1
|
Su Z, Yu X, He Y, Sha T, Guo H, Tao Y, Liao L, Zhang Y, Lu G, Lu G, Gong W. Inconsistencies in predictive models based on exhaled volatile organic compounds for distinguishing between benign pulmonary nodules and lung cancer: a systematic review. BMC Pulm Med 2024; 24:551. [PMID: 39488679 PMCID: PMC11531146 DOI: 10.1186/s12890-024-03374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND There is a general rise in incidentally found pulmonary nodules (PNs) requiring follow-up due to increased CT use. Biopsy and repeated CT scan are the most useful methods for distinguishing between benign PNs and lung cancer, while they are either invasive or involves radiation exposure. Therefore, there has been increasing interest in the analysis of exhaled volatile organic compounds (VOCs) to distinguish between benign PNs and lung cancer because it's cheap, noninvasive, efficient, and easy-to-use. However, the exact value of breath analysis in this regard remains unclear. METHODS A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-oriented systematic search was performed to include studies that established exhaled VOC-based predictive models to distinguish between benign PNs and lung cancer and reported the exact VOCs used. Data regarding study characteristics, performance of the models, which predictors were incorporated, and methodologies for breath collection and analysis were independently extracted by two researchers. The exhaled VOCs incorporated into the predictive models were narratively synthesized, and those compounds that were reported in > 2 studies and reportedly exhibited consistent associations with lung cancer were considered key breath biomarkers. A quality assessment was independently performed by two researchers using both the Newcastle-Ottawa Scale (NOS) and the Prediction Model Risk of Bias Assessment Tool (PROBAST). RESULTS A total of 11 articles reporting on 46 VOC-based predictive models were included. The majority relied solely on exhaled VOCs (n = 44), while two incorporated VOCs, demographical factors, and radiological signs. The variation in the sensitivity, specificity, and AUC indicators of the models that incorporated multiple factors was lower compared with those of the models that relied solely on exhaled VOCs. A total of 84 VOCs were incorporated. Of these, 2-butanone, 3-hydroxy-2-butanone, and 2-hydroxyacetaldehyde were identified as key predictors that had significantly higher concentrations in the exhaled breath samples of patients with lung cancer. Substantial heterogeneity was observed in terms of the modeling and validation methods used, as well as the approaches to breath collection and analysis. Many of the reports were missing certain key pieces of clinical and methodological information. CONCLUSIONS Although exhaled VOC-based models for predicting cancer risk might be a conceivable role as monitoring tools for PNs risk, there has been little overall change in the accuracy of these tests over time, and their role in routine clinical practice has not yet been established. CLINICAL TRIAL NUMBER PROSPERO registration number CRD42023381458.
Collapse
Affiliation(s)
- Zhixia Su
- Department of Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225012, China
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaoping Yu
- Department of Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Yuhang He
- School of Nursing, Medical College of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Taining Sha
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hong Guo
- Department of Thoracic Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Yujian Tao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Yangzhou University, Jiangsu, Yangzhou, 225012, China
| | - Liting Liao
- Department of Basic Medicine, Medical College of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yanyan Zhang
- Testing Center of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Guotao Lu
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225012, China
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University,, Yangzhou, Jiangsu, 225012, China
| | - Guangyu Lu
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Weijuan Gong
- Department of Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225012, China.
- Department of Basic Medicine, Medical College of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225012, China.
| |
Collapse
|
2
|
Barbosa JMG, Filho NRA. The human volatilome meets cancer diagnostics: past, present, and future of noninvasive applications. Metabolomics 2024; 20:113. [PMID: 39375265 DOI: 10.1007/s11306-024-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Cancer is a significant public health problem, causing dozens of millions of deaths annually. New cancer screening programs are urgently needed for early cancer detection, as this approach can improve treatment outcomes and increase patient survival. The search for affordable, noninvasive, and highly accurate cancer detection methods revealed a valuable source of tumor-derived metabolites in the human metabolome through the exploration of volatile organic compounds (VOCs) in noninvasive biofluids. AIM OF REVIEW This review discusses volatilomics-based approaches for cancer detection using noninvasive biomatrices (breath, saliva, skin secretions, urine, feces, and earwax). We presented the historical background, the latest approaches, and the required stages for clinical validation of volatilomics-based methods, which are still lacking in terms of making noninvasive methods available and widespread to the population. Furthermore, insights into the usefulness and challenges of volatilomics in clinical implementation steps for each biofluid are highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW We outline the methodologies for using noninvasive biomatrices with up-and-coming clinical applications in cancer diagnostics. Several challenges and advantages associated with the use of each biomatrix are discussed, aiming at encouraging the scientific community to strengthen efforts toward the necessary steps to speed up the clinical translation of volatile-based cancer detection methods, as well as discussing in favor of (i) hybrid applications (i.e., using more than one biomatrix) to describe metabolite modulations that can be "cancer volatile fingerprints" and (ii) in multi-omics approaches integrating genomics, transcriptomics, and proteomics into the volatilomic data, which might be a breakthrough for diagnostic purposes, onco-pathway assessment, and biomarker validations.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| | - Nelson R Antoniosi Filho
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
3
|
Zhang F, Li P, Lu Y, Han Y, Yan H. Advancing Lung Cancer Diagnosis through NH 2-MON-SPME-GC-MS/MS: Enhanced Sensitivity in Aldehyde Biomarker Detection from Exhaled Breath. Anal Chem 2024. [PMID: 39269845 DOI: 10.1021/acs.analchem.4c03328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The sensitive detection of trace biomarkers in exhaled breath for lung cancer diagnosis represents a critical area of research in life analytical chemistry, with profound implications for early disease detection, therapeutic intervention, and prognosis monitoring. Despite its potential, the analytical process faces significant challenges due to the ultratrace levels of disease biomarkers present and the complex, high-humidity composition of exhaled breath. This study introduces a highly sensitive method for detecting aldehyde biomarkers in exhaled breath by integrating the use of amino-functionalized microporous organic networks (NH2-MON) as a solid-phase microextraction (SPME) fiber coating with gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) analysis. The method innovatively combines sample collection and extraction, achieving a dual-step enrichment process that significantly enhances both the enrichment efficiency and reproducibility of biomarker detection while effectively mitigating the interference caused by water vapor in exhaled breath. The NH2-MON, utilized as an SPME fiber coating, demonstrates exceptional enrichment capacity for five key aldehyde biomarkers, facilitating the development of a highly sensitive detection approach for these biomarkers in exhaled breath. Compared to previously reported methods, the proposed technique exhibits significantly lower limits of quantification, ranging from 0.77 to 11.89 pg mL-1, and achieves substantially higher enrichment factors, ranging from 9156- to 35723-fold. The practicality and feasibility of the method were validated through the analysis of exhaled breath samples from lung cancer patients, underscoring its potential application in the early diagnosis and monitoring of lung cancer.
Collapse
Affiliation(s)
- Feiran Zhang
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Pengfei Li
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yanke Lu
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yehong Han
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| |
Collapse
|
4
|
Zhou M, Wang Q, Lu X, Zhang P, Yang R, Chen Y, Xia J, Chen D. Exhaled breath and urinary volatile organic compounds (VOCs) for cancer diagnoses, and microbial-related VOC metabolic pathway analysis: a systematic review and meta-analysis. Int J Surg 2024; 110:1755-1769. [PMID: 38484261 PMCID: PMC10942174 DOI: 10.1097/js9.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 03/17/2024]
Abstract
BACKGROUND The gradual evolution of the detection and quantification of volatile organic compounds (VOCs) has been instrumental in cancer diagnosis. The primary objective of this study was to assess the diagnostic potential of exhaled breath and urinary VOCs in cancer detection. As VOCs are indicative of tumor and human metabolism, our work also sought to investigate the metabolic pathways linked to the development of cancerous tumors. MATERIALS AND METHODS An electronic search was performed in the PubMed database. Original studies on VOCs within exhaled breath and urine for cancer detection with a control group were included. A meta-analysis was conducted using a bivariate model to assess the sensitivity and specificity of the VOCs for cancer detection. Fagan's nomogram was designed to leverage the findings from our diagnostic analysis for the purpose of estimating the likelihood of cancer in patients. Ultimately, MetOrigin was employed to conduct an analysis of the metabolic pathways associated with VOCs in relation to both human and/or microbiota. RESULTS The pooled sensitivity, specificity and the area under the curve for cancer screening utilizing exhaled breath and urinary VOCs were determined to be 0.89, 0.88, and 0.95, respectively. A pretest probability of 51% can be considered as the threshold for diagnosing cancers with VOCs. As the estimated pretest probability of cancer exceeds 51%, it becomes more appropriate to emphasize the 'ruling in' approach. Conversely, when the estimated pretest probability of cancer falls below 51%, it is more suitable to emphasize the 'ruling out' approach. A total of 14, 14, 6, and 7 microbiota-related VOCs were identified in relation to lung, colorectal, breast, and liver cancers, respectively. The enrichment analysis of volatile metabolites revealed a significant enrichment of butanoate metabolism in the aforementioned tumor types. CONCLUSIONS The analysis of exhaled breath and urinary VOCs showed promise for cancer screening. In addition, the enrichment analysis of volatile metabolites revealed a significant enrichment of butanoate metabolism in four tumor types, namely lung, colorectum, breast and liver. These findings hold significant implications for the prospective clinical application of multiomics correlation in disease management and the exploration of potential therapeutic targets.
