1
|
Schumaker B, Mortensen L, Klein RR, Mandal S, Dykes L, Gladman N, Rooney WL, Burson B, Klein PE. UV-induced reactive oxygen species and transcriptional control of 3-deoxyanthocyanidin biosynthesis in black sorghum pericarp. FRONTIERS IN PLANT SCIENCE 2024; 15:1451215. [PMID: 39435026 PMCID: PMC11491397 DOI: 10.3389/fpls.2024.1451215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Black pericarp sorghum has notable value due to the biosynthesis of 3-deoxyanthocyanidins (3-DOAs), a rare class of bioactive polyphenols valued as antioxidant food additives and as bioactive compounds with cytotoxicity to human cancer cells. A metabolic and transcriptomic study was conducted to ascertain the cellular events leading to the activation of 3-DOA biosynthesis in black sorghum pericarp. Prolonged exposure of pericarp during grain maturation to high-fluence ultraviolet (UV) light resulted in elevated levels of reactive oxygen species (ROS) and the activation of 3-DOA biosynthesis in pericarp tissues. In conjunction with 3-DOA biosynthesis was the transcriptional activation of specific family members of early and late flavonoid biosynthesis pathway genes as well as the downstream activation of defense-related pathways. Promoter analysis of genes highly correlated with 3-DOA biosynthesis in black pericarp were enriched in MYB and HHO5/ARR-B motifs. Light microscopy studies of black pericarp tissues suggest that 3-DOAs are predominantly localized in the epicarp and are associated with the cell wall. A working model of UV-induced 3-DOA biosynthesis in black pericarp is proposed that shares features of plant immunity associated with pathogen attack or mechanical wounding. The present model depicts ROS accumulation, the transcriptional activation of receptor kinases and transcription factors (TFs) including NAC, WRKY, bHLH, AP2, and C2H2 Zinc finger domain. This study identified key biosynthetic and regulatory genes of 3-DOA accumulation in black pericarp and provided a deeper understanding of the gene networks and cellular events controlling this tissue-and genotype-specific trait.
Collapse
Affiliation(s)
- Brooklyn Schumaker
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Lauren Mortensen
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Robert R. Klein
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Sabyasachi Mandal
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Linda Dykes
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Unit, Fargo, ND, United States
| | - Nicholas Gladman
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - William L. Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Byron Burson
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Sleem I, Smolensky D, Dia V. Gastrointestinal Health Benefits of Sorghum Phenolics. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024:10.1007/s11130-024-01230-6. [PMID: 39212840 DOI: 10.1007/s11130-024-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Sorghum is considered a promising food security crop and remarkable rich source of bioactive components including phenolic acids, flavonoids, and tannins. Sorghum phenolics exhibited numerous protective effects against multiple chronic diseases. However, there is no review of the effects of sorghum phenolics on gastrointestinal (GI) health. Specifically, recent studies have highly suggested that sorghum phenolics can maintain gastrointestinal homeostasis and enhance microbial diversity and richness. Furthermore, sorghum phenolics showed GI anticancer effects in both in vitro and in vivo studies against colorectal and esophageal cancers. Treatment of GI related human cancer cell lines stimulated apoptosis and suppressed proliferation. Sorghum intake and extracts treatments reduced intestinal oxidative stress and inflammatory mediators in human and in vivo studies. In addition, understanding the role and mechanisms underlying gastrointestinal health benefits of sorghum phenolics is crucial to determine treatment strategies of different GI diseases.
Collapse
Affiliation(s)
- Ibtesam Sleem
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN, 37996, USA
- Department of Food Science and Technology, Tanta University, Tanta, Gharbeya, Egypt
| | - Dmitriy Smolensky
- U.S. Department of Agriculture, Grain Quality and Structure Research Unit, Agricultural Research Service, 1515 College Ave, Manhattan, KS, 66502, USA
| | - Vermont Dia
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
3
|
Dionisi T, Rinninella E, Raoul P, Cintoni M, Mele MC, Gasbarrini G, Pellicano R, Vassallo GA, Gasbarrini A, Addolorato G, Gasbarrini GB. Sorghum (Sorghum vulgare): an ancient grain, a novel choice for a healthy gluten-free diet. Minerva Gastroenterol (Torino) 2024; 70:231-241. [PMID: 36943204 DOI: 10.23736/s2724-5985.23.03300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Celiac disease (CD) is an autoimmune disease related to gluten consumption. To date, the only effective therapy that can reverse symptoms and prevent complications is the gluten-free diet (GFD), which is challenging to maintain and has potential health risks. Identifying foods that can help diversify the GFD and that best match the nutritional needs of people with CD may improve the health and quality of life of celiac patients. This review, conducted through a non-systematic search of the available literature, aims to gather the most recent research on nutritional issues in CD and GFD. Moreover, it highlights how sorghum characteristics could provide health benefits to CD patients that counteract the nutritional problems due to CD and the nutritional consequences of GFD acceptance. Sorghum contains a wide variety of bioactive compounds, such as flavones and tannins, that have shown anti-inflammatory activity in preclinical studies. They can also regulate blood sugar levels and lower cholesterol to reduce the effects of common chronic diseases such as metabolic and cardiovascular diseases. Because it is gluten-free, its use in making foods for celiac patients is increasing, especially in the United States. In conclusion, sorghum is a fascinating grain with nutritional properties and health benefits for supplementing GFD. However, only one study confirms the short-term safety of sorghum inclusion in the GFD, and further long-term studies with a large sample are needed.
Collapse
Affiliation(s)
- Tommaso Dionisi
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, Columbus-Gemelli Hospital, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Emanuele Rinninella
- Unit of Clinical Nutrition, Department of Medical and Surgical Sciences, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Pauline Raoul
- Unit of Advanced Nutrition in Oncology, Department of Medical and Surgical Sciences, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Marco Cintoni
- Unit of Clinical Nutrition, Department of Medical and Surgical Sciences, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Maria C Mele
- Unit of Advanced Nutrition in Oncology, Department of Medical and Surgical Sciences, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Department of Translational Medicine and Surgery, Sacred Heart Catholic University, Rome, Italy
| | - Gabriele Gasbarrini
- Department of Agri-Food Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Rinaldo Pellicano
- Department of Gastroenterology and Clinical Nutrition, Molinette Hospital, Città della Salute e della Scienza, Turin, Italy -
| | - Gabriele A Vassallo
- Department of Internal Medicine, Barone Lombardo Hospital, Canicattì, Agrigento, Italy
| | - Antonio Gasbarrini
- Unit of Clinical Nutrition, Department of Medical and Surgical Sciences, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Department of Translational Medicine and Surgery, Sacred Heart Catholic University, Rome, Italy
- CEMAD Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Giovanni Addolorato
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, Columbus-Gemelli Hospital, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- CEMAD Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Giovanni B Gasbarrini
- CEMAD Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| |
Collapse
|
4
|
de Oliveira LDL, de Alencar Figueiredo LF. Sorghum phytonutrients and their health benefits: A systematic review from cell to clinical trials. J Food Sci 2024. [PMID: 38517029 DOI: 10.1111/1750-3841.17011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
Sorghum is key for global food security due to its genetic variability, resilience, and rich phytonutrient content, which are linked to numerous health benefits. A systematic review assessed the health effects of sorghum by analyzing cell (n = 22), animal (n = 20), and human (n = 7) studies across antioxidant, anti-inflammatory, obesity, cancer, cardiovascular, and diabetes outcomes. This review, involving 42 papers and 177 researchers from 12 countries, collected data from sorghum accessions (acc) and significant effects. Studies used 68 identified and 8 unidentified sorghums, 57% red (n = 20), brown (n = 5), and black (n = 17) pericarp colors, and evaluated whole (n = 31), brans (n = 11), and decorticated grains (n = 2). Colored sorghum, richer in phenolic compounds, especially 3-deoxyanthocyanins and tannins, inhibited cancer cell activities, including proliferation, tumor growth, and ROS activity, and promoted cell cycle arrest and apoptosis. Sorghum elevated HO1 and eNOS expression for cardiovascular, health-reduced platelet aggregation, and modulated platelet microparticles. They also suppressed inflammation markers and decreased lipid accumulation. Animal studies indicated sorghum's potential across antioxidant capacity, cancer and inflammation mitigation, and lipid and glucose metabolism. Translating these findings to human scenarios requires caution, especially considering cell studies do not fully represent polyphenol metabolism. Human studies provided mixed results, indicating antioxidant and potential anti-inflammatory benefits and nuanced effects on glucose and lipid metabolism. The main risks of bias highlighted challenges in quantifying phytonutrients, identifying sorghum acc features, and lack of assessors blinding. Nonetheless, sorghum emerges as a promising functional food for countering chronic diseases in Western diets.
