1
|
Pekand M, Gholami M, Abednatanzi H, Ghazalian F. Probiotic intervention and exercise mitigate inflammation and histopathological alterations in the liver of wistar rats on a high-fat diet. Mol Biol Rep 2025; 52:215. [PMID: 39923222 DOI: 10.1007/s11033-025-10320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Controlling intestinal risk factors by consuming probiotics and modifying lifestyle with exercise modulates dietary damage. The aim of the present study was to investigate the effect of 6 weeks of aerobic exercise training and probiotic consumption on the expression of inflammatory genes and histopathological changes in the liver of rats with a high-fat diet model. METHODS AND RESULTS In this study, 40 male Wistar rats were divided into 5 groups: healthy control, high-fat diet (HFD), HFD with exercise (HFD + Exe), HFD with probiotic consumption (HFD + Prob), and HFD + Exe + Prob. Animals in the HFD group were first exposed to a special diet and after confirming liver tissue damage, they entered the main protocol. Animals in the exercise group performed aerobic exercise on a rodent treadmill for 6 weeks, 5 days a week. Animals in the probiotic group also received Lactobacillus bifidus by oral gavage after exercise. Finally, intestinal and liver tissue were removed and examined for histological and cellular examination. Based on the results, HFD caused tissue damage and fat infiltration in both intestinal and liver tissue. Also, inflammatory factors (IL-6 and IL-1β genes) in the liver tissue of this group increased significantly compared to the control group (p < 0.05). In contrast, probiotic intervention and aerobic exercise caused a significant decrease in IL-6 and IL-1β genes compared to the HFD group (p < 0.05). CONCLUSION The use of probiotic Lactobacillus bifidus along with exercise can neutralize inflammatory damage caused by a high-fat diet in liver tissue. However, further studies are needed in this field.
Collapse
Affiliation(s)
- Mahsa Pekand
- Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mandana Gholami
- Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Hossein Abednatanzi
- Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshad Ghazalian
- Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Mounika N, Mungase SB, Verma S, Kaur S, Deka UJ, Ghosh TS, Adela R. Inflammatory Protein Signatures as Predictive Disease-Specific Markers for Non-Alcoholic Steatohepatitis (NASH). Inflammation 2025; 48:25-41. [PMID: 38676759 DOI: 10.1007/s10753-024-02035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic disease worldwide, consisting of a broad spectrum of diseases such as simple steatosis (NAFL), non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. Hepatic inflammation plays a key role in the pathophysiology of NAFLD. Inflammatory mediators such as cytokines and chemokines are considered as contributing factors to NAFLD development and progression. In the present study, we aimed to investigate the inflammatory protein signatures as predictive disease-specific markers for non-alcoholic fatty liver disease (NAFLD). This cross-sectional study included healthy control (n = 64), NAFL (n = 109), and NASH (n = 60) human subjects. Serum concentrations of various cytokines and chemokines were evaluated using sensitive multiplex assays. We used principal component analysis (PCoA) to reveal distinct differences in the levels of cytokines and chemokines between each of the study groups. Further, a random forest classification model was developed to identify the panel of markers that could predict diseases. The protein-protein network analysis was performed to determine the various signaling pathways associated with the disease-specific panel of markers. Serum concentrations of TNF-α, IL-1β, IL-1ra, G-CSF, PDGF-BB, MCP-1, MIP-1a, MIP-1b, RANTES, eotaxin, IL-8 and IP-10 were significantly increased in NASH group as compared to control group. Furthermore, serum concentrations of IL-9 and IL-13 were significantly lower in the NASH group, whereas IL-2 levels were significantly decreased in the NAFL group when compared to the control group. PCoA results demonstrated statistically significant differences in cytokines and chemokines between each of the study groups (PERMANOVA p = 0.001; R2 = 0.102). RANTES, IL-1ra, MIP-1b, IL-2, and G-CSF could differentiate the NAFL group from the controls; G-CSF, IL-1ra, TNF-α, RANTES, and IL-9 could differentiate the NASH group from the controls; and G-CSF, IL-9, IL-13, eotaxin, and TNF- α could differentiate the NASH group from the NAFL group. Our protein-protein network revealed that these markers are involved in cytokine-cytokine receptor interaction, Th1 and Th2 cell differentiation, TNF, chemokine, JAK/STAT, P13K/Akt, TLR, NOD-like receptor, NF-kB, and adipocytokine signaling pathways which might be responsible for disease pathogenesis. Our study findings revealed a set of distinct cytokine and chemokine markers and they might be considered as biomarkers in distinguishing NASH from NAFL. Future multicentre studies with larger sample size are recommended to determine the potential utility of these panels of markers.
Collapse
Affiliation(s)
- Nadella Mounika
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam-781101, India
| | - Suraj Bhausaheb Mungase
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam-781101, India
| | - Shivangi Verma
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Okhla Phase III, New Delhi, 110020, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver & Biliary Science (ILBS), New Delhi-110 070, Vasant Kunj, India
| | - Utpal Jyoti Deka
- Department of Gastroenterology, Downtown Hospital, GS Road, Bormotoria, Guwahati, Assam-781006, India
| | - Tarini Shankar Ghosh
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Okhla Phase III, New Delhi, 110020, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam-781101, India.
| |
Collapse
|
3
|
Barbhuiya PA, Ahmed A, Dutta PP, Sen S, Pathak MP. Mitigating Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD): The Role of Bioactive Phytoconstituents in Indian Culinary Spices. Curr Nutr Rep 2025; 14:20. [PMID: 39841356 DOI: 10.1007/s13668-024-00598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 01/30/2025]
Abstract
PURPOSE OF REVIEW The term metabolic dysfunction-associated steatotic liver disease (MASLD) refers to a group of progressive steatotic liver conditions that include metabolic dysfunction-associated steatohepatitis (MASH), which has varying degrees of liver fibrosis and may advance to cirrhosis, and independent hepatic steatosis. MASLD has a complex underlying mechanism, with patients exhibiting diverse causes and phases of the disease. India has a pool prevalence of MASLD of 38.6% in adults. In 2023, the term NAFLD has been redefined and changed to MASLD. Currently, there are no drugs approved by the FDA for the treatment of MASLD. This study investigates the potential of bioactive phytoconstituents present in spices as a therapeutic approach for MASLD. Moreover, it offers comprehensive data on several pre-clinical studies of bioactive phytoconstituents derived from spices that primarily focus on treating obesity-associated MASLD. RECENT FINDINGS Spices include a high amount of bioactive chemicals and several research have indicated their diverse pharmacological activities. Bioactive phytoconstituents from common Indian spices like cinnamic acid, eugenol, curcumin, allicin, 6-gingerols, capsaicin, piperine, eucalyptol, trigonelline, and linalool have been reported to exhibit anti-MASLD effects both in-vivo and in-vitro. Bioactive phytoconstituents from different culinary species of India have shown promising potential against MASLD in pre-clinical status. Further clinical studies on a large scale would be beneficial for paving the path to the development of a new drug which is the need of time.
Collapse
Affiliation(s)
- Pervej Alom Barbhuiya
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
- Centre for Research On Ethnomedicine, Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
| | - Ameena Ahmed
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
- Rahman Institute of Pharmaceutical Sciences and Research, Tepesia, Sonapur, Assam, India, PIN - 782402
| | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
- Centre for Research On Ethnomedicine, Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
- Centre for Research On Ethnomedicine, Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026.
- Centre for Research On Ethnomedicine, Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026.
| |
Collapse
|
4
|
Choi J, Choi H, Jang Y, Paik HG, Kwon HS, Kwon J. Fermented Gold Kiwifruit Protects Mice Against Non-Alcoholic Fatty Liver Disease in a High-Fat Diet Model. APPLIED SCIENCES 2024; 14:11503. [DOI: 10.3390/app142411503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Gold kiwifruit is known for its high vitamin C content and various benefits. This study investigated the effects and molecular mechanisms of fermented gold kiwifruit (FGK) in a mouse model of high-fat diet (HFD)-induced obesity and hepatic steatosis. FGK powder was prepared using five strains of lactic acid bacteria: L. paracasei, Lc. lactis, L. acidophilus, L. casei, and L. helveticus. ICR mice were fed an HFD for 8 weeks to induce obesity and hepatic steatosis, and FGK supplementation was evaluated for its therapeutic potential. FGK administration significantly reduced serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol, triglyceride, and glucose compared to the HFD-only group. Histopathological analysis showed that FGK reduced lipid accumulation and hepatic lesions, as confirmed by hematoxylin and eosin (H&E) staining. Furthermore, administration of FGK activated the sirtuin 1(SIRT1)/adenosine monophosphate-activated protein kinase (AMPK) pathway and inhibited expression of the pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α in liver tissue. These findings suggest that FGK could reduce the severity of non-alcoholic fatty liver disease (NAFLD) by inhibiting fat synthesis, promoting fat breakdown, and suppressing inflammation in HFD-induced obese mice.
Collapse
Affiliation(s)
- Jihye Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Jeollabuk-do, Republic of Korea
| | - Hwal Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Jeollabuk-do, Republic of Korea
| | - Yuseong Jang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Jeollabuk-do, Republic of Korea
| | - Hyeon-Gi Paik
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Jeollabuk-do, Republic of Korea
| | - Hyuck-Se Kwon
- R&D Team, Food & Supplement Health Claims, Vitech, #602 Giyeon B/D 141 Anjeon-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Jeollabuk-do, Republic of Korea
| |
Collapse
|
5
|
Wu X, Song Y, Wu S. Relation of 91 Circulating Inflammatory Proteins to Nonalcoholic Fatty Liver Disease: A Two-Sample Mendelian Randomisation Study. J Cell Mol Med 2024; 28:e70322. [PMID: 39720899 DOI: 10.1111/jcmm.70322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024] Open
Abstract
Increasingly, emerging research evidence has demonstrated that nonalcoholic fatty liver disease (NAFLD) is a disease closely associated with systemic inflammation. However, the specific upstream inflammatory factors engaged in the pathogenesis of NAFLD remain unclear. Our study aimed to identify the inflammatory regulators causally associated with NAFLD pathogenesis through Mendelian randomisation. A two-sample Mendelian randomisation method was applied to analyse the causal association between 91 circulating inflammatory proteins and NAFLD. Data on circulating inflammatory proteins were derived from samples of European ancestry (14,824 samples) and NAFLD data were obtained from the FinnGen consortium (2025 cases and 284,826 controls). Instrumental variables were selected from the genetic variance and F-statistics were calculated to avoid bias. We adopted the random-effects inverse variance weighting (IVW) method as our primary analytical approach. Supplementary analyses were also implemented, including weighted median, MR-Egger and weighted mode. Moreover, we conducted pleiotropy and heterogeneity analyses to validate the accuracy of the findings. The application of Mendelian randomisation analysis identified four inflammatory factors that might be causally associated with NAFLD at the genetic level. Elevated levels of eotaxin (or = 1.27, 95% CI: 1.05-1.53, p = 0.014), osteoprotegerin (OPG) (or = 1.29, 1.03-1.60, p = 0.023) and TNFRSF9 (or = 1.32, 95% CI: 1.06-1.64, p = 0.014) may be causally related to an increasing risk of NAFLD. Conversely, heightened leukaemia inhibitory factor (LIF) levels (or = 0.63, 0.44-0.92, p = 0.016) were linked to a lower risk of NAFLD onset. There was no causal relationship between levels of other circulating inflammatory proteins and NAFLD. Our analysis uncovered four upstream inflammatory factors genetically associated with the pathogenesis of NAFLD. These results highlight the potential involvement of inflammation in NAFLD, which provides partial insights for further research in this field in the future.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Abdul‐Aziz Ahmed K, Jabbar AAJ, Raouf MMHM, M. Al‐Qaaneh A, Rizgar Hassan R, Ismael Salih M, Mothana RA, Abdulaziz Al‐Hamoud G, Ameen Abdulla M, Hasson S, Abdul‐samad Ismail P. Phytochemical Profiling, Acute Toxicity, and Hepatoprotective Effects of Anchusa Limbata in Thioacetamide-Induced Liver Cirrhosis in Rats. Food Sci Nutr 2024; 12:10628-10645. [PMID: 39723071 PMCID: PMC11666841 DOI: 10.1002/fsn3.4544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/05/2024] [Accepted: 10/03/2024] [Indexed: 12/28/2024] Open
Abstract
Evaluation of Anchusa species of the family Boraginaceae during previous investigations determined numerous therapeutic potentials against inflammatory-related diseases. The present study evaluates the phytochemical, acute toxicity, and hepatoprotective effects of methanolic extracts of Anchusa limbata (MEAL) against thioacetamide (TAA)-induced liver injury in rats. The phytochemical profiling of MEAL followed a Folin-Ciocalteu and 10% AlCl3 procedure using a spectrophotometer. Thirty rats were divided into 5 groups: Normal (A) and TAA control rats (B) treated orally with daily 10% tween 20; reference rats (C) received daily oral dose of 50 mg/kg silymarin; (D and E) rats received daily doses of 250 and 500 mg/kg MEAL, respectively. In addition, group B-E received 3 injections of 200 mg/kg TAA weekly for 60 days. The phytochemical profiling showed increased polyphenolic (129.2 mg gallic acid equivalent/g) and flavonoid (105.3 mg quercetin equivalent/g extract) contents in MEAL. The TAA intraperitoneal injection caused significant hepatic dysfunctionality (lowered total protein, 54.7 g/L; albumin levels, 7.8 g/L), hepatotoxicity, and necrotized cell proliferation. TAA hepatotoxicity resulted in an increased expression of proliferating cell nuclear antigen (PCNA), TGF-β1 tissue expression, liver enzymatic leakage, and oxidative stress biomarkers, while it reduced pro-apoptotic Bcl-2-associated X protein (Bax) proteins and inflammatory mediators (TNF-α and IL-6) and increased IL-10. Conversely, MEAL treatment ameliorated the TAA-induced hepatotoxicity and restored liver functions. The present hepatoprotectives of MEAL could be attributed to its increased polyphenolic and flavonoid contents, which require further isolation and identification of molecules underlying such therapeutic actions.