Collapse
Affiliation(s)
- Min Zhou
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Qinghua Wang
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Xinyi Lu
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Ping Zhang
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Jiangnan University Medical Center, Wuxi, People’s Republic of China
| | - Daozhen Chen
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| |
Collapse
|
5
|
Saputra HA, Jannath KA, Kim KB, Park DS, Shim YB. Conducting polymer composite-based biosensing materials for the diagnosis of lung cancer: A review. Int J Biol Macromol 2023; 252:126149. [PMID: 37582435 DOI: 10.1016/j.ijbiomac.2023.126149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
The development of a simple and fast cancer detection method is crucial since early diagnosis is a key factor in increasing survival rates for lung cancer patients. Among several diagnosis methods, the electrochemical sensor is the most promising one due to its outstanding performance, portability, real-time analysis, robustness, amenability, and cost-effectiveness. Conducting polymer (CP) composites have been frequently used to fabricate a robust sensor device, owing to their excellent physical and electrochemical properties as well as biocompatibility with nontoxic effects on the biological system. This review brings up a brief overview of the importance of electrochemical biosensors for the early detection of lung cancer, with a detailed discussion on the design and development of CP composite materials for biosensor applications. The review covers the electrochemical sensing of numerous lung cancer markers employing composite electrodes based on the conducting polyterthiophene, poly(3,4-ethylenedioxythiophene), polyaniline, polypyrrole, molecularly imprinted polymers, and others. In addition, a hybrid of the electrochemical biosensors and other techniques was highlighted. The outlook was also briefly discussed for the development of CP composite-based electrochemical biosensors for POC diagnostic devices.
Collapse
Affiliation(s)
- Heru Agung Saputra
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Khatun A Jannath
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang Bok Kim
- Digital Health Care R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea
| | - Deog-Su Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Yoon-Bo Shim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
6
|
Vassilenko V, Moura PC, Raposo M. Diagnosis of Carcinogenic Pathologies through Breath Biomarkers: Present and Future Trends. Biomedicines 2023; 11:3029. [PMID: 38002028 PMCID: PMC10669878 DOI: 10.3390/biomedicines11113029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The assessment of volatile breath biomarkers has been targeted with a lot of interest by the scientific and medical communities during the past decades due to their suitability for an accurate, painless, non-invasive, and rapid diagnosis of health states and pathological conditions. This paper reviews the most relevant bibliographic sources aiming to gather the most pertinent volatile organic compounds (VOCs) already identified as putative cancer biomarkers. Here, a total of 265 VOCs and the respective bibliographic sources are addressed regarding their scientifically proven suitability to diagnose a total of six carcinogenic diseases, namely lung, breast, gastric, colorectal, prostate, and squamous cell (oesophageal and laryngeal) cancers. In addition, future trends in the identification of five other forms of cancer, such as bladder, liver, ovarian, pancreatic, and thyroid cancer, through perspective volatile breath biomarkers are equally presented and discussed. All the results already achieved in the detection, identification, and quantification of endogenous metabolites produced by all kinds of normal and abnormal processes in the human body denote a promising and auspicious future for this alternative diagnostic tool, whose future passes by the development and employment of newer and more accurate collection and analysis techniques, and the certification for utilisation in real clinical scenarios.
Collapse
Affiliation(s)
- Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal;
| | - Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal;
| | | |
Collapse
|
7
|
Sutaria SR, Morris JD, Xie Z, Cooke EA, Silvers SM, Long GA, Balcom D, Marimuthu S, Parrish LW, Aliesky H, Arnold FW, Huang J, Fu XA, Nantz MH. A feasibility study on exhaled breath analysis using UV spectroscopy to detect COVID-19. J Breath Res 2023; 18:016004. [PMID: 37875100 PMCID: PMC10620812 DOI: 10.1088/1752-7163/ad0646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/14/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
A 23-subject feasibility study is reported to assess how UV absorbance measurements on exhaled breath samples collected from silicon microreactors can be used to detect COVID-19. The silicon microreactor technology chemoselectively preconcentrates exhaled carbonyl volatile organic compounds and subsequent methanol elution provides samples for analysis. The underlying scientific rationale that viral infection will induce an increase in exhaled carbonyls appears to be supported by the results of the feasibility study. The data indicate statistically significant differences in measured UV absorbance values between healthy and symptomatic COVID-19 positive subjects in the wavelength range from 235 nm to 305 nm. Factors such as subject age were noted as potential confounding variables.
Collapse
Affiliation(s)
- Saurin R Sutaria
- Departments of Chemistry, University of Louisville, Louisville, KY 40292, United States of America
| | - James D Morris
- Chemical Engineering, University of Louisville, Louisville, KY 40292, United States of America
| | - Zhenzhen Xie
- Chemical Engineering, University of Louisville, Louisville, KY 40292, United States of America
| | - Elizabeth A Cooke
- Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Shavonne M Silvers
- Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Grace A Long
- Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Dawn Balcom
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Subathra Marimuthu
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Leslie W Parrish
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Holly Aliesky
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Forest W Arnold
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Jiapeng Huang
- Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Xiao-An Fu
- Chemical Engineering, University of Louisville, Louisville, KY 40292, United States of America
| | - Michael H Nantz
- Departments of Chemistry, University of Louisville, Louisville, KY 40292, United States of America
| |
Collapse
|
8
|
Xu Y, Dong X, Qin C, Wang F, Cao W, Li J, Yu Y, Zhao L, Tan F, Chen W, Li N, He J. Metabolic biomarkers in lung cancer screening and early diagnosis (Review). Oncol Lett 2023; 25:265. [PMID: 37216157 PMCID: PMC10193366 DOI: 10.3892/ol.2023.13851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/29/2023] [Indexed: 05/24/2023] Open
Abstract
Late diagnosis is one of the major contributing factors to the high mortality rate of lung cancer, which is now the leading cause of cancer-associated mortality worldwide. At present, low-dose CT (LDCT) screening in the high-risk population, in which lung cancer incidence is higher than that of the low-risk population is the predominant diagnostic strategy. Although this has efficiently reduced lung cancer mortality in large randomized trials, LDCT screening has high false-positive rates, resulting in excessive subsequent follow-up procedures and radiation exposure. Complementation of LDCT examination with biofluid-based biomarkers has been documented to increase efficacy, and this type of preliminary screening can potentially reduce potential radioactive damage to low-risk populations and the burden of hospital resources. Several molecular signatures based on components of the biofluid metabolome that can possibly discriminate patients with lung cancer from healthy individuals have been proposed over the past two decades. In the present review, advancements in currently available technologies in metabolomics were reviewed, with particular focus on their possible application in lung cancer screening and early detection.
Collapse
Affiliation(s)
- Yongjie Xu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xuesi Dong
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Chao Qin
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Fei Wang
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wei Cao
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jiang Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yiwen Yu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Liang Zhao
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wanqing Chen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
9
|
Li Y, Li H, Zhang X, Ji Y, Gao R, Wu Z, Yin M, Nie L, Wei W, Li G, Wang Y, Luo M, Bai H. Characteristics, sources and health risk assessment of atmospheric carbonyls during multiple ozone pollution episodes in urban Beijing: Insights into control strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160769. [PMID: 36526184 DOI: 10.1016/j.scitotenv.2022.160769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Carbonyls have attracted continuous attention due to their critical roles in atmospheric chemistry and their potential hazards to the ecological environment and human health. In this study, atmospheric carbonyls were measured during several ground-level-ozone (O3) pollution episodes at three urban sites (CRAES, IEP and BJUT) in Beijing in 2019 and 2020. Comparative analysis revealed that the carbonyl concentrations were 20.25 ± 6.91 ppb and 13.43 ± 5.13 ppb in 2019 and 2020 in Beijing, respectively, with a significant spatial trend from north to south, and carbonyl levels in urban Beijing were in an upper-intermediate range in China, and higher than those in other countries reported in the literature. A particularly noteworthy phenomenon is the consistency of carbonyl concentrations with variations in O3 concentrations. On O3 polluted days, the carbonyl concentrations were 1.3-1.5 times higher than those on non-O3 polluted days. Secondary formation contributed more to formaldehyde (FA) and acetaldehyde (AA) on O3 polluted days, while the anthropogenic emissions were more significant for acetone (AC) on non-O3 polluted days. Vehicle exhaust and solvent utilization were the main primary contributors to carbonyls. Due to reduced anthropogenic emissions caused by the COVID-19 lockdown and the "Program for Controlling Volatile Organic Compounds in 2020" in China, the contributions of primary emissions to carbonyls decreased in 2020 in Beijing. Human cancer risks to exposed populations from FA and AA increased with elevated O3 levels, and the risks still remained on non-O3 polluted days. The residents around the BJUT site might experience relatively higher human cancer risks than those around the other two sites. The findings in this study confirmed that atmospheric carbonyl pollution and its potential human health hazards cannot be ignored in urban Beijing; therefore, more strict control strategies for atmospheric carbonyls are urgently needed to better protect human health in Beijing in the future.
