1
|
Ito W, Fukumori T, Asaoka N, Imakita N, Nishimura T, Furukawa R, Nishihara Y, Fujikura H, Sekine T, Yamaguchi N, Hirata Y, Miyamoto S, Kanno T, Katano H, Suzuki T, Kasahara K. Acute acalculous cholecystitis following extended administration of nirmatrelvir/ritonavir for persistent SARS-CoV-2 infection. J Infect Chemother 2024; 30:659-663. [PMID: 38184107 DOI: 10.1016/j.jiac.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Immunocompromised patients with hematologic malignancies, particularly those treated with anti-CD20 antibodies such as rituximab and obinutuzumab, are known to be at risk of prolonged infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Prolonged administration or combination therapy with antiviral medications reportedly yields favorable outcomes in these patients. However, knowledge regarding the adverse events associated with such therapeutic approaches is limited. Herein, we report a case of acute acalculous cholecystitis (AAC) following extended administration of nirmatrelvir/ritonavir (NMV/r) in a 68-year-old Japanese man with persistent SARS-CoV-2 infection. The patient had received obinutuzumab and bendamustine for follicular lymphoma and was diagnosed with coronavirus disease 2019 (COVID-19) approximately one year after treatment initiation with these drugs. Subsequently, he was admitted to a different hospital, where he received antiviral drugs, monoclonal antibodies, and steroids. Despite these interventions, the patient relapsed and was subsequently transferred to our hospital due to persistent SARS-CoV-2 infection. Remdesivir administration was ineffective, leading to the initiation of extended NMV/r therapy. One week later, he exhibited elevated gamma-glutamyl transpeptidase (GGT) levels, and one month later, he developed AAC. Cholecystitis was successfully resolved via percutaneous transhepatic gallbladder drainage and administration of antibiotics. We speculate that extended NMV/r administration, in addition to COVID-19, may have contributed to the elevated GGT and AAC. During treatment of persistent SARS-CoV-2 infection with extended NMV/r therapy, patients should be carefully monitored for the appearance of findings suggestive of biliary stasis and the development of AAC.
Collapse
Affiliation(s)
- Wataru Ito
- Department of Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Tatsuya Fukumori
- Department of Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Nao Asaoka
- Department of Intensive Care Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Natsuko Imakita
- Department of Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Tomoko Nishimura
- Department of Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Ryutaro Furukawa
- Department of Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Yuji Nishihara
- Department of Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroyuki Fujikura
- Department of Infectious Diseases, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan
| | - Takahiro Sekine
- Department of Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Naoki Yamaguchi
- Department of Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Yuichiro Hirata
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Sho Miyamoto
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Takayuki Kanno
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kei Kasahara
- Department of Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
2
|
Rodriguez-Espada A, Salgado-de la Mora M, Rodriguez-Paniagua BM, Limon-de la Rosa N, Martinez-Gutierrez MI, Pastrana-Brandes S, Navarro-Alvarez N. Histopathological impact of SARS-CoV-2 on the liver: Cellular damage and long-term complications. World J Gastroenterol 2024; 30:2866-2880. [PMID: 38947288 PMCID: PMC11212712 DOI: 10.3748/wjg.v30.i22.2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily impacts the respiratory tract and can lead to severe outcomes such as acute respiratory distress syndrome, multiple organ failure, and death. Despite extensive studies on the pathogenicity of SARS-CoV-2, its impact on the hepatobiliary system remains unclear. While liver injury is commonly indicated by reduced albumin and elevated bilirubin and transaminase levels, the exact source of this damage is not fully understood. Proposed mechanisms for injury include direct cytotoxicity, collateral damage from inflammation, drug-induced liver injury, and ischemia/hypoxia. However, evidence often relies on blood tests with liver enzyme abnormalities. In this comprehensive review, we focused solely on the different histopathological manifestations of liver injury in COVID-19 patients, drawing from liver biopsies, complete autopsies, and in vitro liver analyses. We present evidence of the direct impact of SARS-CoV-2 on the liver, substantiated by in vitro observations of viral entry mechanisms and the actual presence of viral particles in liver samples resulting in a variety of cellular changes, including mitochondrial swelling, endoplasmic reticulum dilatation, and hepatocyte apoptosis. Additionally, we describe the diverse liver pathology observed during COVID-19 infection, encompassing necrosis, steatosis, cholestasis, and lobular inflammation. We also discuss the emergence of long-term complications, notably COVID-19-related secondary sclerosing cholangitis. Recognizing the histopathological liver changes occurring during COVID-19 infection is pivotal for improving patient recovery and guiding decision-making.