Collapse
Affiliation(s)
- Khaled Abdul‐Aziz Ahmed
- Department of Medical Laboratory Sciences, Faculty of Allied Medical SciencesAl‐Ahliyya Amman UniversityAmmanJordan
| | - Ahmed A. J. Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical CollegeErbil Polytechnic UniversityErbilIraq
| | | | - Ayman M. Al‐Qaaneh
- Department of Allied Health SciencesAl‐Balqa Applied University (BAU)Al‐SaltJordan
- Department of Pharmaceutical TechnologyFaculty of Pharmacy, Jordan University of Science and Technology (JUST)IrbidJordan
| | - Rawaz Rizgar Hassan
- Department of Medical microbiology, College of ScienceKnowledge UniversityErbilIraq
| | - Musher Ismael Salih
- Department of Chemistry, Faculty of Science and HealthKoya UniversityKoyaIraq
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | | | - Mahmood Ameen Abdulla
- Department of Medical Analysis, Faculty of Applied ScienceTishk International UniversityErbilIraq
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolUK
| | | |
Collapse
|
7
|
Balaji D, Balakrishnan R, Srinivasan D, Subbarayan R, Shrestha R, Srivastava N, Chauhan A. The Impact of SARS-CoV-2 on Liver Diseases and Potential Phytochemical Treatments. INFECTIOUS MICROBES AND DISEASES 2024; 6:177-188. [DOI: 10.1097/im9.0000000000000161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has brought about numerous challenges. One of these challenges is the impact of SARS-CoV-2 on the liver. Although this virus primarily affects the lungs, it can induce elevated transaminase levels and the development of scar tissue in the liver, exacerbating preexisting liver conditions. Individuals with preexisting conditions, such as nonalcoholic fatty liver disease, alcohol-induced liver disease and hepatocellular carcinoma, face an increased risk of mortality from COVID-19. However, drugs currently used to treat COVID-19 have undesirable side effects, which make them unsuitable for patients with preexisting liver conditions. In this review, we explore the potential of phytochemicals, such as apigenin, berberine, curcumin, epigallocatechin-3-gallate, quercetin, resveratrol and silymarin, for treatment of the liver conditions, including nonalcoholic fatty liver disease, alcohol-induced liver disease and hepatocellular carcinoma. We also discuss significant associations between phytochemicals and COVID-19 by depicting their molecular interactions. Based on the discussed overlapping functions, it is important to assess the therapeutic efficacy of phytochemicals that possess hepatoprotective properties as potential alternative treatments for COVID-19.
Collapse
Affiliation(s)
- Dhanvee Balaji
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ranjith Balakrishnan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | | | | | | | - Ankush Chauhan
- Centre for Herbal Pharmacology and Environmental Sustainability, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
8
|
Gancheva S, Roden M, Castera L. Diabetes as a risk factor for MASH progression. Diabetes Res Clin Pract 2024; 217:111846. [PMID: 39245423 DOI: 10.1016/j.diabres.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Non-alcoholic (now: metabolic) steatohepatitis (MASH) is the progressive inflammatory form of metabolic dysfunction-associated steatotic liver disease (MASLD), which often coexists and mutually interacts with type 2 diabetes (T2D), resulting in worse hepatic and cardiovascular outcomes. Understanding the intricate mechanisms of diabetes-related MASH progression is crucial for effective therapeutic strategies. This review delineates the multifaceted pathways involved in this interplay and explores potential therapeutic implications. The synergy between adipose tissue, gut microbiota, and hepatic alterations plays a pivotal role in disease progression. Adipose tissue dysfunction, particularly in the visceral depot, coupled with dysbiosis in the gut microbiota, exacerbates hepatic injury and insulin resistance. Hepatic lipid accumulation, oxidative stress, and endoplasmic reticulum stress further potentiate inflammation and fibrosis, contributing to disease severity. Dietary modification with weight reduction and exercise prove crucial in managing T2D-related MASH. Additionally, various well-known but also novel anti-hyperglycemic medications exhibit potential in reducing liver lipid content and, in some cases, improving MASH histology. Therapies targeting incretin receptors show promise in managing T2D-related MASH, while thyroid hormone receptor-β agonism has proven effective as a treatment of MASH and fibrosis.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Laurent Castera
- Department of Hepatology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France; Université Paris-Cité, INSERM UMR 1149, Centre de Recherche sur l'Inflammation Paris, Montmartre, Paris, France.
| |
Collapse
|
9
|
Mohamed RS, Fouda K, Maghraby AS, Assem FM, Menshawy MM, Zaghloul AH, Abdel-Salam AM. Hepato-renal protective impact of nanocapsulated Petroselinum crispum and Anethum graveolens essential oils added in fermented milk against some food additives via antioxidant and anti-inflammatory effects: In silico and in vivo studies. Heliyon 2024; 10:e36866. [PMID: 39286161 PMCID: PMC11403541 DOI: 10.1016/j.heliyon.2024.e36866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
The study assessed the efficacy of parsley and dill essential oils (EOs) nanocapsules incorporated into fermented milk in hepato-renal protection against specific food additives. A molecular docking assay was conducted between parsley and dill EOs bioactive molecules and inflammatory cytokines. Freeze-dried parsley and dill EOs nanocapsules were developed, characterized for their morphological structure, particle size, zeta potential, polydispersity index and encapsulation efficiency and assessed in fast green dye and sodium benzoate (SB) combination-treated rats. The docking results revealed that the primary constituents of parsley and dill EOs (apiol, myristicin, α-pinene, (-)-carvone, and d-limonene) interacted with the active sites of TNF-α, IL-1β and TGF-1β cytokines with hydrophobic and hydrogen bond interactions. D-limonene had the highest binding affinity (6.4 kcal/mol) for the TNF-α. Apiol and myristicin had the highest binding affinity (5.1, 5.0, 5.0 and 5.0 kcal/mol, respectively) for the IL-1β and TGF-β1 receptors. Biochemically and histopathologically, the excessive co-administration of fast green and SB revealed adverse effects on the liver and the kidney. Whereas the treatment with parsley and dill EOs nanocapsules afford hepato-renal protective effects as manifested by suppression the elevated liver and kidney functions. Parsley and dill EOs nanocapsules showed a significant reduction of the liver (64.08 and 80.5 pg/g, respectively) and kidney (59.3 and 83.6 pg/g, respectively) ROS. Moreover, parsley and dill EOs nanocapsules down-regulated the liver and the kidney inflammatory cytokines (IL-6, TNF-α, IL-1β and TGF-1β) and lipid peroxidation and up-regulated the antioxidant enzymes. In conclusion, the data suggest a potential hepato-renal protective effects of parsley and dill EOs nanocapsules.
Collapse
Affiliation(s)
- Rasha S Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Karem Fouda
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Amany S Maghraby
- Department of Therapeutic Chemistry, research group immune-and bio-markers for infection, the Center of Excellent for Advanced Science (CEAS), National Research Centre, Dokki, Cairo, Egypt
| | - Fayza M Assem
- Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
| | - Medhat M Menshawy
- College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th October City, Egypt
| | - Ahmed H Zaghloul
- Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
| | | |
Collapse
|
10
|
Bhuia MS, Chowdhury R, Shill MC, Chowdhury AK, Coutinho HDM, Antas E Silva D, Raposo A, Islam MT. Therapeutic Promises of Ferulic Acid and its Derivatives on Hepatic damage Related with Oxidative Stress and Inflammation: A Review with Mechanisms. Chem Biodivers 2024; 21:e202400443. [PMID: 38757848 DOI: 10.1002/cbdv.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
Ferulic acid (FA) is a naturally occurring phenolic compound commonly found in the plant Ferula communis. This study aims to investigate the hepatoprotective effect of FA and its derivatives (methyl ferulic acid and trans-ferulic acid) against oxidative stress and inflammation-related hepatotoxicity due to toxicants based on the results of different non-clinical and preclinical tests. For this, data was collected from different reliable electronic databases such as PubMed, Google Scholar, and ScienceDirect, etc. The results of this investigation demonstrated that FA and its derivatives have potent hepatoprotective effects against oxidative stress and inflammation-related damage. The findings also revealed that these protective effects are due to the antioxidant and anti-inflammatory effects of the chemical compound. FA and its analogues significantly inhibit free radical generation and hinder the effects of proinflammatory markers and inflammatory enzymes, resulting in diminished cytotoxic and apoptotic hepatocyte death. The compounds also prevent intracellular lipid accumulation and provide protective effects.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | | | | | - Davi Antas E Silva
- Departament of Physiology and Pathology, Federal University of Paraíba, Campus I Lot. Cidade Universitaria, João Pessoa, PB, 58051-900, Brazil
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
11
|
BinMowyna MN, AlFaris NA, Al-Sanea EA, AlTamimi JZ, Aldayel TS. Resveratrol attenuates against high-fat-diet-promoted non-alcoholic fatty liver disease in rats mainly by targeting the miR-34a/SIRT1 axis. Arch Physiol Biochem 2024; 130:300-315. [PMID: 35254877 DOI: 10.1080/13813455.2022.2046106] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/18/2022] [Indexed: 11/09/2022]
Abstract
This study evaluated if miR-34a/SIRT1 signalling mediates the anti-hepatosteatotic effect of resveratrol (RSV) in high-fat-diet (HFD)-fed rats. Rats were divided into seven groups (n = 6/each) as control, control + miR-34a agomir negative control, HFD, HFD + miR-34a, HFD + RSV, HFD + RSV + Ex-527 (a SIRT1 inhibitor), and HFD + RSV + miR-34a agomir. After 8 weeks, RSV suppressed dyslipidemia, lowered fasting glucose and insulin levels, improved insulin sensitivity, and prevented hepatic lipid accumulation. These effects were associated with hepatic downregulation of SREBP1 and SREBP2, upregulation of PPARα, and acetylation of Nrf2 (activation) and NF-κβ p65 (inhibition). Also, RSV reduced the transcription of miR-34a and increased the nuclear localisation of SIRT1 in the livers, muscles, and adipose tissues of HFD-fed rats. All these effects were prevented by EX-527 and miR-34a agmir. In conclusion, RSV prevents HFD-induced insulin resistance and hepatic steatosis by suppressing miR-34a-induced activation of SIRT1.