Collapse
Affiliation(s)
- Yunfeng Li
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xin Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuanyuan Ji
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhenhai Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Manfei Yin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lei Nie
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Wei Wei
- Department of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Guohao Li
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Yafei Wang
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Mei Luo
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Hongxiang Bai
- Department of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
10
|
Xie Z, Morris JD, Mattingly SJ, Sutaria SR, Huang J, Nantz MH, Fu XA. Analysis of a Broad Range of Carbonyl Metabolites in Exhaled Breath by UHPLC-MS. Anal Chem 2023; 95:4344-4352. [PMID: 36815760 PMCID: PMC10521381 DOI: 10.1021/acs.analchem.2c04604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Analysis of volatile organic compounds (VOCs) in exhaled breath (EB) has shown great potential for disease detection including lung cancer, infectious respiratory diseases, and chronic obstructive pulmonary disease. Although many breath sample collection and analytical methods have been developed for breath analysis, analysis of metabolic VOCs in exhaled breath is still a challenge for clinical application. Many carbonyl compounds in exhaled breath are related to the metabolic processes of diseases. This work reports a method of ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-MS) for the analysis of a broad range of carbonyl metabolites in exhaled breath. Carbonyl compounds in the exhaled breath were captured by a fabricated silicon microreactor with a micropillar array coated with 2-(aminooxy)ethyl-N,N,N-trimethylammonium (ATM) triflate. A total of six subgroups consisting of saturated aldehydes and ketones, hydroxy-aldehydes, and hydroxy-ketones, unsaturated 2-alkenals, and 4-hydroxy-2-alkenals were identified in the exhaled breath. The combination of a silicon microreactor for the selective capture of carbonyl compounds with UHPLC-MS analysis may provide a quantitative method for the analysis of carbonyls to identify disease markers in exhaled breath.
Collapse
Affiliation(s)
- Zhenzhen Xie
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, United States
| | - James D. Morris
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, United States
| | | | - Saurin R. Sutaria
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40292, United States
| | - Michael H. Nantz
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Xiao-An Fu
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, United States
| |
Collapse
|
11
|
Rosellini M, Marchetti A, Mollica V, Rizzo A, Santoni M, Massari F. Prognostic and predictive biomarkers for immunotherapy in advanced renal cell carcinoma. Nat Rev Urol 2023; 20:133-157. [PMID: 36414800 DOI: 10.1038/s41585-022-00676-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/23/2022]
Abstract
The therapeutic algorithm of renal cell carcinoma has been revolutionized by the approval of immunotherapy agents by regulatory agencies. However, objective and durable responses are still not observed in a large number of patients, and prognostic and predictive biomarkers for immunotherapy response are urgently needed. Prognostic models used in clinical practice are based on clinical and laboratory factors (such as hypercalcaemia, neutrophil count or Karnofsky Performance Status), but, with progress in molecular biology and genome sequencing techniques, new renal cell carcinoma molecular features that might improve disease course and outcomes prediction have been highlighted. An implementation of current models is needed to improve the accuracy of prognosis in the immuno-oncology era. Moreover, several potential biomarkers are currently under evaluation, but effective markers to select patients who might benefit from immunotherapy and to guide therapeutic strategies are still far from validation.
Collapse
Affiliation(s)
- Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello", I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | | | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| |
Collapse
|
12
|
Sani SN, Zhou W, Ismail BB, Zhang Y, Chen Z, Zhang B, Bao C, Zhang H, Wang X. LC-MS/MS Based Volatile Organic Compound Biomarkers Analysis for Early Detection of Lung Cancer. Cancers (Basel) 2023; 15:cancers15041186. [PMID: 36831528 PMCID: PMC9954752 DOI: 10.3390/cancers15041186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
(1) Background: lung cancer is the world's deadliest cancer, but early diagnosis helps to improve the cure rate and thus reduce the mortality rate. Annual low-dose computed tomography (LD-CT) screening is an efficient lung cancer-screening program for a high-risk population. However, LD-CT has often been characterized by a higher degree of false-positive results. To meet these challenges, a volatolomic approach, in particular, the breath volatile organic compounds (VOCs) fingerprint analysis, has recently received increased attention for its application in early lung cancer screening thanks to its convenience, non-invasiveness, and being well tolerated by patients. (2) Methods: a LC-MS/MS-based volatolomics analysis was carried out according to P/N 5046800 standard based breath analysis of VOC as novel cancer biomarkers for distinguishing early-stage lung cancer from the healthy control group. The discriminatory accuracy of identified VOCs was assessed using subject work characterization and a random forest risk prediction model. (3) Results: the proposed technique has good performance compared with existing approaches, the differences between the exhaled VOCs of the early lung cancer patients before operation, three to seven days after the operation, as well as four to six weeks after operation under fasting and 1 h after the meal were compared with the healthy controls. The results showed that only 1 h after a meal, the concentration of seven VOCs, including 3-hydroxy-2-butanone (TG-4), glycolaldehyde (TG-7), 2-pentanone (TG-8), acrolein (TG-11), nonaldehyde (TG-19), decanal (TG-20), and crotonaldehyde (TG-22), differ significantly between lung cancer patients and control, with the invasive adenocarcinoma of the lung (IAC) having the most significant difference. (4) Conclusions: this novel, non-invasive approach can improve the detection rate of early lung cancer, and LC-MS/MS-based breath analysis could be a promising method for clinical application.
Collapse
Affiliation(s)
- Shuaibu Nazifi Sani
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei Zhou
- Biochemical Analysis Laboratory, Breath (Hangzhou) Technology Co., Ltd., Hangzhou 310000, China
| | - Balarabe B. Ismail
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | | | - Zhijun Chen
- Zhejiang Zhoushan Hospital, Zhoushan 316021, China
| | - Binjie Zhang
- Zhejiang Zhoushan Hospital, Zhoushan 316021, China
| | - Changqian Bao
- Department of Hematology, The Second Affiliated Hospital, College of Medicine Zhejiang University, Hangzhou 310009, China
| | - Houde Zhang
- Department Gastroenterology, Nanshan Hospital, Guandong Medical University, Shenzhen 518052, China
- Correspondence: (H.Z.); (X.W.)
| | - Xiaozhi Wang
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- Correspondence: (H.Z.); (X.W.)
| |
Collapse
|
13
|
Rai SN, Das S, Pan J, Mishra DC, Fu XA. Multigroup prediction in lung cancer patients and comparative controls using signature of volatile organic compounds in breath samples. PLoS One 2022; 17:e0277431. [PMID: 36449484 PMCID: PMC9710764 DOI: 10.1371/journal.pone.0277431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C4H8O2, C13H22O, C11H22O, C2H4O2, C7H14O, C6H12O, and C5H8O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection.
Collapse
Affiliation(s)
- Shesh N. Rai
- Biostatistics and Bioinformatics Facility, Brown Cancer Center, University of Louisville, Louisville, KY, United States of America
- School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY, United States of America
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States of America
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, United States of America
- Biostatistics and Informatics Facility, Center for Integrative Environmental Research Sciences, University of Louisville, Louisville, KY, United States of America
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- * E-mail: (SNR); (SD)
| | - Samarendra Das
- Biostatistics and Bioinformatics Facility, Brown Cancer Center, University of Louisville, Louisville, KY, United States of America
- School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY, United States of America
- ICAR-Directorate of Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha, India
- International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha, India
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, India
- * E-mail: (SNR); (SD)
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, Brown Cancer Center, University of Louisville, Louisville, KY, United States of America
| | - Dwijesh C. Mishra
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, India
| | - Xiao-An Fu
- Department of Chemical Engineering, University of Louisville, Louisville, KY, United States of America
| |
Collapse
|
14
|
Iqbal MJ, Javed Z, Herrera-Bravo J, Sadia H, Anum F, Raza S, Tahir A, Shahwani MN, Sharifi-Rad J, Calina D, Cho WC. Biosensing chips for cancer diagnosis and treatment: a new wave towards clinical innovation. Cancer Cell Int 2022; 22:354. [PMCID: PMC9664821 DOI: 10.1186/s12935-022-02777-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractRecent technological advances in nanoscience and material designing have led to the development of point-of-care devices for biomolecule sensing and cancer diagnosis. In situ and portable sensing devices for bedside, diagnosis can effectively improve the patient’s clinical outcomes and reduce the mortality rate. Detection of exosomal RNAs by immuno-biochip with increased sensitivity and specificity to diagnose cancer has raised the understanding of the tumor microenvironment and many other technology-based biosensing devices hold great promise for clinical innovations to conquer the unbeatable fort of cancer metastasis. Electrochemical biosensors are the most sensitive category of biomolecule detection sensors with significantly low concentrations down to the atomic level. In this sense, this review addresses the recent advances in cancer detection and diagnosis by developing significant biological sensing devices that are believed to have better sensing potential than existing facilities.