Collapse
Affiliation(s)
- Alfonso Rodriguez-Espada
- Department of Molecular Biology, Universidad Panamericana School of Medicine, Campus México, Mexico 03920, Mexico
| | - Moises Salgado-de la Mora
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | | | - Nathaly Limon-de la Rosa
- Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, CO 80045, United States
| | | | - Santiago Pastrana-Brandes
- Department of Molecular Biology, Universidad Panamericana School of Medicine, Campus México, Mexico 03920, Mexico
| | - Nalu Navarro-Alvarez
- Department of Molecular Biology, Universidad Panamericana School of Medicine, Campus México, Mexico 03920, Mexico
- Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, CO 80045, United States
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| |
Collapse
|
3
|
Salvio AL, Fernandes RA, Ferreira HFA, Duarte LA, Gutman EG, Raposo-Vedovi JV, Filho CHFR, da Costa Nunes Pimentel Coelho WL, Passos GF, Andraus MEC, da Costa Gonçalves JP, Cavalcanti MG, Amaro MP, Kader R, de Andrade Medronho R, Figueiredo CP, Amado-Leon LA, Alves-Leon SV. High Levels of NfL, GFAP, TAU, and UCH-L1 as Potential Predictor Biomarkers of Severity and Lethality in Acute COVID-19. Mol Neurobiol 2024; 61:3545-3558. [PMID: 37996731 PMCID: PMC11087339 DOI: 10.1007/s12035-023-03803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Few studies showed that neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), total tubulin-associated unit (TAU), and ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) may be related to neurological manifestations and severity during and after SARS-CoV-2 infection. The objective of this work was to investigate the relationship among nervous system biomarkers (NfL, TAU, GFAP, and UCH-L1), biochemical parameters, and viral loads with heterogeneous outcomes in a cohort of severe COVID-19 patients admitted in Intensive Care Unit (ICU) of a university hospital. For that, 108 subjects were recruited within the first 5 days at ICU. In parallel, 16 mild COVID-19 patients were enrolled. Severe COVID-19 group was divided between "deceased" and "survivor." All subjects were positive for SARS-CoV-2 detection. NfL, total TAU, GFAP, and UCH-L1 quantification in plasma was performed using SIMOA SR-X platform. Of 108 severe patients, 36 (33.33%) presented neurological manifestation and 41 (37.96%) died. All four biomarkers - GFAP, NfL, TAU, and UCH-L1 - were significantly higher among deceased patients in comparison to survivors (p < 0.05). Analyzing biochemical biomarkers, higher Peak Serum Ferritin, D-Dimer Peak, Gamma-glutamyltransferase, and C-Reactive Protein levels were related to death (p < 0.0001). In multivariate analysis, GFAP, NfL, TAU, UCH-L1, and Peak Serum Ferritin levels were correlated to death. Regarding SARS-CoV-2 viral load, no statistical difference was observed for any group. Thus, Ferritin, NFL, GFAP, TAU, and UCH-L1 are early biomarkers of severity and lethality of SARS-COV-2 infection and may be important tools for therapeutic decision-making in the acute phase of disease.
Collapse
Affiliation(s)
- Andreza Lemos Salvio
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Renan Amphilophio Fernandes
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Helena França Alcaraz Ferreira
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Larissa Araujo Duarte
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Elisa Gouvea Gutman
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Jessica Vasques Raposo-Vedovi
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | | | | | | | - Maria Emília Cosenza Andraus
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - João Paulo da Costa Gonçalves
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Marta Guimarães Cavalcanti
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
- Epidemiology and Evaluation Service, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Marisa Pimentel Amaro
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
- School of Medicine, Post-Graduate Program in Infectious and Parasitic Diseases, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Rafael Kader
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
- School of Medicine, Post-Graduate Program in Infectious and Parasitic Diseases, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Roberto de Andrade Medronho
- Epidemiology and Evaluation Service, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | | | - Luciane Almeida Amado-Leon
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil.
| | - Soniza Vieira Alves-Leon
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil.
