1
|
Hamouda MAB, Saad AH, El-Saadany AAEKAEH, El Sharawey TMHA, Abdo W, El-Diasty EM, Fadl SE, Abdelhiee EY. Trials for reducing the dangerous effect on poultry fed on aflatoxin contaminated ration using nano curcumin. BMC Vet Res 2025; 21:72. [PMID: 39962519 PMCID: PMC11834326 DOI: 10.1186/s12917-025-04519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Aflatoxin has a negative impact on the health of both humans and animals. One of the reasons for financial losses in the chicken sector is aflatoxicosis. In chickens, aflatoxicosis results in lowered growth rates and egg production, increased mortality, and diseases susceptibility. The current investigation sought to determine the mould's prevalence at the Giza and Assiut Governorates. Then, the isolated toxigenic strain was used to obtain aflatoxin B1, which used to evaluate the dietary influence of curcumin and nano curcumin on growth performance, carcass traits, biochemical, aflatoxin residue, and pathological lesion of liver, spleen, and intestine in Cobb broiler chickens. 120 hatched chicks were divided into 4 group. The groups were control fed basal diet without additives, Afl group fed diet contaminated with aflatoxin, Afl + Cu group fed diet contaminated with aflatoxin and curcumin as a feed additive (7 g curcumin/kg diet), and Afl + Nano-Cu group feed diet contaminated with aflatoxin and nano curcumin as a feed additive (400 mg nano curcumin/kg diet). RESULTS The results indicated that curcumin better than nano curcumin in ameliorating the deleterious effects of aflatoxin that appeared in improving the body weight gain, liver function, and pathological condition of liver, spleen, and intestine than nano curcumin fed group. CONCLUSION The current study offers an experimental scientific foundation for the use of curcumin as a medicinal medication or supplement in animal husbandry practices.
Collapse
Affiliation(s)
- Marwa Abo Bakr Hamouda
- Mycology Department, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), P.O. Box 12618, Giza, Egypt
| | - Adel Hassan Saad
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt
| | | | | | - Walied Abdo
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El- Shaikh, 33516, Egypt
| | - Eman Mahmoud El-Diasty
- Mycology Department, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), P.O. Box 12618, Giza, Egypt
| | - Sabreen Ezzat Fadl
- Biochemistry Dept, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Ehab Yahya Abdelhiee
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt
| |
Collapse
|
2
|
Mohammadi Z, Taherpour K, Ghasemi HA, Fakharzadeh S, Nooreh Z, Kalanaky S. Efficacy of advanced chelate technology-based 7-mineral supplementation in mitigating aflatoxin B1-induced impairments in broiler chicken performance and intestinal health. Microb Pathog 2025; 200:107350. [PMID: 39892032 DOI: 10.1016/j.micpath.2025.107350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Optimal levels and bioavailability of trace minerals (TM) in the broiler diet are important for improving performance and health status in the presence of dietary toxins. METHODS The study examines the effectiveness of advanced chelate technology-based 7-minerals (ACTM) in broilers fed aflatoxin B1 (AFB1)-contaminated diets, involving 768 chickens in eight treatments with six replicates, following a completely randomized design. Treatments contained (1) negative control (NC) group receiving a basal diet without AFB1 and containing recommended inorganic TM (ITM) levels (NC + ITM), (2) positive control (PC) group receiving a basal diet with 0.5 mg AFB1/kg and recommended ITM levels (PC + ITM), (3) PC diet + toxin binder (ITM + TB), (4 and 5) PC diet with 50 % and 100 % ACTM instead of ITM (ACTM50 and ACTM100), (6 and 7) PC diet with 12.5 % and 25 % extra ACTM (ITM + ACTM12.5 and ITM + ACTM25), and (8) PC diet with 125 % ITM levels (ITM125). RESULTS The results showed that the ACTM100 and ITM + ACTM25 treatments resulted in higher average weight gain and European production efficiency index compared to the PC + ITM treatment, but lower than the NC + ITM treatment. Key indicators of gut health, such as ileal digestibility of crude fat and phosphorus, AMEn value, duodenal villus height to crypt depth ratio, villus surface area, and gene expression of junctional adhesion molecule 2 were significantly improved in the ACTM100, ITM + BT, and NC + ITM groups compared to the PC + ITM group. Additionally, jejunal occludin expression increased in the ACTM100, ITM + ACTM25, ITM + TB treatments, and the jejunal zonula occludens-1 expression increased significantly in the ACTM100 and ITM + ACTM25 groups. CONCLUSION The results indicate that completely replacing ITM with ACTM or adding ACTM supplement to ITM diets at 25 % extra commercial levels can improve growth performance, gut health, and nutrient digestibility in the presence of AFB1 challenge. These effects are comparable to diets containing a commercial toxin binder.