Collapse
Affiliation(s)
- Lívia de Lacerda de Oliveira
- Department of Nutrition, Faculty of Health Sciences, University of Brasília (UnB), Campus Darcy Ribeiro, Brasília, Federal District, Brazil
| | | |
Collapse
|
5
|
Zhang Y, Chen J, Gao Z, Wang H, Liang D, Guo Q, Zhang X, Fan X, Wu Y, Liu Q. Identification of heterosis and combining ability in the hybrids of male sterile and restorer sorghum [Sorghum bicolor (L.) Moench] lines. PLoS One 2024; 19:e0296416. [PMID: 38166022 PMCID: PMC10760902 DOI: 10.1371/journal.pone.0296416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024] Open
Abstract
In sorghum [Sorghum bicolor (L.) Moench], combining ability and heterosis analysis are commonly used to evaluate superior parental lines and to screen for strongly heterotic hybrids, which helps in sorghum variety selection and breeding. In this context, combining ability and heterosis analysis were assessed using 14 restorer lines and seven cytoplasmic male sterile (CMS) lines in 2019 and 2020. The analysis of variance of all cross combinations had highly significant differences for all characters studied, which indicated a wide variation across the parents, lines, testers, and crosses. Combining ability analysis showed that the general combining ability (GCA) and specific combining ability (SCA) of the different parents were differed significantly among different traits. Most combinations with high SCA also showed high GCA in their parent lines. The heritability in the narrow sense of grain weight per panicle and grain yield was relatively low, indicating that the ability of these traits to be directly inherited by offspring was weak, that they were greatly affected by the environment. The better-parent heterosis for plant height, grain weight per panicle, panicle length, and 1000-grain weight was consistent with the order of mid-parent heterosis from strong to weak. The GCA effects of two lines 10480A, 3765A and three testers 0-30R, R111, and JY15R were significant for the majority of the agronomic traits including grain yield and might be used for improving the yield of grains in sorghum as parents of excellent specific combining ability. Seven strongly heterotic F1 hybrids were screened; of these, hybrids 3765A × R111, 1102A × L2R, and 3765A × JY15R showed significant increases in seed iristectorigenin A content and will feature into the creation of new sorghum varieties rich in iristectorigenin A.
Collapse
Affiliation(s)
- Yizhong Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, People’s Republic of China
- Sorghum Research Institute, Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Shanxi Agricultural University, Yuci, Shanxi, People’s Republic of China
- National Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding (in preparation), State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, People’s Republic of China
| | - Jing Chen
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, People’s Republic of China
| | - Zhenfeng Gao
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, People’s Republic of China
| | - Huiyan Wang
- Sorghum Research Institute, Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Shanxi Agricultural University, Yuci, Shanxi, People’s Republic of China
- National Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding (in preparation), State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, People’s Republic of China
| | - Du Liang
- Sorghum Research Institute, Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Shanxi Agricultural University, Yuci, Shanxi, People’s Republic of China
- National Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding (in preparation), State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, People’s Republic of China
| | - Qi Guo
- Sorghum Research Institute, Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Shanxi Agricultural University, Yuci, Shanxi, People’s Republic of China
- National Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding (in preparation), State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, People’s Republic of China
| | - Xiaojuan Zhang
- Sorghum Research Institute, Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Shanxi Agricultural University, Yuci, Shanxi, People’s Republic of China
- National Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding (in preparation), State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, People’s Republic of China
| | - Xinqi Fan
- Sorghum Research Institute, Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Shanxi Agricultural University, Yuci, Shanxi, People’s Republic of China
- National Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding (in preparation), State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, People’s Republic of China
| | - Yuxiang Wu
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, People’s Republic of China
| | - Qingshan Liu
- National Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding (in preparation), State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
6
|
Paes LT, D'Almeida CTDS, do Carmo MAV, da Silva Cruz L, Bubula de Souza A, Viana LM, Gonçalves Maltarollo V, Martino HSD, Domingues de Almeida Lima G, Larraz Ferreira MS, Azevedo L, Barros FARD. Phenolic-rich extracts from toasted white and tannin sorghum flours have distinct profiles influencing their antioxidant, antiproliferative, anti-adhesive, anti-invasive, and antimalarial activities. Food Res Int 2024; 176:113739. [PMID: 38163694 DOI: 10.1016/j.foodres.2023.113739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Sorghum is a gluten-free cereal commonly used in foods, and its consumption has been associated with the prevention of human chronic conditions such as obesity and cancer, due to the presence of dietary fiber and phenolic compounds. This study aimed to evaluate, for the first time, the antiproliferative, antioxidant, anti-adhesion, anti-invasion, and antimalarial activities of phenolic extracts from toasted white and tannin sorghum flours to understand how different phenolic profiles contribute to sorghum biological activities. Water and 70 % ethanol/water (v/v), eco-friendly solvents, were used to obtain the phenolic extracts of toasted sorghum flours, and their phenolic profile was analyzed by UPLC-MSE. One hundred forty-five (145) phenolic compounds were identified, with 23 compounds common to all extracts. The solvent type affected the phenolic composition, with aqueous extract of both white sorghum (WSA) and tannin sorghum (TSA) containing mainly phenolic acids. White sorghum (WSE) and tannin sorghum (TSE) ethanolic extracts exhibited a higher abundance of flavonoids. WSE demonstrated the lowest IC50 on EA.hy926 (IC50 = 46.6 µg/mL) and A549 cancer cells (IC50 = 33.1 µg/mL), while TSE showed the lowest IC50 (IC50 = 70.8 µg/mL) on HCT-8 cells (human colon carcinoma). Aqueous extracts also demonstrated interesting results, similar to TSE, showing selectivity for cancer cells at higher IC50 concentrations. All sorghum extracts also reduced the adhesion and invasion of HCT-8 cells, suggesting antimetastatic potential. WSE, rich in phenolic acids and flavonoids, exhibited greater toxicity to both the W2 (chloroquine-resistant) and 3D7 (chloroquine-sensitive) strains of Plasmodium falciparum (IC50 = 8 µg GAE/mL and 22.9 µg GAE/mL, respectively). These findings underscore the potential health benefits of toasted sorghum flours, suggesting diverse applications in the food industry as a functional ingredient or even as an antioxidant supplement. Moreover, it is suggested that, besides the phenolic concentration, the phenolic profile is important to understand the health benefits of sorghum flours.
