echinatin exerted anti-inflammatory effects in vitro and in vivo, via blocking the TAK1-MAPK/NF-κB pathway and activating the Keap1-Nrf2-HO-1 pathway.
Collapse
Affiliation(s)
- Liuling Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrui Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaorui Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Fani F, Hosseinimehr SJ, Zargari M, Mirzaei M, Karimpour Malekshah A, Talebpour Amiri F. Piperine mitigates oxidative stress, inflammation, and apoptosis in the testicular damage induced by cyclophosphamide in mice. J Biochem Mol Toxicol 2024; 38:e23696. [PMID: 38528700 DOI: 10.1002/jbt.23696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 03/27/2024]
Abstract
Although cyclophosphamide (CP) has been approved as an anticancer drug, its toxic effect on most organs, especially the testis, has been established. Piperine (PIP) is an alkaloid that has antioxidant, antiapoptotic, and anti-inflammatory activities. This study was investigated the protective effects of PIP on CP-induced testicular toxicity in the mice. In this experimental study, 48 adult male BALB/c mice (30-35 g) were divided into six groups (n = 8), receiving normal saline (C), 5 mg/kg of PIP (PIP5), 10 mg/kg of PIP (PIP10), 200 mg/kg of CP, 200 mg/kg of CP + PIP5, and 200 mg/kg of CP + PIP10. On the eighth day of the study, blood and testis samples were prepared for serum testosterone hormone quantification, sperm analysis, histological, and immunohistochemical assays. The results of this study showed that CP induced testicular toxicity with the decrease of sperm count, motility, and viability. Also, CP treatment caused histological structure alterations in the testis, including exfoliation, degeneration, vacuolation of spermatogenic cells, and reducing the thickness of the epithelium and the diameter of the seminiferous tubule. In addition, CP decreased glutathione (GSH) levels, increased malondialdehyde (MDA) levels, Caspase-3, and NF-κB. At the same time, PIP treatment reduced testicular histopathological abnormalities, oxidative stress, and apoptosis that were induced by CP. These results showed that PIP improved CP-induced testicular toxicity in mice, which can be related to its antioxidant, antiapoptotic, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Fatemeh Fani
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Biochemistry, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mansoureh Mirzaei
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbasali Karimpour Malekshah
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
14
|
Abd-Alhameed EK, Azouz AA, Abo-Youssef AM, Ali FEM. The enteroprotective effect of nifuroxazide against methotrexate-induced intestinal injury involves co-activation of PPAR-γ, SIRT1, Nrf2, and suppression of NF-κB and JAK1/STAT3 signals. Int Immunopharmacol 2024; 127:111298. [PMID: 38070469 DOI: 10.1016/j.intimp.2023.111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Methotrexate (MTX) has long manifested therapeutic efficacy in several neoplastic and autoimmune disorders. However, MTX-associated intestinal toxicity restricts the continuation of treatment. Nifuroxazide (NIF) is an oral antibiotic approved for gastrointestinal infections as an effective antidiarrheal agent with a high safety profile. The current study was designed to explore the potential efficacy of NIF in alleviating intestinal toxicity associated with MTX chemotherapy with the elucidation of the proposed molecular mechanisms. Rats were administered NIF (50 mg/kg; p.o.) for ten days. On day five, a single i.p. injection of MTX (20 mg/kg) was given to induce intestinal intoxication. At the end of the experiment, duodenal tissue samples were isolated for biochemical, Western blotting, immunohistochemical (IHC), and histopathological analysis via H&E, PSA, and Alcian blue stains. NIF showed antioxidant enteroprotective effects against MTX intestinal intoxication through enhanced expression of the redox-sensitive signals of PPAR-γ, SIRT1, and Nrf2 estimated by IHC. Moreover, NIF down-regulated the pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), NF-κB protein expression, and the phosphorylation of JAK1/STAT3 proteins, leading to mitigation of intestinal inflammation. In accordance, the histological investigation revealed that NIF ameliorated the intestinal pathological changes, preserved the goblet cells, and reduced the inflammatory cells infiltration. Therefore, NIF could be a promising candidate for adjunctive therapy with MTX to mitigate the associated intestinal injury and increase its tolerability.