Collapse
Affiliation(s)
- Zeynab Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran.
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran.
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Zahra Nooreh
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| |
Collapse
|
3
|
Choi H, Garavito-Duarte Y, Gormley AR, Kim SW. Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals. Toxins (Basel) 2025; 17:43. [PMID: 39852996 PMCID: PMC11768593 DOI: 10.3390/toxins17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
The objective of this review is to investigate the impacts of aflatoxins, particularly aflatoxin B1 (AFB1), on intestinal microbiota, intestinal health, and growth performance in monogastric animals, primarily chickens and pigs, as well as dietary interventions to mitigate these effects. Aflatoxin B1 contamination in feeds disrupts intestinal microbiota, induces immune responses and oxidative damage, increases antioxidant activity, and impairs jejunal cell viability, barrier function, and morphology in the small intestine. These changes compromise nutrient digestion and reduce growth performance in animals. The negative impact of AFB1 on the % change in average daily gain (ΔADG) of chickens and pigs was estimated based on meta-analysis: ΔADG (%)chicken = -0.13 × AFB1 intake per body weight (ng/g·d) and ΔADG (%)pig = -0.74 × AFB1 intake per body weight (µg/kg·d), indicating that increasing AFB1 contamination linearly reduces the growth of animals. To mitigate the harmful impacts of AFB1, various dietary strategies have been effective. Mycotoxin-detoxifying agents include mycotoxin-adsorbing agents, such as clay and yeast cell wall compounds, binding to AFB1 and mycotoxin-biotransforming agents, such as specific strains of Bacillus subtilis and mycotoxin-degrading enzyme, degrading AFB1 into non-toxic metabolites such as aflatoxin D1. Multiple mycotoxin-detoxifying agents are often combined and used together to improve the intestinal health and growth of chickens and pigs fed AFB1-contaminated feeds. In summary, AFB1 negatively impacts intestinal microbiota, induces immune responses and oxidative stress, disrupts intestinal morphology, and impairs nutrient digestion in the small intestine, leading to reduced growth performance. Supplementing multi-component mycotoxin-detoxifying agents in feeds could effectively adsorb and degrade AFB1 co-contaminated with other mycotoxins prior to its absorption in the small intestine, preventing its negative impacts on the intestinal health and growth performance of chickens and pigs.
Collapse
Affiliation(s)
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (H.C.); (Y.G.-D.); (A.R.G.)
| |
Collapse
|
4
|
Li Y, Wang K, Li C. Oxidative Stress in Poultry and the Therapeutic Role of Herbal Medicine in Intestinal Health. Antioxidants (Basel) 2024; 13:1375. [PMID: 39594517 PMCID: PMC11591273 DOI: 10.3390/antiox13111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
The intensive broiler farming model has accelerated the development of the poultry farming industry. However, it has also inevitably brought about many stressors that lead to oxidative stress in the organism. The intestine is the leading site of nutrient digestion, absorption, and metabolism, as well as a secretory and immune organ. Oxidative stress in animal production can harm the intestine, potentially leading to significant losses for the farming industry. Under conditions of oxidative stress, many free radicals are produced in the animal's body, attacking the intestinal mucosal tissues and destroying the barrier integrity of the intestinal tract, leading to disease. Recently, herbs have been shown to have a favorable safety profile and promising application in improving intestinal oxidative stress in poultry. Therefore, future in-depth studies on the specific mechanisms of herbs and their extracts for treating intestinal oxidative stress can provide a theoretical basis for the clinical application of herbs and new therapeutic options for intestinal oxidative stress injury during poultry farming. This review focuses on the causes and hazards of oxidative stress in the intestinal tract of poultry, and on herbs and their extracts with therapeutic potential, to provide a reference for developing and applying new antioxidants.
Collapse
Affiliation(s)
| | | | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (K.W.)
| |
Collapse
|
5
|
Stewart J, Pavic A. Advances in enteropathogen control throughout the meat chicken production chain. Compr Rev Food Sci Food Saf 2023; 22:2346-2407. [PMID: 37038302 DOI: 10.1111/1541-4337.13149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023]
Abstract
Enteropathogens, namely Salmonella and Campylobacter, are a concern in global public health and have been attributed in numerous risk assessments to a poultry source. During the last decade, a large body of research addressing this problem has been published. The literature reviewed contains review articles on certain aspects of poultry production chain; however, in the past decade there has not been a review on the entire chain-farm to fork-of poultry production. For this review, a pool of 514 articles were selected for relevance via a systematic screening process (from >7500 original search articles). These studies identified a diversity of management and intervention strategies for the elimination or reduction of enteropathogens in poultry production. Many studies were laboratory or limited field trials with implementation in true commercial operations being problematic. Entities considering using commercial antienteropathogen products and interventions are advised to perform an internal validation and fit-for-purpose trial as Salmonella and Campylobacter serovars and biovars may have regional diversity. Future research should focus on nonchemical application within the processing plant and how a combination of synergisticinterventions through the production chain may contribute to reducing the overall carcass burden of enteropathogens, coupled with increased consumer education on safe handling and cooking of poultry.