Collapse
|
15
|
Wang F, Su Q, Li C. Identidication of novel biomarkers in non-small cell lung cancer using machine learning. Sci Rep 2022; 12:16693. [PMID: 36202977 PMCID: PMC9537298 DOI: 10.1038/s41598-022-21050-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide, and non-small cell lung cancer (NSCLC) accounts for a large proportion of lung cancer cases, with few diagnostic and therapeutic targets currently available for NSCLC. This study aimed to identify specific biomarkers for NSCLC. We obtained three gene-expression profiles from the Gene Expression Omnibus database (GSE18842, GSE21933, and GSE32863) and screened for differentially expressed genes (DEGs) between NSCLC and normal lung tissue. Enrichment analyses were performed using Gene Ontology, Disease Ontology, and the Kyoto Encyclopedia of Genes and Genomes. Machine learning methods were used to identify the optimal diagnostic biomarkers for NSCLC using least absolute shrinkage and selection operator logistic regression, and support vector machine recursive feature elimination. CIBERSORT was used to assess immune cell infiltration in NSCLC and the correlation between biomarkers and immune cells. Finally, using western blot, small interfering RNA, Cholecystokinin-8, and transwell assays, the biological functions of biomarkers with high predictive value were validated. A total of 371 DEGs (165 up-regulated genes and 206 down-regulated genes) were identified, and enrichment analysis revealed that these DEGs might be linked to the development and progression of NSCLC. ABCA8, ADAMTS8, ASPA, CEP55, FHL1, PYCR1, RAMP3, and TPX2 genes were identified as novel diagnostic biomarkers for NSCLC. Monocytes were the most visible activated immune cells in NSCLC. The knockdown of the TPX2 gene, a biomarker with a high predictive value, inhibited A549 cell proliferation and migration. This study identified eight potential diagnostic biomarkers for NSCLC. Further, the TPX2 gene may be a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Fangwei Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qisheng Su
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chaoqian Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
16
|
Keogh RJ, Riches JC. The Use of Breath Analysis in the Management of Lung Cancer: Is It Ready for Primetime? Curr Oncol 2022; 29:7355-7378. [PMID: 36290855 PMCID: PMC9600994 DOI: 10.3390/curroncol29100578] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Breath analysis is a promising non-invasive method for the detection and management of lung cancer. Exhaled breath contains a complex mixture of volatile and non-volatile organic compounds that are produced as end-products of metabolism. Several studies have explored the patterns of these compounds and have postulated that a unique breath signature is emitted in the setting of lung cancer. Most studies have evaluated the use of gas chromatography and mass spectrometry to identify these unique breath signatures. With recent advances in the field of analytical chemistry and machine learning gaseous chemical sensing and identification devices have also been created to detect patterns of odorant molecules such as volatile organic compounds. These devices offer hope for a point-of-care test in the future. Several prospective studies have also explored the presence of specific genomic aberrations in the exhaled breath of patients with lung cancer as an alternative method for molecular analysis. Despite its potential, the use of breath analysis has largely been limited to translational research due to methodological issues, the lack of standardization or validation and the paucity of large multi-center studies. It is clear however that it offers a potentially non-invasive alternative to investigations such as tumor biopsy and blood sampling.
Collapse
|
17
|
Lung Cancer Diagnosis System Based on Volatile Organic Compounds (VOCs) Profile Measured in Exhaled Breath. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lung cancer is one of the world’s lethal diseases and detecting it at an early stage is crucial and difficult. This paper proposes a computer-aided lung cancer diagnosis system using volatile organic compounds (VOCs) data. A silicon microreactor, which consists of thousands of micropillars coated with an ammonium aminooxy salt, is used to capture the volatile organic compounds (VOCs) in the patients’ exhaled breath by means of oximation reactions. The proposed system ranks the features using the Pearson correlation coefficient and maximum relevance–minimum redundancy (mRMR) techniques. The selected features are fed to nine different classifiers to determine if the lung nodule is malignant or benign. The system is validated using a locally acquired dataset that has 504 patients’ data. The dataset is balanced and has 27 features of volatile organic compounds (VOCs). Multiple experiments were completed, and the best accuracy result is 87%, which was achieved using random forest (RF) either by using all 27 features without selection or by using the first 17 features obtained using maximum relevance–minimum redundancy (mRMR) while using an 80–20 train-test split. The correlation coefficient, maximum relevance–minimum redundancy (mRMR), and random forest (RF) importance agreed that C4H8O (2-Butanone) ranks as the best feature. Using only C4H8O (2-Butanone) for training, the accuracy results using the support vector machine, logistic regression, bagging and neural network classifiers are 86%, which approaches the best result. This shows the potential for these volatile organic compounds (VOCs) to serve as a significant screening tests for the diagnosis of lung cancer.
Collapse
|
18
|
Lipid Peroxidation Produces a Diverse Mixture of Saturated and Unsaturated Aldehydes in Exhaled Breath That Can Serve as Biomarkers of Lung Cancer-A Review. Metabolites 2022; 12:metabo12060561. [PMID: 35736492 PMCID: PMC9229171 DOI: 10.3390/metabo12060561] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The peroxidation of unsaturated fatty acids is a widely recognized metabolic process that creates a complex mixture of volatile organic compounds including aldehydes. Elevated levels of reactive oxygen species in cancer cells promote random lipid peroxidation, which leads to a variety of aldehydes. In the case of lung cancer, many of these volatile aldehydes are exhaled and are of interest as potential markers of the disease. Relevant studies reporting aldehydes in the exhaled breath of lung cancer patients were collected for this review by searching the PubMed and SciFindern databases until 25 May 2022. Information on breath test results, including the biomarker collection, preconcentration, and quantification methods, was extracted and tabulated. Overall, 44 studies were included spanning a period of 34 years. The data show that, as a class, aldehydes are significantly elevated in the breath of lung cancer patients at all stages of the disease relative to healthy control subjects. The type of aldehyde detected and/or deemed to be a biomarker is highly dependent on the method of exhaled breath sampling and analysis. Unsaturated aldehydes, detected primarily when derivatized during preconcentration, are underrepresented as biomarkers given that they are also likely products of lipid peroxidation. Pentanal, hexanal, and heptanal were the most reported aldehydes in studies of exhaled breath from lung cancer patients.
Collapse
|
19
|
Smirnova E, Mallow C, Muschelli J, Shao Y, Thiboutot J, Lam A, Rule AM, Crainiceanu C, Yarmus L. Predictive performance of selected breath volatile organic carbon compounds in stage 1 lung cancer. Transl Lung Cancer Res 2022; 11:1009-1018. [PMID: 35832450 PMCID: PMC9271440 DOI: 10.21037/tlcr-21-953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/24/2022] [Indexed: 11/16/2022]
Abstract
Background Lung cancer remains the leading cause of cancer deaths accounting for almost 25% of all cancer deaths. Breath-based volatile organic compounds (VOCs) have been studied in lung cancer but previous studies have numerous limitations. We conducted a prospective matched case to control study of the ability of preidentified VOC performance in the diagnosis of stage 1 lung cancer (S1LC). Methods Study participants were enrolled in a matched case to two controls study. A case was defined as a patient with biopsy-confirmed S1LC. Controls included a matched control, by risk factors, and a housemate control who resided in the same residence as the case. We included 88 cases, 88 risk-matched, and 49 housemate controls. Each participant exhaled into a Tedlar® bag which was analyzed using gas chromatography-mass spectrometry. For each study participant’s breath sample, the concentration of thirteen previously identified VOCs were quantified and assessed using area under the curve in the detection of lung cancer. Results Four VOCs were above the limit of detection in more than 10% of the samples. Acetoin was the only compound that was significantly associated with S1LC. Acetoin concentration below the 10th percentile (0.026 µg/L) in the training data had accuracy of 0.610 (sensitivity =0.649; specificity =0.583) in the test data. In multivariate logistic models, the best performing models included Acetoin alone (AUC =0.650). Conclusions Concentration of Acetoin in exhaled breath has low discrimination performance for S1LC cases and controls, while there was not enough evidence for twelve additional published VOCs.
Collapse
Affiliation(s)
- Ekaterina Smirnova
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher Mallow
- Division of Pulmonary and Critical Care Medicine, University of Miami, Miami, FL, USA
| | - John Muschelli
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Yuan Shao
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jeffrey Thiboutot
- Section of Interventional Pulmonology, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andres Lam
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ana M Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Lonny Yarmus
- Section of Interventional Pulmonology, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
20
|
Janssens E, Mol Z, Vandermeersch L, Lagniau S, Vermaelen KY, van Meerbeeck JP, Walgraeve C, Marcq E, Lamote K. Headspace Volatile Organic Compound Profiling of Pleural Mesothelioma and Lung Cancer Cell Lines as Translational Bridge for Breath Research. Front Oncol 2022; 12:851785. [PMID: 35600344 PMCID: PMC9120820 DOI: 10.3389/fonc.2022.851785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 01/05/2023] Open
Abstract
IntroductionMalignant pleural mesothelioma (MPM) is a lethal cancer for which early-stage diagnosis remains a major challenge. Volatile organic compounds (VOCs) in breath proved to be potential biomarkers for MPM diagnosis, but translational studies are needed to elucidate which VOCs originate from the tumor itself and thus are specifically related to MPM cell metabolism.MethodsAn in vitro model was set-up to characterize the headspace VOC profiles of six MPM and two lung cancer cell lines using thermal desorption-gas chromatography-mass spectrometry. A comparative analysis was carried out to identify VOCs that could discriminate between MPM and lung cancer, as well as between the histological subtypes within MPM (epithelioid, sarcomatoid and biphasic).ResultsVOC profiles were identified capable of distinguishing MPM (subtypes) and lung cancer cells with high accuracy. Alkanes, aldehydes, ketones and alcohols represented many of the discriminating VOCs. Discrepancies with clinical findings were observed, supporting the need for studies examining breath and tumor cells of the same patients and studying metabolization and kinetics of in vitro discovered VOCs in a clinical setting.ConclusionWhile the relationship between in vitro and in vivo VOCs is yet to be established, both could complement each other in generating a clinically useful breath model for MPM.