Collapse
Affiliation(s)
- Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Amany A Azouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| |
Collapse
|
15
|
Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, Sharawi ZW, Jaber FA, Althagafy HS. Nrf2/HO-1 as a therapeutic target in renal fibrosis. Life Sci 2023; 334:122209. [PMID: 37890696 DOI: 10.1016/j.lfs.2023.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Chronic kidney disease (CKD) is one of the most prevalent chronic diseases and affects between 10 and 14 % of the world's population. The World Health Organization estimates that by 2040, the disease will be fifth in prevalence. End-stage CKD is characterized by renal fibrosis, which can eventually lead to kidney failure and death. Renal fibrosis develops due to multiple injuries and involves oxidative stress and inflammation. In the human body, nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in the expression of antioxidant, anti-inflammatory, and cytoprotective genes, which prevents oxidative stress and inflammation damage. Heme oxygenase (HO-1) is an inducible homolog influenced by heme products and after exposure to cellular stress inducers such as oxidants, inflammatory chemokines/cytokines, and tissue damage as an outcome or downstream of Nrf2 activation. HO-1 is known for its antioxidative properties, which play an important role in regulating oxidative stress. In renal diseases-induced tissue fibrosis and xenobiotics-induced renal fibrosis, Nrf2/HO-1 has been targeted with promising results. This review summarizes these studies and highlights the interesting bioactive compounds that may assist in attenuating renal fibrosis mediated by HO-1 activation. In conclusion, Nrf2/HO-1 signal activation could have a renoprotective effect strategy against CKD caused by oxidative stress, inflammation, and consequent renal fibrosis.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Kamel GAM, Elariny HA. Pioglitazone attenuates tamoxifen-induced liver damage in rats via modulating Keap1/Nrf2/HO-1 and SIRT1/Notch1 signaling pathways: In-vivo investigations, and molecular docking analysis. Mol Biol Rep 2023; 50:10219-10233. [PMID: 37934372 PMCID: PMC10676319 DOI: 10.1007/s11033-023-08847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Tamoxifen (TAM) is a chemotherapeutic drug widely utilized to treat breast cancer. On the other hand, it exerts deleterious cellular effects in clinical applications as an antineoplastic agent, such as liver damage and cirrhosis. TAM-induced hepatic toxicity is mainly attributed to oxidative stress and inflammation. Pioglitazone (PIO), a peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist, is utilized to treat diabetes mellitus type-2. PIO has been reported to exert anti-inflammatory and antioxidant effects in different tissues. This research assessed the impact of PIO against TAM-induced hepatic intoxication. METHODS Rats received PIO (10 mg/kg) and TAM (45 mg/kg) orally for 10 days. RESULTS TAM increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT), triggered several histopathological alterations, NF-κB p65, increased hepatic oxidative stress, and pro-inflammatory cytokines. PIO protects against TAM-induced liver dysfunction, reduced malondialdehyde (MDA), and pro-inflammatory markers along with improved hepatic antioxidants. Moreover, PIO, increased hepatic Bcl-2 expression while reducing Bax expression and caspase-3 levels. In addition, PIO decreased Keap-1, Notch1, and Hes-1 while upregulated HO-1, Nrf2, and SIRT1. Molecular docking showed the binding affinity of PIO for Keap-1, NF-κB, and SIRT1. CONCLUSION PIO mitigated TAM hepatotoxicity by decreasing apoptosis, inflammation, and oxidative stress. The protecting ability of PIO was accompanied by reducing Keap-1 and NF-κB and regulating Keap1/Nrf2/HO-1 and Sirt1/Notch1 signaling. A schematic diagram illustrating the protective effect of PIO against TAM hepatotoxicity. PIO prevented TAM-induced liver injury by regulating Nrf2/HO-1 and SIRT1/Notch1 signaling and mitigating oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Gellan Alaa Mohamed Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, P.N. 11754, Nasr City, Cairo, Egypt.