Collapse
Affiliation(s)
- Jack Stewart
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| | - Anthony Pavic
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| |
Collapse
|
6
|
Can Red Yeast ( Sporidiobolus pararoseus) Be Used as a Novel Feed Additive for Mycotoxin Binders in Broiler Chickens? Toxins (Basel) 2022; 14:toxins14100678. [PMID: 36287947 PMCID: PMC9608597 DOI: 10.3390/toxins14100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Mycotoxin-contaminated feeds may negatively affect broiler chickens’ health; hence, a sustainable approach to achieve mycotoxin elimination is necessary. This study aimed to evaluate the efficacy of red yeast (Sporidiobolus pararoseus; RY) as a novel mycotoxin binder in broilers. A total of 1440 one-week-old male broiler chicks were randomly assigned to 12 treatments in a 3 × 4 factorial design. The dietary treatments included three levels of mycotoxin-contaminated diets (0 µg kg−1 (0% of mycotoxin; MT), 50 µg kg−1 (50% MT), and 100 µg kg−1 (100% MT)) and four levels of mycotoxin binders (0.0 and 0.5 g kg−1 commercial binder, and 0.5 and 1.0 g kg−1 RY). Experimental diets were contaminated with aflatoxin B1, zearalenone, ochratoxin A, T-2 toxin, and deoxynivalenol in the basal diet. Furthermore, the parameters including feed intake, body weight, and mortality rate were recorded on a weekly basis. After feeding for 28 days, blood and organ samples were collected randomly to determine the blood biochemistry, relative organ weights, and gut health. The results indicated that mycotoxin-contaminated diets reduced the average daily weight gain (ADG), villus height (VH), and villus height per the crypt depth ratio (VH:CD) of the intestine, as well as the population of Lactobacillus sp. and Bifidobacterium sp. in the cecal (p < 0.05), whereas they increased the mycotoxins concentration in the blood samples and the apoptosis cells (TUNEL positive) in the liver tissue (p < 0.01) of broiler chicken. In contrast, RY-supplemented diets had better ADG values and lower chicken mortality rates (p < 0.05). Moreover, these combinations positively impacted the relative organ weights, blood parameters, bacteria population, intestinal morphology, and pathological changes in the hepatocytes (p < 0.05). In conclusion, RY supplementation effectively alleviated the toxicity that is induced by AFB1 and OTA, mainly, and could potentially be applied as a novel feed additive in the broiler industry.
Collapse
|
7
|
Ashry A, Taha NM, Lebda MA, Abdo W, El-Diasty EM, Fadl SE, Morsi Elkamshishi M. Ameliorative effect of nanocurcumin and Saccharomyces cell wall alone and in combination against aflatoxicosis in broilers. BMC Vet Res 2022; 18:178. [PMID: 35568841 PMCID: PMC9107200 DOI: 10.1186/s12917-022-03256-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/18/2022] [Indexed: 01/21/2023] Open
Abstract
Background The adverse effect of aflatoxin in broilers is well known. However, dietary supplementation of Saccharomyces cell wall and/or Nanocurcumin may decrease the negative effect of aflatoxin B1 because of the bio-adsorbing feature of the functional ingredients in Yeast Cell Wall and the detoxification effect of curcumin nanoparticles. The goal of this study was to see how Saccharomyces cell wall/Nanocurcumin alone or in combination with the aflatoxin-contaminated diet ameliorated the toxic effects of aflatoxin B1 on broiler development, blood and serum parameters, carcass traits, histology, immune histochemistry, liver gene expression, and aflatoxin residue in the liver and muscle tissue of broilers for 35 days. Moreover, the withdrawal time of aflatoxin was measured after feeding the aflatoxicated group an aflatoxin-free diet. Broiler chicks one day old were distributed into five groups according to Saccharomyces cell wall and/or nanocurcumin with aflatoxin supplementation. The G1 group was given a formulated diet without any supplements. The G2 group was supplemented with aflatoxin (0.25 mg/kg diet) in the formulated diet. The G3 group was supplemented with aflatoxin (0.25 mg/kg diet) and Saccharomyces cell wall (1 kg/ton diet) in the formulated diet. The G4 group was supplemented with aflatoxin (0.25 mg/kg diet) and nanocurcumin (400 mg/kg) in the formulated diet. The G5 group was supplemented with aflatoxin (0.25 mg/kg diet) and Saccharomyces cell wall (1 kg/ton diet) in combination with nanocurcumin (200 mg/kg) in the formulated diet. Results According to the results of this study, aflatoxin supplementation had a detrimental impact on the growth performance, blood and serum parameters, carcass traits, and aflatoxin residue in the liver and muscle tissue of broilers. In addition, aflatoxin supplementation led to a liver injury that was indicated by serum biochemistry and pathological lesions in the liver tissue. Moreover, the shortening of villi length in aflatoxicated birds resulted in a decrease in both the crypt depth ratio and the villi length ratio. The expression of CYP1A1 and Nrf2 genes in the liver tissue increased and decreased, respectively, in the aflatoxicated group. In addition, the aflatoxin residue was significantly (P ≤ 0.05) decreased in the liver tissue of the aflatoxicated group after 2 weeks from the end of the experiment. Conclusion Saccharomyces cell wall alone or with nanocurcumin attenuated these negative effects and anomalies and improved all of the above-mentioned metrics. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03256-x.