Collapse
Affiliation(s)
- Mona N BinMowyna
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Nora A AlFaris
- Department of Physical Sport Science, College of Education, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ekram A Al-Sanea
- Department of Biology, College of Sciences, Ibb University, Ibb, Yemen
| | - Jozaa Z AlTamimi
- Department of Physical Sport Science, College of Education, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Tahany S Aldayel
- Department of Physical Sport Science, College of Education, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
HU J, Shao Y, Gui C, Xiao Y, Li L, Li Z. Prevalence and risk of nonalcoholic fatty liver disease among adult psoriatic patients: A systematic review, meta-analysis, and trial sequential analysis. Medicine (Baltimore) 2024; 103:e38007. [PMID: 38701269 PMCID: PMC11062682 DOI: 10.1097/md.0000000000038007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND This systematic review and meta-analysis aimed to report the evaluation of the prevalence and risk of nonalcoholic fatty liver disease (NAFLD) among adult psoriatic patients in a systematic review and meta-analysis. METHODS A comprehensive search was conducted across 4 databases of PubMed, Scopus, Cochrane Library, and Web of Science to collect relevant studies until November 30, 2023, without any restrictions for finding observational studies. The comprehensive meta-analysis version 3.0 software was used to calculate effect sizes, showing the event rate (ER), odds ratio (OR), and a 95% confidence interval (CI) to evaluate NAFLD risk or prevalence in psoriatic patients and controls or psoriatic patients alone. The quality scoring was performed by 1 author based on the Newcastle-Ottawa Scale tool. Publication bias, meta-regression analysis, and sensitivity analyses were performed. Additionally, Trial Sequential Analysis (TSA) was performed using TSA software. RESULTS A total of 581 records were identified among the databases and electronic sources. At last, 41 studies involving 607,781 individuals were included in the meta-analysis. The pooled ER of NAFLD among psoriatic patients was 29.5% (95%CI: 19.6%-41.7%) and I2 = 99.79%. The pooled OR of NAFLD in psoriatic patients compared to controls was 1.685 (95%CI: 1.382-2.055; P < .001) and I2 = 87.96%. CONCLUSIONS The study found a significant link between psoriasis and NAFLD, with psoriatic patients having a higher chance of developing NAFLD compared to the controls. The study calls for regular NAFLD screening in psoriatic patients to prevent liver complications.
Collapse
Affiliation(s)
- Jie HU
- Thoracic Oncology, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - YaQiong Shao
- Department of Integrated Traditional Chinese and Western Medicine, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Cheng Gui
- Department of Integrated Traditional Chinese and Western Medicine, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Yihui Xiao
- Department of Integrated Traditional Chinese and Western Medicine, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Lixia Li
- Department of Integrated Traditional Chinese and Western Medicine, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Zheng Li
- Department of Integrated Traditional Chinese and Western Medicine, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| |
Collapse
|
13
|
Senavirathna T, Shafaei A, Lareu R, Balmer L. Unlocking the Therapeutic Potential of Ellagic Acid for Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Antioxidants (Basel) 2024; 13:485. [PMID: 38671932 PMCID: PMC11047720 DOI: 10.3390/antiox13040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity is in epidemic proportions in many parts of the world, contributing to increasing rates of non-alcoholic fatty liver disease (NAFLD). NAFLD represents a range of conditions from the initial stage of fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to severe fibrosis, through to hepatocellular carcinoma. There currently exists no treatment for the long-term management of NAFLD/NASH, however, dietary interventions have been investigated for the treatment of NASH, including several polyphenolic compounds. Ellagic acid is one such polyphenolic compound. Nutraceutical food abundant in ellagic acid undergoes initial hydrolysis to free ellagic acid within the stomach and small intestine. The proposed mechanism of action of ellagic acid extends beyond its initial therapeutic potential, as it is further broken down by the gut microbiome into urolithin. Both ellagic acid and urolithin have been found to alleviate oxidative stress, inflammation, and fibrosis, which are associated with NAFLD/NASH. While progress has been made in understanding the pharmacological and biological activity of ellagic acid and its involvement in NAFLD/NASH, it has yet to be fully elucidated. Thus, the aim of this review is to summarise the currently available literature elucidating the therapeutic potential of ellagic acid and its microbial-derived metabolite urolithin in NAFLD/NASH.
Collapse
Affiliation(s)
- Tharani Senavirathna
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia;
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Perth, WA 6027, Australia;
| | - Ricky Lareu
- Curtin Medical School and Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia;
| |
Collapse
|
14
|
Lallo V, Bracaglia LG. Influencing Endothelial Cells' Roles in Inflammation and Wound Healing Through Nucleic Acid Delivery. Tissue Eng Part A 2024; 30:272-286. [PMID: 38149606 DOI: 10.1089/ten.tea.2023.0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Tissue engineering and wound-healing interventions are often designed for use in diseased and inflamed environments. In this space, endothelial cells (ECs) are crucial regulators of inflammation and healing, as they are the primary contact for recruitment of immune cells, as well as production of proinflammatory cytokines, which can stimulate or reduce inflammation. Alternatively, proliferation and spreading of ECs result in the formation of new vascular tissue or repair of damaged tissue, both critical for wound healing. Targeting ECs with specific nucleic acids could reduce unwanted inflammation or promote tissue regeneration as needed, which are two large issues involved in many regenerative medicine goals. Polymeric delivery systems are tools that can control the delivery of nucleic acids and prolong their effects. This review describes the use of polymeric vehicles for the delivery of nucleic acids to ECs for tissue engineering. Impact statement Tissue engineering is a rapidly growing field that has the potential to resolve many disease states and improve the quality of life of patients. In some applications, tissue-engineered strategies or constructs are developed to rebuild spaces damaged by disease or degeneration. To rebuild the native tissue, these constructs may need to interact with unwanted immune activity and cells. Various immune cells are often the focus of therapies as they are critical players in the inflammatory response; however, endothelial cells are also an extremely important and promising target in these cases. In addition, controlled delivery of specific-acting molecules, such as nucleic acids, is of growing interest for the regeneration and health of a variety of different tissues. It is important to understand what has been done and the potential of these targets and therapeutics for future investigation and advancements in tissue engineering.
Collapse
Affiliation(s)
- Valerie Lallo
- Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania, USA
| | - Laura G Bracaglia
- Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania, USA
| |
Collapse
|
15
|
Scarlata GGM, Colaci C, Scarcella M, Dallio M, Federico A, Boccuto L, Abenavoli L. The Role of Cytokines in the Pathogenesis and Treatment of Alcoholic Liver Disease. Diseases 2024; 12:69. [PMID: 38667527 PMCID: PMC11048950 DOI: 10.3390/diseases12040069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of chronic liver disease. This term covers a broad spectrum of liver lesions, from simple steatosis to alcoholic hepatitis and cirrhosis. The pathogenesis of ALD is multifactorial and not fully elucidated due to complex mechanisms related to direct ethanol toxicity with subsequent hepatic and systemic inflammation. The accumulation of pro-inflammatory cytokines and the reduction of anti-inflammatory cytokines promote the development and progression of ALD. To date, there are no targeted therapies to counter the progression of chronic alcohol-related liver disease and prevent acute liver failure. Corticosteroids reduce mortality by acting on the hepatic-systemic inflammation. On the other hand, several studies analyzed the effect of inhibiting pro-inflammatory cytokines and stimulating anti-inflammatory cytokines as potential therapeutic targets in ALD. This narrative review aims to clarify the role of the main cytokines involved in the pathogenesis and treatment of ALD.
Collapse
Affiliation(s)
| | - Carmen Colaci
- Department of Health Sciences, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy; (G.G.M.S.); (C.C.)
| | - Marialaura Scarcella
- Anesthesia, Intensive Care and Nutritional Science, Azienda Ospedaliera “Santa Maria”, Via Tristano di Joannuccio, 05100 Terni, Italy;
| | - Marcello Dallio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.D.); (A.F.)
| | - Alessandro Federico
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.D.); (A.F.)
| | - Luigi Boccuto
- Healthcare Genetics and Genomics Doctoral Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy; (G.G.M.S.); (C.C.)
| |
Collapse
|
16
|
Rafaqat S, Gluscevic S, Mercantepe F, Rafaqat S, Klisic A. Interleukins: Pathogenesis in Non-Alcoholic Fatty Liver Disease. Metabolites 2024; 14:153. [PMID: 38535313 PMCID: PMC10972081 DOI: 10.3390/metabo14030153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 07/26/2024] Open
Abstract
Inflammatory cytokines have been implicated as crucial contributors to the onset and progression of non-alcoholic fatty liver disease (NAFLD). The exact mechanisms by which interleukins (ILs) contribute to NAFLD may vary, and ongoing research is aimed at understanding the specific roles of different ILs in the pathogenesis of this condition. In addition, variations in environmental factors and genetics in each individual can influence the onset and/or progression of NAFLD. The lack of clinical studies related to the potential therapeutic properties of IL-1 inhibitors currently does not allow us to conclude their validity as a therapeutic option, although preclinical studies show promising results. Further studies are needed to elucidate their beneficial properties in NAFLD treatment.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology, Lahore College for Women University, Lahore 54600, Pakistan
| | - Sanja Gluscevic
- Clinical Center of Montenegro, Department for Neurology, 81000 Podgorica, Montenegro
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine, Recep Tayyip Erdogan University, 53010 Rize, Turkey
| | - Sana Rafaqat
- Department of Biotechnology (Human Genetics), Lahore College for Women University, Lahore 54600, Pakistan
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| |
Collapse
|
17
|
Shafqat F, Ur Rehman S, Khan MS, Niaz K. Liver. ENCYCLOPEDIA OF TOXICOLOGY 2024:897-913. [DOI: 10.1016/b978-0-12-824315-2.00138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Vrsaljko N, Gjurašin B, Papić N. COVID-19 severity and nonalcoholic fatty liver disease. MANAGEMENT, BODY SYSTEMS, AND CASE STUDIES IN COVID-19 2024:457-463. [DOI: 10.1016/b978-0-443-18703-2.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Luxenburger H, Thimme R. SARS-CoV-2 and the liver: clinical and immunological features in chronic liver disease. Gut 2023; 72:1783-1794. [PMID: 37316169 PMCID: PMC10423489 DOI: 10.1136/gutjnl-2023-329623] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
SARS-CoV-2 infection may affect the liver in healthy individuals but also influences the course of COVID-19 in patients with chronic liver disease (CLD). As described in healthy individuals, a strong SARS-CoV-2-specific adaptive immune response is important for the outcome of COVID-19, however, knowledge on the adaptive immune response in CLD is limited.Here, we review the clinical and immunological features of SARS-CoV-2 infection in individuals with CLD. Acute liver injury occurs in many cases of SARS-CoV-2 infection and may be induced by multiple factors, such as cytokines, direct viral infection or toxic effects of COVID-19 drugs. In individuals with CLD, SARS-CoV-2 infection may have a more severe course and promote decompensation and particularly in patients with cirrhosis. Compared with healthy individuals, the SARS-CoV-2-specific adaptive immune responses is impaired in patients with CLD after both, natural infection and vaccination but improves at least partially after booster vaccination.Following SARS-CoV-2 vaccination, rare cases of acute vaccine-induced liver injury and the development of autoimmune-like hepatitis have been reported. However, the concomitant elevation of liver enzymes is reversible under steroid treatment.