Collapse
Affiliation(s)
- Laise Trindade Paes
- Department of Food Technology, Federal University of Vicosa, Vicosa, MG, Brazil
| | | | | | | | | | | | - Vinicius Gonçalves Maltarollo
- Pharmaceutical Products Department, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil
| | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Alfenas, MG, Brazil
| | | |
Collapse
|
7
|
Desta KT, Choi YM, Shin MJ, Yoon H, Wang X, Lee Y, Yi J, Jeon YA, Lee S. Comprehensive evaluation of nutritional components, bioactive metabolites, and antioxidant activities in diverse sorghum (Sorghum bicolor (L.) Moench) landraces. Food Res Int 2023; 173:113390. [PMID: 37803729 DOI: 10.1016/j.foodres.2023.113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Sorghum, one of the prospective crops for addressing future food and nutrition security, has received attention in recent years due to its health-promoting compounds. It is known that several environmental and genetic factors affect the metabolite contents of dietary crops. This study investigated the diversity of different nutrients, functional metabolites, and antioxidant activity using three different assays in 53 sorghum landraces from Korea, China, Japan, Ethiopia, and South Africa. The effects of origin and seed color variations were also investigated. Total phenolic (TPC), total tannin (TTC), total fat, total protein, total dietary fiber, and total crude fiber contents all varied significantly among the sorghum landraces (p < 0.05). Using a gas chromatography-flame ionization detector, palmitic, stearic, oleic, linoleic, and linolenic acids were detected in all the sorghum landraces, and their content significantly varied (p < 0.05). Furthermore, four 3-deoxyanthocyanidins (luteolinidin, apigeninidin, 5-methoxyluteolinidin, and 7-methoxyapigeninidin) and two flavonoids (luteolin and apigenin) were detected in most of the landraces using liquid chromatography-tandem mass spectrometry, and their concentrations also significantly varied. Statistical analyses supported by multivariate tools demonstrated that seed color variation had a significant effect on TPC, TTC, DPPH• and ABTS•+ scavenging activities, and ferric-reducing antioxidant power, with yellow landraces having the highest and white landraces having the lowest values. Seed color variation also had a significant effect on dietary fiber, linoleic acid, linolenic acid, and luteolin contents. In contrast, all nutritional components and fatty acids except total protein and oleic acid were significantly affected by origin, while most 3-deoxyanthocyanidins and flavonoids were unaffected by both origin and seed color differences. This is the first study to report the effect of origin on sorghum seed metabolites and antioxidant activities, laying the groundwork for future studies. Moreover, this study identified superior landraces that could be good sources of health-promoting metabolites.
Collapse
Affiliation(s)
- Kebede Taye Desta
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Xiaohan Wang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Yoonjung Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jungyoon Yi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Young-Ah Jeon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Sukyeung Lee
- International Technology Cooperation Center, Technology Cooperation Bureau, Rural Development Administration, Jeonju 54875, Republic of Korea.
| |
Collapse
|
8
|
Nagesh Kumar MV, Ramya V, Maheshwaramma S, Ganapathy KN, Govindaraj M, Kavitha K, Vanisree K. Exploiting Indian landraces to develop biofortified grain sorghum with high protein and minerals. Front Nutr 2023; 10:1228422. [PMID: 37876619 PMCID: PMC10591322 DOI: 10.3389/fnut.2023.1228422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Sorghum (Sorghum bicolor L. Moench) is the staple cereal and is the primary source of protein for millions of people in Asia and sub-Saharan Africa. Sorghum grain value has been increasing in tropical countries including India owing to its gluten-free nature, anti-oxidant properties and low glycemic index. However, the nutrient composition of modern cultivars is declining thus necessitating genetic biofortification of sorghum to combat malnutrition and improve nutritional balance in the human diet. Keeping this in view, efforts were made to utilize valuable alleles, associated with nutrient composition, that might have been left behind in the varietal development in sorghum. The study aimed to determine the genetic improvement for nine nutritional and quality parameters (crude protein, in vitro protein digestibility (IVPD), total iron (Fe), total zinc (Zn), bioavailable Fe (%), bioavailable Zn (%), total phenolics, tannins and antioxidant activity) in the grains of 19 sorghum genotypes (high yield, drought and grain mold tolerant) developed from 11 superior India's landraces. After selection and advancement made from 2017 to 2022 through single seed descent method, the improvement in the nine nutritional and quality parameters was assessed. Significant variation was observed for all the nine parameters among the landraces and the genotypes. Sorghum genotypes PYPS 2 and PYPS 13 recorded the highest crude protein (13.21 and 12.80% respectively) and IVPD (18.68 and 19.56% respectively). Majority of the sorghum genotypes recorded high Fe (14.21-28.41 mg/100 g) and Zn (4.81-8.16 mg/100 g). High phenolics and antioxidant activity were recorded in sorghum genotypes PYPS 18 (85.65 mg/g gallic acid equivalents) and PYPS 19 (89.78%) respectively. Selections through SSD method revealed highest improvement in genotype PYPS 10 for crude protein (32.25%), total phenolics (18.48%) and antioxidant activity (15.43%). High improvements in genotypes PYPS 12 (23.50%), PYPS 3 (26.79%), PYPS 15 (21.18%) were recorded for total Fe, available Fe and high tannins, respectively. The study demonstrated that landraces could be effectively utilized as a potential, low-cost and eco-friendly approach in sorghum genetic biofortification to improved sorghum productivity and nutritional supply in semi-arid tropics.
Collapse
Affiliation(s)
| | - Vittal Ramya
- Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | | | | | - Mahalingam Govindaraj
- HarvestPlus Program, The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Kosnam Kavitha
- Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | - Kalisetti Vanisree
- Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| |
Collapse
|
9
|
Owumi SE, Akinwunmi AO, Nwozo SO, Arunsi UO, Oyelere AK. Aflatoxin B1-induced dysfunction in male rats' reproductive indices were abated by Sorghum bicolor (L.Moench) hydrophobic fraction. Reprod Toxicol 2023; 120:108425. [PMID: 37355213 DOI: 10.1016/j.reprotox.2023.108425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The burden of infertility distresses millions of families worldwide. The harmful effects of aflatoxin B1 (AFB1) on the reproductive system involve oxidative stress, culminating in inflammation and cellular apoptosis. The phytochemical in Sorghum bicolor is rich in antioxidants and anti-inflammatory activities. The effect of Sorghum bicolor (L.) Moench (SBE-HP) extract -hydrophobic fraction- enriched in Apigenin (API) was investigated in rats chronically dosed with AFB1 and the likely mechanism (s) of SBE-HP to protect against AFB1-induced reproductive toxicity. Adult Wistar male rats (twenty-four) were selected randomly and allocated into four groups. Cohort 1 was administered 0.05 % carboxymethyl cellulose (CMC); cohort 2 received AFB1 (50 µg/kg) alone; while cohorts 3 and 4 received 5 & 10 mg/kg of (SBE-HP) respectively, along with 50 µg/kg of AFB1. After 28 days, AFB1 induced remarkable reproductive toxicity as evidenced by increased sperm abnormalities, lowered sperm quality and motility, altered serum hormonal levels and testicular enzyme activities, decreased anti-oxidants, increased pro-oxidants, apoptotic and inflammatory biomarkers, as well as altered histoarchitectural structure of the testis, epididymis, and hypothalamus of rats. API-enriched extract of S. bicolor reduced AFB1-induced oxidative, inflammatory, apoptotic, and histological derangement by improving sperm function parameters, testicular enzymes, and reproductive hormones. Anti-oxidant levels and anti-inflammatory mediators were increased while decreases in the activities and levels of pro-oxidants, pro-inflammatory molecules and caspase-9 occurred in the rats' testes, epididymis, and hypothalamus. API-enriched S. bicolor protected the testes, epididymis, and hypothalamus of male rats exposed to AFB1 by modulating oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria.
