1
|
Schmid A, Liebisch G, Burkhardt R, Belikan H, Köhler S, Steger D, Schweitzer L, Pons-Kühnemann J, Karrasch T, Schäffler A. Dynamics of the human bile acid metabolome during weight loss. Sci Rep 2024; 14:25743. [PMID: 39468179 PMCID: PMC11519931 DOI: 10.1038/s41598-024-75831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Bile acids (BA) are supposed to cause metabolic alterations after bariatric surgery (BS). Here we report the longitudinal dynamics of the human BA metabolome by LC-MS/MS after BS versus low calory diet (LCD) in two obesity cohorts over 12 months. Rapid and persistent oscillations of 23 BA subspecies could be identified with highly specific patterns in BS vs. LCD. TCDCA, GLCA, and TLCA represent most promising candidates for drug development.
Collapse
Affiliation(s)
- Andreas Schmid
- Basic Research Laboratory of Molecular Endocrinology, Adipocyte Biology and Biochemistry, University of Giessen, Giessen, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Hannah Belikan
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Sebastian Köhler
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Daniel Steger
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Leonie Schweitzer
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Jörn Pons-Kühnemann
- Medical Statistics, Institute of Medical Informatics, University of Giessen, Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany.
- Department of Internal Medicine, Giessen University Hospital, Klinikstrasse 33, 35392, Giessen, Germany.
| |
Collapse
|
2
|
Lee SH, Suh JH, Heo MJ, Choi JM, Yang Y, Jung HJ, Gao Z, Yu Y, Jung SY, Kolonin MG, Cox AR, Hartig SM, Eltzschig HK, Ju C, Moore DD, Kim KH. The Hepatokine Orosomucoid 2 Mediates Beneficial Metabolic Effects of Bile Acids. Diabetes 2024; 73:701-712. [PMID: 38320268 PMCID: PMC11043061 DOI: 10.2337/db23-0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/28/2024] [Indexed: 02/08/2024]
Abstract
Bile acids (BAs) are pleiotropic regulators of metabolism. Elevated levels of hepatic and circulating BAs improve energy metabolism in peripheral organs, but the precise mechanisms underlying the metabolic benefits and harm still need to be fully understood. In the current study, we identified orosomucoid 2 (ORM2) as a liver-secreted hormone (i.e., hepatokine) induced by BAs and investigated its role in BA-induced metabolic improvements in mouse models of diet-induced obesity. Contrary to our expectation, under a high-fat diet (HFD), our Orm2 knockout (Orm2-KO) exhibited a lean phenotype compared with C57BL/6J control, partly due to the increased energy expenditure. However, when challenged with a HFD supplemented with cholic acid, Orm2-KO eliminated the antiobesity effect of BAs, indicating that ORM2 governs BA-induced metabolic improvements. Moreover, hepatic ORM2 overexpression partially replicated BA effects by enhancing insulin sensitivity. Mechanistically, ORM2 suppressed interferon-γ/STAT1 activities in inguinal white adipose tissue depots, forming the basis for anti-inflammatory effects of BAs and improving glucose homeostasis. In conclusion, our study provides new insights into the molecular mechanisms of BA-induced liver-adipose cross talk through ORM2 induction. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sung Ho Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, Korea
| | - Ji Ho Suh
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Mi Jeong Heo
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Jong Min Choi
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Yang Yang
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Hyun-Jung Jung
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Aaron R. Cox
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Sean M. Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Holger K. Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Cynthia Ju
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
3
|
Schmid A, Karrasch T, Schäffler A. The emerging role of bile acids in white adipose tissue. Trends Endocrinol Metab 2023; 34:718-734. [PMID: 37648561 DOI: 10.1016/j.tem.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
The effects of bile acids (BAs) on liver, enteroendocrine function, small intestine, and brown adipose tissue have been described extensively. Outside the liver, BAs in the peripheral circulation system represent a specific but underappreciated physiological compartment. We discuss how systemic BAs can be regarded as specific steroidal hormones that act on white adipocytes, and suggest the name 'bilokines' ('bile hormones') for the specific FXR/TGR5 receptor interaction in adipocytes. Some BAs and their agonists regulate adipocyte differentiation, lipid accumulation, hypoxia, autophagy, adipokine and cytokine secretion, insulin signaling, and glucose uptake. BA signaling could provide a new therapeutic avenue for adipoflammation and metaflammation in visceral obesity, the causal mechanisms underlying insulin resistance and type 2 diabetes mellitus (T2D).