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil.
| |
Collapse
|
4
|
Tazarghi A, Bazoq S, Taziki Balajelini MH, Ebrahimi M, Hosseini SM, Razavi Nikoo H. Liver injury in COVID-19: an insight into pathobiology and roles of risk factors. Virol J 2024; 21:65. [PMID: 38491495 PMCID: PMC10943793 DOI: 10.1186/s12985-024-02332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
COVID-19 is a complex disease that can lead to fatal respiratory failure with extrapulmonary complications, either as a direct result of viral invasion in multiple organs or secondary to oxygen supply shortage. Liver is susceptible to many viral pathogens, and due to its versatile functions in the body, it is of great interest to determine how hepatocytes may interact with SARS-CoV-2 in COVID-19 patients. Liver injury is a major cause of death, and SARS-CoV-2 is suspected to contribute significantly to hepatopathy. Owing to the lack of knowledge in this field, further research is required to address these ambiguities. Therefore, we aimed to provide a comprehensive insight into host-virus interactions, underlying mechanisms, and associated risk factors by collecting results from epidemiological analyses and relevant laboratory experiments. Backed by an avalanche of recent studies, our findings support that liver injury is a sequela of severe COVID-19, and certain pre-existing liver conditions can also intensify the morbidity of SARS-CoV-2 infection in synergy. Notably, age, sex, lifestyle, dietary habits, coinfection, and particular drug regimens play a decisive role in the final outcome and prognosis as well. Taken together, our goal was to unravel these complexities concerning the development of novel diagnostic, prophylactic, and therapeutic approaches with a focus on prioritizing high-risk groups.
Collapse
Affiliation(s)
- Abbas Tazarghi
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sahar Bazoq
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Hosein Taziki Balajelini
- Department of Otorhinolaryngology, Neuroscience Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Mehran Hosseini
- Department of Physiology, School of Medicine, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Hadi Razavi Nikoo
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
5
|
Fachet M, Mushunuri RV, Bergmann CB, Marzi I, Hoeschen C, Relja B. Utilizing predictive machine-learning modelling unveils feature-based risk assessment system for hyperinflammatory patterns and infectious outcomes in polytrauma. Front Immunol 2023; 14:1281674. [PMID: 38193076 PMCID: PMC10773821 DOI: 10.3389/fimmu.2023.1281674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024] Open
Abstract
Purpose Earlier research has identified several potentially predictive features including biomarkers associated with trauma, which can be used to assess the risk for harmful outcomes of polytraumatized patients. These features encompass various aspects such as the nature and severity of the injury, accompanying health conditions, immune and inflammatory markers, and blood parameters linked to organ functioning, however their applicability is limited. Numerous indicators relevant to the patients` outcome are routinely gathered in the intensive care unit (ICU) and recorded in electronic medical records, rendering them suitable predictors for risk assessment of polytraumatized patients. Methods 317 polytraumatized patients were included, and the influence of 29 clinical and biological features on the complication patterns for systemic inflammatory response syndrome (SIRS), pneumonia and sepsis were analyzed with a machine learning workflow including clustering, classification and explainability using SHapley Additive exPlanations (SHAP) values. The predictive ability of the analyzed features within three days after admission to the hospital were compared based on patient-specific outcomes using receiver-operating characteristics. Results A correlation and clustering analysis revealed that distinct patterns of injury and biomarker patterns were observed for the major complication classes. A k-means clustering suggested four different clusters based on the major complications SIRS, pneumonia and sepsis as well as a patient subgroup that developed no complications. For classification of the outcome groups with no complications, pneumonia and sepsis based on boosting ensemble classification, 90% were correctly classified as low-risk group (no complications). For the high-risk groups associated with development of pneumonia and sepsis, 80% of the patients were correctly identified. The explainability analysis with SHAP values identified the top-ranking features that had the largest impact on the development of adverse outcome patterns. For both investigated risk scenarios (infectious complications and long ICU stay) the most important features are SOFA score, Glasgow Coma Scale, lactate, GGT and hemoglobin blood concentration. Conclusion The machine learning-based identification of prognostic feature patterns in patients with traumatic injuries may improve tailoring personalized treatment modalities to mitigate the adverse outcomes in high-risk patient clusters.