| | | | - Sarah O Nwozo
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332-0400, GA, United States
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332-0400, GA, United States
| |
Collapse
|
10
|
Lee S, Choi YM, Shin MJ, Yoon H, Wang X, Lee Y, Yi J, Jeon YA, Desta KT. Exploring the potentials of sorghum genotypes: a comprehensive study on nutritional qualities, functional metabolites, and antioxidant capacities. Front Nutr 2023; 10:1238729. [PMID: 37637957 PMCID: PMC10450220 DOI: 10.3389/fnut.2023.1238729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Sorghum, long regarded as one of the most underutilized crops, has received attention in recent years. As a result, conducting multidisciplinary studies on the potential and health benefits of sorghum resources is vital if they are to be fully exploited. In this study, the nutritional contents, functional metabolites, and antioxidant capacities of 23 sorghum breeding lines and three popular cultivars were assessed. Materials and method All of the sorghum genotypes were grown under the same conditions, and mature seeds were hand-harvested. The metabolite contents and antioxidant capacities of sorghum seeds were assessed using standard protocols. Fatty acids were quantified using a gas chromatography-flame ionization detector, whereas flavonoids and 3-deoxyanthocyanidins were analyzed using a liquid chromatography-tandem mass spectrometry method. The data were analyzed using both univariate and multivariate statistical approaches. Results and discussion Total protein (9.05-14.61%), total fat (2.99-6.91%), crude fiber (0.71-2.62%), dietary fiber (6.72-16.27%), total phenolic (0.92-10.38 mg GAE/g), and total tannin (0.68-434.22 mg CE/g) contents varied significantly across the sorghum genotypes (p < 0.05). Antioxidant capacity, measured using three assays, also differed significantly. Five fatty acids, including palmitic, stearic, oleic, linoleic, and linolenic acids, were found in all the sorghum genotypes with statistically different contents (p < 0.05). Furthermore, the majority of the sorghum genotypes contained four 3-deoxyanthocyanidins, including luteolinidin, apigeninidin, 5-methoxyluteolinidin, and 7-methoxyapigeninidin, as well as two dominant flavonoids, luteolin and apigenin. Compared to the cultivars, some breeding lines had significantly high levels of metabolites and antioxidant activities. On the other hand, statistical analysis showed that total tannin, total phenolic, and antioxidant capacities varied significantly across white, yellow, and orange genotypes. Principal component analysis was used to differentiate the sorghum genotypes based on seed color and antioxidant index levels. Pearson's correlation analysis revealed strong links between biosynthetically related metabolites and those with synergistic antioxidant properties. Conclusion This research demonstrated the diversity of the sorghum resources investigated. Those genotypes with high levels of nutritional components, functional metabolites, and antioxidant activities could be used for consumption and breeding programs.
Collapse
Affiliation(s)
- Sukyeung Lee
- International Technology Cooperation Center, Technology Cooperation Bureau, Rural Development Administration, Jeonju, Republic of Korea
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Xiaohan Wang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Yoonjung Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Jungyoon Yi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Young-ah Jeon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Kebede Taye Desta
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
11
|
Khalid W, Arshad MS, Aslam N, Mukhtar S, Rahim MA, Ranjha MMAN, Noreen S, Afzal MF, Aziz A, Awuchi CG. Food applications of sorghum derived kafirins potentially valuable in celiac disease. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2135532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Noman Aslam
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Shanza Mukhtar
- Department of Nutrition and Dietetics, the University of Faisalabad, Faisalabad, Pakistan
| | | | | | - Sana Noreen
- University Institute of Diet and Nutritional Sciences, the University of Lahore, Lahore, Pakistan
| | | | - Afifa Aziz
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
12
|
Queiroz VAV, Dizlek H, de Barros FAR, Tardin FD, Figueiredo JEF, Awika JM. Baking Process Effects and Combined Cowpea Flour and Sorghum Bran on Functional Properties of Gluten-Free Cookies. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:552-559. [PMID: 35980500 DOI: 10.1007/s11130-022-01002-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Gluten-related disorders, including celiac disease and non-celiac gluten sensitivity, are growing worldwide. The only treatment for both disorders is a lifelong gluten-free diet. However, gluten-free foods are generally poorer in nutrients, less healthy, and have a high cost. Sorghum and cowpea are gluten-free grains with high levels of phenolic compounds (PC) and a low cost. Their phenolic profile is structurally different; thus, the blend of both can provide synergistic/complementary health benefits to the final product. This study analyzed the effect of baking process and the blend of cowpea flour (CP) and sorghum bran (SB) on the levels of PC, resistant starch (RS), neutral detergent fiber (NDF), and antioxidant capacity (AC) of gluten-free cookies. Eleven rice or cowpea cookie formulations were made with or without white sorghum bran (WSB) or black sorghum bran (BSB). Baking increased the extractability of PC, AC, and the NDF of almost all formulations. The PC and AC were, respectively, about twice and 3-5 times higher in cookies containing BSB compared to the others. There was a minor effect of WSB on the PC and AC. Although there were losses, the retention of RS of cookies after the baking process was between 49.8 and 92.7%. Sorghum bran has excellent potential for use as a functional ingredient in healthy food production. The combined CP and SB have great potential to improve the nutritional and functional properties of gluten-free products, especially the PC, RS, and NDF contents.
Collapse
Affiliation(s)
- Valéria Aparecida Vieira Queiroz
- Brazilian Agricultural Research Corporation, Embrapa Milho E Sorgo, Sete Lagoas, MG, 35701-970, Brazil
- Department of Soil & Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Halef Dizlek
- Department of Soil & Crop Sciences, Texas A&M University, College Station, TX, 77843, USA.
- Department of Food Engineering, Engineering Faculty, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkey.
| | | | - Flávio Dessaune Tardin
- Brazilian Agricultural Research Corporation, Embrapa Milho E Sorgo, Sete Lagoas, MG, 35701-970, Brazil
| | | | - Joseph M Awika
- Department of Soil & Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
13
|
Pereira LM, Hawkes C. Leveraging the Potential of Sorghum as a Healthy Food and Resilient Crop in the South African Food System. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022; 6:786151. [PMID: 39015344 PMCID: PMC7616218 DOI: 10.3389/fsufs.2022.786151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
An erosion of indigenous and traditional foods in the Global South has dramatically changed the global food system in the last 50 years. Reinvigorating these crops and the agro-biodiversity that they represent could provide benefits for healthier and more sustainable food systems. In South Africa, it has been proposed that studying indigenous plants more extensively and focussing on innovation to include them as mainstream foods on people's plates could improve food and nutrition security. With this background, this paper aims to contribute to addressing this challenge by researching sorghum (Sorghum bicolor) to identify the opportunities for innovating around sorghum as a healthy food and resilient crop. The paper traces sorghum through various encounters across the South African food system. The results point at clear areas where policy interventions could bolster the sorghum value chain. These include zero-rating VAT on sorghum products, investing more extensively in research and marketing across diverse stakeholders, raising awareness about the health benefits of sorghum and using public procurement as a way of instigating a market for novel sorghum products. The outcomes of a successful sorghum innovation programme could improve smallholder farmers' livelihoods, make a healthy food more accessible to South Africans and develop a local market for innovative products that utilize a crop that is resilient to projected climatic changes.