Collapse
Affiliation(s)
- Aya Ashry
- Biochemistry Dept., Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt.
| | - Nabil M Taha
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21526, Egypt
| | - Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21526, Egypt
| | - Walied Abdo
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Eman M El-Diasty
- Mycology and Mycotoxins Department, Animal Health Research Institute (ARC), Dokki, Egypt
| | - Sabreen E Fadl
- Biochemistry Dept., Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Mohamed Morsi Elkamshishi
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| |
Collapse
|
8
|
Groff-Urayama PM, Padilha-Boaretto JB, Gorges MH, Santos ILD, Cruvinel JM, Di Domenico AS, Takahashi SE. Use of different adsorbents in broiler diets naturally contaminated by mycotoxins. ACTA SCIENTIARUM: ANIMAL SCIENCES 2022. [DOI: 10.4025/actascianimsci.v44i1.54090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effects of adding different adsorbent substances to broilers feed naturally contaminated by mycotoxins. Two hundred and eighty male 1-day-old chicks, Cobb Slow® lineage, were distributed in a randomized block design with 4 treatments, 5 repetitions with 14 birds each. The treatments consisted of: T1- basal feed naturally contaminated with mycotoxins. T2- basal feed + Bentonite, Thistle Extract, Yeast Extract, Vitamin E and Choline. T3- basal feed + Bentonite, Thistle Extract, yeast cell wall and Silymarin. T4- basal feed + Bentonite and Algae extract. Performance (weight gain, feed intake, feed conversion) at 7, 14, 21, 28 days were evaluated. At 28 days, a portion of the jejunum was collected in two birds by replicate to study the intestinal morphology. The relative weight of the gizzard, proventricle and total intestine was evaluated. The data obtained were analyzed using the statistical program SAS (9.3). With the use of any adsorbents studied, the performance and liver weight were improved in all evaluated periods. Thus, the inclusion of adsorbents improves the performance of the broiler chickens when the feed is contaminated by mycotoxins.
Collapse
|
9
|
Magnoli A, Poloni V, Cristofolini L, Merkis C, Escobar F, Torres C, Chiacchiera S, Cavaglieri L. Effects of aflatoxin B1 and monensin interaction on liver and intestine of poultry – influence of a biological additive (Pichia kudriavzevii RC001). WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2021.2692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate the effects of aflatoxin B1 (AFB1) and monensin (MONS) interaction on the liver and intestinal histological changes in poultry, and the influence of Pichia kudriavzevii RC001. One-day-old commercial line (Ross 308) broilers (n=120) were individually weighed and randomly assigned to 8 treatments (15 broilers/treatment, 5 broilers per cage and 3 replicates/treatment). The experimental diets were: Group 1: basal diet (BD); Group 2: BD + MONS (50 mg/kg); Group 3: BD + P. kudriavzevii RC001 (1 g/kg); Group 4: BD + AFB1 (100 μg/kg); Group 5: BD + MONS + P. kudriavzevii RC001; Group 6: BD + AFB1 + P. kudriavzevii RC001; Group 7: BD + AFB1 + MONS + P. kudriavzevii RC001; Group 8: BD + AFB1 + MONS. When MONS was added, the typical AFB1 macroscopic and microscopic alterations were intensified. The P. kudriavzevii RC001 cytotoxicity and genotoxicity assays with Vero cells and with broiler chicken’s erythrocytes, demonstrated that P. kudriavzevii RC001 neither were non-cytotoxic nor genotoxic. When MONS was added in the presence of P. kudriavzevii RC001, the toxic effect of AFB1 on liver was not prevented. When P. kudriavzevii was present alone, the same prevention of the pathological damage was observed in the intestine of poultry fed with AFB1. The smallest apparent absorption area was obtained when AFB1 and MONS were added in the feed (P<0.05). AFB1 and MONS interaction demonstrated important toxic effects. Although P. kudriavzevii was effective in ameliorating the adverse effects of AFB1 alone on liver pathology and gut morphology, it was not able to diminish the toxic effects of AFB1 in presence of MONS. It suggests that P. kudriavzevii could be used as feed additive or counteracting the toxic effects of AFB1 in poultry production in the absence of MONS.