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, P.N. 11754, Nasr City, Cairo, Egypt
| |
Collapse
|
17
|
Ali FEM, Hassanein EHM, El-Bahrawy AH, Hemeda MS, Atwa AM. Neuroprotective effect of lansoprazole against cisplatin-induced brain toxicity: Role of Nrf2/ARE and Akt/P53 signaling pathways. J Chem Neuroanat 2023; 132:102299. [PMID: 37271475 DOI: 10.1016/j.jchemneu.2023.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Cisplatin is a chemotherapeutic agent usually used in treating different patterns of malignancies. One of the significant apparent complications of cisplatin chemotherapy is brain toxicity. The present study was conducted to evaluate the protective effects of lansoprazole on cisplatin-induced cortical intoxication. Thirty-two rats were allocated into four groups (8 rats/group); group I: received only a vehicle for 10 days, group II: lansoprazole was administered (50 mg/kg) via oral gavage for 10 days, group III: On 5th day of the experiment, rats were given cisplatin (10 mg/kg) i.p. once to induce cortical injury. Group IV: rats were given lansoprazole for 5 days before cisplatin and 5 days afterward. Lansoprazole administration significantly improved cisplatin-induced behavioral changes, as evidenced by decreasing the immobility time in forced swimming and open field tests. Besides, lansoprazole improved cortical histological changes, restored cortical redox balance, enhanced Nrf2/ARE expression, cisplatin-induced neuronal apoptosis, and dampened cisplatin inflammation. In addition, lansoprazole modulated cortical Akt/p53 signal. The present work was the first to show that lansoprazole co-administration reduced cortical toxicity in cisplatin-treated rats via multiple signaling pathways. The current findings provided crucial information for developing novel protective strategies to reduce cisplatin cortical toxicity.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ali H El-Bahrawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed S Hemeda
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
18
|
Ramadan SA, Kamel EM, Alruhaimi RS, Bin-Ammar A, Ewais MA, Khowailed AA, Hassanein EH, Mahmoud AM. An integrated phytochemical, in silico and in vivo approach to identify the protective effect of Caroxylon salicornicum against cisplatin hepatotoxicity. Saudi Pharm J 2023; 31:101766. [PMID: 37731943 PMCID: PMC10507235 DOI: 10.1016/j.jsps.2023.101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/27/2023] [Indexed: 09/22/2023] Open
Abstract
Cisplatin (CIS) is a chemotherapeutic medication for the treatment of cancer. However, hepatotoxicity is among the adverse effects limiting its use. Caroxylon salicornicum is traditionally used for treating inflammatory diseases. In this investigation, three flavonoids, four coumarins, and three sterols were detected in the petroleum ether fraction of C. salicornicum (PEFCS). The isolated phytochemicals exhibited binding affinity toward Keap1, NF-κB, and SIRT1 in silico. The hepatoprotective role of PEFCS (100, 200 and 400 mg/kg) was investigated in vivo. Rats received PEFCS for 14 days and CIS on day 15. CIS increased ALT, AST and ALP and caused tissue injury along with increased ROS, MDA, and NO. Hepatic NF-κB p65, pro-inflammatory mediators, Bax and caspase-3 were increased in CIS-treated animals while antioxidants and Bcl-2 were decreased. PEFCS mitigated hepatocyte injury, and ameliorated transaminases, ALP, oxidative stress (OS) and inflammatory markers. PEFCS downregulated pro-apoptosis markers and boosted Bcl-2 and antioxidants. In addition, PEFCS upregulated Nrf2, HO-1, and SIRT1 in CIS-administered rats. In conclusion, PEFCS is rich in beneficial phytoconstituents and conferred protection against liver injury by attenuating OS and inflammation and upregulating Nrf2 and SIRT1.