Collapse
Affiliation(s)
- Laura M. Pereira
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
- Centre for Food Policy, City University of London, London, United Kingdom
- Global Change Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Corinna Hawkes
- Centre for Food Policy, City University of London, London, United Kingdom
| |
Collapse
|
14
|
Khalid W, Ali A, Arshad MS, Afzal F, Akram R, Siddeeg A, Kousar S, Rahim MA, Aziz A, Maqbool Z, Saeed A. Nutrients and bioactive compounds of Sorghum bicolor L. used to prepare functional foods: a review on the efficacy against different chronic disorders. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2071293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, China
- Food and Nutrition Society, Gilgit Baltistan, Pakistan
| | | | - Fareed Afzal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ramish Akram
- Department of Rehabilitation Sciences, The University of Faisalabad, Pakistan
| | - Azhari Siddeeg
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Safura Kousar
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Afifa Aziz
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Zahra Maqbool
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ayesha Saeed
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| |
Collapse
|
15
|
Genetic diversity for agromorphological traits, phytochemical profile, and antioxidant activity in Moroccan sorghum ecotypes. Sci Rep 2022; 12:5895. [PMID: 35393498 PMCID: PMC8990008 DOI: 10.1038/s41598-022-09810-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
Sorghum, the fifth most important cereal crop, is a well-adapted cereal to arid/semi-arid regions. Sorghum is known for multiple end-uses as food, feed, fuel, forage, and as source of bioactive compounds that could be used for medical applications. Although the great improvement in the process of sorghum breeding, the average yield of this crop is still very low. Therefore, exploring the genetic diversity in sorghum accessions is a critical step for improving this crop. The main objective of the current work was to study the genetic variation existing in a Moroccan sorghum collection. Indeed, 10 sorghum ecotypes were characterized based on agromorphological descriptors. Both quantitative (25) and qualitative (7) traits revealed variability (p < 0.05) among the studied ecotypes. At the seedling stage, most of the ecotypes showed good to high vigor (70%). However, as the sorghum plants grow, the difference between genotypes become more apparent, especially at the generative phase. For instance, three different panicle shapes have been observed, erect (50%), semi-bent (30%), and bent (20%) with different degree of compactness (20% for loose, semi-compact, and compact panicles, and 30% for semi-loose panicles). In another part of this study, the phytochemical composition and antioxidant activities of the sorghum ecotypes have been determined. The results showed variable total phenolic contents, and total flavonoid contents ranging from 125.86 ± 1.36 to 314.91 ± 3.60 mg GAE/g dw and 114.0 ± 13.2 to 138.5 ± 10.8 (mg catechin equivalent/100 g, dw) respectively, with a differential antioxidant activities as well. These results indicate that for any crop breeding program, it is preferable to take into consideration both morphological and biochemical traits for a better selection of high yielding varieties with high added value compounds. Therefore, the implication of these results in the context of sorghum breeding activities could be a resourceful option for farmers.
Collapse
|
16
|
SELENIUM BIOFORTIFICATION VIA SOIL AND ITS EFFECT ON PLANT METABOLISM AND MINERAL CONTENT OF SORGHUM PLANTS. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Pontieri P, Troisi J, Calcagnile M, Bean SR, Tilley M, Aramouni F, Boffa A, Pepe G, Campiglia P, Del Giudice F, Chessa AL, Smolensky D, Aletta M, Alifano P, Del Giudice L. Chemical Composition, Fatty Acid and Mineral Content of Food-Grade White, Red and Black Sorghum Varieties Grown in the Mediterranean Environment. Foods 2022; 11:foods11030436. [PMID: 35159586 PMCID: PMC8833964 DOI: 10.3390/foods11030436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Grain sorghum (Sorghum bicolor) is a gluten-free cereal grown around the world and is a food staple in semi-arid and subtropical regions. Sorghum is a diverse crop with a range of pericarp colour including white, various shades of red, and black, all of which show health-promoting properties as they are rich sources of antioxidants such as polyphenols, carotenoids, as well as micro- and macro-nutrients. This work examined the grain composition of three sorghum varieties possessing a range of pericarp colours (white, red, and black) grown in the Mediterranean region. To determine the nutritional quality independent of the contributions of phenolics, mineral and fatty acid content and composition were measured. Minor differences in both protein and carbohydrate were observed among varieties, and a higher fibre content was found in both the red and black varieties. A higher amount of total saturated fats was found in the white variety, while the black variety had a lower amount of total unsaturated and polyunsaturated fats than either the white or red varieties. Oleic, linoleic, and palmitic were the primary fatty acids in all three analysed sorghum varieties. Significant differences in mineral content were found among the samples with a greater amount of Mg, K, Al, Mn, Fe, Ni, Zn, Pb and U in both red and black than the white sorghum variety. The results show that sorghum whole grain flour made from grain with varying pericarp colours contains unique nutritional properties.
Collapse
Affiliation(s)
- Paola Pontieri
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, 80134 Napoli, Italy; (A.B.); (L.D.G.)
- Correspondence:
| | - Jacopo Troisi
- Theoreosrl, Spin Off of the University of Salerno, Department of Medicine and Surgery, Via Degli Ulivi, 3, Montecorvino Pugliano, 84090 Salerno, Italy;
| | - Matteo Calcagnile
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, 73100 Lecce, Italy; (M.C.); (P.A.)
| | - Scott R. Bean
- USDA-ARS, CGAHR, Manhattan, KS 66502, USA; (S.R.B.); (M.T.); (F.A.); (D.S.)
| | - Michael Tilley
- USDA-ARS, CGAHR, Manhattan, KS 66502, USA; (S.R.B.); (M.T.); (F.A.); (D.S.)
| | - Fadi Aramouni
- USDA-ARS, CGAHR, Manhattan, KS 66502, USA; (S.R.B.); (M.T.); (F.A.); (D.S.)
| | - Antonio Boffa
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, 80134 Napoli, Italy; (A.B.); (L.D.G.)
| | - Giacomo Pepe
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (P.C.)
| | | | | | - Dmitriy Smolensky
- USDA-ARS, CGAHR, Manhattan, KS 66502, USA; (S.R.B.); (M.T.); (F.A.); (D.S.)
| | | | - Pietro Alifano
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, 73100 Lecce, Italy; (M.C.); (P.A.)
| | - Luigi Del Giudice
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, 80134 Napoli, Italy; (A.B.); (L.D.G.)
| |
Collapse
|
18
|
Irondi EA, Adewuyi AE, Aroyehun TM. Effect of Endogenous Lipids and Proteins on the Antioxidant, in vitro Starch Digestibility, and Pasting Properties of Sorghum Flour. Front Nutr 2022; 8:809330. [PMID: 35096949 PMCID: PMC8792437 DOI: 10.3389/fnut.2021.809330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the effect of endogenous lipids and proteins on the antioxidants, starch digestibility, and pasting properties of sorghum (Sorghum bicolor) flour (SF). Endogenous lipids and/or proteins were removed from different portions of SF to obtain defatted (DF), deproteinized (DP), and defatted and deproteinized (DF-DP) flours. Bioactive constituents (total phenolics, tannins, flavonoids, saponins, and anthocyanins), antioxidant activities [2,2-Azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) radical cation (ABTS*+) and 2, 2-Diphenyl-2-picrylhydrazyl radical (DPPH*) scavenging activities, reducing power, and Fe2+ chelating capacity], starch, amylose, starch hydrolysis index (HI), estimated glycemic index (eGI), and pasting properties of treated and control (untreated) flours were determined. The control flour (SF) had significantly higher (p < 0.05) levels of all the bioactive constituents and antioxidant activity tested than the DF, DP, and DF-DP flours, while the DF-DP flour had the least levels of bioactive constituents and antioxidant activity. In contrast, the starch, amylose, HI, and eGI were consistently in the order of DF-DP > DF > DP > control flour (p < 0.05). The control flour had the highest (p < 0.05) peak viscosity, and the least peak time and pasting temperature, while the DF flour had the highest final viscosity. Therefore, endogenous lipids and proteins contribute to the antioxidant, starch digestibility, and pasting properties of sorghum flour.