Collapse
Affiliation(s)
- Hendrik Luxenburger
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Jabbar AAJ, Alamri ZZ, Abdulla MA, AlRashdi AS, Najmaldin SK, Zainel MA. Sinapic Acid Attenuate Liver Injury by Modulating Antioxidant Activity and Inflammatory Cytokines in Thioacetamide-Induced Liver Cirrhosis in Rats. Biomedicines 2023; 11:biomedicines11051447. [PMID: 37239118 DOI: 10.3390/biomedicines11051447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Sinapic acid (SA) is a natural pharmacological active compound found in berries, nuts, and cereals. The current study aimed to investigate the protective effects of SA against thioacetamide (TAA) fibrosis in rats by histopathological and immunohistochemical assays. The albino rats (30) were randomly divided into five groups (G). G1 was injected with distilled water 3 times/week and fed orally daily with 10% Tween 20 for two months. G2-5 were injected with 200 mg/kg TAA three times weekly for two months and fed with 10% Tween 20, 50 mg/kg silymarin, 20, and 40 mg/kg of SA daily for 2 months, respectively. The results showed that rats treated with SA had fewer hepatocyte injuries with lower liver index (serum bilirubin, total protein, albumin, and liver enzymes (ALP, ALT, and AST) and were similar to that of control and silymarin-treated rats. Acute toxicity for 2 and 4 g/kg SA showed to be safe without any toxic signs in treated rats. Macroscopic examination showed that hepatotoxic liver had an irregular, rough surface with micro and macro nodules and histopathology expressed by Hematoxylin and Eosin, and Masson Trichrome revealed severe inflammation and infiltration of focal necrosis, fibrosis, lymphocytes, and proliferation bile duct. In contrast, rats fed with SA had significantly lower TAA toxicity in gross and histology and liver tissues as presented by less liver tissue disruption, lesser fibrosis, and minimum in filtered hepatocytes. Immunohistochemistry of rats receiving SA showed significant up-regulation of HSP 70% and down-regulation of alpha-smooth muscle actin (α-SMA) protein expression compared to positive control rats. The homogenized liver tissues showed a notable rise in the antioxidant enzymes (SOD and CAT) actions with significantly lower malondialdehyde (MDA) levels compared to that of the positive control group. Furthermore, the SA-treated rats had significantly lower TNF-a, IL-6, and higher IL-10 levels than the positive control rats. Thus, the findings suggest SA as a hepatoprotective compound due to its inhibitory effects on fibrosis, hepatotoxicity, liver cell proliferation, up-regulation of HSP 70, and downregulation of α-SMA expression, inhibiting lipid peroxidation (MDA), while retaining the liver index and antioxidant enzymes to normal.
Collapse
Affiliation(s)
- Ahmed A J Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil 44001, Iraq
| | - Zaenah Zuhair Alamri
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Sciences, Cihan University-Erbil, Erbil 44001, Iraq
| | - Ahmed S AlRashdi
- Central Public Health Laboratories, Ministry of Health, P.O. Box 2294, Muscat 111, Oman
| | - Soran Kayfi Najmaldin
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil 44001, Iraq
| | | |
Collapse
|
21
|
1,25-Dihydroxycholecalciferol down-regulates 3-mercaptopyruvate sulfur transferase and caspase-3 in rat model of non-alcoholic fatty liver disease. J Mol Histol 2023; 54:119-134. [PMID: 36930413 DOI: 10.1007/s10735-023-10118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the commonest cause of liver morbidity and mortality and has multiple unclear pathogenic mechanisms. Vitamin D deficiency was associated with increased incidence and severity of NAFLD. Increased hepatic expression of 3-mercaptopyruvate sulfur transferase (MPST) and dysregulated hepatocyte apoptosis were involved in NAFLD pathogenesis. We aimed to explore the protective effect of 1,25-Dihydroxycholecalciferol (1,25-(OH)2 D3) against development of NAFLD and the possible underlying mechanisms, regarding hepatic MPST and caspase-3 expression. 60 male adult rats were divided into 4 and 12 week fed groups; each was subdivided into control, high-fat diet (HFD), and HFD + VD. Serum levels of lipid profile parameters, liver enzymes, insulin, glucose, C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), and hepatic levels of malondialdehyde (MDA), total antioxidant capacity (TAC), and reactive oxygen species (ROS) were measured. BMI and HOMA-IR were calculated, and liver tissues were processed for histopathological and immunohistochemical studies. The present study found that 1,25-(OH)2 D3 significantly decreased BMI, HOMA-IR, serum levels of glucose, insulin, liver enzymes, lipid profile parameters, CRP, TNF-α, hepatic levels of MDA, ROS, hepatic expression of MPST, TNF-α, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and caspase-3; and significantly increased hepatic TAC in both HFD-fed groups. In conclusion: Administration of 1,25-(OH)2 D3 with HFD abolished the NAFLD changes associated with HFD in 4-week group, and markedly attenuated the changes in 12-week group. The anti-apoptotic effect via decrement of caspase-3 and MPST expression are novel mechanisms suggested to be implicated in the protective effect of 1,25-(OH)2 D3.
Collapse
|
22
|
Ghobrial DK, El-Nikhely N, Sheta E, Ragab HM, Rostom SAF, Saeed H, Wahid A. The Role of Pyrazolo[3,4-d]pyrimidine-Based Kinase Inhibitors in The Attenuation of CCl4-Induced Liver Fibrosis in Rats. Antioxidants (Basel) 2023; 12:antiox12030637. [PMID: 36978885 PMCID: PMC10045301 DOI: 10.3390/antiox12030637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Liver Fibrosis can be life-threatening if left untreated as it may lead to serious, incurable complications. The common therapeutic approach is to reverse the fibrosis while the intervention is still applicable. Celecoxib was shown to exhibit some antifibrotic properties in the induced fibrotic liver in rats. The present study aimed to investigate the possible antifibrotic properties in CCl4-induced liver fibrosis in male Sprague–Dawley rats compared to celecoxib of three novel methoxylated pyrazolo[3,4-d]pyrimidines. The three newly synthesized compounds were proved to be safe candidates. They showed a therapeutic effect against severe CCl4-induced fibrosis but at different degrees. The three compounds were able to partially reverse hepatic architectural distortion and reduce the fibrotic severity by showing antioxidant properties reducing MDA with increasing GSH and SOD levels, remodeling the extracellular matrix proteins and liver enzymes balance, and reducing the level of proinflammatory (TNF-α and IL-6) and profibrogenic (TGF-β) cytokines. The results revealed that the dimethoxy-analog exhibited the greatest activity in all the previously mentioned parameters compared to celecoxib and the other two analogs which could be attributed to the different methoxylation patterns of the derivatives. Collectively, the dimethoxy-derivative could be considered a safe promising antifibrotic candidate.
Collapse
Affiliation(s)
- Diana K. Ghobrial
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
- Correspondence: (D.K.G.); (A.W.)
| | - Nefertiti El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21321, Egypt
| | - Hanan M. Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21500, Egypt
| | - Sherif A. F. Rostom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21500, Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21500, Egypt
- Correspondence: (D.K.G.); (A.W.)
| |
Collapse
|
23
|
Zhang N, Fan T, Zhao L, Li Y, Bao Y, Ma X, Mei Y, Wang Y, Liu Y, Deng H, Li Y, He H, Song D. Discovery and development of palmatine analogues as anti-NASH agents by activating farnesoid X receptor (FXR). Eur J Med Chem 2023; 245:114886. [DOI: 10.1016/j.ejmech.2022.114886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
24
|
Afarin R, Aslani F, Asadizade S, Jaberian Asl B, Mohammadi Gahrooie M, Shakerian E, Ahangarpour A. The Effect of Lipopolysaccharide-Stimulated Adipose-Derived Mesenchymal Stem Cells on NAFLD Treatment in High-Fat Diet-Fed Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e134807. [PMID: 38116551 PMCID: PMC10728850 DOI: 10.5812/ijpr-134807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 12/21/2023]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are 2 common liver diseases that currently lack effective treatment options. Objectives This study aimed to investigate the effect of lipopolysaccharide (LPS)-stimulated adipose-derived stem cells (ADSCs) on NAFLD treatment in an animal model. Methods Male Wistar rats were fed a high-fat diet (HFD) to induce NAFLD for 7 weeks. The rats were then categorized into 3 groups: Mesenchymal stem cell (MSC), MSC + LPS, and fenofibrate (FENO) groups. Liver and body weight were measured, and the expression of genes involved in fatty acid biosynthesis, β-oxidation, and inflammatory responses was assessed. Results Lipopolysaccharide-stimulated ADSCs were more effective in regulating liver and body weight gain and reducing liver triglyceride (TG) levels compared to the other groups. Treatment with LPS-stimulated ADSCs effectively corrected liver enzymes, including alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and lipid factors, including low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) values, better than treatment with both FENO and MSCs. ADSCs + LPS treatment significantly decreased transforming growth factor β (TGF-β) and genes associated with inflammatory responses. Additionally, there was a significant reduction in reactive oxygen species (ROS) levels in the rats treated with ADSCs + LPS. Conclusions Lipopolysaccharide-stimulated ADSCs showed potential in alleviating NAFLD by reducing inflammatory genes and ROS levels in HFD rats, demonstrating better results than treatment with ADSCs and FENO groups alone.
Collapse
Affiliation(s)
- Reza Afarin
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshteh Aslani
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahla Asadizade
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahar Jaberian Asl
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnoosh Mohammadi Gahrooie
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Shakerian
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
25
|
Fierbinteanu-Braticevici C, Calin-Necula AM, Enciu VT, Goran L, Pantea Stoian A, Ancuta I, Viasu O, Moldoveanu AC. The Role of Noninvasive 13C-Octanoate Breath Test in Assessing the Diagnosis of Nonalcoholic Steatohepatitis. Diagnostics (Basel) 2022; 12:diagnostics12122935. [PMID: 36552942 PMCID: PMC9777050 DOI: 10.3390/diagnostics12122935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The diagnosis of NASH needs a liver biopsy, an invasive procedure that is not frequently accepted by patients. The aim of our study was to evaluate the efficacy of the 13C-Octanoate breath test (OBT) as a non-invasive surrogate marker to differentiate patients with NASH from patients with simple steatosis (NAFL). METHODS We performed a prospective study on patients with histologically established non-alcoholic steatohepatitis and no other hepatic disease. Each patient underwent a testing protocol, which included a clinical exam, laboratory blood tests, standard abdominal ultrasound, and a 13C-Octanoate breath test. RESULTS The study group included: 82 patients with steatohepatitis, 64 patients with simple steatosis, and 21 healthy volunteers. The univariate and bivariate analysis identified that significant values were the percent dose recovery (PDR) at 15 min-r = 0.65 (AUROC = 0.902) and cumulative percent dose recovery (cPDR) at 120 min-r = 0.69 (AUROC = 0.899). DISCUSSION Our study showed that 13C-OBT had good efficacy for identifying patients with NASH from those with NAFL (steatosis alone) but not those with NAFL from healthy subjects. Considering all these pathogenic steps in NASH we considered that OBT could have the clinical utility to identify patients at risk for NASH, especially "fast progressors".