Collapse
Affiliation(s)
- Melanie Fachet
- Institute for Medical Technology, Medical Systems Technology, Faculty of Electrical Engineering and Information Technology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Raghava Vinaykanth Mushunuri
- Institute for Medical Technology, Medical Systems Technology, Faculty of Electrical Engineering and Information Technology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Christian B. Bergmann
- Translational and Experimental Trauma Research, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Ulm University Medical Center, University Ulm, Ulm, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Christoph Hoeschen
- Institute for Medical Technology, Medical Systems Technology, Faculty of Electrical Engineering and Information Technology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Borna Relja
- Translational and Experimental Trauma Research, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Ulm University Medical Center, University Ulm, Ulm, Germany
- Department of Trauma, Hand and Reconstructive Surgery, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
6
|
Coronel PMV, Pereira IC, Basilio DCLS, Espinoça IT, de Souza KFS, Ota RSN, de Almeida EB, Paredes-Gamero EJ, Wilhelm Filho D, Perdomo RT, Parisotto EB. Biomarkers of oxidative stress and inflammation in subjects with COVID-19: Characterization and prognosis of the disease. Microb Pathog 2023; 184:106339. [PMID: 37690769 DOI: 10.1016/j.micpath.2023.106339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Coronavirus disease (COVID-19) is an acute respiratory disease caused by the new coronavirus (SARS-CoV-2) that has spread throughout the world causing millions of deaths. COVID-19 promotes excessive release of pro-inflammatory cytokines leading to acute lung injury and death. Reactive oxygen species (ROS) and oxidative stress (OS) may also play a role in the pathophysiology of COVID-19. The present study investigated levels of inflammatory cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12) and OS biomarkers (MPO, SOD, CAT, GST enzymes and contents of GSH, TBARS and PC) in patients with SARS-CoV-2 infection, which were correlated with disease severity. Patients with SARS significantly increased IL-1β levels, while IL-6 levels were elevated in both groups of SARS-CoV-2 positive patients. The most severe patients showed increased levels of IL-8 and IL-10, while subjects without SARS showed lower values. MPO activity were higher in both groups of SARS-CoV-2 positive patients, while SOD and CAT activity were decreased in both groups. Compared to controls, GGT was elevated only in the SARS patient group, while GST values were increased in the group of positive patients in SARS-CoV-2 without SARS and were decreased in patients with SARS. GSH and UA contents decreased in SARS-CoV-2 positive subjects, whereas TBARS and PC contents increased in both groups of SARS-CoV-2 positive patients, particularly in the SARS patient group. In addition, several important correlations were found between cytokines and the different OS parameters suggesting some inter-relationship in the complex antioxidant system of the patients. In general, patients with SARS-CoV-2 infection showed higher levels of OS biomarkers, and also elevated contents of IL-6 and IL-10, probably worsening the damage caused by SARS-CoV-2 infection. This damage may contribute to the severity of the disease and its complications, as well as a prognosis for SARS-CoV-2 patients.
Collapse
Affiliation(s)
- Paola Mayara Valente Coronel
- Faculdade de Ciências Farmacêuticas Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Indiara Correia Pereira
- Faculdade de Ciências Farmacêuticas Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Denise Caroline Luiz Soares Basilio
- Faculdade de Ciências Farmacêuticas Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Isabelly Teixeira Espinoça
- Faculdade de Ciências Farmacêuticas Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Rafael Seiji Nakano Ota
- Faculdade de Ciências Farmacêuticas Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Edgar Julian Paredes-Gamero
- Faculdade de Ciências Farmacêuticas Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Danilo Wilhelm Filho
- Departamento de Ecologia e Zoologia, Centro de Ciências Biológicas (CCB), Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Renata Trentin Perdomo
- Faculdade de Ciências Farmacêuticas Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| | - Eduardo Benedetti Parisotto
- Faculdade de Ciências Farmacêuticas Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
7
|
Yang R, Feng J, Wan H, Zeng X, Ji P, Zhang J. Liver injury associated with the severity of COVID-19: A meta-analysis. Front Public Health 2023; 11:1003352. [PMID: 36817905 PMCID: PMC9932800 DOI: 10.3389/fpubh.2023.1003352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Background The current 2019 novel coronavirus disease (COVID-19) pandemic is a major threat to global health. It is currently uncertain whether and how liver injury affects the severity of COVID-19. Therefore, we conducted a meta-analysis to determine the association between liver injury and the severity of COVID-19. Methods A systematic search of the PubMed, Embase, and Cochrane Library databases from inception to August 12, 2022, was performed to analyse the reported liver chemistry data for patients diagnosed with COVID-19. The pooled odds ratio (OR), weighted mean difference (WMD) and 95% confidence interval (95% CI) were assessed using a random-effects model. Furthermore, publication bias and sensitivity were analyzed. Results Forty-six studies with 28,663 patients were included. The pooled WMDs of alanine aminotransferase (WMD = 12.87 U/L, 95% CI: 10.52-15.23, I 2 = 99.2%), aspartate aminotransferase (WMD = 13.98 U/L, 95% CI: 12.13-15.83, I 2 = 98.2%), gamma-glutamyl transpeptidase (WMD = 20.67 U/L, 95% CI: 14.24-27.10, I 2 = 98.8%), total bilirubin (WMD = 2.98 μmol/L, 95% CI: 1.98-3.99, I 2 = 99.4%), and prothrombin time (WMD = 0.84 s, 95% CI: 0.46-1.23, I 2 = 99.4%) were significantly higher and that of albumin was lower (WMD = -4.52 g/L, 95% CI: -6.28 to -2.75, I 2 = 99.9%) in severe cases. Moreover, the pooled OR of mortality was higher in patients with liver injury (OR = 2.72, 95% CI: 1.18-6.27, I 2 = 71.6%). Conclusions Hepatocellular injury, liver metabolic, and synthetic function abnormality were observed in severe COVID-19. From a clinical perspective, liver injury has potential as a prognostic biomarker for screening severely affected patients at early disease stages. Systematic review registration https://www.crd.york.ac.uk/prospero/, Identifier: CRD42022325206.