Collapse
|
19
|
de Oliveira LDL, de Oliveira GT, de Alencar ER, Queiroz VAV, de Alencar Figueiredo LF. Physical, chemical, and antioxidant analysis of sorghum grain and flour from five hybrids to determine the drivers of liking of gluten-free sorghum breads. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
I. Mohamed H, M. Fawzi E, Basit A, Kaleemullah, Lone R, R. Sofy M. Sorghum: Nutritional Factors, Bioactive Compounds, Pharmaceutical and Application in Food Systems: A Review. PHYTON 2022; 91:1303-1325. [DOI: 10.32604/phyton.2022.020642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/18/2022] [Indexed: 10/26/2023]
|
21
|
Abstract
This paper follows sorghum, an indigenous, but currently underutilized, grain in South Africa, through six encounters to discover its potential to transform the country's food system. By listening to stories from diverse perspectives, it shows that the re-inclusion of sorghum could not only diversify diets, but could also move toward breaking colonial stereotypes of what constitutes aspirational food. It employs a Follow the Thing method to unpack the multiple identities of sorghum and the role it could play in galvanizing a healthier, more diverse food system. By opening up to a radical following method that does not constrain the researcher, the underlying stories associated with sorghum are highlighted, which coincides with a shift in perception of the multiple potentialities that the crop embodies. The research highlights that a strong cultural link to sorghum remains in South Africa and that if innovation could be broadly interpreted, this might invigorate a richer engagement with sorghum, not just as a commodity, but as a culturally significant food.
Collapse
Affiliation(s)
- Laura M Pereira
- Centre for Food Policy, City University of London, UK
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Global Change Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
22
|
D'Almeida CTDS, Mameri H, Menezes NDS, de Carvalho CWP, Queiroz VAV, Cameron LC, Morel MH, Takeiti CY, Ferreira MSL. Effect of extrusion and turmeric addition on phenolic compounds and kafirin properties in tannin and tannin-free sorghum. Food Res Int 2021; 149:110663. [PMID: 34600665 DOI: 10.1016/j.foodres.2021.110663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022]
Abstract
Sorghum is a potential substitute for corn/wheat in cereal-based extruded products. Despite agronomic advantages and its rich diversity of phenolic compounds, sorghum kafirins group together and form complex with tannins, leading to a low digestibility. Phenolic content/profile by UPLC-ESI-QTOF-MSE and kafirins polymerization by SE-HPLC were evaluated in wholemeal sorghum extrudates; tannin-rich (#SC319) and tannin-free (#BRS330) genotypes with/without turmeric powder. Total phenolic, proantocyanidin and flavonoid contents were strongly correlated with antioxidant capacity (r > 0.9, p < 0.05). Extrusion increased free (+60%) and decreased bound phenolics (-40%) in #SC319, but reduced both (-40%; -90%, respectively) in #BRS330, which presented lower abundance after extrusion. Turmeric addition did not significantly impact antioxidant activity, phenolic content and profile and kafirins profile. Tannins presence/absence impacted phenolic profiles and polymerization of kafirins which appears related to the thermoplastic process. The extrusion improved proteins solubility and can positively enhance their digestibility (phenolic compounds-proteins interactions), making more accessible to proteolysis in sorghum extrudates.
Collapse
Affiliation(s)
- Carolina Thomaz Dos Santos D'Almeida
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Brazil
| | - Hamza Mameri
- INRAE, Université de Montpellier, Montpellier SupAgro, CIRAD, UMR 1208 IATE, Montpellier, France
| | | | | | | | - L C Cameron
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Brazil
| | - Marie-Hélène Morel
- INRAE, Université de Montpellier, Montpellier SupAgro, CIRAD, UMR 1208 IATE, Montpellier, France
| | | | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Brazil.
| |
Collapse
|
23
|
Xu J, Wang W, Zhao Y. Phenolic Compounds in Whole Grain Sorghum and Their Health Benefits. Foods 2021; 10:1921. [PMID: 34441697 PMCID: PMC8392263 DOI: 10.3390/foods10081921] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Sorghum grain (Sorghum bicolor L. Moench) is a staple food grown across the globe, and is mainly cultivated in the semi-arid regions of Africa and Asia. Recently, sorghum grain is increasingly utilized for human consumption, due to the gluten-free nature and potential phenolic-induced health benefits. Sorghum grain is rich in bioactive phenolic compounds, such as ferulic acid, gallic acid, vanillic acid, luteolin, and apigenin, 3-deoxyanthocyanidins (3-DXA), which are known to provide many health benefits, including antioxidant, anti-inflammatory, anti-proliferative, anti-diabetic, and anti-atherogenic activities. Given an increasing trend of sorghum consumption for humans, this article reviews the content and profile of phenolics in sorghum. It covers aspects of their health benefits and explores their mechanisms of action. The impact of thermal processing, such as boiling, steaming, roasting, and extrusion on sorghum phenolics is also discussed. Compelling data suggest the biological functions of sorghum phenolics, however, further investigations appear warrant to clarify the gap in the current research, and identify promising research topics in future.
Collapse
Affiliation(s)
- Jingwen Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Weiqun Wang
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA;
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| |
Collapse
|
24
|
Li Y, Li M, Liu J, Zheng W, Zhang Y, Xu T, Gao B, Yu L. Chemical Composition Profiling and Biological Activities of Phenolic Compounds in Eleven Red Sorghums. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9407-9418. [PMID: 34369753 DOI: 10.1021/acs.jafc.1c03115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The profiles of soluble and insoluble phenolic compounds in 11 commercial red sorghums (B11, B12, B13, B14, J124, J127, J138, J140, J142, J152, and J158) were investigated using ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) analysis. A total of 48 phenolic compounds including 35 phenolic acids and their derivatives, 12 flavonoids, and 1 proanthocyanidin were identified, and 8 phenolic compounds were reported for the first time in sorghums. Four major 3-deoxyanthocyanidins were also quantified, with their soluble forms accounting for 99.75-99.87% of the total contents. Pearson's correlation analyses indicated that 3-deoxyanthocyanidins significantly contributed to the antioxidant capacities of the red sorghums and that 5-methoxy-luteolinidin showed the strongest correlation. Besides, the soluble phenolic fraction of B13 dose-dependently inhibited the proliferation of Caco-2 cells and the secretion of IL-1β and NO in RAW264.7 macrophages, which might be attributed to its relatively high total phenolic (TPC), flavonoid (TFC), and proanthocyanidin content (TPAC) values and radical scavenging capacities.
Collapse
Affiliation(s)
- Yanfang Li
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming Li
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaping Liu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenhao Zheng
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Tongcheng Xu
- Institute of Agro-Food Science and Technology, Shandong Provincial Key Laboratory of Agricultural Products Deep Processing, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
25
|
Kumari P, Kumar V, Kumar R, Pahuja SK. Sorghum polyphenols: plant stress, human health benefits, and industrial applications. PLANTA 2021; 254:47. [PMID: 34374841 PMCID: PMC8353607 DOI: 10.1007/s00425-021-03697-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
MAIN CONCLUSION Various phenolic compounds of sorghum are effective in the management of abiotic stress (salt, nutrients) and biotic stress (caused by birds, fungi and aphids). The health and industrial application of phenolics is mainly contributed by inherent antioxidant and nutraceutical potential. In a natural environment, plant growth is affected by various biotic and abiotic stresses. In every ecosystem, the presence of a wide range of harmful biological agents (bacteria, fungi, nematodes, mites, and insects) and undesirable environmental factors (drought, salinity, heat, excessive or low rainfall, etc.) may cause a heavy loss in crop productivity. Being sessile during evolution, plants have evolved multiple defense mechanisms against various types of microbial pathogens and environmental stresses. A plant's natural defense system produces some compounds named secondary metabolites, which include phenolics, terpenes, and nitrogen. The phenolic profile of grain sorghum, the least utilized staple crop, is unique, more diverse, and more abundant than in any other common cereal grain. It mainly contains phenolic acids, 3-deoxyanthocyanidins and condensed tannins. Sorghum polyphenols play a major role in plant defense against biotic and abiotic stresses and have many additional health benefits along with various industrial applications. The objective of this review is to discuss the phenolic compounds derived from grain sorghum and describe their role in plant defense, human health, and industrial applications.