Collapse
Affiliation(s)
| | | | - Reem S. Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Albandari Bin-Ammar
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Madeha A. Ewais
- Physiology Department, Faculty of Medicine, Beni-Suef University, Egypt
| | | | - Emad H.M. Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Ayman M. Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| |
Collapse
|
19
|
Xu Z, Zhang M, Wang W, Zhou S, Yu M, Qiu X, Jiang S, Wang X, Tang C, Li S, Wang CH, Zhu R, Peng WX, Zhao L, Fu X, Patzak A, Persson PB, Zhao L, Mao J, Shu Q, Lai EY, Zhang G. Dihydromyricetin attenuates cisplatin-induced acute kidney injury by reducing oxidative stress, inflammation and ferroptosis. Toxicol Appl Pharmacol 2023; 473:116595. [PMID: 37328118 DOI: 10.1016/j.taap.2023.116595] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cisplatin is effective against various types of cancers. However, its clinical application is limited owing to its adverse effects, especially acute kidney injury (AKI). Dihydromyricetin (DHM), a flavonoid derived from Ampelopsis grossedentata, has varied pharmacological activities. This research aimed to determine the molecular mechanism for cisplatin-induced AKI. METHODS A murine model of cisplatin-induced AKI (22 mg/kg, I.P.) and a HK-2 cell model of cisplatin-induced damage (30 μM) were established to evaluate the protective function of DHM. Renal dysfunction markers, renal morphology and potential signaling pathways were investigated. RESULTS DHM decreased the levels of renal function biomarkers (blood urea nitrogen and serum creatinine), mitigated renal morphological damage, and downregulated the protein levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. It upregulated the expression levels of antioxidant enzymes (superoxide dismutase and catalase expression), nuclear factor-erythroid-2-related factor 2 (Nrf2) and its downstream proteins, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic (GCLC) and modulatory (GCLM) subunits, thus eventually reducing cisplatin-induced reactive oxygen species (ROS) production. Moreover, DHM partially inhibited the phosphorylation of the active fragments of caspase-8 and -3 and mitogen-activated protein kinase and restored glutathione peroxidase 4 expression, which attenuated renal apoptosis and ferroptosis in cisplatin-treated animals. DHM also mitigated the activation of NLRP3 inflammasome and nuclear factor (NF)-κB, attenuating the inflammatory response. In addition, it reduced cisplatin-induced HK-2 cell apoptosis and ROS production, both of which were blocked by the Nrf2 inhibitor ML385. CONCLUSIONS DHM suppressed cisplatin-induced oxidative stress, inflammation and ferroptosis probably through regulating of Nrf2/HO-1, MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Zheming Xu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Minjing Zhang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Wenwen Wang
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310051, China
| | - Suhan Zhou
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Minghua Yu
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xingyu Qiu
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shan Jiang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Shuijie Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chih-Hong Wang
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Runzhi Zhu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Wan Xin Peng
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Lin Zhao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xiaodong Fu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510260, China
| | - Andreas Patzak
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Translational Physiology, Berlin, Germany
| | - Pontus B Persson
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Translational Physiology, Berlin, Germany
| | - Liang Zhao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China; Children's Hospital, Zhejiang University School of Medicine, Pediatric Nephrology & Urology Medical Research Center, Hangzhou 310052, China
| | - Jianhua Mao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China; Children's Hospital, Zhejiang University School of Medicine, Pediatric Nephrology & Urology Medical Research Center, Hangzhou 310052, China
| | - Qiang Shu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China.
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Translational Physiology, Berlin, Germany.
| | - Gensheng Zhang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China; Children's Hospital, Zhejiang University School of Medicine, Pediatric Nephrology & Urology Medical Research Center, Hangzhou 310052, China.
| |
Collapse
|
20
|
Wu H, Shi X, Zang Y, Zhao X, Liu X, Wang W, Shi W, Wong CTT, Sheng L, Chen X, Zhang S. 7-hydroxycoumarin-β-D-glucuronide protects against cisplatin-induced acute kidney injury via inhibiting p38MAPK-mediated apoptosis in mice. Life Sci 2023; 327:121864. [PMID: 37336359 DOI: 10.1016/j.lfs.2023.121864] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
AIMS Cisplatin is a widely-used drug in the clinical treatment of tumors, but kidney nephrotoxicity is one of the reasons that limits its widespread use. We previously found that 7-hydroxycoumarin-β-D-glucuronide (7-HCG) was one of metabolites of skimmin and highly enriched in the kidneys and maintained a high blood concentration in skimmin-treated rats. Therefore, we investigated whether 7-HCG has a protective effect on cisplatin-induced acute kidney injury. MATERIALS AND METHODS Male C57BL/6 mice were continuously administered 7-HCG for five days, and on the third day, an intraperitoneal injection of cisplatin was given to induce acute kidney injury. After 72 h, the mice were sacrificed for analysis. Serum and renal tissue were collected for renal function evaluation. RNA sequencing was used to explore mechanism, and further validated by western blot and immunohistochemistry. In addition, pharmacokinetic study of oral 7-HCG administration was performed to examine how much 7-hydroxycoumarin (7-HC) was metabolized and 7-HC possible effect on renal protection. KEY FINDINGS 7-HCG significantly reduced serum BUN and SCR levels, and alleviated pathological damage in renal tissue, and reduced the renal index. RNA sequencing revealed that 7-HCG could reverse p38 MAPK regulation and apoptosis. By western blotting, it was found that 7-HCG could reduce renal injury by reducing p-p38, p-ERK, p-JNK, cleaved-caspase3 and Bax. The immunohistochemical results of cleaved-caspase3 were consistent with western blotting. 7-HCG also significantly reduced the production of ROS in kidney tissue. Pharmacokinetic experiments have shown that 7-HCG in the blood increased rapidly and was eliminated slowly, with an average t1/2β of 18.3 h. And the concentration of 7-HCG in the target organ kidney was about 4 times higher than that in blood. SIGNIFICANCE Our findings indicate that 7-HCG could exert its protective effect against cisplatin-induced acute kidney injury by inhibiting apoptosis via p38 MAPK regulation and elucidates its pharmacokinetics.