Collapse
Affiliation(s)
- Eline Janssens
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Zoë Mol
- Department of Green Chemistry and Technology, Environmental Organic Chemistry and Technology (EnVOC) Research Group, Ghent University, Ghent, Belgium
| | - Lore Vandermeersch
- Department of Green Chemistry and Technology, Environmental Organic Chemistry and Technology (EnVOC) Research Group, Ghent University, Ghent, Belgium
| | - Sabrina Lagniau
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Tumor Immunology Lab, Ghent University, Ghent, Belgium
| | - Karim Y. Vermaelen
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Tumor Immunology Lab, Ghent University, Ghent, Belgium
| | - Jan P. van Meerbeeck
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonology and Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Christophe Walgraeve
- Department of Green Chemistry and Technology, Environmental Organic Chemistry and Technology (EnVOC) Research Group, Ghent University, Ghent, Belgium
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- *Correspondence: Kevin Lamote,
| |
Collapse
|
21
|
Kabir KM, Baker MJ, Donald WA. Micro- and nanoscale sensing of volatile organic compounds for early-stage cancer diagnosis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Kaloumenou M, Skotadis E, Lagopati N, Efstathopoulos E, Tsoukalas D. Breath Analysis: A Promising Tool for Disease Diagnosis-The Role of Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:1238. [PMID: 35161984 PMCID: PMC8840008 DOI: 10.3390/s22031238] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 05/07/2023]
Abstract
Early-stage disease diagnosis is of particular importance for effective patient identification as well as their treatment. Lack of patient compliance for the existing diagnostic methods, however, limits prompt diagnosis, rendering the development of non-invasive diagnostic tools mandatory. One of the most promising non-invasive diagnostic methods that has also attracted great research interest during the last years is breath analysis; the method detects gas-analytes such as exhaled volatile organic compounds (VOCs) and inorganic gases that are considered to be important biomarkers for various disease-types. The diagnostic ability of gas-pattern detection using analytical techniques and especially sensors has been widely discussed in the literature; however, the incorporation of novel nanomaterials in sensor-development has also proved to enhance sensor performance, for both selective and cross-reactive applications. The aim of the first part of this review is to provide an up-to-date overview of the main categories of sensors studied for disease diagnosis applications via the detection of exhaled gas-analytes and to highlight the role of nanomaterials. The second and most novel part of this review concentrates on the remarkable applicability of breath analysis in differential diagnosis, phenotyping, and the staging of several disease-types, which are currently amongst the most pressing challenges in the field.
Collapse
Affiliation(s)
- Maria Kaloumenou
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (M.K.); (D.T.)
| | - Evangelos Skotadis
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (M.K.); (D.T.)
| | - Nefeli Lagopati
- Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (E.E.)
| | - Efstathios Efstathopoulos
- Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (E.E.)
| | - Dimitris Tsoukalas
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (M.K.); (D.T.)
| |
Collapse
|
23
|
郭 玲, 邬 红, 李 强, 许 川, 刘 羽. [Advances on Collection and Analysis of Volatile Organic Compounds
in the Diagnosis of Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:796-803. [PMID: 34802212 PMCID: PMC8607281 DOI: 10.3779/j.issn.1009-3419.2021.101.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/05/2022]
Abstract
Lung cancer is a leading cause of cancer-related morbidity and mortality globally, which is the biggest menace to the health and life of the population. Screening and early detection of lung cancer are effective in reducing its mortality, and the measurement of volatile organic compounds (VOCs) has become a promising clinical means for early detection, course detection and prognosis management of lung cancer, with advantages of rapid speed, non-invasiveness and convenience. Now, a variety of VOCs collection ways and analysis methods have emerged at home and abroad. This report summarized three aspects, including VOCs collection, multiple methods of analysis and progress in the diagnosis and treatment of lung cancer. At last, we discussed the limitations and prospects of VOCs analysis.
.
Collapse
Affiliation(s)
- 玲 郭
- 610041 四川,电子科技大学医学院附属肿瘤医院/四川省肿瘤医院Department of Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - 红 邬
- 610041 四川,电子科技大学医学院附属肿瘤医院/四川省肿瘤医院Department of Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - 强 李
- 610041 四川,电子科技大学医学院附属肿瘤医院/四川省肿瘤医院Department of Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - 川 许
- 610041 四川,电子科技大学医学院附属肿瘤医院/四川省肿瘤医院Department of Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - 羽阳 刘
- 100853 北京,解放军医学院Medical School of Chinese PLA, Beijing 100853, China
| |
Collapse
|
24
|
Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, Fois M, Smart A, Devine T, Costello BDL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res 2021; 15. [PMID: 33761469 DOI: 10.1088/1752-7163/abf1d0] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
This paper comprises an updated version of the 2014 review which reported 1846 volatile organic compounds (VOCs) identified from healthy humans. In total over 900 additional VOCs have been reported since the 2014 review and the VOCs from semen have been added. The numbers of VOCs found in breath and the other bodily fluids are: blood 379, breath 1488, faeces 443, milk 290, saliva 549, semen 196, skin 623 and urine 444. Compounds were assigned CAS registry numbers and named according to a common convention where possible. The compounds have been included in a single table with the source reference(s) for each VOC, an update on our 2014 paper. VOCs have also been grouped into tables according to their chemical class or functionality to permit easy comparison. Careful use of the database is needed, as a number of the identified VOCs only have level 2-putative assignment, and only a small fraction of the reported VOCs have been validated by standards. Some clear differences are observed, for instance, a lack of esters in urine with a high number in faeces and breath. However, the lack of compounds from matrices such a semen and milk compared to breath for example could be due to the techniques used or reflect the intensity of effort e.g. there are few publications on VOCs from milk and semen compared to a large number for breath. The large number of volatiles reported from skin is partly due to the methodologies used, e.g. by collecting skin sebum (with dissolved VOCs and semi VOCs) onto glass beads or cotton pads and then heating to a high temperature to desorb VOCs. All compounds have been included as reported (unless there was a clear discrepancy between name and chemical structure), but there may be some mistaken assignations arising from the original publications, particularly for isomers. It is the authors' intention that this work will not only be a useful database of VOCs listed in the literature but will stimulate further study of VOCs from healthy individuals; for example more work is required to confirm the identification of these VOCs adhering to the principles outlined in the metabolomics standards initiative. Establishing a list of volatiles emanating from healthy individuals and increased understanding of VOC metabolic pathways is an important step for differentiating between diseases using VOCs.
Collapse
Affiliation(s)
- Natalia Drabińska
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
| | - Cheryl Flynn
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Norman Ratcliffe
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ilaria Belluomo
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Antonis Myridakis
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Oliver Gould
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Matteo Fois
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Amy Smart
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Terry Devine
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ben De Lacy Costello
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
25
|
Woollam M, Wang L, Grocki P, Liu S, Siegel AP, Kalra M, Goodpaster JV, Yokota H, Agarwal M. Tracking the Progression of Triple Negative Mammary Tumors over Time by Chemometric Analysis of Urinary Volatile Organic Compounds. Cancers (Basel) 2021; 13:1462. [PMID: 33806757 PMCID: PMC8004946 DOI: 10.3390/cancers13061462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/06/2023] Open
Abstract
Previous studies have shown that volatile organic compounds (VOCs) are potential biomarkers of breast cancer. An unanswered question is how urinary VOCs change over time as tumors progress. To explore this, BALB/c mice were injected with 4T1.2 triple negative murine tumor cells in the tibia. This typically causes tumor progression and osteolysis in 1-2 weeks. Samples were collected prior to tumor injection and from days 2-19. Samples were analyzed by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry. Univariate analysis identified VOCs that were biomarkers for breast cancer; some of these varied significantly over time and others did not. Principal component analysis was used to distinguish Cancer (all Weeks) from Control and Cancer Week 1 from Cancer Week 3 with over 90% accuracy. Forward feature selection and linear discriminant analysis identified a unique panel that could identify tumor presence with 94% accuracy and distinguish progression (Cancer Week 1 from Cancer Week 3) with 97% accuracy. Principal component regression analysis also demonstrated that a VOC panel could predict number of days since tumor injection (R2 = 0.71 and adjusted R2 = 0.63). VOC biomarkers identified by these analyses were associated with metabolic pathways relevant to breast cancer.
Collapse
Affiliation(s)
- Mark Woollam
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA; (M.W.); (P.G.); (A.P.S.); (J.V.G.)
- Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN 46202, USA; (L.W.); (S.L.); (H.Y.)
| | - Luqi Wang
- Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN 46202, USA; (L.W.); (S.L.); (H.Y.)
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | - Paul Grocki
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA; (M.W.); (P.G.); (A.P.S.); (J.V.G.)
- Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN 46202, USA; (L.W.); (S.L.); (H.Y.)
| | - Shengzhi Liu
- Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN 46202, USA; (L.W.); (S.L.); (H.Y.)
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | - Amanda P. Siegel
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA; (M.W.); (P.G.); (A.P.S.); (J.V.G.)
- Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN 46202, USA; (L.W.); (S.L.); (H.Y.)
| | - Maitri Kalra
- Hematology and Oncology, Ball Memorial Hospital, Indiana University Health, Muncie, IN 47303, USA;
| | - John V. Goodpaster
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA; (M.W.); (P.G.); (A.P.S.); (J.V.G.)
| | - Hiroki Yokota
- Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN 46202, USA; (L.W.); (S.L.); (H.Y.)
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN 46202, USA
- Biomechanics and Biomaterials Research Center, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | - Mangilal Agarwal
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA; (M.W.); (P.G.); (A.P.S.); (J.V.G.)
- Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN 46202, USA; (L.W.); (S.L.); (H.Y.)