Collapse
Affiliation(s)
- Andreas Schmid
- Basic Research Laboratory for Molecular Endocrinology, Adipocyte Biology, and Biochemistry, University of Giessen, D 35392 Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany.
| |
Collapse
|
4
|
Akalestou E, Lopez-Noriega L, Christakis I, Hu M, Miras AD, Leclerc I, Rutter GA. Vertical sleeve gastrectomy normalizes circulating glucocorticoid levels and lowers glucocorticoid action tissue-selectively in mice. Front Endocrinol (Lausanne) 2022; 13:1020576. [PMID: 36246869 PMCID: PMC9556837 DOI: 10.3389/fendo.2022.1020576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Glucocorticoids produced by the adrenal cortex are essential for the maintenance of metabolic homeostasis. Glucocorticoid activation is catalysed by 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). Excess glucocorticoids are associated with insulin resistance and hyperglycaemia. A small number of studies have demonstrated effects on glucocorticoid metabolism of bariatric surgery, a group of gastrointestinal procedures known to improve insulin sensitivity and secretion, which were assumed to result from weight loss. In this study, we hypothesize that a reduction in glucocorticoid action following bariatric surgery contributes to the widely observed euglycemic effects of the treatment. Methods Glucose and insulin tolerance tests were performed at ten weeks post operatively and circulating corticosterone was measured. Liver and adipose tissues were harvested from fed mice and 11β-HSD1 levels were measured by quantitative RT-PCR or Western (immuno-) blotting, respectively. 11β-HSD1 null mice (Hsd11b1 -/-) were generated using CRISPR/Cas9 genome editing. Wild type and littermate Hsd11b1 -/- mice underwent Vertical Sleeve Gastrectomy (VSG) or sham surgery. Results Under the conditions used, no differences in weight loss were observed between VSG treated and sham operated mice. However, both lean and obese WT VSG mice displayed significantly improved glucose clearance and insulin sensitivity. Remarkably, VSG restored physiological corticosterone production in HFD mice and reduced 11β-HSD1 expression in liver and adipose tissue post-surgery. Elimination of the 11β-HSD1/Hsd11b1 gene by CRISPR/Cas9 mimicked the effects of VSG on body weight and tolerance to 1g/kg glucose challenge. However, at higher glucose loads, the euglycemic effect of VSG was superior to Hsd11b1 elimination. Conclusions Bariatric surgery improves insulin sensitivity and reduces glucocorticoid activation at the tissular level, under physiological and pathophysiological (obesity) conditions, irrespective of weight loss. These findings point towards a physiologically relevant gut-glucocorticoid axis, and suggest that lowered glucocorticoid exposure may represent an additional contribution to the health benefits of bariatric surgery.
Collapse
Affiliation(s)
- Elina Akalestou
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Livia Lopez-Noriega
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Ioannis Christakis
- Endocrine and General Surgery, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Ming Hu
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alexander D. Miras
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Centre de Recherches du CHUM, University of Montreal, Montreal, QC, Canada
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Centre de Recherches du CHUM, University of Montreal, Montreal, QC, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
Chen F, Liu B. Sleeve gastrectomy suppresses hepatic de novo cholesterogenesis and improves hepatic cholesterol accumulation in obese rats with type 2 diabetes mellitus. Nutrition 2022; 94:111531. [PMID: 34952362 DOI: 10.1016/j.nut.2021.111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Cholesterol metabolic disturbance increases the risk of various acquired diseases and affects public health. An apparent correlation between hypercholesterolemia and type 2 diabetes mellitus (T2DM) was confirmed recently. Bariatric surgery can induce durable and sufficient loss of body weight and T2DM remission. A previous study illustrated a cholesterol-lowering effect of sleeve gastrectomy (SG), but the intrinsic mechanism is still elusive. The present study aimed to investigate the effects of SG on hypercholesterolemia and hepatic cholesterol accumulation in a T2DM rat model. METHODS Obese rats with T2DM were randomly subjected to sham operation, sham operation combined with food restriction, or SG. Body weight, food intake, blood glucose, body composition, and cholesterol level were measured at the indicated time points. Subsequently, hepatic cholesterol content and both protein and transcriptional levels of sterol regulatory element-binding protein 2, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and low-density lipoprotein receptor were measured at 2 and 4 wk postoperatively. RESULTS SG rapidly reduced blood glucose independent of loss of body weight and food restriction. Rats that underwent SG exhibited lower total cholesterol and free cholesterol in both serum and liver. The cholesterol-lowering effect was independent of loss of body weight and food restriction at just 2 wk postoperatively. Protein and mRNA expression of sterol regulatory element-binding protein 2, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and low-density lipoprotein receptor were inhibited at 2 wk postoperatively and recovered by 4 wk after SG. CONCLUSION SG alleviated hypercholesterolemia and hepatic cholesterol accumulation partially by inhibiting hepatic de novo cholesterogenesis.