Collapse
Affiliation(s)
- Haijie Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xiaohu Shi
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Yingda Zang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xiaodi Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xikun Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Weida Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Wenying Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Clarence T T Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Li Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
21
|
Alruhaimi RS, Mostafa-Hedeab G, Abduh MS, Bin-Ammar A, Hassanein EHM, Kamel EM, Mahmoud AM. A flavonoid-rich fraction of Euphorbia peplus attenuates hyperglycemia, insulin resistance, and oxidative stress in a type 2 diabetes rat model. Front Pharmacol 2023; 14:1204641. [PMID: 37397470 PMCID: PMC10311489 DOI: 10.3389/fphar.2023.1204641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Type 2 diabetes (T2D) is a metabolic disorder characterized by insulin resistance (IR) and hyperglycemia. Plants are valuable sources of therapeutic agents for the management of T2D. Euphorbia peplus has been widely used as a traditional medicine for the treatment of various diseases, but its beneficial role in T2D has not been fully explored. Methods: The anti-diabetic efficacy of E. peplus extract (EPE) was studied using rats with T2D induced by high-fat diet (HFD) and streptozotocin (STZ). The diabetic rats received 100, 200, and 400 mg/kg EPE for 4 weeks. Results: Phytochemical fractionation of the aerial parts of E. peplus led to the isolation of seven known flavonoids. Rats with T2D exhibited IR, impaired glucose tolerance, decreased liver hexokinase and glycogen, and upregulated glycogen phosphorylase, glucose-6-phosphatase (G-6-Pase), and fructose-1,6-bisphosphatase (F-1,6-BPase). Treatment with 100, 200, and 400 mg/kg EPE for 4 weeks ameliorated hyperglycemia, IR, liver glycogen, and the activities of carbohydrate-metabolizing enzymes. EPE attenuated dyslipidemia, serum transaminases, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and liver lipid accumulation, nuclear factor (NF)-κB p65, and lipid peroxidation, nitric oxide and enhanced antioxidants. All EPE doses upregulated serum adiponectin and liver peroxisome proliferator-activated receptor γ (PPARγ) in HFD/STZ-induced rats. The isolated flavonoids showed in silico binding affinity toward hexokinase, NF-κB, and PPARγ. Conclusion: E. peplus is rich in flavonoids, and its extract ameliorated IR, hyperglycemia, dyslipidemia, inflammation and redox imbalance, and upregulated adiponectin and PPARγ in rats with T2D.