Collapse
Affiliation(s)
- Carmen Fierbinteanu-Braticevici
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Emergency University Hospital, 050098 Bucharest, Romania
| | - Ana-Maria Calin-Necula
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Emergency University Hospital, 050098 Bucharest, Romania
- Correspondence:
| | - Vlad-Teodor Enciu
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Emergency University Hospital, 050098 Bucharest, Romania
| | - Loredana Goran
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Emergency University Hospital, 050098 Bucharest, Romania
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- “Prof. Dr. N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Ioan Ancuta
- Internal Medicine Department, Dr. I. Cantacuzino Hospital, 030167 Bucharest, Romania
| | - Octav Viasu
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Emergency University Hospital, 050098 Bucharest, Romania
| | - Alexandru Constantin Moldoveanu
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Emergency University Hospital, 050098 Bucharest, Romania
| |
Collapse
|
26
|
Šamadan L, Papić N, Mijić M, Knežević Štromar I, Gašparov S, Vince A. Do Semaphorins Play a Role in Development of Fibrosis in Patients with Nonalcoholic Fatty Liver Disease? Biomedicines 2022; 10:3014. [PMID: 36551769 PMCID: PMC9775767 DOI: 10.3390/biomedicines10123014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with systemic changes in immune response linked with chronic low-grade inflammation and disease progression. Semaphorins, a large family of biological response modifiers, were recently recognized as one of the key regulators of immune responses, possibly also associated with chronic liver diseases. The aim of this study was to identify semaphorins associated with NAFLD and their relationship with steatosis and fibrosis stages. In this prospective, case-control study, serum semaphorin concentrations (SEMA3A, -3C, -4A, -4D, -5A and -7A) were measured in 95 NAFLD patients and 35 healthy controls. Significantly higher concentrations of SEMA3A, -3C and -4D and lower concentrations of SEAMA5A and -7A were found in NAFLD. While there was no difference according to steatosis grades, SEMA3C and SEMA4D significantly increased and SEMA3A significantly decreased with fibrosis stages and had better accuracy in predicting fibrosis compared to the FIB-4 score. Immunohistochemistry confirmed higher expression of SEMA4D in hepatocytes, endothelial cells and lymphocytes in NAFLD livers. The SEMA5A rs1319222 TT genotype was more frequent in the NAFLD group and was associated with higher liver stiffness measurements. In conclusion, we provide the first evidence of the association of semaphorins with fibrosis in patients with NAFLD.
Collapse
Affiliation(s)
- Lara Šamadan
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Neven Papić
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Viral Hepatitis, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia
| | - Maja Mijić
- Department of Internal Medicine, Division of Gastroenterology, University Hospital Merkur, 10000 Zagreb, Croatia
| | - Ivana Knežević Štromar
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Slavko Gašparov
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Pathology, University Hospital Merkur, 10000 Zagreb, Croatia
| | - Adriana Vince
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Viral Hepatitis, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
27
|
Hassan NF, Hassan AH, El-Ansary MR. Cytokine modulation by etanercept ameliorates metabolic syndrome and its related complications induced in rats administered a high-fat high-fructose diet. Sci Rep 2022; 12:20227. [PMID: 36418417 PMCID: PMC9684438 DOI: 10.1038/s41598-022-24593-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to investigate the effect of etanercept (ETA)-an anti-tumor necrosis factor α (TNF-α) monoclonal antibody-on metabolic disorders such as obesity, hypertension, dyslipidemia, and insulin resistance associated with the metabolic syndrome (MS). MS was induced in rats via high-fat high-fructose (HFHF) administration for 8 weeks. Rats were divided into three groups: negative control, HFHF model, and ETA-treated groups [HFHF + ETA (0.8 mg/kg/twice weekly, subcutaneously) administered in the last 4 weeks]. ETA effectively diminished the prominent features of MS via a significant reduction in the percent body weight gain along with the modulation of adipokine levels, resulting in a significant elevation of serum adiponectin consistent with TNF-α and serum leptin level normalization. Moreover, ETA enhanced dyslipidemia and the elevated blood pressure. ETA managed the prominent features of MS and its associated complications via the downregulation of the hepatic inflammatory pathway that induces nonalcoholic steatohepatitis (NASH)-from the expression of Toll-like receptor 4, nuclear factor kappa B, and TNF-α until that of transforming growth factor-in addition to significant improvements in glucose utilization, insulin sensitivity, and liver function parameter activity and histopathological examination. ETA was effective for the treatment of all prominent features of MS and its associated complications, such as type II diabetes mellitus and NASH.
Collapse
Affiliation(s)
- Noha F. Hassan
- grid.440876.90000 0004 0377 3957Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Azza H. Hassan
- grid.7776.10000 0004 0639 9286Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mona R. El-Ansary
- grid.440876.90000 0004 0377 3957Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
28
|
Monirujjaman M, Bathe OF, Mazurak VC. Dietary EPA+DHA Mitigate Hepatic Toxicity and Modify the Oxylipin Profile in an Animal Model of Colorectal Cancer Treated with Chemotherapy. Cancers (Basel) 2022; 14:cancers14225703. [PMID: 36428795 PMCID: PMC9688617 DOI: 10.3390/cancers14225703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Irinotecan (CPT-11) and 5-fluorouracil (5-FU) are commonly used to treat metastatic colorectal cancer, but chemotherapy-associated steatosis/steatohepatitis (CASSH) frequently accompanies their use. The objective of this study was to determine effect of CPT-11+5-FU on liver toxicity, liver oxylipins, and cytokines, and to explore whether these alterations could be modified by dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the form of fish oil (EPA+DHA). Tumor-bearing animals were administered CPT-11+5-FU and maintained on a control diet or a diet containing EPA+DHA (2.3 g/100 g). Livers were collected one week after chemotherapy for the analysis of oxylipins, cytokines, and markers of liver pathology (oxidized glutathione, GSSH; 4-hydroxynonenal, 4-HNE, and type-I collagen fiber). Dietary EPA+DHA prevented the chemotherapy-induced increases in liver GSSH (p < 0.011) and 4-HNE (p < 0.006). Compared with the tumor-bearing animals, ten oxylipins were altered (three/ten n-6 oxylipins were elevated while seven/ten n-3 oxylipins were reduced) following chemotherapy. Reductions in the n-3 fatty-acid-derived oxylipins that were evident following chemotherapy were restored by dietary EPA+DHA. Liver TNF-α, IL-6 and IL-10 were elevated (p < 0.05) following chemotherapy; dietary EPA+DHA reduced IL-6 (p = 0.09) and eotaxin (p = 0.007) levels. Chemotherapy-induced liver injury results in distinct alterations in oxylipins and cytokines, and dietary EPA+DHA attenuates these pathophysiological effects.
Collapse
Affiliation(s)
- Md Monirujjaman
- Division of Human Nutrition, Department of Agricultural Food and Nutritional Science, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Oliver F. Bathe
- Department of Surgery and Oncology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Vera C. Mazurak
- Division of Human Nutrition, Department of Agricultural Food and Nutritional Science, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Correspondence: ; Tel.: +1-780-492-8048
| |
Collapse
|
29
|
Wang K, Shi J, Gao S, Hong H, Tan Y, Luo Y. Oyster protein hydrolysates alleviated chronic alcohol-induced liver injury in mice by regulating hepatic lipid metabolism and inflammation response. Food Res Int 2022; 160:111647. [DOI: 10.1016/j.foodres.2022.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 12/01/2022]
|
30
|
da Cruz NS, Pasquarelli-do-Nascimento G, e Oliveira ACP, Magalhães KG. Inflammasome-Mediated Cytokines: A Key Connection between Obesity-Associated NASH and Liver Cancer Progression. Biomedicines 2022; 10:2344. [PMID: 36289606 PMCID: PMC9598450 DOI: 10.3390/biomedicines10102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/18/2022] [Indexed: 11/18/2022] Open
Abstract
Liver cancer is one of the most lethal malignancies and is commonly diagnosed as hepatocellular carcinoma (HCC), a tumor type that affects about 90% of patients. Non-alcoholic steatohepatitis (NASH) and obesity are both risk factors for this disease. HCC initiation and progression are deeply linked with changes in the hepatic microenvironment, with cytokines playing key roles. The understanding of the pathogenic pathways that connect these disorders to liver cancer remains poor. However, the inflammasome-mediated cytokines associated with both diseases are central actors in liver cancer progression. The release of the pro-inflammatory cytokines IL-1β and IL-18 during inflammasome activation leads to several detrimental effects on the liver microenvironment. Considering the critical crosstalk between obesity, NASH, and HCC, this review will present the connections of IL-1β and IL-18 from obesity-associated NASH with HCC and will discuss approaches to using these cytokines as therapeutic targets against HCC.
Collapse
Affiliation(s)
| | | | | | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| |
Collapse
|
31
|
Kianmehr H, Guo J, Lin Y, Luo J, Cushman W, Shi L, Fonseca V, Shao H. A machine learning approach identifies modulators of heart failure hospitalization prevention among patients with type 2 diabetes: A revisit to the ACCORD trial. J Diabetes Complications 2022; 36:108287. [PMID: 36007486 PMCID: PMC11003517 DOI: 10.1016/j.jdiacomp.2022.108287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 08/14/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND To examine patient characteristics that may modulate the heterogeneous treatment effect of intensive systolic blood pressure control (SBP) and intensive glycemic control on incident heart failure (HF) risk in people with type 2 diabetes. METHODS We analyzed 10,251 participants from the ACCORD glucose trial, and 4733 from the SBP sub-trial separately. We applied a robust machine-learning (ML) algorithm, namely the causal forest/causal tree analysis, to each trial to identify participants' characteristics that modulate the effectiveness of each trial intervention. RESULTS Diastolic blood pressure (DBP) was found to interact with intensive glycemic control and impact outcomes. An increased HF risk associated with intensive glycemic control (absolute risk change (ARC): 2.28 %, 95 % confidence interval (CI): 0.69 % to 3.90 %; relative risk (RR):1.57, 95 % CI: 1.15 to 2.20; P < 0.05) was observed in individuals with baseline DBP at the lowest tertile (45-69 mmHg), while no changes in HF risk associated with intensive glycemic control were observed in individuals with baseline DBP at the middle (70-79 mmHg) and the highest tertiles (80-100 mmHg). Liver function was identified as a modulator of intensive BP control, and baseline Alanine transaminase (ALT) level was a sensitive marker for the modulating effect. Only individuals with baseline ALT at the lowest tertile (8-19 mg/dl) benefited from the intensive BP control for HF prevention (ARC: -1.95 %, 95 % CI: -4.06 % to 0.11 %; RR:0.62. 95 % CI: 0.27 to 0.94; P < 0.05). CONCLUSIONS Our study is the first to observe and quantify the potential synergistic harmful effect when low DBP was combined with an intensive blood glucose intervention. Recognizing these may help clinicians develop a more precise approach to such treatments, thus increasing the efficiency and outcomes of diabetes treatments.
Collapse
Affiliation(s)
- Hamed Kianmehr
- Department of Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Drug Evaluation and Safety (CoDES), University of Florida, Gainesville, FL, USA
| | - Jingchuan Guo
- Department of Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Drug Evaluation and Safety (CoDES), University of Florida, Gainesville, FL, USA
| | - Yilu Lin
- Department of Health Policy and Management, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Jing Luo
- Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William Cushman
- Department of Preventive Medicine, University of Tennessee Health Science Center, TN, USA
| | - Lizheng Shi
- Department of Health Policy and Management, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Vivian Fonseca
- Department of Medicine and Pharmacology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hui Shao
- Department of Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Drug Evaluation and Safety (CoDES), University of Florida, Gainesville, FL, USA.
| |
Collapse
|
32
|
Gart E, van Duyvenvoorde W, Caspers MPM, van Trigt N, Snabel J, Menke A, Keijer J, Salic K, Morrison MC, Kleemann R. Intervention with isoleucine or valine corrects hyperinsulinemia and reduces intrahepatic diacylglycerols, liver steatosis, and inflammation in Ldlr-/-.Leiden mice with manifest obesity-associated NASH. FASEB J 2022; 36:e22435. [PMID: 35830259 DOI: 10.1096/fj.202200111r] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is associated with a disturbed metabolism in liver, insulin resistance, and excessive accumulation of ectopic fat. Branched-chain amino acids (BCAAs) may beneficially modulate hepatic lipids, however, it remains unclear whether individual BCAAs can attenuate already established NASH and associated oxidative-inflammatory stress. After a 26 weeks run-in on fast food diet (FFD), obese Ldlr-/-.Leiden mice were treated for another 12 weeks with either valine or isoleucine (3% of FFD) and then compared to FFD controls. Valine and isoleucine did not affect obesity, dyslipidemia, gut permeability, or fecal fatty acid excretion, but significantly reduced hyperinsulinemia. Valine and isoleucine reduced ALT, CK18-M30, and liver steatosis with a particularly pronounced suppression of the microvesicular component (-61% by valine and -71% by isoleucine). Both BCAAs decreased intrahepatic diacylglycerols and 4-hydroxynonenal immunoreactivity, a marker for oxidative stress-induced lipid peroxidation. Functional genomics analysis demonstrated that valine and isoleucine affected BCAA metabolism genes, deactivated master regulators of anabolic pathways related to steatosis (e.g., SREBPF1), and activated master regulators of mitochondrial biogenesis (e.g., PPARGC1A) and lipid catabolism (e.g., ACOX1, AMPK). This correction of critical metabolic pathways on gene expression level was accompanied by a significant decrease in histological liver inflammation, and suppression of FFD-stimulated cytokine and chemokine proteins KC/CXCL1, MCP-1/CCL2, and MIP-2/CXCL2 and their pathways. In conclusion, dietary intervention with either valine or isoleucine corrected liver diacylglycerols, gene expression of multiple metabolic processes, and reduced NASH histology with profound hepatoprotective effects on oxidative stress and inflammatory proteins.