Collapse
Affiliation(s)
- Ruiqi Yang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jihua Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huan Wan
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaona Zeng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pan Ji
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianfeng Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China,Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China,*Correspondence: Jianfeng Zhang ✉
| |
Collapse
|
8
|
Cumhur Cure M, Cure E. Severe acute respiratory syndrome coronavirus 2 may cause liver injury via Na +/H + exchanger. World J Virol 2023; 12:12-21. [PMID: 36743661 PMCID: PMC9896593 DOI: 10.5501/wjv.v12.i1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 11/22/2022] [Indexed: 01/18/2023] Open
Abstract
The liver has many significant functions, such as detoxification, the urea cycle, gluconeogenesis, and protein synthesis. Systemic diseases, hypoxia, infections, drugs, and toxins can easily affect the liver, which is extremely sensitive to injury. Systemic infection of severe acute respiratory syndrome coronavirus 2 can cause liver damage. The primary regulator of intracellular pH in the liver is the Na+/H+ exchanger (NHE). Physiologically, NHE protects hepatocytes from apoptosis by making the intracellular pH alkaline. Severe acute respiratory syndrome coronavirus 2 increases local angiotensin II levels by binding to angiotensin-converting enzyme 2. In severe cases of coronavirus disease 2019, high angi-otensin II levels may cause NHE overstimulation and lipid accumulation in the liver. NHE overstimulation can lead to hepatocyte death. NHE overstimulation may trigger a cytokine storm by increasing proinflammatory cytokines in the liver. Since the release of proinflammatory cytokines such as interleukin-6 increases with NHE activation, the virus may indirectly cause an increase in fibrinogen and D-dimer levels. NHE overstimulation may cause thrombotic events and systemic damage by increasing fibrinogen levels and cytokine release. Also, NHE overstimulation causes an increase in the urea cycle while inhibiting vitamin D synthesis and gluconeogenesis in the liver. Increasing NHE3 activity leads to Na+ loading, which impairs the containment and fluidity of bile acid. NHE overstimulation can change the gut microbiota composition by disrupting the structure and fluidity of bile acid, thus triggering systemic damage. Unlike other tissues, tumor necrosis factor-alpha and angiotensin II decrease NHE3 activity in the intestine. Thus, increased luminal Na+ leads to diarrhea and cytokine release. Severe acute respiratory syndrome coronavirus 2-induced local and systemic damage can be improved by preventing virus-induced NHE overstimulation in the liver.
Collapse
Affiliation(s)
- Medine Cumhur Cure
- Department of Biochemistry, Private Tanfer Hospital, Istanbul 34394, Turkey
| | - Erkan Cure
- Department of Internal Medicine, Bagcilar Medilife Hospital, Istanbul 34200, Turkey
| |
Collapse
|
9
|
Bucurica S, Ionita Radu F, Bucurica A, Socol C, Prodan I, Tudor I, Sirbu CA, Plesa FC, Jinga M. Risk of New-Onset Liver Injuries Due to COVID-19 in Preexisting Hepatic Conditions-Review of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010062. [PMID: 36676691 PMCID: PMC9864905 DOI: 10.3390/medicina59010062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impacted the world and caused the 2019 coronavirus disease (COVID-19) pandemic. The clinical manifestations of the virus can vary from patient to patient, depending on their respective immune system and comorbidities. SARS-CoV-2 can affect patients through two mechanisms: directly by targeting specific receptors or by systemic mechanisms. We reviewed data in the latest literature in order to discuss and determine the risk of new-onset liver injuries due to COVID-19 in preexisting hepatic conditions. The particular expression of angiotensin-converting enzyme 2 (ACE2) receptors is an additional risk factor for patients with liver disease. COVID-19 causes more severe forms in patients with non-alcoholic fatty liver disease (NAFLD), increases the risk of cirrhosis decompensation, and doubles the mortality for these patients. The coinfection SARS-CoV-2-viral hepatitis B or C might have different outcomes depending on the stage of the liver disease. Furthermore, the immunosuppressant treatment administered for COVID-19 might reactivate the hepatic virus. The high affinity of SARS-CoV-2 spike proteins for cholangiocytes results in a particular type of secondary sclerosing cholangitis. The impact of COVID-19 infection on chronic liver disease patients is significant, especially in cirrhosis, influencing the prognosis and outcome of these patients.