Collapse
Affiliation(s)
- Reem S. Alruhaimi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department, Medical College, Jouf University, Sakaka, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Albandari Bin-Ammar
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Emad H. M. Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Emadeldin M. Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ayman M. Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
22
|
Lin Z, Cheng X, Zheng H. Umbelliferon: a review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology 2023:10.1007/s10787-023-01256-3. [PMID: 37308634 DOI: 10.1007/s10787-023-01256-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
Coumarin, a plant secondary metabolite, has various pharmacological activities, including antioxidant stress and anti-inflammatory effects. Umbelliferone, a common coumarin compound found in almost all higher plants, has been extensively studied for its pharmacological effects in different disease models and doses with complex action mechanisms. This review aims to summarize these studies and provide useful information to relevant scholars. The pharmacological studies demonstrate that umbelliferone has diverse effects such as anti-diabetes, anti-cancer, anti-infection, anti-rheumatoid arthritis, neuroprotection, and improvement of liver, kidney, and myocardial tissue damage. The action mechanisms of umbelliferone include inhibition of oxidative stress, inflammation, and apoptosis, improvement of insulin resistance, myocardial hypertrophy, and tissue fibrosis, in addition to regulation of blood glucose and lipid metabolism. Among the action mechanisms, the inhibition of oxidative stress and inflammation is the most critical. In short, these pharmacological studies disclose that umbelliferone is expected to treat many diseases, and more research should be conducted.
Collapse
Affiliation(s)
- Zhi Lin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Xi Cheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Hui Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
23
|
Alruhaimi RS. Protective effect of arbutin against cyclophosphamide-induced oxidative stress, inflammation, and hepatotoxicity via Nrf2/HO-1 pathway in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68101-68110. [PMID: 37119491 DOI: 10.1007/s11356-023-27354-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Cyclophosphamide (CP) is a potent anticancer drug widely employed in chemotherapy against various types of cancer. However, CP leads to toxicity to non-targeted organs, including the liver and this limits its clinical use. This study explored the role of arbutin (ARB) against CP-mediated oxidative and inflammatory reactions and hepatotoxicity. Rats were administered ARB (25 and 50 mg/kg) for 14 days and CP (150 mg/kg). CP triggered liver tissue injury with marked increase in serum AST, ALT, ALP, and bilirubin, and hepatic malondialdehyde (MDA) and nitric oxide (NO) coupled with diminution of GSH, SOD, catalase, and GPx. Liver NF-kB p65, NOS, IL-6, TNF-α, Bax and caspase-3 were upregulated by CP injection and IL-10 and Bcl-2 were decreased. ARB prevented liver injury, suppressed MDA, NO, NF-kB p65, inflammatory markers, Bax and caspase-3 in CP-treated rats. ARB restored antioxidants, IL-10 and Bcl-2, and enhanced Nrf2 and hemeoxygenase-1 (HO) both gene and protein in the liver of rats. In conclusion, these results pinpointed the protective role of ARB on oxidative and inflammatory reactions, apoptosis, and hepatotoxicity in rats. This hepatoprotective activity was linked to the ability of ARB to modulate Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
24
|
Abduh MS, Alzoghaibi MA, Alzoghaibi AM, Bin-Ammar A, Alotaibi MF, Kamel EM, Mahmoud AM. Arbutin ameliorates hyperglycemia, dyslipidemia and oxidative stress and modulates adipocytokines and PPARγ in high-fat diet/streptozotocin-induced diabetic rats. Life Sci 2023; 321:121612. [PMID: 36948387 DOI: 10.1016/j.lfs.2023.121612] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Arbutin is a glycosylated hydroquinone with antioxidant and anti-hyperglycemia effects. However, its beneficial effects in type 2 diabetes (T2D) were not clarified. This study evaluated the effect of arbutin on hyperglycemia, dyslipidemia, insulin resistance, oxidative stress, and inflammatory response in T2D. Rats induced by high fat diet and streptozotocin were treated with arbutin (25 and 50 mg/kg for 4 weeks). Diabetic rats exhibited glucose intolerance, elevated HbA1c%, reduced insulin, and high HOMA-IR. Liver glycogen and hexokinase activity were decreased in T2D rats while glucose-6-phosphatase (G6Pase), fructose-1,6- biphosphatase (FBPase), and glycogen phosphorylase were upregulated. Circulating and hepatic cholesterol and triglycerides and serum transaminases were elevated in T2D rats. Arbutin ameliorated hyperglycemia, dyslipidemia, insulin deficiency and resistance, and liver glycogen and alleviated the activity of carbohydrate-metabolizing enzymes. Both doses of arbutin decreased serum transaminases and resistin, and liver lipids, TNF-α, IL-6, malondialdehyde and nitric oxide, downregulated liver resistin and fatty acid synthase, and increased serum and liver adiponectin, and liver reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT). These effects were associated with the upregulation of hepatic PPARγ. Arbutin inhibited α-glucosidase in vitro and in silico investigations revealed the ability of arbutin to bind PPARγ, hexokinase, and α-glucosidase. In conclusion, arbutin effectively ameliorated glucose intolerance, insulin resistance, dyslipidemia, inflammation, and oxidative stress, and modulated carbohydrate-metabolizing enzymes, antioxidants, adipokines and PPARγ in T2D in rats.