Collapse
Affiliation(s)
- Fu Chen
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bingyang Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Vertical sleeve gastrectomy confers metabolic improvements by reducing intestinal bile acids and lipid absorption in mice. Proc Natl Acad Sci U S A 2021; 118:2019388118. [PMID: 33526687 DOI: 10.1073/pnas.2019388118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vertical sleeve gastrectomy (VSG) is one of the most effective and durable therapies for morbid obesity and its related complications. Although bile acids (BAs) have been implicated as downstream mediators of VSG, the specific mechanisms through which BA changes contribute to the metabolic effects of VSG remain poorly understood. Here, we confirm that high fat diet-fed global farnesoid X receptor (Fxr) knockout mice are resistant to the beneficial metabolic effects of VSG. However, the beneficial effects of VSG were retained in high fat diet-fed intestine- or liver-specific Fxr knockouts, and VSG did not result in Fxr activation in the liver or intestine of control mice. Instead, VSG decreased expression of positive hepatic Fxr target genes, including the bile salt export pump (Bsep) that delivers BAs to the biliary pathway. This reduced small intestine BA levels in mice, leading to lower intestinal fat absorption. These findings were verified in sterol 27-hydroxylase (Cyp27a1) knockout mice, which exhibited low intestinal BAs and fat absorption and did not show metabolic improvements following VSG. In addition, restoring small intestinal BA levels by dietary supplementation with taurocholic acid (TCA) partially blocked the beneficial effects of VSG. Altogether, these findings suggest that reductions in intestinal BAs and lipid absorption contribute to the metabolic benefits of VSG.
Collapse
|
7
|
Abstract
Bariatric and metabolic surgery has evolved from simple experimental procedures for a chronic problem associated with significant morbidity into a sophisticated multidisciplinary treatment modality rooted in biology and physiology. Although the complete mechanistic narrative of bariatric surgery cannot yet be written, significant advance in knowledge has been made in the past 2 decades. This article provides a brief overview of the most studied hypotheses and their supporting evidence. Ongoing research, especially in frontier areas, such as the microbiome, will continue to refine, and perhaps even revise, current mechanistic understanding.
Collapse
|
8
|
Borg MJ, Rayner CK, Jones KL, Horowitz M, Xie C, Wu T. Gastrointestinal Mechanisms Underlying the Cardiovascular Effect of Metformin. Pharmaceuticals (Basel) 2020; 13:ph13110410. [PMID: 33266396 PMCID: PMC7700183 DOI: 10.3390/ph13110410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Metformin, the most widely prescribed drug therapy for type 2 diabetes, has pleiotropic benefits, in addition to its capacity to lower elevated blood glucose levels, including mitigation of cardiovascular risk. The mechanisms underlying the latter remain unclear. Mechanistic studies have, hitherto, focused on the direct effects of metformin on the heart and vasculature. It is now appreciated that effects in the gastrointestinal tract are important to glucose-lowering by metformin. Gastrointestinal actions of metformin also have major implications for cardiovascular function. This review summarizes the gastrointestinal mechanisms underlying the action of metformin and their potential relevance to cardiovascular benefits.
Collapse
Affiliation(s)
- Malcolm J. Borg
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Christopher K. Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Cong Xie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210096, China
- Correspondence: ; Tel.: +61-8-8313-6535
| |
Collapse
|
9
|
Talavera-Urquijo E, Beisani M, Balibrea JM, Alverdy JC. Is bariatric surgery resolving NAFLD via microbiota-mediated bile acid ratio reversal? A comprehensive review. Surg Obes Relat Dis 2020; 16:1361-1369. [PMID: 32336663 DOI: 10.1016/j.soard.2020.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/18/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
Despite the fact that there is still insufficient evidence to consider non-alcoholic fatty liver disease (NAFLD) as an stand-alone indication for bariatric surgery, many clinical and histopathological beneficial effects on both NAFLD and non-alcoholic steatohepatitis (NASH) have been shown. Although weight loss seems to be the obvious mechanism, weight-loss independent factors are also believed to be involved. Among them, changes in gut microbiota and bile acids (BA) composition may be playing an unappreciated role in the improvement of NAFLD. In this review we examine the mechanisms and interdependence of the gut microbiota and BA, and their influence on NAFLD pathogenesis and its reversal following bariatric surgery. According to the currently available evidence, gut microbiota has a major influence on BA composition. In fact, both BA and microbiome disturbances (dysbiosis) play a role in the etiopathogenesis of NAFLD and might be potential therapeutic targets. In addition, bariatric surgery can modify the intraluminal ileal environment in a way that causes significant repopulation of the gut microbiota and a reversal of the plasma primary/secondary BA ratio, which, in turn, induces weigh-independent metabolic improvements.