Collapse
Affiliation(s)
- Pummy Kumari
- Department of Plant Breeding and Genetics, COA, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India.
| | - Vinod Kumar
- Department of Biochemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Rakesh Kumar
- Department of Microbiology, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Surender Kumar Pahuja
- Department of Plant Breeding and Genetics, COA, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| |
Collapse
|
26
|
Impact of Zn Nanoparticles Synthesized via Green and Chemical Approach on Okra (Abelmoschus esculentus L.) Growth under Salt Stress. SUSTAINABILITY 2021. [DOI: 10.3390/su13073694] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study investigated the green and chemical approaches for the preparation of Zn nanoparticles and their effect on the growth of okra plants under saline conditions. The leaf extract of Sorghum bicolor L. was used for the green synthesis of zinc nanoparticles (Zn-GNPs). Zinc nanoparticles (Zn-NPs) were also produced by the co-precipitation method (Zn-CNPs). The synthesized NPs were characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) and were applied foliarly in the range of 0.1%, 0.2%, 0.3% on okra plants. A marked increase in the shoot and root fresh and dry weight (g) and chlorophyll contents were observed under normal and saline conditions. An increase in antioxidant activity was observed under saline conditions. However, the foliar application of 0.3% Zn-GNPs was helpful in the regulation of the antioxidant defense system under a saline environment. Based on the results, it can be concluded that the use of Zn-GNPs is the most promising eco-friendly approach in mitigating salinity stress.
Collapse
|
27
|
Torbica A, Belović M, Popović L, Čakarević J, Jovičić M, Pavličević J. Comparative study of nutritional and technological quality aspects of minor cereals. Journal of Food Science and Technology 2021; 58:311-322. [PMID: 33505075 DOI: 10.1007/s13197-020-04544-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
In order to have a better insight into the quality of minor cereals, the aim of this research was to evaluate the nutritional, biochemical, physical and rheological properties of barley, rye, triticale, oat, sorghum and millet flours. Generally, all flours could be divided into two groups according to mineral content, ω-6/ω-3 fatty acids ratio and amino acid composition. Sorghum flour was characterized by the highest total phenolic content and was the only flour which contained detectable amounts of tannins. Sorghum and millet flours differed from other flours by lower water absorption index and higher temperature of starch gelatinization. Additionally, sorghum and millet flours could be analysed by Mixolab only using constant hydration and require more time to obtain complete hydration than other flours. All flours would require modification of standard breadmaking process in order to obtain quality of product similar to those already present at the market.
Collapse
Affiliation(s)
- Aleksandra Torbica
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, Novi Sad, Serbia
| | - Miona Belović
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, Novi Sad, Serbia
| | - Ljiljana Popović
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, Novi Sad, Serbia
| | - Jelena Čakarević
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, Novi Sad, Serbia
| | - Mirjana Jovičić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, Novi Sad, Serbia
| | - Jelena Pavličević
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, Novi Sad, Serbia
| |
Collapse
|
28
|
Ruiz-Hernández AA, Cárdenas-López JL, Cortez-Rocha MO, González-Aguilar GA, Robles-Sánchez RM. Optimization of germination of white sorghum by response surface methodology for preparing porridges with biological potential. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2020.1853814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Alan A. Ruiz-Hernández
- Departamento de Investigación y Posgrado en Alimentos, Universidad De Sonora, Sonora, México
| | - José L. Cárdenas-López
- Departamento de Investigación y Posgrado en Alimentos, Universidad De Sonora, Sonora, México
| | - Mario O. Cortez-Rocha
- Departamento de Investigación y Posgrado en Alimentos, Universidad De Sonora, Sonora, México
| | - Gustavo A. González-Aguilar
- Coordinación de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, México
| | | |
Collapse
|
29
|
A Comparative Study on Phenolic Content, Antioxidant Activity and Anti-Inflammatory Capacity of Aqueous and Ethanolic Extracts of Sorghum in Lipopolysaccharide-Induced RAW 264.7 Macrophages. Antioxidants (Basel) 2020; 9:antiox9121297. [PMID: 33353009 PMCID: PMC7767246 DOI: 10.3390/antiox9121297] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
Sorghum is an important cereal with diverse phenolic compounds that have potential health promoting benefits. The current study comparatively characterized the phenolic contents of two novel black-seeded sorghum lines (SC84 and PI570481) using different extraction systems (water, ethanol and their acidified counterparts) and evaluated their antioxidant and anti-inflammatory activities. Phenolic compositions were determined by spectrophotometric assays and HPLC analysis. Antioxidant activities were assessed by radical scavenging effects on nitric oxide (NO) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals, and the oxygen radical absorbance capacity (ORAC). Anti-inflammatory capacity was estimated by measuring levels of pro-inflammatory markers produced by lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Results showed that effects of solvent types and HCl on extraction efficiency differed among phenolic compounds and sorghum samples. Tannins were the most dominant polyphenols in the studied extracts (11.11-136.11 mg epicatechin equivalent/g sorghum). Sorghum extracts exerted more potent scavenging activity on DPPH than NO radicals. In LPS-activated RAW264.7 cells, sorghum extracts dose-dependently inhibited the production of NO, interleukin-6 (IL-6), and intracellular reactive oxygen species (ROS), with ethanolic extracts showing greater anti-inflammatory activity. Positive correlations were noted between tannin content and DPPH radical scavenging activity, and anti-inflammatory capacity. These results suggest the potential role of tannin-rich sorghum extracts against inflammation and associated diseases.
Collapse
|
30
|
Espitia-Hernández P, Chávez González ML, Ascacio-Valdés JA, Dávila-Medina D, Flores-Naveda A, Silva T, Ruelas Chacón X, Sepúlveda L. Sorghum ( Sorghum bicolor L.) as a potential source of bioactive substances and their biological properties. Crit Rev Food Sci Nutr 2020; 62:2269-2280. [PMID: 33280412 DOI: 10.1080/10408398.2020.1852389] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sorghum is the fifth cereal most produced in the world after wheat, rice, maize, and barley. In some regions, this crop is replacing maize, due to its high yield, resistance to drought and heat. There are several varieties of sorghum, whose coloration varies from cream, lemon-yellow, red, and even black. Pigmented sorghum grain is a rich source of antioxidants like polyphenols, mainly tannins, which have multiple benefits on human health such as, antiproliferative properties associated with the prevention of certain cancers, antioxidant activities related to the prevention of associated diseases to oxidative stress, antimicrobial and anti-inflammatory effects, it also improves glucose metabolism. Despite having these types of compounds, it is not possible to assimilate them, their use in the food industry has been limited, since sorghum is considered a food of low nutritional value, due to the presence of anti-nutritional factors such as strong tannins which form complexes with proteins and iron, thus reducing their digestibility. Based on these restrictions that this product has had as food for humans, the analysis of this review emphasizes the valorization of sorghum as a source of bioactive substances and the importance they confer on human health because of the biological potential it has.