Collapse
Affiliation(s)
- A.P. Magnoli
- Departamento de Producción Animal, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
| | - V. Poloni
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - L.A. Cristofolini
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
- Área de Microscopia Electrónica, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - C.I. Merkis
- Área de Microscopia Electrónica, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - F.M. Escobar
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - C.V. Torres
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - S.M. Chiacchiera
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
- Departamento de Química, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - L. Cavaglieri
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| |
Collapse
|
10
|
Aflatoxins associated oxidative stress and immunological alterations are mitigated by dietary supplementation of Pichia kudriavzevii in broiler chicks. Microb Pathog 2021; 161:105279. [PMID: 34742894 DOI: 10.1016/j.micpath.2021.105279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022]
Abstract
Mycotoxins are the secondary metabolites of certain toxigenic fungi which pose severe health stress in humans, animals and poultry. Certain biological agents and components are used to adsorb mycotoxins in poultry industry which provide promising results in this regard. Pichia kudriazevii (PK), a novel yeast, has the ability to enhance the immune status of poultry chicks. The present study was designed to investigate the ameliorative potential of PK against aflatoxins associated immunosuppression and oxidative stress in broiler chicks. 180-one day old broiler chicks were equally divided into six groups and given different combinations of aflatoxins (300 and 600 μg/kg) and PK (1 g/kg). Parameters studied were antibody response to sheep red blood cells, lymphoproliferative response to PHA-P; phagocytic response by carbon clearance assay system, total antioxidant capacity and total oxidant status of chicks. Results of this experiment confirmed the immunomodulation and antioxidant capacity of PK against 300 μg/kg aflatoxin level. However such amelioration was partial when PK was used with 600 μg/kg aflatoxins. Moreover, the exact ratio of aflatoxin: PK to cause such amelioration still needs to be investigated.
Collapse
|
11
|
Poloni V, Magnoli A, Fochesato A, Poloni L, Cristofolini A, Merkis C, Riquelme CS, Maldonado FS, Montenegro M, Cavaglieri L. Probiotic gut-borne Saccharomyces cerevisiae reduces liver toxicity caused by aflatoxins in weanling piglets. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study was conducted to investigate the aflatoxin B1 (AFB1) liver toxicity and gut histomorphometry after gut borne-Saccharomyces cerevisiae supplementation to AFB1-contaminated piglet diets. Thirty-two male mixed-breed piglets (weaned at 21 days old) were housed in individual pens and allowed to acclimate for 7 days. Animals were randomly assigned to four treatments of 22 days: T1 – low AFB1 levels diet (L, 31.6 μg/kg); T2 – L + S. cerevisiae 1 g/kg; T3 – high AFs levels diet (H, 495 μg/kg); T4 – H + S. cerevisiae 1 g/kg. The addition of probiotic yeast was able to reduce 72% of residual AFB1 present in the liver. The liver histopathology of piglets fed AFB1 showed a typical macroscopic and microscopic pattern of subclinical aflatoxicosis that was prevented by the yeast. Also, the addition of the yeast was able to decrease the alanine-aminotransferase (25.5±0.71 U) and aspartate-aminotransferase (26.5±6.10 U) even showing values lower than the control ones. The apparent absorption area showed the greater surface when the probiotic was present alone compared to the control (T1), whereas when present together with the toxin demonstrated a modulatory effect. The addition of probiotic gut-borne S. cerevisiae in the pig diets was effective in counteracting the toxic effects of harmful AFB1 in livers besides a tendency to improve the histomorphometric parameters and modulating the toxic effect of AFB1 on intestine. These results are promising for the production of feed additives that will be used in animal feed, since the probiotic action and the decontamination of mycotoxins in the same product are complemented.