Collapse
Affiliation(s)
- Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | | | - Albandari Bin-Ammar
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Mohammed F Alotaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
25
|
Flavonoids of Haloxylon salicornicum (Rimth) prevent cisplatin-induced acute kidney injury by modulating oxidative stress, inflammation, Nrf2, and SIRT1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49197-49214. [PMID: 36773264 DOI: 10.1007/s11356-023-25694-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Cisplatin (CIS) is an effective chemotherapeutic drug used for the treatment of many types of cancers, but its use is associated with adverse effects. Nephrotoxicity is a serious side effect of CIS and limits its therapeutic utility. Haloxylon salicornicum is a desert shrub used traditionally in the treatment of inflammatory disorders, but neither its flavonoid content nor its protective efficacy against CIS nephrotoxicity has been investigated. In this study, seven flavonoids were isolated from H. salicornicum methanolic extract (HSE) and showed in silico binding affinity with NF-κB, Keap1, and SIRT1. The protective effect of HSE against CIS nephrotoxicity was investigated. Rats received HSE (100, 200, and 400 mg/kg) for 14 days followed by a single injection of CIS. The drug increased Kim-1, BUN, and creatinine and caused multiple histopathological changes. CIS-administered rats showed an increase in renal ROS, MDA, NO, TNF-α, IL-1β, and NF-κB p65. HSE prevented tissue injury, and diminished ROS, NF-κB, and inflammatory mediators. HSE enhanced antioxidants and Bcl-2 and downregulated pro-apoptosis markers. These effects were associated with downregulation of Keap1 and microRNA-34a, and upregulation of SIRT1 and Nrf2/HO-1 signaling. In conclusion, H. salicornicum is rich in flavonoids, and its extract prevented oxidative stress, inflammation, and kidney injury, and modulated Nrf2/HO-1 and SIRT1 signaling in CIS-treated rats.
Collapse
|
26
|
Abduh MS, Alruhaimi RS, Alqhtani HA, Hussein OE, Abukhalil MH, Kamel EM, Mahmoud AM. Rosmarinic acid mitigates chlorpyrifos-induced oxidative stress, inflammation, and kidney injury in rats by modulating SIRT1 and Nrf2/HO-1 signaling. Life Sci 2023; 313:121281. [PMID: 36521549 DOI: 10.1016/j.lfs.2022.121281] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Chlorpyrifos (CPF) is a widely used broad-spectrum pesticide with multi-organ toxic effects. Oxidative stress was found to play a role in the deleterious effects of CPF, including nephrotoxicity. This study investigated the protective effect of the antioxidant polyphenol rosmarinic acid (RA) against CPF-induced kidney injury, with an emphasis on oxidative injury, inflammation, SIRT1, and Nrf2/HO-1 signaling. Rats received 10 mg/kg CPF and 25, 50, and 100 mg/kg RA orally for 28 days, and the samples were collected for analysis. CPF increased serum urea and creatinine and kidney Kim-1 and caused several histopathological alterations. ROS, MDA, NO, NF-κB p65, TNF-α, and IL-1β were elevated in the kidney of CPF-intoxicated rats. RA ameliorated kidney function markers, prevented tissue injury, suppressed ROS, MDA, and NO, and downregulated NF-κB p65, TNF-α, and IL-1β in CPF-intoxicated rats in a dose-dependent manner. RA decreased Bax, caspase-3, oxidative DNA damage, and Keap1, boosted antioxidant enzymes and Bcl-2, and upregulated Nrf2, HO-1, and SIRT1 in CPF-administered rats. Molecular docking simulation revealed the binding affinity of RA toward NF-κB, Keap1, HO-1, and SIRT1. In conclusion, RA prevented CPF nephrotoxicity by attenuating oxidative stress, inflammation, and apoptosis and upregulating SIRT1 and Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Haifa A Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omnia E Hussein
- Higher Technological Institute of Applied Health Sciences, Beni-Suef, Egypt
| | - Mohammad H Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an, Jordan; Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma'an, Jordan
| | - Emadeldin M Kamel
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
27
|