- Department of Mechanical & Energy Engineering, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| |
Collapse
|
26
|
Khoubnasabjafari M, Mogaddam MRA, Rahimpour E, Soleymani J, Saei AA, Jouyban A. Breathomics: Review of Sample Collection and Analysis, Data Modeling and Clinical Applications. Crit Rev Anal Chem 2021; 52:1461-1487. [PMID: 33691552 DOI: 10.1080/10408347.2021.1889961] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolomics research is rapidly gaining momentum in disease diagnosis, on top of other Omics technologies. Breathomics, as a branch of metabolomics is developing in various frontiers, for early and noninvasive monitoring of disease. This review starts with a brief introduction to metabolomics and breathomics. A number of important technical issues in exhaled breath collection and factors affecting the sampling procedures are presented. We review the recent progress in metabolomics approaches and a summary of their applications on the respiratory and non-respiratory diseases investigated by breath analysis. Recent reports on breathomics studies retrieved from Scopus and Pubmed were reviewed in this work. We conclude that analyzing breath metabolites (both volatile and nonvolatile) is valuable in disease diagnoses, and therefore believe that breathomics will turn into a promising noninvasive discipline in biomarker discovery and early disease detection in personalized medicine. The problem of wide variations in the reported metabolite concentrations from breathomics studies should be tackled by developing more accurate analytical methods and sophisticated numerical analytical alogorithms.
Collapse
Affiliation(s)
- Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center and Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | - Abolghasem Jouyban
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
A novel technology to integrate imaging and clinical markers for non-invasive diagnosis of lung cancer. Sci Rep 2021; 11:4597. [PMID: 33633213 PMCID: PMC7907202 DOI: 10.1038/s41598-021-83907-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
This study presents a non-invasive, automated, clinical diagnostic system for early diagnosis of lung cancer that integrates imaging data from a single computed tomography scan and breath bio-markers obtained from a single exhaled breath to quickly and accurately classify lung nodules. CT imaging and breath volatile organic compounds data were collected from 47 patients. Spherical Harmonics-based shape features to quantify the shape complexity of the pulmonary nodules, 7th-Order Markov Gibbs Random Field based appearance model to describe the spatial non-homogeneities in the pulmonary nodule, and volumetric features (size) of pulmonary nodules were calculated from CT images. 27 VOCs in exhaled breath were captured by a micro-reactor approach and quantied using mass spectrometry. CT and breath markers were input into a deep-learning autoencoder classifier with a leave-one-subject-out cross validation for nodule classification. To mitigate the limitation of a small sample size and validate the methodology for individual markers, retrospective CT scans from 467 patients with 727 pulmonary nodules, and breath samples from 504 patients were analyzed. The CAD system achieved 97.8% accuracy, 97.3% sensitivity, 100% specificity, and 99.1% area under curve in classifying pulmonary nodules.
Collapse
|
28
|
Chen X, Muhammad KG, Madeeha C, Fu W, Xu L, Hu Y, Liu J, Ying K, Chen L, Yurievna GO. Calculated indices of volatile organic compounds (VOCs) in exhalation for lung cancer screening and early detection. Lung Cancer 2021; 154:197-205. [PMID: 33653598 DOI: 10.1016/j.lungcan.2021.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breath analysis is a promising noninvasive technique that offers a wide range of opportunities to facilitate early diagnosis of lung cancer (LC). METHOD Exhaled breath samples of 352 subjects including 160 with lung cancer (LC), 70 with benign pulmonary nodule (BPN) and 122 healthy controls (HC) were analyzed through thermal desorption coupled with gas chromatography-mass spectrometry (TD-GC-MS) to obtain the metabolic information from volatile organic compounds (VOCs). Statistical classification models were used to find diagnostic clusters of VOCs for the discrimination of HC, BPN and LC patients' early and advanced stages, as well as subtypes of LC. Receiver operator characteristics (ROC) curves with 5-fold validations were used to evaluate the accuracy of these models. RESULTS The analysis revealed that 20, 19, 19, and 20 VOCs discriminated LC from HC, LC from BPN, histology and LC stages respectively. The calculated diagnostic indices showed a large area under the curve (AUC) to distinguish HC from LC (AUC: 0.987, 95 % confidence interval (CI): 0.976-0.997), BPN from LC (AUC: 0.809, 95 % CI: 0.758-0.860), NSCLC from SCLC (AUC: 0.939, 95 % CI: 0.875-0.995) and Stage III from stage III-IV (AUC: 0.827, 95 % CI: 0.768-0.886). The comparison between the high-risk groups (BPN and HC smokers) and early stages LC resulted in the AUC of 0.756 (95 %CI: 0.681-0.817) for BPN vs. early stage LC and AUC of 0.986 (95 % CI: 0.972-0.994) for HC smoker vs. early stage LC. CONCLUSION Volatome of breath of the LC patients was significantly different from that of both BPN patients and HC and showed an ability of distinguishing early from advance stage LC and NSCLC from SCLC. We conclude that the volatome has a potential to help improve early diagnosis of LC.
Collapse
Affiliation(s)
- Xing Chen
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Kanhar Ghulam Muhammad
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Channa Madeeha
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wei Fu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Linxin Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yanjie Hu
- Zhejiang Sir Run Run Shaw Hospital, Department of Medicine, Zhejiang University, Hangzhou, China.
| | - Jun Liu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Kejing Ying
- Zhejiang Sir Run Run Shaw Hospital, Department of Medicine, Zhejiang University, Hangzhou, China.
| | - Liying Chen
- Zhejiang Sir Run Run Shaw Hospital, Department of Medicine, Zhejiang University, Hangzhou, China.
| | - Gorlova Olga Yurievna
- Department of Medicine Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
29
|
Li Q, Xiaoan F, Xu K, He H, Jiang N. A stability study of carbonyl compounds in Tedlar bags by a fabricated MEMS microreactor approach. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Volatile Organic Compounds in Exhaled Breath as Fingerprints of Lung Cancer, Asthma and COPD. J Clin Med 2020; 10:jcm10010032. [PMID: 33374433 PMCID: PMC7796324 DOI: 10.3390/jcm10010032] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer, chronic obstructive pulmonary disease (COPD) and asthma are inflammatory diseases that have risen worldwide, posing a major public health issue, encompassing not only physical and psychological morbidity and mortality, but also incurring significant societal costs. The leading cause of death worldwide by cancer is that of the lung, which, in large part, is a result of the disease often not being detected until a late stage. Although COPD and asthma are conditions with considerably lower mortality, they are extremely distressful to people and involve high healthcare overheads. Moreover, for these diseases, diagnostic methods are not only costly but are also invasive, thereby adding to people’s stress. It has been appreciated for many decades that the analysis of trace volatile organic compounds (VOCs) in exhaled breath could potentially provide cheaper, rapid, and non-invasive screening procedures to diagnose and monitor the above diseases of the lung. However, after decades of research associated with breath biomarker discovery, no breath VOC tests are clinically available. Reasons for this include the little consensus as to which breath volatiles (or pattern of volatiles) can be used to discriminate people with lung diseases, and our limited understanding of the biological origin of the identified VOCs. Lung disease diagnosis using breath VOCs is challenging. Nevertheless, the numerous studies of breath volatiles and lung disease provide guidance as to what volatiles need further investigation for use in differential diagnosis, highlight the urgent need for non-invasive clinical breath tests, illustrate the way forward for future studies, and provide significant guidance to achieve the goal of developing non-invasive diagnostic tests for lung disease. This review provides an overview of these issues from evaluating key studies that have been undertaken in the years 2010–2019, in order to present objective and comprehensive updated information that presents the progress that has been made in this field. The potential of this approach is highlighted, while strengths, weaknesses, opportunities, and threats are discussed. This review will be of interest to chemists, biologists, medical doctors and researchers involved in the development of analytical instruments for breath diagnosis.
Collapse
|
31
|
Koureas M, Kirgou P, Amoutzias G, Hadjichristodoulou C, Gourgoulianis K, Tsakalof A. Target Analysis of Volatile Organic Compounds in Exhaled Breath for Lung Cancer Discrimination from Other Pulmonary Diseases and Healthy Persons. Metabolites 2020; 10:metabo10080317. [PMID: 32756521 PMCID: PMC7464039 DOI: 10.3390/metabo10080317] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate the ability of breath analysis to distinguish lung cancer (LC) patients from patients with other respiratory diseases and healthy people. The population sample consisted of 51 patients with confirmed LC, 38 patients with pathological computed tomography (CT) findings not diagnosed with LC, and 53 healthy controls. The concentrations of 19 volatile organic compounds (VOCs) were quantified in the exhaled breath of study participants by solid phase microextraction (SPME) of the VOCs and subsequent gas chromatography-mass spectrometry (GC-MS) analysis. Kruskal-Wallis and Mann-Whitney tests were used to identify significant differences between subgroups. Machine learning methods were used to determine the discriminant power of the method. Several compounds were found to differ significantly between LC patients and healthy controls. Strong associations were identified for 2-propanol, 1-propanol, toluene, ethylbenzene, and styrene (p-values < 0.001-0.006). These associations remained significant when ambient air concentrations were subtracted from breath concentrations. VOC levels were found to be affected by ambient air concentrations and a few by smoking status. The random forest machine learning algorithm achieved a correct classification of patients of 88.5% (area under the curve-AUC 0.94). However, none of the methods used achieved adequate discrimination between LC patients and patients with abnormal computed tomography (CT) findings. Biomarker sets, consisting mainly of the exogenous monoaromatic compounds and 1- and 2- propanol, adequately discriminated LC patients from healthy controls. The breath concentrations of these compounds may reflect the alterations in patient's physiological and biochemical status and perhaps can be used as probes for the investigation of these statuses or normalization of patient-related factors in breath analysis.