Collapse
Affiliation(s)
- Sandica Bucurica
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Florentina Ionita Radu
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010242 Bucharest, Romania
- Correspondence: (F.I.R.); (F.C.P.)
| | - Ana Bucurica
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Calin Socol
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Prodan
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Ioana Tudor
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Carmen Adella Sirbu
- Department of Neurology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010242 Bucharest, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Department of Neurology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Florentina Cristina Plesa
- Department of Neurology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010242 Bucharest, Romania
- Department of Preclinical Disciplines, Titu Maiorescu University of Medicine, 031593 Bucharest, Romania
- Correspondence: (F.I.R.); (F.C.P.)
| | - Mariana Jinga
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010242 Bucharest, Romania
| |
Collapse
|
10
|
Association between γ-Glutamyl Transpeptidase and SARS-CoV-2 Spike Antibody Titers among BNT162b2 Vaccine Recipients. Vaccines (Basel) 2022; 10:vaccines10122142. [PMID: 36560552 PMCID: PMC9785427 DOI: 10.3390/vaccines10122142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Increased γ-glutamyl transpeptidase (GGT) levels can deplete plasma glutathione, which in turn impairs immune regulation; however, evidence on GGT levels and post-vaccine immunogenicity is lacking. OBJECTIVE To examine the association between GGT and SARS-CoV-2 spike IgG antibodies. METHODS Participants were 1479 medical staff (aged 21 to 75 years) who received a SARS-CoV-2 antibody test after their second vaccine and whose GGT levels were measured before the vaccine rollout. Elevated and highly elevated GGT levels were defined as 51-80 and ≥81 U/L, respectively. Multivariable linear regression was used to calculate the means of SARS-CoV-2 spike IgG. RESULTS In a basic model, both elevated and highly elevated GGT levels were associated with significantly lower antibody titers. The ratio of mean (95% CI) was 0.83 (0.72-0.97) and 0.69 (0.57-0.84) for elevated and highly elevated GGT levels, respectively. However, these associations were largely attenuated after additional adjustment for potential confounders. An inverse association between GGT levels and antibody titers was found in women [0.70 (0.51-0.97)], normal-weight adults [0.71 (0.51-0.98)], and non-drinkers [0.73 (0.46-1.14)] but not in men, overweight adults, and alcohol drinkers. CONCLUSIONS Circulating GGT concentrations were associated with the humoral immune response after COVID-19 vaccination, but this relationship could be ascribed to confounders such as sex, BMI, and alcohol drinking rather than GGT per se.
Collapse
|
11
|
Georgakopoulou VE, Basoulis D, Voutsinas PM, Papageorgiou CV, Eliadi I, Karamanakos G, Spandidos DA, Mathioudakis N, Papalexis P, Papadakos S, Fotakopoulos G, Tarantinos K, Sipsas NV. Biomarkers predicting the 30‑day mortality of patients who underwent elective surgery and were infected with SARS‑CoV‑2 during the post‑operative period: A retrospective study. Exp Ther Med 2022; 24:693. [PMID: 36277164 PMCID: PMC9535629 DOI: 10.3892/etm.2022.11629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is a significant global concern that has had major implications for the healthcare system. Patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) undergoing elective or emergency surgical procedures have a substantial risk of mortality and peri-operative complications. The present study aimed to describe the characteristics of patients who underwent elective surgery and developed nosocomial SARS-CoV-2 infection post-surgery. Patients who underwent thoracic, upper and lower abdominal or peripheral elective surgery with a polymerase chain reaction diagnosis of COVID-19, at 3-7 days after the surgery, were enrolled in the present retrospective study. Demographics, vaccination status against SARS-CoV-2, Charlson comorbidity index (CCI) and laboratory data were recorded upon admission to the hospital unit. In total, 116 subjects (80 males, 36 females; mean age, 67.31±16.83 years) fulfilling the inclusion criteria were identified. Among the 116 participants, 14 (12.1%) were intubated. From the 116 individuals analyzed, 84 were alive after 30 days (survivors), and 32 had succumbed to the disease (non-survivors). The mortality rate was 27.6% (32/116). The non-survivors had an older age and a higher CCI score. At the evaluation upon admission to the hospital unit, the survivors presented with higher serum albumin levels and a higher number of blood lymphocytes. In addition, the survivors exhibited lower levels of lactate dehydrogenase, aspartate aminotransferase, alkaline phosphatase (ALP) and C-reactive protein (CRP), as well as a higher neutrophil to lymphocyte ratio (NLR) and CRP to albumin ratio (CAR) (P<0.05). The patients that were intubated had higher levels of gamma glutamyl-transferase (GGT), ALP and ferritin, as well as a higher NLR and platelet to lymphocyte ratio upon admission to the hospital unit (P<0.05). According to the Cox proportional hazards multivariate regression analysis, the only independent predictors of mortality and intubation were ALP and GGT upon admission, respectively (P<0.05). On the whole, the findings of the present study suggest that more stringent guidelines are required in order to prevent infection during the post-operative period.