Collapse
Affiliation(s)
- Eveline Gart
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, the Netherlands
| | - Nikki van Trigt
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Jessica Snabel
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Aswin Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Kanita Salic
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Martine C Morrison
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands.,Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
33
|
Do MH, Lee HHL, Lee JE, Park M, Oh MJ, Lee HB, Park JH, Jhun H, Kim JH, Kang CH, Park HY. Gellan gum prevents non-alcoholic fatty liver disease by modulating the gut microbiota and metabolites. Food Chem 2022; 400:134038. [DOI: 10.1016/j.foodchem.2022.134038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 10/15/2022]
|
34
|
Zhou J, Zhang N, Aldhahrani A, Soliman MM, Zhang L, Zhou F. Puerarin ameliorates nonalcoholic fatty liver in rats by regulating hepatic lipid accumulation, oxidative stress, and inflammation. Front Immunol 2022; 13:956688. [PMID: 35958617 PMCID: PMC9359096 DOI: 10.3389/fimmu.2022.956688] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become one of the public health problems globally. The occurrence of NAFLD is usually accompanied by a series of chronic metabolic diseases, with a prevalence rate is 25.24% among adults worldwide. Therefore, NAFLD seriously affects the quality of life in patients and causes a large economic burden. It has been reported that puerarin has the function of lowering the serum lipids, but due to the complexity of NAFLD, the specific mechanism of action has not been clarified. The aim of this study was to evaluate the preventive or ameliorating effects of two doses of puerarin (0.11% and 0.22% in diet) on high-fat and high-fructose diet (HFFD)-induced NAFLD in rats. The rats were fed with HFFD-mixed puerarin for 20 weeks. The results showed that puerarin ameliorated the levels of lipids in the serum and liver. Further exploration of the mechanism found that puerarin ameliorated hepatic lipid accumulation in NAFLD rats by reducing the expression of Srebf1, Chrebp, Acaca, Scd1, Fasn, Acacb, Cd36, Fatp5, Degs1, Plin2, and Apob100 and upregulating the expression of Mttp, Cpt1a, and Pnpla2. At the same time, after administration of puerarin, the levels of antioxidant markers (superoxide dismutase, glutathione peroxidase, and catalase) were significantly increased in the serum and liver, and the contents of serum and hepatic inflammatory factors (interleukin-18, interleukins-1β, and tumor necrosis factor α) were clearly decreased. In addition, puerarin could ameliorate the liver function. Overall, puerarin ameliorated HFFD-induced NAFLD by modulating liver lipid accumulation, liver function, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Feng Zhou,
| |
Collapse
|
35
|
Bashir A, Duseja A, De A, Mehta M, Tiwari P. Non-alcoholic fatty liver disease development: A multifactorial pathogenic phenomena. LIVER RESEARCH 2022; 6:72-83. [PMID: 39958625 PMCID: PMC11791825 DOI: 10.1016/j.livres.2022.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by the accumulation of excessive intrahepatic fat, is a leading metabolic disorder also considered as the hepatic manifestation of metabolic syndrome (MS). Though more commonly observed in obese individuals and those with metabolic risk factors, it also develops in a considerable number of non-obese individuals as well as participants without having any component of MS. The basic mechanism involved in the development of fatty liver is the imbalance between lipid uptake, synthesis, and metabolism in the liver, normally controlled by several mechanisms to maintain lipid homeostasis. As a complex progressive liver disorder, the NAFLD pathogenesis is multifactorial, and several new pathogenic phenomena were discovered over time. The available literature suggests the role of both genetic and environmental factors and associated metabolic factors; however, the mechanism of progression is not completely understood. In this review, we discuss different pathogenic mechanisms and their interplay to provide an elaborate idea regarding NAFLD development and progression. Better understanding of pathogenic mechanisms will be useful in finding new treatment for patients with NAFLD.
Collapse
Affiliation(s)
- Aamir Bashir
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | - Ajay Duseja
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arka De
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manu Mehta
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramil Tiwari
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| |
Collapse
|
36
|
Abstract
The heart and the liver display multifaceted, complex interactions that can be divided into cardiac effects of liver disease, hepatic effects of heart disease, and disease processes affecting both organs. In part 1 of this 2 part series, we discuss how acute and chronic heart failure can have devastating effects on the liver, such as acute cardiogenic liver injury and congestive hepatopathy. On the other hand, primary liver disease, such as cirrhosis, can lead to a plethora of cardiac insults representative in cirrhotic cardiomyopathy as systolic dysfunction, diastolic dysfunction, and electrophysiological disturbances. Nonalcoholic fatty liver disease has long been associated with cardiovascular events that increase mortality. The management of both disease processes changes when the other organ system becomes involved. This consideration is important with regard to a variety of interventions, most notably transplantation of either organ, as risk of complications dramatically rises in the setting of both heart and liver disease (discussed in part 2). As our understanding of the intricate communication between the heart and liver continues to expand so does our management.
Collapse
Affiliation(s)
- Nicholas Scalzo
- From the Department of Medicine, Section of Gastroenterology & Hepatobiliary Diseases, New York Medical College and Westchester Medical Center, Valhalla, NY
| | | | | |
Collapse
|
37
|
Ghezelbash B, Shahrokhi N, Khaksari M, Asadikaram G, Shahrokhi M, Shirazpour S. Protective Roles of Shilajit in Modulating Resistin, Adiponectin, and Cytokines in Rats with Non-alcoholic Fatty Liver Disease. Chin J Integr Med 2022; 28:531-537. [PMID: 35258780 DOI: 10.1007/s11655-022-3307-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the effect of Shilajit, a medicine of Ayurveda, on the serum changes in cytokines and adipokines caused by non-alcoholic fatty liver disease (NAFLD). METHODS After establishing fatty liver models by feeding a high-fat diet (HFD) for 12 weeks, 35 Wistar male rats were randomly divided into 5 groups, including control (standard diet), Veh (HFD + vehicle), high-dose Shilajit [H-Sh, HFD + 250 mg/(kg·d) Shilajit], low-dose Shilajit [L-Sh, HFD + 150 mg/(kg·d) Shilajit], and pioglitazone [HFD + 10 mg/(kg·d) pioglitazone] groups, 7 rats in each group. After 2-week of gavage administration, serum levels of glucose, insulin, interleukin 1beta (IL-1β), IL-6, IL-10, tumor necrosis factor-alpha (TNF-α), adiponectin, and resistin were measured, and insulin resistance index (HOMA-IR) was calculated. RESULTS After NAFLD induction, the serum level of IL-10 significantly increased and serum IL-1β, TNF-α levels significantly decreased by injection of both doses of Shilajit and pioglitazone (P<0.05). Increases in serum glucose level and homeostasis model of HOMA-IR were reduced by L-Sh and H-Sh treatment in NAFLD rats (P<0.05). Both doses of Shilajit increased adiponectin and decreased serum resistin levels (P<0.05). CONCLUSION The probable protective role of Shilajit in NAFLD model rats may be via modulating the serum levels of IL-1β, TNF-α, IL-10, adipokine and resistin, and reducing of HOMA-IR.
Collapse
Affiliation(s)
- Baran Ghezelbash
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Nader Shahrokhi
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, 7616914115, Iran.
| | - Mohammad Khaksari
- Endocrinology, and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Gholamreza Asadikaram
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Maryam Shahrokhi
- Department of Medical Science, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, 713414336, Iran
| | - Sara Shirazpour
- Department of Physiology and Pharmacology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| |
Collapse
|
38
|
Raftar SKA, Ashrafian F, Abdollahiyan S, Yadegar A, Moradi HR, Masoumi M, Vaziri F, Moshiri A, Siadat SD, Zali MR. The anti-inflammatory effects of Akkermansia muciniphila and its derivates in HFD/CCL4-induced murine model of liver injury. Sci Rep 2022; 12:2453. [PMID: 35165344 PMCID: PMC8844054 DOI: 10.1038/s41598-022-06414-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation plays a critical role in the promotion of hepatocyte damage and liver fibrosis. In recent years the protective role of Akkermansia muciniphila, a next-generation beneficial microbe, has been suggested for metabolic and inflammatory disorders. In this study, we aimed to evaluate the effects of live and pasteurized A. muciniphila and its extra cellular vesicles (EVs) on inflammatory markers involved in liver fibrosis in a mouse model of a high-fat diet (HFD)/carbon tetrachloride (CCl4)-induced liver injury. Firstly, the responses of hepatic stellate cells (HSCs) to live and pasteurized A. muciniphila and its EVs were examined in the quiescent and LPS-activated LX-2 cells. Next, the anti-inflammatory effects of different forms of A. muciniphila were examined in the mouse model of HFD/CCl4-induced liver injury. The gene expression of various inflammatory markers was evaluated in liver, colon, and white adipose tissues. The cytokine secretion in the liver and white adipose tissues was also measured by ELISA. The results showed that administration of live and pasteurized A. muciniphila and its EVs leads to amelioration in HSCs activation. Based on data obtained from the histopathological analysis, an improvement in gut health was observed through enhancing the epithelium and mucosal layer thickness and strengthening the intestinal integrity in all treatments. Moreover, live A. muciniphila and its EVs had inhibitory effects on liver inflammation and hepatocytes damage. In addition, the tissue cytokine production and inflammatory gene expression levels revealed that live A. muciniphila and its EVs had more pronounced anti-inflammatory effects on liver and adipose tissues. Furthermore, EVs had better effects on the modulation of gene expression related to TLRs, PPARs, and immune response in the liver. In conclusion, the present results showed that oral administration of A. muciniphila and its derivatives for four weeks could enhance the intestinal integrity and anti-inflammatory responses of the colon, adipose, and liver tissues and subsequently prevent liver injury in HFD/CCL4 mice.
Collapse
|
39
|
Sabir U, Irfan HM, Alamgeer, Ullah A, Althobaiti YS, Asim MH. Reduction of Hepatic Steatosis, Oxidative Stress, Inflammation, Ballooning and Insulin Resistance After Therapy with Safranal in NAFLD Animal Model: A New Approach. J Inflamm Res 2022; 15:1293-1316. [PMID: 35241921 PMCID: PMC8886028 DOI: 10.2147/jir.s354878] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
|
40
|
Simas AM, Kramer CD, Genco CA. Diet-Induced Non-alcoholic Fatty Liver Disease and Associated Gut Dysbiosis Are Exacerbated by Oral Infection. FRONTIERS IN ORAL HEALTH 2022; 2:784448. [PMID: 35141703 PMCID: PMC8820505 DOI: 10.3389/froh.2021.784448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that chronic inflammation due to periodontal disease is associated with progression of non-alcoholic fatty liver disease (NAFLD) caused by a Western diet. NAFLD has also been associated with oral infection with the etiological agent of periodontal disease, Porphyromonas gingivalis. P. gingivalis oral infection has been shown to induce cardiometabolic disease features including hepatic lipid accumulation while also leading to dysbiosis of the gut microbiome. However, the impact of P. gingivalis infection on the gut microbiota of mice with diet-induced NAFLD and the potential for those changes to mediate NAFLD progression has yet to be determined. In the current study, we have demonstrated that P. gingivalis infection induced sustained alterations of the gut microbiota composition and predicted functions, which was associated with the promotion of NAFLD in steatotic mice. Reduced abundance of short-chain fatty acid-producing microbiota was observed after both acute and chronic P. gingivalis infection. Collectively, our findings demonstrate that P. gingivalis infection produces a persistent change in the gut microbiota composition and predicted functions that promotes steatosis and metabolic disease.