Collapse
Affiliation(s)
- Eider Talavera-Urquijo
- Department of General & Digestive Surgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Beisani
- Department of Surgery, Hospital del Mar, Barcelona, Spain
| | - José M Balibrea
- Department of Gastrointestinal Surgery, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain.
| | - John C Alverdy
- Department of Surgery University of Chicago, Pritzker School of Medicine, Chicago, Illinois
| |
Collapse
|
10
|
The Role of the Small Bowel in Unintentional Weight Loss after Treatment of Upper Gastrointestinal Cancers. J Clin Med 2019; 8:jcm8070942. [PMID: 31261800 PMCID: PMC6678792 DOI: 10.3390/jcm8070942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
Upper gastrointestinal (GI) cancers are responsible for significant mortality and morbidity worldwide. To date, most of the studies focused on the treatments’ efficacy and post-treatment survival rate. As treatments improve, more patients survive long term, and thus the accompanying complications including unintentional weight loss are becoming more important. Unintentional weight loss is defined as >5% of body weight loss within 6–12 months. Malignancies, particularly GI cancers, are diagnosed in approximately 25% of patients who present with unintentional weight loss. Whereas some recent studies discuss pathophysiological mechanisms and new promising therapies of cancer cachexia, there is a lack of studies regarding the underlying mechanism of unintentional weight loss in patients who are tumor free and where cancer cachexia has been excluded. The small bowel is a central hub in metabolic regulation, energy homeostasis, and body weight control throughout the microbiota-gut-brain axis. In this narrative review article, the authors discussed the impacts of upper GI cancers’ treatment modalities on the small bowel which may lead to unintentional weight loss and some new promising therapeutic agents to treat unintentional weight loss in long term survivors after upper GI operations with curative intent.
Collapse
|
11
|
Jin LH, Fang ZP, Fan MJ, Huang WD. Bile-ology: from bench to bedside. J Zhejiang Univ Sci B 2019; 20:414-427. [PMID: 31090267 PMCID: PMC6568232 DOI: 10.1631/jzus.b1900158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
Bile acids (BAs) are originally known as detergents essential for the digestion and absorption of lipids. In recent years, extensive research has unveiled new functions of BAs as gut hormones that modulate physiological and pathological processes, including glucose and lipid metabolism, energy expenditure, inflammation, tumorigenesis, cardiovascular disease, and even the central nervous system in addition to cholesterol homeostasis, enterohepatic protection and liver regeneration. BAs are closely linked with gut microbiota which might explain some of their crucial roles in organs. The signaling actions of BAs can also be mediated through specific nuclear receptors and membrane-bound G protein-coupled receptors. Several pharmacological agents or bariatric surgeries have demonstrated efficacious therapeutic effects on metabolic diseases through targeting BA signaling. In this mini-review, we summarize recent advances in bile-ology, focusing on its translational studies.
Collapse
Affiliation(s)
- Li-hua Jin
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
- State Key Laboratory of Cellular Stress Biology; Innovation Center for Cell Signaling Network; School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Zhi-peng Fang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Min-jie Fan
- College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Wen-dong Huang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
12
|
Paternoster S, Falasca M. Dissecting the Physiology and Pathophysiology of Glucagon-Like Peptide-1. Front Endocrinol (Lausanne) 2018; 9:584. [PMID: 30364192 PMCID: PMC6193070 DOI: 10.3389/fendo.2018.00584] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
Abstract
An aging world population exposed to a sedentary life style is currently plagued by chronic metabolic diseases, such as type-2 diabetes, that are spreading worldwide at an unprecedented rate. One of the most promising pharmacological approaches for the management of type 2 diabetes takes advantage of the peptide hormone glucagon-like peptide-1 (GLP-1) under the form of protease resistant mimetics, and DPP-IV inhibitors. Despite the improved quality of life, long-term treatments with these new classes of drugs are riddled with serious and life-threatening side-effects, with no overall cure of the disease. New evidence is shedding more light over the complex physiology of GLP-1 in health and metabolic diseases. Herein, we discuss the most recent advancements in the biology of gut receptors known to induce the secretion of GLP-1, to bridge the multiple gaps into our understanding of its physiology and pathology.
Collapse
|