Collapse
Affiliation(s)
| | - Dimitrios Basoulis
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, 11527 Athens, Greece
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Pantazis M. Voutsinas
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, 11527 Athens, Greece
| | | | - Irene Eliadi
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, 11527 Athens, Greece
| | - Georgios Karamanakos
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, 11527 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | | | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Stavros Papadakos
- Department of Gastroenterology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larisa, 41221 Larisa, Greece
| | | | - Nikolaos V. Sipsas
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, 11527 Athens, Greece
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Zhu X, Wang J, Du J, Chen S, Chen S, Li J, Shen B. Changes in Serum Liver Function for Patients with COVID-19: A 1-Year Follow-Up Study. Infect Drug Resist 2022; 15:1857-1870. [PMID: 35450115 PMCID: PMC9017694 DOI: 10.2147/idr.s356181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/26/2022] [Indexed: 12/17/2022] Open
Abstract
Objective Abnormal liver function and liver injury related to COVID-19 during hospitalization has received widespread attention. However, the long-term observation of patients’ liver functions after discharge has not been investigated. This study intends to analyze the abnormal liver function in patients one year after they are discharged. Methods Serum liver function tests were analyzed for the first time immediately after hospitalization (T1), before discharge (T2), a median of 14.0 (14.0, 15.0) days after discharge (T3) and 1 year (356.0 (347.8, 367.0) days) after discharge (T4). Patients with at least one serum parameter (ALT, AST, ALP, GGT and TB) exceeding the upper limit of reference range were defined as having abnormal liver function. Results For the 118 COVID-19 patients with a median follow-up time of 376.0 (71.5, 385.3) days from onset to the end of the follow-up after discharge, the proportion with abnormal liver function in T1, T2, T3 and T4 were 32.2%, 45.8%, 54.8% and 28.8%, respectively. The proportion of patients with at least once abnormal liver function detected from T1 to T2, T1 to T3, T1 to T4 was 60.2%, 77.4% and 88.9%, respectively. From T1 to T4, the ALT, AST, GGT and BMI at admission were significantly higher in the patients with persistently abnormal liver function than in the patients with persistently normal liver function. Abnormal liver function was mainly manifested in the elevation of GGT and TB levels. Multivariate logistics regression analysis showed that age and gender-adjusted ALT (odds ratio [OR]=2.041, 95% confidence interval [CI]: 1.170–3.561, P=0.012) at admission was a risk factor for abnormal liver function in the T4 stage. Conclusion Abnormal liver function in patients with COVID-19 can persist from admission to one year after discharge, and therefore, the long-term dynamic monitoring of liver function in patients with COVID-19 is necessary.