Collapse
Affiliation(s)
- Alexandra M. Simas
- Gerald J. and Dorothy R. Friedman School of Nutrition and Science Policy, Graduate Program in Biochemical and Molecular Nutrition, Tufts University, Boston, MA, United States
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Carolyn D. Kramer
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Caroline A. Genco
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Graduate Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
- *Correspondence: Caroline A. Genco
| |
Collapse
|
41
|
ArefNezhad R, Motedayyen H, Roghani-Shahraki H. Do cytokines associate periodontitis with metabolic disorders? An overview of current documents. Endocr Metab Immune Disord Drug Targets 2022; 22:778-786. [PMID: 35043774 DOI: 10.2174/1871530322666220119112026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
Periodontitis is an oral chronic inflammatory condition affecting the adult population worldwide. Many microorganisms act as an initiator for induction of inflammatory immune responses, which participate in the destruction of connective tissue surrounding the teeth and thereby result in tooth loss. Cytokines may have indispensable roles in its pathogenesis through enhancing inflammatory and immune responses. Cytokines can affect functions of some cells of different tissues, such as the cells of the pancreas, liver, and adipose tissues. There is evidence that periodontitis is associated with metabolic disorders, like liver cirrhosis, obesity, and diabetes mellitus. Hence, this review was focused on determining how cytokines can participate in the correlation of periodontitis with metabolic disorders.
Collapse
Affiliation(s)
- Reza ArefNezhad
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | |
Collapse
|
42
|
Didenko VI, Klenina IA, Tatarchuk ОM, Hrabovska OI, Petishko OP. Specificities of lipotoxicity of free fatty acids and cytokine profile in patients with chronic diffuse liver diseases. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Non-alcoholic fatty liver disease is an important cause of global liver disease characterized by diffuse hepatocytes with hepatocellular ballooning, intrahepatic inflammation and progressive fibrosis. A relevant task is the study of the relationship between content of free fatty acids and serum cytokine profile in patients with chronic diffuse liver diseases. A total of 74 people with chronic diffuse liver diseases were examined, including 32 patients with non-alcoholic fatty liver disease, 22 patients with alcoholic liver disease, 20 patients with toxic hepatitis. Chromatographic examination of free fatty acids (FFA) in blood serum was carried out using a Chromatek-Crystal 5000 gas chromatography system. Patients with chronic diffuse liver diseases had a significant increase in the level of unsaturated free fatty acids (USFA) in cases of toxic hepatitis (by 2.92 times, P > 0.05) and a decrease in the level of saturated free fatty acids (SFA) in cases of non-alcoholic fatty liver disease (by 1.52 times, P > 0.05) compared with the control group; the balance between omega-6 and omega-3 PUFA significantly changed due to increase in linoleic acid in patients with alcoholic liver disease and toxic hepatitis (by 1.91 and 2.11 times, respectively) and arachidonic acid in patients with toxic hepatitis (by 1.78 times). The level of interleukin (IL)-6, IL-10, tumor necrosis factor alpha (TNF-α) were determined. In patients suffering chronic diffuse liver diseases there were multidirectional changes in the composition of free fatty acids of blood serum: a significant increase in the level of USFA, levels ІL-6 in toxic hepatitis; a decrease in the level of SFA, levels ІL-6 and TNF-α during non-alcoholic fatty liver disease; increased TNF-α production, ІL-6 during alcoholic liver disease compared with the control group. Significant change occurred in the balance between omega-6 and omega-3 PUFA due to increase in linoleic acid in cases of alcoholic liver disease and toxic hepatitis and arachidonic acid in cases of toxic hepatitis. The revealed correlations support the hypothesis that inflammation and lipotoxicity of FFA of blood serum contribute to the development and progression of structural changes in the liver. However, the pathomechanism of lipid metabolism and cytokine regulation with different etiological factors have their own characteristics, which should be taken into account when treating patients of these groups. Prospects for further research: these parameters may be used for serologic biomarkers of liver disease and development and implementation of the ratio between FFA and cytokines for the differential diagnosis of chronic diffuse liver disease in medical practice.
Collapse
|
43
|
Machine Learning-Based Identification of Potentially Novel Non-Alcoholic Fatty Liver Disease Biomarkers. Biomedicines 2021; 9:biomedicines9111636. [PMID: 34829865 PMCID: PMC8615894 DOI: 10.3390/biomedicines9111636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that presents a great challenge for treatment and prevention.. This study aims to implement a machine learning approach that employs such datasets to identify potential biomarker targets. We developed a pipeline to identify potential biomarkers for NAFLD that includes five major processes, namely, a pre-processing step, a feature selection and a generation of a random forest model and, finally, a downstream feature analysis and a provision of a potential biological interpretation. The pre-processing step includes data normalising and variable extraction accompanied by appropriate annotations. A feature selection based on a differential gene expression analysis is then conducted to identify significant features and then employ them to generate a random forest model whose performance is assessed based on a receiver operating characteristic curve. Next, the features are subjected to a downstream analysis, such as univariate analysis, a pathway enrichment analysis, a network analysis and a generation of correlation plots, boxplots and heatmaps. Once the results are obtained, the biological interpretation and the literature validation is conducted over the identified features and results. We applied this pipeline to transcriptomics and lipidomic datasets and concluded that the C4BPA gene could play a role in the development of NAFLD. The activation of the complement pathway, due to the downregulation of the C4BPA gene, leads to an increase in triglyceride content, which might further render the lipid metabolism. This approach identified the C4BPA gene, an inhibitor of the complement pathway, as a potential biomarker for the development of NAFLD.
Collapse
|
44
|
Reza MI, Syed AA, Singh P, Husain A, Gayen JR. Pancreastatin induces hepatic steatosis in type 2 diabetes by impeding mitochondrial functioning. Life Sci 2021; 284:119905. [PMID: 34453940 DOI: 10.1016/j.lfs.2021.119905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 11/15/2022]
Abstract
AIMS Mitochondrial dysfunction is among the key factors for the advancement of hepatic steatosis to NAFLD and NASH. Pancreastatin (PST: human ChgA250-301) is a dysglycemic hormone, previously reported to promote steatosis and inflammation in various animal models of metabolic disorders. Recently, we observed PST deregulates energy expenditure and mitochondrial functioning in perimenopausal rats. In the current study, we aimed to decipher the role of PST instigated altered mitochondrial functioning in hepatic steatosis. MAIN METHODS The HepG2 cells were PST exposed and the Chga gene was knocked down using siRNA and lipofectamine. Parallelly, type 2 diabetes (T2D) was developed in C57BL/6 mice by HFD feeding and administered PST inhibitor (PSTi8). KEY FINDINGS The PST exposed cells and HFD fed mice depicted: enhanced CHGA expression detected by IF/IHC, WB, and ELISA; dysregulated cellular ROS, mitochondrial ROS, oxygen consumption rate, mitochondrial membrane potential, ATP level, and NADP/NADP ratio; enhanced apoptosis determined by MTT, TUNEL, Annexin-V FITC, and WB of Bax/bcl2 and caspase 3; hepatic lipid accumulation upon Nile Red, Oil Red O, H&E staining, and the expression of SREBP-1c, FAS, ACC, and SCD; inflammation based on expression and circulatory level of IL6, IL-1β, and TNF-α. However, Chga knocked down HepG2 cells and PSTi8 treated mice unveiled protection from all the above abnormalities. SIGNIFICANCE Collectively, the aforementioned data suggested the alteration in mitochondrial function induced by PST is responsible for hepatic steatosis in T2D.
Collapse
Affiliation(s)
- Mohammad Irshad Reza
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Anees A Syed
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pragati Singh
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Athar Husain
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India; Pharmacology Division, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
45
|
Saydmohammed M, Jha A, Mahajan V, Gavlock D, Shun TY, DeBiasio R, Lefever D, Li X, Reese C, Kershaw EE, Yechoor V, Behari J, Soto-Gutierrez A, Vernetti L, Stern A, Gough A, Miedel MT, Lansing Taylor D. Quantifying the progression of non-alcoholic fatty liver disease in human biomimetic liver microphysiology systems with fluorescent protein biosensors. Exp Biol Med (Maywood) 2021; 246:2420-2441. [PMID: 33957803 PMCID: PMC8606957 DOI: 10.1177/15353702211009228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome is a complex disease that involves multiple organ systems including a critical role for the liver. Non-alcoholic fatty liver disease (NAFLD) is a key component of the metabolic syndrome and fatty liver is linked to a range of metabolic dysfunctions that occur in approximately 25% of the population. A panel of experts recently agreed that the acronym, NAFLD, did not properly characterize this heterogeneous disease given the associated metabolic abnormalities such as type 2 diabetes mellitus (T2D), obesity, and hypertension. Therefore, metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed as the new term to cover the heterogeneity identified in the NAFLD patient population. Although many rodent models of NAFLD/NASH have been developed, they do not recapitulate the full disease spectrum in patients. Therefore, a platform has evolved initially focused on human biomimetic liver microphysiology systems that integrates fluorescent protein biosensors along with other key metrics, the microphysiology systems database, and quantitative systems pharmacology. Quantitative systems pharmacology is being applied to investigate the mechanisms of NAFLD/MAFLD progression to select molecular targets for fluorescent protein biosensors, to integrate computational and experimental methods to predict drugs for repurposing, and to facilitate novel drug development. Fluorescent protein biosensors are critical components of the platform since they enable monitoring of the pathophysiology of disease progression by defining and quantifying the temporal and spatial dynamics of protein functions in the biosensor cells, and serve as minimally invasive biomarkers of the physiological state of the microphysiology system experimental disease models. Here, we summarize the progress in developing human microphysiology system disease models of NAFLD/MAFLD from several laboratories, developing fluorescent protein biosensors to monitor and to measure NAFLD/MAFLD disease progression and implementation of quantitative systems pharmacology with the goal of repurposing drugs and guiding the creation of novel therapeutics.
Collapse
Affiliation(s)
- Manush Saydmohammed
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anupma Jha
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vineet Mahajan
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dillon Gavlock
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tong Ying Shun
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel Lefever
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiang Li
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Celeste Reese
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erin E Kershaw
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vijay Yechoor
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jaideep Behari
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh, PA 15261, USA
- UPMC Liver Clinic, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Larry Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark T Miedel
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
46
|
Effects of Roasted Schisandra Chinensis (Turcz.) Baill and Lycium Chinense Mill. and Their Combinational Extracts on Antioxidant and Anti-Inflammatory Activities in RAW 264.7 Cells and in Alcohol-Induced Liver Damage Mice Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6633886. [PMID: 34567217 PMCID: PMC8463187 DOI: 10.1155/2021/6633886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/08/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022]
Abstract
Schisandra chinensis (Turcz.) Baill (SC) and Lycium chinense Mill. (LC) are widely distributed in Asia, where the fruit has traditionally been used for medicinal herbs. We previously reported that the roasting process improved the antioxidant and their hangover relieving effects. In this study, we assessed the antioxidant and anti-inflammatory effects of water extract of SC, LC, and a mass ratio 1 : 1 mixture (SL), after roasting in RAW264.7 macrophage cells stimulated with lipopolysaccharide (LPS). Roasted SL (RSL) extracts showed greater enhancement potential than the others, based on the inhibition of NO (nitric oxide) and intracellular reactive oxygen species (ROS) production in RAW264.7 cells. RSL also significantly decreased the proinflammatory markers (e.g., iNOS, COX-2, TNF-α, and IL-1β) and NAD(P)H oxidase (NOX) signaling proteins (i.e., NOX (-1, -2, and -4), p22phox, p47phox, and p67phox). The inflammatory cytokine, tumor necrosis factor-alpha, interferon-1 beta levels, NF-kB, and mitogen-activated kinase activations were also significantly inhibited by RSL treatment. Based on the results of cellular levels, we compared the promotion effects of RSL extract on liver injury mediated by alcohol-induced inflammation and oxidative stress in mice. Mice were fed a Lieber-DeCarli regular liquid alcohol diet with or without SL and RSL extracts for six weeks. Alcohol intake caused liver injury, evidenced by an increase in serum alanine aminotransferase and aspartate aminotransferase activities. Consistent with the results in cell levels, RSL treatment remarkably downregulated ROS and inflammatory factors, as well as their signaling molecules, in serum and tissues. These results suggest that the roasting of SC and LC could potentially elevate the inhibition effect on alcohol-induced inflammation and oxidative stress and consequently prevent alcoholic liver damage. Also, the combination of SC and LC may provide a more synergistic effect than either alone.