Azithromycin Mitigates Cisplatin-Induced Lung Oxidative Stress, Inflammation and Necroptosis by Upregulating SIRT1, PPARγ, and Nrf2/HO-1 Signaling. Pharmaceuticals (Basel) 2022; 16:ph16010052. [PMID: 36678549 PMCID: PMC9861532 DOI: 10.3390/ph16010052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Acute lung injury (ALI) is one of the adverse effects of the antineoplastic agent cisplatin (CIS). Oxidative stress, inflammation, and necroptosis are linked to the emergence of lung injury in various disorders. This study evaluated the effect of the macrolide antibiotic azithromycin (AZM) on oxidative stress, inflammatory response, and necroptosis in the lungs of CIS-administered rats, pinpointing the involvement of PPARγ, SIRT1, and Nrf2/HO-1 signaling. The rats received AZM for 10 days and a single dose of CIS on the 7th day. CIS provoked bronchial and alveolar injury along with increased levels of ROS, MDA, NO, MPO, NF-κB p65, TNF-α, and IL-1β, and decreased levels of GSH, SOD, GST, and IL-10, denoting oxidative and inflammatory responses. The necroptosis-related proteins RIP1, RIP3, MLKL, and caspase-8 were upregulated in CIS-treated rats. AZM effectively prevented lung tissue injury, ameliorated oxidative stress and NF-κB p65 and pro-inflammatory markers levels, boosted antioxidants and IL-10, and downregulated necroptosis-related proteins in CIS-administered rats. AZM decreased the concentration of Ang II and increased those of Ang (1-7), cytoglobin, PPARγ, SIRT1, Nrf2, and HO-1 in the lungs of CIS-treated rats. In conclusion, AZM attenuated the lung injury provoked by CIS in rats through the suppression of inflammation, oxidative stress, and necroptosis. The protective effect of AZM was associated with the upregulation of Nrf2/HO-1 signaling, cytoglobin, PPARγ, and SIRT1.
Collapse
|
28
|
Alanezi AA, Almuqati AF, Alfwuaires MA, Alasmari F, Namazi NI, Althunibat OY, Mahmoud AM. Taxifolin Prevents Cisplatin Nephrotoxicity by Modulating Nrf2/HO-1 Pathway and Mitigating Oxidative Stress and Inflammation in Mice. Pharmaceuticals (Basel) 2022; 15:1310. [PMID: 36355481 PMCID: PMC9692949 DOI: 10.3390/ph15111310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 08/26/2023] Open
Abstract
Cisplatin (CIS) is an effective chemotherapeutic agent used in the treatment of several malignancies. The clinical use of CIS is associated with adverse effects, including acute kidney injury (AKI). Oxidative stress and inflammation are key events in the development of CIS-induced AKI. This study investigated the protective effect of taxifolin (TAX), a bioactive flavonoid with promising health-promoting properties, on CIS-induced nephrotoxicity in mice. TAX was orally given to mice for 10 days and a single dose of CIS was injected at day 7. Serum blood urea nitrogen (BUN) and creatinine were elevated, and multiple histopathological alterations were observed in the kidney of CIS-administered mice. CIS increased renal malondialdehyde (MDA), nitric oxide (NO), nuclear factor-kappaB (NF-κB) p65, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β, and decreased cellular antioxidants in mice. TAX remarkably prevented kidney injury, ameliorated serum BUN and creatinine, and renal MDA, NO, NF-κB p65, and pro-inflammatory cytokines, and boosted antioxidant defenses in CIS-administered mice. TAX downregulated Bax and caspase-3, and upregulated Bcl-2. These effects were associated with upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression and heme oxygenase (HO)-1 activity in CIS-administered mice. In conclusion, TAX prevented CIS-induced AKI by mitigating tissue injury, oxidative stress, inflammation, and cell death. The protective efficacy of TAX was associated with the upregulation of Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Abdulkareem A. Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Afaf F. Almuqati
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Manal A. Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nader I. Namazi
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia
| | - Osama Y. Althunibat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| | - Ayman M. Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|