Collapse
Affiliation(s)
- Xiaoli Zhu
- Department of Laboratory Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People’s Republic of China
| | - Jing Wang
- Department of Laboratory Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People’s Republic of China
| | - Juping Du
- Department of Laboratory Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People’s Republic of China
| | - Shuaishuai Chen
- Department of Laboratory Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People’s Republic of China
| | - Shiyong Chen
- Department of Laboratory Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People’s Republic of China
| | - Jun Li
- Department of Laboratory Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People’s Republic of China
| | - Bo Shen
- Department of Laboratory Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People’s Republic of China
- Correspondence: Bo Shen, Department of laboratory medicine, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People’s Republic of China, Tel/Fax +86 576 85226374, Email
| |
Collapse
|
13
|
Significance of Immune Status of SARS-CoV-2 Infected Patients in Determining the Efficacy of Therapeutic Interventions. J Pers Med 2022; 12:jpm12030349. [PMID: 35330349 PMCID: PMC8955701 DOI: 10.3390/jpm12030349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is now being investigated for its distinctive patterns in the course of disease development which can be indicated with miscellaneous immune responses in infected individuals. Besides this series of investigations on the pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant fundamental immunological and physiological processes are indispensable to address clinical markers of COVID-19 disease and essential to identify or design effective therapeutics. Recent developments in the literature suggest that deficiency of type I interferon (IFN) in serum samples can be used to represent a severe progression of COVID-19 disease and can be used as the basis to develop combined immunotherapeutic strategies. Precise control over inflammatory response is a significant aspect of targeting viral infections. This account presents a brief review of the pathophysiological characteristics of the SARS-CoV-2 virus and the understanding of the immune status of infected patients. We further discuss the immune system’s interaction with the SARS-CoV-2 virus and their subsequent involvement of dysfunctional immune responses during the progression of the disease. Finally, we highlight some of the implications of the different approaches applicable in developing promising therapeutic interventions that redirect immunoregulation and viral infection.
Collapse
|
14
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that causes coronavirus disease 2019 (COVID-19). However, the long-term health consequences of COVID-19 are not fully understood. We aimed to determine the long-term lung pathology and blood chemistry changes in Syrian hamsters infected with SARS-CoV-2. Syrian hamsters (Mesocricetus auratus) were inoculated with 105 PFU of SARS-CoV-2, and changes post-infection (pi) were observed for 20 days. On days 5 and 20 pi, the lungs were harvested and processed for pathology and viral load count. Multiple blood samples were collected every 3 to 5 days to observe dynamic changes in blood chemistry. Infected hamsters showed consistent weight loss until day 7 pi At day 5 pi, histopathology of the lungs showed moderate to severe inflammation and the virus could be detected. These results indicate that SARS-CoV-2 has an acute onset and recovery course in the hamster infection model. During the acute onset, blood triglyceride levels increased significantly at day 3 pi During the recovery course, uric acid and low-density lipoprotein levels increased significantly, but the total protein and albumin levels decreased. Together, our study suggests that SARS-CoV-2 infection in hamsters not only causes lung damage but also causes long-term changes in blood biochemistry during the recovery process. IMPORTANCE COVID-19 is now considered a multiorgan disease with a wide range of manifestations. There are increasing reports of persistent and long-term effects after acute COVID-19, but the long-term health consequences of COVID-19 are not fully understood. This study reported for the first time the use of blood samples collected continuously in a SARS-CoV-2-infected hamster model, which provides more information about the dynamic changes in blood biochemistry during the acute and recovery phases of SARS-CoV-2 infection. Our study suggests that SARS-CoV-2 infection in hamsters not only causes lung damage but also causes long-term changes in blood biochemistry during the recovery process. The study may be used by several researchers and clinicians, especially those who are studying potential treatments for patients with post-acute COVID-19 syndrome.
Collapse
|
15
|
Plasma S-Adenosylmethionine Is Associated with Lung Injury in COVID-19. DISEASE MARKERS 2021; 2021:7686374. [PMID: 34956420 PMCID: PMC8702356 DOI: 10.1155/2021/7686374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Objective S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are indicators of global transmethylation and may play an important role as markers of severity of COVID-19. Methods The levels of plasma SAM and SAH were determined in patients admitted with COVID-19 (n = 56, mean age = 61). Lung injury was identified by computed tomography (CT) in accordance with the CT0-4 classification. Results SAM was found to be a potential marker of lung damage risk in COVID-19 patients (SAM > 80 nM; CT3,4 vs. CT 0-2: relative ratio (RR) was 3.0; p = 0.0029). SAM/SAH > 6.0 was also found to be a marker of lung injury (CT2-4 vs. CT0,1: RR = 3.47, p = 0.0004). There was a negative association between SAM and glutathione level (ρ = −0.343, p = 0.011). Interleukin-6 (IL-6) levels were associated with SAM (ρ = 0.44, p = 0.01) and SAH (ρ = 0.534, p = 0.001) levels. Conclusions A high SAM level and high methylation index are associated with the risk of lung injury in patients with COVID-19. The association of SAM with IL-6 and glutathione indicates an important role of transmethylation in the development of cytokine imbalance and oxidative stress in patients with COVID-19.
Collapse
|