Collapse
Affiliation(s)
- Michalis Koureas
- Department of Hygiene and Epidemiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, 41222 Larissa, Greece; (M.K.); (C.H.)
| | - Paraskevi Kirgou
- Respiratory Medicine Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (P.K.); (K.G.)
| | - Grigoris Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Christos Hadjichristodoulou
- Department of Hygiene and Epidemiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, 41222 Larissa, Greece; (M.K.); (C.H.)
| | - Konstantinos Gourgoulianis
- Respiratory Medicine Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (P.K.); (K.G.)
| | - Andreas Tsakalof
- Department of Hygiene and Epidemiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, 41222 Larissa, Greece; (M.K.); (C.H.)
- Department of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
- Correspondence: ; Tel.: +30-2410685580
| |
Collapse
|
32
|
Graça G, Lau CHE, Gonçalves LG. Exploring Cancer Metabolism: Applications of Metabolomics and Metabolic Phenotyping in Cancer Research and Diagnostics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:367-385. [PMID: 32130709 DOI: 10.1007/978-3-030-34025-4_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Altered metabolism is one of the key hallmarks of cancer. The development of sensitive, reproducible and robust bioanalytical tools such as Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry techniques offers numerous opportunities for cancer metabolism research, and provides additional and exciting avenues in cancer diagnosis, prognosis and for the development of more effective and personalized treatments. In this chapter, we introduce the current state of the art of metabolomics and metabolic phenotyping approaches in cancer research and clinical diagnostics.
Collapse
Affiliation(s)
- Gonçalo Graça
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
| | - Chung-Ho E Lau
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Luís G Gonçalves
- Proteomics of Non-Model Organisms Lab, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
33
|
Shende P, Augustine S, Prabhakar B, Gaud RS. Advanced multimodal diagnostic approaches for detection of lung cancer. Expert Rev Mol Diagn 2019; 19:409-417. [DOI: 10.1080/14737159.2019.1607299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal’S Narsee Monjee Institute of Management Studies University, Mumbai, India
| | - Steffi Augustine
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal’S Narsee Monjee Institute of Management Studies University, Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal’S Narsee Monjee Institute of Management Studies University, Mumbai, India
| | - R. S. Gaud
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal’S Narsee Monjee Institute of Management Studies University, Mumbai, India
| |
Collapse
|
34
|
Ogunwale MA, Knipp RJ, Evrard CN, Thompson LM, Nantz MH, Fu XA. The Influence of β-Ammonium Substitution on the Reaction Kinetics of Aminooxy Condensations with Aldehydes and Ketones. Chemphyschem 2019; 20:815-822. [PMID: 30725495 DOI: 10.1002/cphc.201801143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/05/2019] [Indexed: 11/06/2022]
Abstract
The click-chemistry capture of volatile aldehydes and ketones by ammonium aminooxy compounds has proven to be an efficient means of analyzing the carbonyl subset in complex mixtures, such as exhaled breath or environmental air. In this work, we examine the carbonyl condensation reaction kinetics of three aminooxy compounds with varying β-ammonium ion substitution using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). We determined the activation energies for the reactions of the aminooxy compounds ATM, ADMH and AMAH with a panel of ketones and aldehydes that included acrolein and crotonaldehyde. The measurements indicate that the activation energies for the oximation reactions are quite low, less than 75 kJ mol-1 . ADMH is observed to react the fastest with the carbonyls studied. We postulate this result may be attributed to the ADMH ammonium proton effecting a Brønsted-Lowry acid-catalyzed elimination of water during the rate-determining step of oxime ether formation. A theoretical study of oxime ether formation is presented to explain the enhanced reactivity of ADMH relative to the tetraalkylammonium analog ATM.
Collapse
Affiliation(s)
- Mumiye A Ogunwale
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA
| | - Ralph J Knipp
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA
| | - Clint N Evrard
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA
| | - Lee M Thompson
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA
| | - Michael H Nantz
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA
| | - Xiao-An Fu
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40208, USA
| |
Collapse
|
35
|
Characterization of DNPH-coated microreactor chip for analysis of trace carbonyls with application for breath analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1106-1107:58-63. [DOI: 10.1016/j.jchromb.2018.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
|
36
|
Romero KI, Fernandez-Maestre R. Ion mobility spectrometry: the diagnostic tool of third millennium medicine. Rev Assoc Med Bras (1992) 2019; 64:861-868. [PMID: 30673009 DOI: 10.1590/1806-9282.64.09.861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/13/2018] [Indexed: 11/22/2022] Open
Abstract
Ion mobility spectrometry (IMS) is a fast, low cost, portable, and sensitive technique that separates ions in a drift tube under the influence of an electric field according to their size and shape. IMS represents a non-invasive and reliable instrumental alternative for the diagnosis of different diseases through the analysis of volatile metabolites in biological samples. IMS has applications in medicine in the study of volatile compounds for the non-invasive diagnose of bronchial carcinoma, chronic obstructive pulmonary disease, and other diseases analysing breath, urine, blood, faeces, and other biological samples. This technique has been used to study complex mixtures such as proteomes, metabolomes, complete organisms like bacteria and viruses, monitor anaesthetic agents, determine drugs, pharmaceuticals, and volatile compounds in human body fluids, and others. Pharmaceutical applications include analysis of over-the-counter-drugs, quality assessment, and cleaning verification. Medical practice needs non-invasive, robust, secure, fast, real-time, and low-cost methods with high sensitivity and compact size instruments to diagnose different diseases and IMS is the diagnostic tool that meets all these requirements of the Medicine of the future.
Collapse
Affiliation(s)
- Katiuska I Romero
- . Medical Subdirector, Organización Clínica Bonnadona Prevenir, Barranquilla, Atlantico, Colombia
| | | |
Collapse
|
37
|
Athirah Awatif Abdul Rahman N, Hadi Ma'Radzi A, Zakaria A. Fabrication of quartz crystal microbalance with pegylated lipopolymer for detection of non-invasive lung cancer biomarker. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2018.12.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Hanna GB, Boshier PR, Markar SR, Romano A. Accuracy and Methodologic Challenges of Volatile Organic Compound-Based Exhaled Breath Tests for Cancer Diagnosis: A Systematic Review and Meta-analysis. JAMA Oncol 2019; 5:e182815. [PMID: 30128487 PMCID: PMC6439770 DOI: 10.1001/jamaoncol.2018.2815] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/08/2018] [Indexed: 12/19/2022]
Abstract
Importance The detection and quantification of volatile organic compounds (VOCs) within exhaled breath have evolved gradually for the diagnosis of cancer. The overall diagnostic accuracy of proposed tests remains unknown. Objectives To determine the diagnostic accuracy of VOC breath tests for the detection of cancer and to review sources of methodologic variability. Data Sources An electronic search (title and abstract) was performed using the Embase and MEDLINE databases (January 1, 2000, to May 28, 2017) through the OVID platform. The search terms cancer, neoplasm, malignancy, volatile organic compound, VOC, breath, and exhaled were used in combination with the Boolean operators AND and OR. A separate MEDLINE search that used the search terms breath AND methodology was also performed for studies that reported factors that influenced the concentration of VOCs within exhaled breath in humans. Study Selection The search was limited to human studies published in the English language. Trials that analyzed named endogenous VOCs within exhaled breath to diagnose or assess cancer were included in this review. Data Extraction and Synthesis Systematic review and pooled analysis were conducted in accordance with the recommendations of the Cochrane Library and Meta-analysis of Observational Studies in Epidemiology guidelines. Bivariate meta-analyses were performed to generate pooled point estimates of the hierarchal summary receiver operating characteristic curve of breath VOC analysis. Included studies were assessed according to the Standards for Reporting of Diagnostic Accuracy Studies checklist and Quality Assessment of Diagnostic Accuracy Studies 2 tool. Main Outcomes and Measures The principal outcome measure was pooled diagnostic accuracy of published VOC breath tests for cancer. Results The review identified 63 relevant publications and 3554 patients. All reports constituted phase 1 biomarker studies. Pooled analysis of findings found a mean (SE) area under the receiver operating characteristic analysis curve of 0.94 (0.01), sensitivity of 79% (95% CI, 77%-81%), and specificity of 89% (95% CI, 88%-90%). Factors that may influence variability in test results included breath collection method, patient physiologic condition, test environment, and method of analysis. Conclusions and Relevance The findings of our review suggest that standardization of breath collection methods and masked validation of breath test accuracy for cancer diagnosis is needed among the intended population in multicenter clinical trials. We propose a framework to guide the conduct of future breath tests in cancer studies.
Collapse
Affiliation(s)
- George B. Hanna
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Piers R. Boshier
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Sheraz R. Markar
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Andrea Romano
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
39
|
Identification of volatile metabolites in human saliva from patients with oral squamous cell carcinoma via zeolite-based thin-film microextraction coupled with GC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1104:49-58. [PMID: 30445287 DOI: 10.1016/j.jchromb.2018.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/04/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
In recent years, volatile organic compounds (VOCs) discharged from the human body, of which some compounds exhibit strong correlations with pathological conditions, have attracted attention as a new means of disease diagnosis technology. The aim of this study was to establish the salivary metabolomic profiles of oral squamous cell carcinoma (OSCC) patients and healthy volunteers (control group) and to investigate VOCs as potential biomarkers in the diagnosis of oral cancer. We have demonstrated a method combining thin-film microextraction based on a ZSM-5/polydimethylsiloxane hybrid film coupled with gas chromatography-mass spectrometry and carried out a comparative analysis of salivary VOC profiles between OSCC patients and healthy controls. The results depicted that 42 and 73 VOCs were detected and identified in samples from the healthy control group (n = 50) and oral cancer group (n = 24), respectively. Among them, twenty-seven VOCs (ten were decreased, seven disappeared, and ten were newly produced in the oral cancer group) depict significant differences between both the sample groups, and they have relevance as candidate biomarkers for OSCC. Twelve salivary VOCs that were characteristic of oral cancer patients were finally extracted and used for pattern recognition analyses for oral cancer diagnosis. The proposed TFME approach for analyzing human saliva on the basis of a ZSM-5-loaded PDMS hybrid thin film has been performed for the very first time in the field of dentistry.