Collapse
|
47
|
Fontes-Cal TCM, Mattos RT, Medeiros NI, Pinto BF, Belchior-Bezerra M, Roque-Souza B, Dutra WO, Ferrari TCA, Vidigal PVT, Faria LC, Couto CA, Gomes JAS. Crosstalk Between Plasma Cytokines, Inflammation, and Liver Damage as a New Strategy to Monitoring NAFLD Progression. Front Immunol 2021; 12:708959. [PMID: 34447378 PMCID: PMC8383065 DOI: 10.3389/fimmu.2021.708959] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are involved in the immunopathogenesis of nonalcoholic fatty liver disease (NAFLD), but the relationship between them and clinical parameters of NAFLD progression is still unknown. Using flow cytometry, we evaluated the plasma levels of IL-1β, IL-6, IL-12, TNF and IL-10 and their association with clinical and biochemical parameters of liver function during simple steatosis (NAFL) and nonalcoholic steatohepatitis (NASH) in biopsy-proven patients. The NASH patients showed higher levels of IL-6 associated with a lower IL-10/IL-6 ratio. Besides heatmaps were similar in the NAFL and NASH groups, the same did not occur in signature curves, the NASH patients were high producers to IL-12 and IL-6 while the NAFL patients were not high producers of any cytokines evaluated. Integrative biomarker network analysis revealed that cytokines are differently correlated with clinical parameters, while IL-12, IL-10 presented moderate and negative correlations with glycemic and lipid profile in the NAFL group. The NASH group IL-12 and TNF revealed stronger and positive correlations with transient elastography parameters and NAFLD liver fibrosis score. These data suggest that IL-6 and IL-10 might act in chronic inflammation and insulin resistance whereas IL-12 and TNF may be involved in promoting liver damage and NAFLD progression. Plasma concentration analysis of these molecules and their association with clinical parameters can be used as new biomarkers to monitoring NAFLD progression and to reflect NASH development.
Collapse
Affiliation(s)
- Tereza C. M. Fontes-Cal
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafael T. Mattos
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nayara I. Medeiros
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Imunologia Celular e Molecular, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Bruna F. Pinto
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mayara Belchior-Bezerra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruna Roque-Souza
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Walderez O. Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Topicais, INCT-DT, Belo Horizonte, Brazil
| | - Teresa C. A. Ferrari
- Instituto Alfa de Gastroenterologia, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula V. T. Vidigal
- Departamento de Anatomia Patológica e Medicina Legal, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana C. Faria
- Instituto Alfa de Gastroenterologia, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cláudia A. Couto
- Instituto Alfa de Gastroenterologia, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana A. S. Gomes
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
48
|
Razin M, Abdel-Ghaffar ARB, Hamdy GM, Abd-Elshafy DN, Kamel S, Bahgat MM, Maghraby AS. TLR3\TLR7 as Differentially Expressed Markers Among Viral, Nonviral, and Autoimmune Diseases in Egyptian Patients. Viral Immunol 2021; 34:607-621. [PMID: 34342515 DOI: 10.1089/vim.2021.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) represent the immune link between the innate and the adaptive immune signals against various pathogens. This study aimed to evaluate the TLRs3 and 7 as immune-markers in differentiating between hepatitis C virus (HCV)-infected and -uninfected patients. Also, the use of the TLR3 and TLR7 as immune markers was compared with the prevalent bio and immune markers for autoimmune diseases in HCV-infected or -uninfected patients. The levels of GPT, GOT, B cell activated factors, tumor necrosis factor-alpha (TNF-α), and interleukin (IL)-10 were measured in plasma, while the levels of TLR3 and TLR7 were quantified in lysates of peripheral blood mononuclear cells from healthy donors, HCV-infected patients, nonalcoholic fatty liver (NAFL) patients without autoimmune diseases and with autoimmune diseases (HCV-infected patients with autoimmune diseases [HCV+auto], nonalcoholic fatty liver patients with autoimmune diseases [NAFL+auto]), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) patients. The relative expression of TLR3, TLR7, TNF, and IL-10 in cell lysates was assessed against glyceraldehyde 3-phosphate dehydrogenase (GAPDH) by quantitative real time-polymerase chain reaction (qRT-PCR). Results showed that TLRs 3 and 7 levels were significantly higher in SLE, RA, HCV, HCV+auto, and the NAFL patients compared to the normal control. The cell lysates from SLE patients expressed TLR3 at relatively significantly higher mRNA levels compared to normal subjects or other patient groups. The NAFL+auto patients expressed TLR7 at relatively significantly high mRNA levels compared to normal subjects or other patients. The RA patients expressed TLR7 at relatively significantly higher mRNA levels when compared to HCV, HCV+auto, and NAFL+auto patients. Conclusions: At the protein level, TLR7 can differentiate between HCV and NAFL patients. In addition, both TLRs3 and 7 can serve as potent markers in differentiating between NAFL and NAFL+auto.
Collapse
Affiliation(s)
- Mona Razin
- Division of Pharmaceutical and Drug Industries Research, Department of Therapeutic Chemistry, Cairo, Egypt.,Research Group Immune- and Bio-markers for Infection, the Centre of Excellence for Advanced Sciences, the National Research Centre, Cairo, Egypt
| | | | - Germine M Hamdy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Dina N Abd-Elshafy
- Research Group Immune- and Bio-markers for Infection, the Centre of Excellence for Advanced Sciences, the National Research Centre, Cairo, Egypt.,Department of Water Pollution Research, the National Research Centre, Cairo, Egypt
| | - Solaf Kamel
- Department of Clinical and Chemical Pathology, the National Research Centre, Cairo, Egypt
| | - Mahmoud Mohamed Bahgat
- Division of Pharmaceutical and Drug Industries Research, Department of Therapeutic Chemistry, Cairo, Egypt.,Research Group Immune- and Bio-markers for Infection, the Centre of Excellence for Advanced Sciences, the National Research Centre, Cairo, Egypt
| | - Amany Sayed Maghraby
- Division of Pharmaceutical and Drug Industries Research, Department of Therapeutic Chemistry, Cairo, Egypt.,Research Group Immune- and Bio-markers for Infection, the Centre of Excellence for Advanced Sciences, the National Research Centre, Cairo, Egypt
| |
Collapse
|
49
|
Sindhu S, Leung YH, Arefanian H, Madiraju SRM, Al‐Mulla F, Ahmad R, Prentki M. Neutral sphingomyelinase-2 and cardiometabolic diseases. Obes Rev 2021; 22:e13248. [PMID: 33738905 PMCID: PMC8365731 DOI: 10.1111/obr.13248] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Sphingolipids, in particular ceramides, play vital role in pathophysiological processes linked to metabolic syndrome, with implications in the development of insulin resistance, pancreatic ß-cell dysfunction, type 2 diabetes, atherosclerosis, inflammation, nonalcoholic steatohepatitis, and cancer. Ceramides are produced by the hydrolysis of sphingomyelin, catalyzed by different sphingomyelinases, including neutral sphingomyelinase 2 (nSMase2), whose dysregulation appears to underlie many of the inflammation-related pathologies. In this review, we discuss the current knowledge on the biochemistry of nSMase2 and ceramide production and its regulation by inflammatory cytokines, with particular reference to cardiometabolic diseases. nSMase2 contribution to pathogenic processes appears to involve cyclical feed-forward interaction with proinflammatory cytokines, such as TNF-α and IL-1ß, which activate nSMase2 and the production of ceramides, that in turn triggers the synthesis and release of inflammatory cytokines. We elaborate these pathogenic interactions at the molecular level and discuss the potential therapeutic benefits of inhibiting nSMase2 against inflammation-driven cardiometabolic diseases.
Collapse
Affiliation(s)
- Sardar Sindhu
- Animal and Imaging core facilityDasman Diabetes InstituteDasmanKuwait
| | - Yat Hei Leung
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| | - Hossein Arefanian
- Immunology and Microbiology DepartmentDasman Diabetes InstituteDasmanKuwait
| | - S. R. Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| | - Fahd Al‐Mulla
- Department of Genetics and BioinformaticsDasman Diabetes InstituteDasmanKuwait
| | - Rasheed Ahmad
- Immunology and Microbiology DepartmentDasman Diabetes InstituteDasmanKuwait
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| |
Collapse
|
50
|
Siddiqui SH, Kang D, Park J, Khan M, Belal SA, Shin D, Shim K. Altered relationship between gluconeogenesis and immunity in broilers exposed to heat stress for different durations. Poult Sci 2021; 100:101274. [PMID: 34237551 PMCID: PMC8267598 DOI: 10.1016/j.psj.2021.101274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
This study determined the relationship between inflammation and gluconeogenesis level in broilers in different durations of heat stress. A total of 240 Ross 308 broilers were offered control and heat stress temperature from 21 to 35 d post-hatch, each experimental group had 8 replications, and each replication obtained 15 broilers. The temperature in the control (Ctrl) group and heat stress group were maintained at 24 ± 1°C and 34 ± 1°C, respectively throughout the experimental period. Based on the duration of heat stress, the heat stress group was divided into 2 subgroups, like, 7-d heat stress (28-day-old broiler) designated ST group and 14-d heat stress (35-day-old broiler) designated the LT group. The ad libitum commercial feed and fresh water were provided to all experimental broilers during the experiment. The growth performance of experimental broilers was calculated at 35 d. However, the liver and blood samples were collected from the Ctrl group in 21 d, as well as these samples were collected from the heat stress ST and LT groups in 28-d and 35-d, respectively. Obvious gene expression of immunity, gluconeogenesis, glycogenolysis, and glycogenesis, as well as glucose-6-phosphate dehydrogenase and adenosine triphosphate was determined in the liver sample. The blood glucose concentration and histopathology of the liver was also examined in the different grouped broilers. Body weight, weight gain, and feed intake significantly decreased in the 35-d heat stress group than the Ctrl group. However, the feed conversion ratio increased at the 35-d heat stress group than the Ctrl group. The amount of glucose-6-phosphate dehydrogenase was significantly higher in ST and LT groups than Ctrl, whereas the blood glucose level was downregulated in the LT group. The amount of adenosine triphosphate was significantly decreased in the LT group than the Ctrl and ST groups. Heat stress acts as an impediment to the general relation between gluconeogenesis and immunity, as well as changes cellular structure. This experiment contributed to the establishment of a relationship between gluconeogenesis and immunity, which affects the growth performance of broilers during heat stress.
Collapse
Affiliation(s)
- Sharif Hasan Siddiqui
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Darae Kang
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jinryong Park
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mousumee Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Shah Ahmed Belal
- Department of Poultry Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Donghyun Shin
- The Animal Molecular Genetics & Breeding Center, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kwanseob Shim
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea; Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|