Collapse
Affiliation(s)
- V. Poloni
- Fellow of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
- Departamento de Microbiología e Inmunología. Universidad Nacional de Río Cuarto, Ruta 36 km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - A. Magnoli
- Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
- Departamento de Producción Animal, Universidad Nacional de Río Cuarto, Ruta 36 km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - A. Fochesato
- Fellow of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
- Departamento de Microbiología e Inmunología. Universidad Nacional de Río Cuarto, Ruta 36 km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - L. Poloni
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Ruta 36 km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - A. Cristofolini
- Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
- Departamento de Microscopía Electrónica, Universidad Nacional de Río Cuarto, Ruta 36 km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - C. Merkis
- Departamento de Microscopía Electrónica, Universidad Nacional de Río Cuarto, Ruta 36 km 601, 5800 Río Cuarto, Córdoba, Argentina
| | | | - F. Schifferli Maldonado
- Departamento de Microbiología e Inmunología. Universidad Nacional de Río Cuarto, Ruta 36 km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - M. Montenegro
- Centro de Investigaciones y Transferencia Villa María, Instituto de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Av. Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| | - L.R. Cavaglieri
- Departamento de Microbiología e Inmunología. Universidad Nacional de Río Cuarto, Ruta 36 km 601, 5800 Río Cuarto, Córdoba, Argentina
- Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
| |
Collapse
|
12
|
Dietary Mannanoligosaccharide Supplementation Improves Growth Performance, Intestinal Integrity, Serum Immunity, and Antioxidant Capacity of Partridge Shank Chickens. J Poult Sci 2021; 58:147-153. [PMID: 34447278 PMCID: PMC8371537 DOI: 10.2141/jpsa.0200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022] Open
Abstract
Herein, we assessed the impact of dietary addition of konjac mannanoligosaccharide (MOS) on the growth, intestinal morphology, serum immune status, and oxidative status in Partridge Shank chickens. For the experiment, one-day-old chicks (n=192) were randomized into six replicates (n=8/replicate) and fed four different diets: a basal diet containing 0 (Control group), 0.5, 1, or 1.5 g MOS per kg of diet (g/kg) for 50 d. Relative to the control, the group fed 0.5 g/kg MOS decreased feed consumption from 22nd to 50th d and 1st to 50th d (P<0.05). By adding MOS, the height of the intestinal villus and the villus height to crypt depth ratio were increased (P<0.05); 1.5 g/kg MOS was the best dosage for these parameters. Jejunal and ileal goblet cell density increased following MOS supplementation at 21 d (P<0.01) and 50 d in the jejunum (P<0.05), respectively. Moreover, adding MOS to the diet increased the contents of IgA and IgM at 21 d (P<0.05) and total antioxidant capacity (P<0.05) at 50 d in the serum but decreased malondialdehyde content (P<0.01) at 21 d in the group fed 0.5 and 1.5 g/kg MOS. The findings suggested that MOS supplementation could affect feed consumption, intestinal health, serous immunity, and antioxidant capacity of Partridge Shank chickens.
Collapse
|
13
|
Jahanian E, Mahdavi A, Jahanian R. Silymarin improved the growth performance via modulating the microbiota and mucosal immunity in Escherichia coli-challenged broiler chicks. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Tao Y, Wang T, Huang C, Lai C, Ling Z, Zhou Y, Yong Q. Production performance, egg quality, plasma biochemical constituents and lipid metabolites of aged laying hens supplemented with incomplete degradation products of galactomannan. Poult Sci 2021; 100:101296. [PMID: 34237545 PMCID: PMC8267592 DOI: 10.1016/j.psj.2021.101296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022] Open
Abstract
This study was conducted to investigate the efficacy of incomplete degradation products of galactomannan (IDPG) on the production performance, egg quality, plasma parameters, and lipid metabolites of laying hens. A total of 288 laying hens were allocated into 4 treatments and fed diets supplemented with 0%, 0.01%, 0.025%, and 0.05% IDPG. Results showed that IDPG supplementation significantly increases egg production and decreases feed conversion ratio (P < 0.05). Eggs laid by hens receiving IDPG exhibited higher eggshell strength (P < 0.05). Moreover, IDPG supplementation significantly increased the serum albumin content, and decreased the blood ammonia content as well as triglyceride levels in serum and liver (P < 0.05). Overall, IDPG can be considered as an effective feed additive due to its capacity of improving egg production, increasing plasma protein, and changing lipid metabolism of laying hens.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Ting Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
15
|
Gao Y, Bao X, Meng L, Liu H, Wang J, Zheng N. Aflatoxin B1 and Aflatoxin M1 Induce Compromised Intestinal Integrity through Clathrin-Mediated Endocytosis. Toxins (Basel) 2021; 13:184. [PMID: 33801329 PMCID: PMC8002210 DOI: 10.3390/toxins13030184] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/08/2023] Open
Abstract
With the growing diversity and complexity of diet, humans are at risk of simultaneous exposure to aflatoxin B1 (AFB1) and aflatoxin M1 (AFM1), which are well-known contaminants in dairy and other agricultural products worldwide. The intestine represents the first barrier against external contaminants; however, evidence about the combined effect of AFB1 and AFM1 on intestinal integrity is lacking. In vivo, the serum biochemical parameters related to intestinal barrier function, ratio of villus height/crypt depth, and distribution pattern of claudin-1 and zonula occluden-1 were significantly affected in mice exposed to 0.3 mg/kg b.w. AFB1 and 3.0 mg/kg b.w. AFM1. In vitro results on differentiated Caco-2 cells showed that individual and combined AFB1 (0.5 and 4 μg/mL) and AFM1 (0.5 and 4 μg/mL) decreased cell viability and trans-epithelial electrical resistance values as well as increased paracellular permeability of fluorescein isothiocyanate-dextran in a dose-dependent manner. Furthermore, AFM1 aggravated AFB1-induced compromised intestinal barrier, as demonstrated by the down-regulation of tight junction proteins and their redistribution, particularly internalization. Adding the inhibitor chlorpromazine illustrated that clathrin-mediated endocytosis partially contributed to the compromised intestinal integrity. Synergistic and additive effects were the predominant interactions, suggesting that these toxins are likely to have negative effects on human health.