Collapse
|
40
|
Oakley-Girvan I, Davis SW. Breath based volatile organic compounds in the detection of breast, lung, and colorectal cancers: A systematic review. Cancer Biomark 2018; 21:29-39. [PMID: 29060925 DOI: 10.3233/cbm-170177] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Detecting volatile organic compounds (VOCs) could provide a rapid, noninvasive, and inexpensive screening tool for detecting cancer. OBJECTIVE In this systematic review, we identified specific exhaled breath VOCs correlated with lung, colorectal, and breast cancer. METHODS We identified relevant studies published in 2015 and 2016 by searching Pubmed and Web of Science. The protocol for this systematic review was registered in PROSPERO and the PRISMA guidelines were used in reporting. VOCs and performance data were extracted. RESULTS Three hundred and thirty three records were identified and 43 papers were included in the review, of which 20 were review articles themselves. We identified 17 studies that listed the VOCs with at least a subset of statistics on detection cutoff levels, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and gradient. CONCLUSIONS Breath analysis for cancer screening and early detection shows promise, because samples can be collected easily, safely, and frequently. While gas chromatography-mass spectrometry is considered the gold standard for identifying specific VOCs, breath analysis has moved into analyzing patterns of VOCs using a variety of different multiple sensor techniques, such as eNoses and nanomaterials. Further development of VOCs for early cancer detection requires clinical trials with standardized breath sampling methods.
Collapse
|
41
|
Lagniau S, Lamote K, van Meerbeeck JP, Vermaelen KY. Biomarkers for early diagnosis of malignant mesothelioma: Do we need another moonshot? Oncotarget 2017; 8:53751-53762. [PMID: 28881848 PMCID: PMC5581147 DOI: 10.18632/oncotarget.17910] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/01/2017] [Indexed: 12/23/2022] Open
Abstract
Early diagnosis of malignant pleural mesothelioma (MPM) is a challenge for clinicians. The disease is usually detected in an advanced stage which precludes curative treatment. We assume that only new and non-invasive biomarkers allowing earlier detection will result in better patient management and outcome. Many efforts have already been made to find suitable biomarkers in blood and pleural effusions, but have not yet resulted in a valid and reproducible diagnostic one. In this review, we will highlight the strengths and shortcomings of blood and fluid based biomarkers and highlight the potential of breath analysis as a non-invasive screening tool for MPM. This method seems very promising in the early detection of diverse malignancies, because exhaled breath contains valuable information on cell and tissue metabolism. Research that focuses on breath biomarkers in MPM is in its early days, but the few studies that have been performed show promising results. We believe a breathomics-based biomarker approach should be further explored to improve the follow-up and management of asbestos exposed individuals.
Collapse
Affiliation(s)
- Sabrina Lagniau
- Tumor Immunology Laboratory, Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Internal Medicine, Ghent University, 9000 Ghent, Belgium
| | - Kevin Lamote
- Tumor Immunology Laboratory, Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Internal Medicine, Ghent University, 9000 Ghent, Belgium
| | - Jan P. van Meerbeeck
- Department of Internal Medicine, Ghent University, 9000 Ghent, Belgium
- Thoracic Oncology/MOCA, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Karim Y. Vermaelen
- Tumor Immunology Laboratory, Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Internal Medicine, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
42
|
Su C, Meyer M, Pirker R, Voigt W, Shi J, Pilz L, Huber RM, Wu Y, Wang J, He Y, Wang X, Zhang J, Zhi X, Shi M, Zhu B, Schoenberg SS, Henzler T, Manegold C, Zhou C, Roessner ED. From diagnosis to therapy in lung cancer: management of CT detected pulmonary nodules, a summary of the 2015 Chinese-German Lung Cancer Expert Panel. Transl Lung Cancer Res 2016; 5:377-88. [PMID: 27652202 DOI: 10.21037/tlcr.2016.07.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The first Chinese-German Lung Cancer Expert Panel was held in November 2015 one day after the 7th Chinese-German Lung Cancer Forum, Shanghai. The intention of the meeting was to discuss strategies for the diagnosis and treatment of lung cancer within the context of lung cancer screening. Improved risk classification criteria and novel imaging approaches for screening populations are highly required as more than half of lung cancer cases are false positive during the initial screening round if the National Lung Screening Trial (NLST) demographic criteria [≥30 pack years (PY) of cigarettes, age ≥55 years] are applied. Moreover, if the NLST criteria are applied to the Chinese population a high number of lung cancer patients are not diagnosed due to non-smoking related risk factors in China. The primary goal in the evaluation of pulmonary nodules (PN) is to determine whether they are malignant or benign. Volumetric based screening concepts such as investigated in the Dutch-Belgian randomized lung cancer screening trial (NELSON) seem to achieve higher specificity. Chest CT is the best imaging technique to identify the origin and location of the nodule since 20% of suspected PN found on chest X-ray turn out to be non-pulmonary lesions. Moreover, novel state-of-the-art CT systems can reduce the radiation dose for lung cancer screening acquisitions down to a level of 0.1 mSv with improved image quality to novel reconstruction techniques and thus reduce concerns related to chest CT as the primary screening technology. The aim of the first part of this manuscript was to summarize the current status of novel diagnostic techniques used for lung cancer screening and minimally invasive treatment techniques for progressive PNs that were discussed during the first Chinese-German Lung Cancer. This part should serve as an educational part for the readership of the techniques that were discussed during the Expert Panel. The second part summarizes the consensus recommendations that were interdisciplinary discussed by the Expert Panel.
Collapse
Affiliation(s)
- Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Mathias Meyer
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert Pirker
- Department of Medicine, Medical University of Vienna, Vienna, Austria
| | - Wieland Voigt
- Medical Innovation and Management, Steinbeis University Berlin, Germany
| | - Jingyun Shi
- Radiology Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Lothar Pilz
- Division of Thoracic Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rudolf M Huber
- Division of Respiratory Medicine and Thoracic Oncology, Ludwig-Maximilians-University of Munich Thoracic Oncology Centre, Munich, Germany
| | - Yilong Wu
- Guangdong General Hospital, Lung Cancer Institute, Guangzhou 510080, China
| | - Jinghong Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yonglan He
- Department of Radiology, Beijing Union Medical College Hospital, Beijing 100730, China
| | - Xuan Wang
- Department of Radiology, Beijing Union Medical College Hospital, Beijing 100730, China
| | - Jian Zhang
- Department of Respiratory, the Fourth Military Medical University Xijing Hospital, Xi'an 710032, China
| | - Xiuyi Zhi
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Meiqi Shi
- Department of Oncology, Tumor Hospital of Jiangsu Province, Nanjing 210000, China
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital of Third Military Medical University, Chongqing 400037, China
| | - Stefan S Schoenberg
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Henzler
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Manegold
- Division of Thoracic Oncology, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Eric Dominic Roessner
- Division of Surgical Oncology and Thoracic Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
43
|
Armitage EG, Southam AD. Monitoring cancer prognosis, diagnosis and treatment efficacy using metabolomics and lipidomics. Metabolomics 2016; 12:146. [PMID: 27616976 PMCID: PMC4987388 DOI: 10.1007/s11306-016-1093-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cellular metabolism is altered during cancer initiation and progression, which allows cancer cells to increase anabolic synthesis, avoid apoptosis and adapt to low nutrient and oxygen availability. The metabolic nature of cancer enables patient cancer status to be monitored by metabolomics and lipidomics. Additionally, monitoring metabolic status of patients or biological models can be used to greater understand the action of anticancer therapeutics. OBJECTIVES Discuss how metabolomics and lipidomics can be used to (i) identify metabolic biomarkers of cancer and (ii) understand the mechanism-of-action of anticancer therapies. Discuss considerations that can maximize the clinical value of metabolic cancer biomarkers including case-control, prognostic and longitudinal study designs. METHODS A literature search of the current relevant primary research was performed. RESULTS Metabolomics and lipidomics can identify metabolic signatures that associate with cancer diagnosis, prognosis and disease progression. Discriminatory metabolites were most commonly linked to lipid or energy metabolism. Case-control studies outnumbered prognostic and longitudinal approaches. Prognostic studies were able to correlate metabolic features with future cancer risk, whereas longitudinal studies were most effective for studying cancer progression. Metabolomics and lipidomics can help to understand the mechanism-of-action of anticancer therapeutics and mechanisms of drug resistance. CONCLUSION Metabolomics and lipidomics can be used to identify biomarkers associated with cancer and to better understand anticancer therapies.
Collapse
Affiliation(s)
- Emily G. Armitage
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA UK
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH UK
| | - Andrew D. Southam
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
44
|
Ferraris VA. What do dogs, ancient Romans, Linus Pauling, and mass spectrometry have in common? Early lung cancer and exhaled breath. J Thorac Cardiovasc Surg 2015; 151:313-4. [PMID: 26505807 DOI: 10.1016/j.jtcvs.2015.09.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 01/19/2023]
|