Collapse
Affiliation(s)
- Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.G.); (X.B.); (L.M.); (H.L.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection, Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyu Bao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.G.); (X.B.); (L.M.); (H.L.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection, Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Meng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.G.); (X.B.); (L.M.); (H.L.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection, Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huimin Liu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.G.); (X.B.); (L.M.); (H.L.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection, Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.G.); (X.B.); (L.M.); (H.L.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection, Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.G.); (X.B.); (L.M.); (H.L.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection, Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
16
|
Guerre P. Mycotoxin and Gut Microbiota Interactions. Toxins (Basel) 2020; 12:E769. [PMID: 33291716 PMCID: PMC7761905 DOI: 10.3390/toxins12120769] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
The interactions between mycotoxins and gut microbiota were discovered early in animals and explained part of the differences in susceptibility to mycotoxins among species. Isolation of microbes present in the gut responsible for biotransformation of mycotoxins into less toxic metabolites and for binding mycotoxins led to the development of probiotics, enzymes, and cell extracts that are used to prevent mycotoxin toxicity in animals. More recently, bioactivation of mycotoxins into toxic compounds, notably through the hydrolysis of masked mycotoxins, revealed that the health benefits of the effect of the gut microbiota on mycotoxins can vary strongly depending on the mycotoxin and the microbe concerned. Interactions between mycotoxins and gut microbiota can also be observed through the effect of mycotoxins on the gut microbiota. Changes of gut microbiota secondary to mycotoxin exposure may be the consequence of the antimicrobial properties of mycotoxins or the toxic effect of mycotoxins on epithelial and immune cells in the gut, and liberation of antimicrobial peptides by these cells. Whatever the mechanism involved, exposure to mycotoxins leads to changes in the gut microbiota composition at the phylum, genus, and species level. These changes can lead to disruption of the gut barrier function and bacterial translocation. Changes in the gut microbiota composition can also modulate the toxicity of toxic compounds, such as bacterial toxins and of mycotoxins themselves. A last consequence for health of the change in the gut microbiota secondary to exposure to mycotoxins is suspected through variations observed in the amount and composition of the volatile fatty acids and sphingolipids that are normally present in the digesta, and that can contribute to the occurrence of chronic diseases in human. The purpose of this work is to review what is known about mycotoxin and gut microbiota interactions, the mechanisms involved in these interactions, and their practical application, and to identify knowledge gaps and future research needs.
Collapse
Affiliation(s)
- Philippe Guerre
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, F-31076 Toulouse, France
| |
Collapse
|
17
|
The Compromised Intestinal Barrier Induced by Mycotoxins. Toxins (Basel) 2020; 12:toxins12100619. [PMID: 32998222 PMCID: PMC7600953 DOI: 10.3390/toxins12100619] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are fungal metabolites that occur in human foods and animal feeds, potentially threatening human and animal health. The intestine is considered as the first barrier against these external contaminants, and it consists of interconnected physical, chemical, immunological, and microbial barriers. In this context, based on in vitro, ex vivo, and in vivo models, we summarize the literature for compromised intestinal barrier issues caused by various mycotoxins, and we reviewed events related to disrupted intestinal integrity (physical barrier), thinned mucus layer (chemical barrier), imbalanced inflammatory factors (immunological barrier), and dysfunctional bacterial homeostasis (microbial barrier). We also provide important information on deoxynivalenol, a leading mycotoxin implicated in intestinal dysfunction, and other adverse intestinal effects induced by other mycotoxins, including aflatoxins and ochratoxin A. In addition, intestinal perturbations caused by mycotoxins may also contribute to the development of mycotoxicosis, including human chronic intestinal inflammatory diseases. Therefore, we provide a clear understanding of compromised intestinal barrier induced by mycotoxins, with a view to potentially develop innovative strategies to prevent and treat mycotoxicosis. In addition, because of increased combinatorial interactions between mycotoxins, we explore the interactive effects of multiple mycotoxins in this review.
Collapse
|
18
|
Chang J, Wang T, Wang P, Yin Q, Liu C, Zhu Q, Lu F, Gao T. Compound probiotics alleviating aflatoxin B 1 and zearalenone toxic effects on broiler production performance and gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110420. [PMID: 32151861 DOI: 10.1016/j.ecoenv.2020.110420] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
In order to alleviate toxic effects of aflatoxins B1 (AFB1) and zearalenone (ZEA) on broiler production performance and gut microbiota, three kinds of compound probiotics (CP) were selected. The optimal ratios of Bacillus subtilis, Lactobacillus casei and Candida utilis in broiler diets were 7, 5 and 6 log CFU/g for ZEA biodegradation (CP1); 6, 7 and 7 log CFU/g for AFB1 biodegradation (CP2); 7, 6 and 7 log CFU/g for ZEA + AFB1 biodegradation (CP3). A total of 350 1-day-old Ross broilers were randomly divided into 7 groups. Group A was the basal diet, group B-G contained ZEA, AFB1, ZEA + AFB1, ZEA + CP1, AFB1+CP2, ZEA + AFB1+CP3, respectively. The experiment showed that AFB1 or AFB1+ZEA significantly decreased broiler production performance, damaged liver and jejunum, increased mycotoxin residues in broiler body; however, three kinds of compound probiotics additions could alleviate mycotoxin negative effects on the above parameters (p < 0.05). The gut microbiota analysis indicated that AFB1+ZEA increased jejunal microbial richness, but which were decreased to almost the same level as the control group by CP3 addition. CP3 addition significantly increased jejunal Firmicutes and Lactobacillus aviarius abundances. The correlative analysis showed that gut Lactobacillus aviarius abundance was positively correlated with average daily gain (ADG) of broilers (p < 0.05), while AFB1+ZEA addition decreased its relative abundance, indicating that CP3 addition increased broiler growth by increasing Lactobacillus aviarius abundance. AFB1 and ZEA residues in broiler body were negatively correlated with the gut beneficial bacterial abundances (p < 0.01), but positively correlated with the potentially harmful bacterial abundances (p < 0.05), which inferred that CP3 addition could decrease mycotoxin residues through positively regulating gut relative bacterial abundances. In conclusion, compound probiotics could keep gut microbiota stable, degrade mycotoxins, alleviate histological lesions, increase production performance and reduce mycotoxin toxicity for broilers.
Collapse
Affiliation(s)
- Juan Chang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Tao Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Ping Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qingqiang Yin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Chaoqi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qun Zhu
- Henan Delin Biological Product Co., Ltd., Xinxiang, 453000, China.
| | - Fushan Lu
- Henan Puai Feed Co., Ltd., Zhoukou, 466000, China.
| | - Tianzeng Gao
- Henan Guangan Biotechnology Co., Ltd., Zhengzhou, 450001, China.
| |
Collapse
|
19
|
Effects of Graded Inclusion of Bioactive Peptides Derived from Sesame Meal on the Growth Performance, Internal Organs, Gut Microbiota and Intestinal Morphology of Broiler Chickens. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09947-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Fouad AM, Ruan D, El-Senousey HK, Chen W, Jiang S, Zheng C. Harmful Effects and Control Strategies of Aflatoxin B₁ Produced by Aspergillus flavus and Aspergillus parasiticus Strains on Poultry: Review. Toxins (Basel) 2019; 11:E176. [PMID: 30909549 PMCID: PMC6468546 DOI: 10.3390/toxins11030176] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
The presence of aflatoxin B₁ (AFB₁) in poultry diets decreases the hatchability, hatchling weight, growth rate, meat and egg production, meat and egg quality, vaccination efficiency, as well as impairing the feed conversion ratio and increasing the susceptibility of birds to disease and mortality. AFB₁ is transferred from poultry feed to eggs, meat, and other edible parts, representing a threat to the health of consumers because AFB₁ is carcinogenic and implicated in human liver cancer. This review considers how AFB₁ produced by Aspergillus flavus and Aspergillus parasiticus strains can affect the immune system, antioxidant defense system, digestive system, and reproductive system in poultry, as well as its effects on productivity and reproductive performance. Nutritional factors can offset the effects of AFB₁ in poultry and, thus, it is necessary to identify and select suitable additives to address the problems caused by AFB₁ in poultry.
Collapse
Affiliation(s)
- Ahmed Mohamed Fouad
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | - Dong Ruan
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - HebatAllah Kasem El-Senousey
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | - Wei Chen
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Shouqun Jiang
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Chuntian Zheng
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
21
|
Park J, Jung S, Carey J. Effects of a Commercial Mannan-Oligosaccharide Product on Growth Performance, Intestinal Histomorphology, and Amino Acid Digestibility in White Pekin Ducks. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfy017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Hajiaghapour M, Rezaeipour V. Comparison of two herbal essential oils, probiotic, and mannan-oligosaccharides on egg production, hatchability, serum metabolites, intestinal morphology, and microbiota activity of quail breeders. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|