Collapse
Affiliation(s)
- Pilar Espitia-Hernández
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, México
| | - Mónica L Chávez González
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, México
| | - Juan A Ascacio-Valdés
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, México
| | - Desiree Dávila-Medina
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, México
| | - Antonio Flores-Naveda
- Center for Training and Development in Seed Technology, Autonomous Agrarian University Antonio Narro, Buenavista, Saltillo, Coahuila, México
| | - Teresinha Silva
- Antibiotics Department, Bioscience Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Xóchitl Ruelas Chacón
- Food Science and Technology Department, Autonomous Agrarian University Antonio Narro, Buenavista, Saltillo, Coahuila, México
| | - Leonardo Sepúlveda
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, México
| |
Collapse
|
31
|
Silva TL, Lacerda UV, da Matta SLP, Queiroz VAV, Stringheta PC, Martino HSD, de Barros FAR. Evaluation of the efficacy of toasted white and tannin sorghum flours to improve oxidative stress and lipid profile in vivo. J Food Sci 2020; 85:2236-2244. [PMID: 32609891 DOI: 10.1111/1750-3841.15301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 12/29/2022]
Abstract
The objective of the present work was to evaluate and compare the effect of toasted white and tannin sorghum flours on lipid metabolism and antioxidant potential in vivo. Male spontaneously hypertensive rats (SHR) were induced to oxidative stress with paracetamol and fed a normal diet (AIN-93M) and diets containing toasted tannin sorghum flour and toasted white sorghum flour (without tannins), replacing 100% cellulose, during 29 days. Hepatotoxicity was assessed by biochemical tests and by quantifying oxidative stress markers. Groups that received toasted sorghum flour with and without tannins showed reduction of alanine aminotransferase (ALT) concentration and improvement of lipid profile, with increase of high-density lipoprotein (HDL) compared to paracetamol control, and did not differ statistically from the AIN-93M control. Moreover, toasted white sorghum flour presented similar efficacy in reducing oxidative stress in liver tissue compared to toasted tannin sorghum flour, although the former had lower total phenolic content and antioxidant capacity, suggesting a greater effect of small phenolic compounds, such as phenolic acids, in the prevention of oxidative stress. Therefore, toasted white and tannin sorghum flours had similar efficacy to improve the lipid profile and oxidative stress in rats treated with paracetamol, constituting potential sources of antioxidants, which can be used as promising ready-to-eat foods and as ingredients for the development of sorghum-based products. PRACTICAL APPLICATION: The health benefits of sorghum coupled with the growing interest of the food industry in producing healthier food products have motivated the development of toasted sorghum flours as potential sources of antioxidants and dietary fiber. We have demonstrated that consumption of toasted white and tannin sorghum flours by rats treated with paracetamol had similar efficacy to improve oxidative stress and lipid profile. Thus, these toasted sorghum flours have great potential to be used by the food industry as ready-to-eat foods or as ingredients in the development of various food products.
Collapse
Affiliation(s)
- Thaís Lessa Silva
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Udielle Vermelho Lacerda
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Paulo César Stringheta
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|
32
|
Gilchrist AK, Smolensky D, Ngwaga T, Chauhan D, Cox S, Perumal R, Noronha LE, Shames SR. High-polyphenol extracts from Sorghum bicolor attenuate replication of Legionella pneumophila within RAW 264.7 macrophages. FEMS Microbiol Lett 2020; 367:fnaa053. [PMID: 32188994 PMCID: PMC8023677 DOI: 10.1093/femsle/fnaa053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Polyphenols derived from a variety of plants have demonstrated antimicrobial activity against diverse microbial pathogens. Legionella pneumophila is an intracellular bacterial pathogen that opportunistically causes a severe inflammatory pneumonia in humans, called Legionnaires' Disease, via replication within macrophages. Previous studies demonstrated that tea polyphenols attenuate L. pneumophila intracellular replication within mouse macrophages via increased tumor necrosis factor (TNF) production. Sorghum bicolor is a sustainable cereal crop that thrives in arid environments and is well-suited to continued production in warming climates. Sorghum polyphenols have anticancer and antioxidant properties, but their antimicrobial activity has not been evaluated. Here, we investigated the impact of sorghum polyphenols on L. pneumophila intracellular replication within RAW 264.7 mouse macrophages. Sorghum high-polyphenol extract (HPE) attenuated L. pneumophila intracellular replication in a dose-dependent manner but did not impair either bacterial replication in rich media or macrophage viability. Moreover, HPE treatment enhanced both TNF and IL-6 secretion from L. pneumophila infected macrophages. Thus, polyphenols derived from sorghum enhance macrophage restriction of L. pneumophila, likely via increased pro-inflammatory cytokine production. This work reveals commonalities between plant polyphenol-mediated antimicrobial activity and provides a foundation for future evaluation of sorghum as an antimicrobial agent.
Collapse
Affiliation(s)
- Aubrey K Gilchrist
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, Kansas, 66506 USA
| | - Dmitriy Smolensky
- Grain Quality and Structure Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 1515 College Avenue, Manhattan, Kansas, 66506 USA
| | - Tshegofatso Ngwaga
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, Kansas, 66506 USA
| | - Deepika Chauhan
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, Kansas, 66506 USA
| | - Sarah Cox
- Grain Quality and Structure Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 1515 College Avenue, Manhattan, Kansas, 66506 USA
| | - Ramasamy Perumal
- Kansas State University Agricultural Research Center, 1232 240th Avenue, Hays, Kansas, 67601 USA
| | - Leela E Noronha
- Arthropod-borne Animal Disease Research Unit, Agricultural Research Service, U. S. Department of Agriculture, 1515 College Avenue, Manhattan, Kansas, 66506 USA
| | - Stephanie R Shames
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, Kansas, 66506 USA
| |
Collapse
|
33
|
Fox G, Nugusu Y, Nida H, Tedessa T, McLean G, Jordan D. Evaluation of variation in Ethiopian sorghum injera quality with new imaging techniques. Cereal Chem 2020. [DOI: 10.1002/cche.10252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Glen Fox
- Queensland Alliance for Agriculture and Food Innovation The University of Queensland St Lucia Qld Australia
- Department of Food Science Stellenbosch University Stellenbosch South Africa
| | - Yohannes Nugusu
- Ethiopian Institute of Agricultural Research Melkasa Ethiopia
| | - Habte Nida
- Ethiopian Institute of Agricultural Research Melkasa Ethiopia
| | - Taye Tedessa
- Ethiopian Institute of Agricultural Research Melkasa Ethiopia
| | - Greg McLean
- Department of Agriculture and Fisheries Toowoomba Qld Australia
| | - David Jordan
- Queensland Alliance for Agriculture and Food Innovation The University of Queensland St Lucia Qld Australia
| |
Collapse
|
34
|
Xiong Y, Zhang P, Warner RD, Fang Z. Sorghum Grain: From Genotype, Nutrition, and Phenolic Profile to Its Health Benefits and Food Applications. Compr Rev Food Sci Food Saf 2019; 18:2025-2046. [PMID: 33336966 DOI: 10.1111/1541-4337.12506] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 11/29/2022]
Abstract
Globally, sorghum is one of the most important but least utilized staple crops. Sorghum grain is a rich source of nutrients and health-beneficial phenolic compounds. The phenolic profile of sorghum is exceptionally unique and more abundant and diverse than other common cereal grains. The phenolic compounds in sorghum are mainly composed of phenolic acids, 3-deoxyanthocyanidins, and condensed tannins. Studies have shown that sorghum phenolic compounds have potent antioxidant activity in vitro, and consumption of sorghum whole grain may improve gut health and reduce the risks of chronic diseases. Recently, sorghum grain has been used to develop functional foods and beverages, and as an ingredient incorporated into other foods. Moreover, the phenolic compounds, 3-deoxyanthocyanidins, and condensed tannins can be isolated and used as promising natural multifunctional additives in broad food applications. The objective of this review is to provide a comprehensive understanding of nutrition and phenolic compounds derived from sorghum and their related health effects, and demonstrate the potential for incorporation of sorghum in food systems as a functional component and food additive to improve food quality, safety, and health functions.
Collapse
Affiliation(s)
- Yun Xiong
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, Univ. of Melbourne, Parkville, VIC, 3010, Australia
| | - Pangzhen Zhang
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, Univ. of Melbourne, Parkville, VIC, 3010, Australia
| | - Robyn Dorothy Warner
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, Univ. of Melbourne, Parkville, VIC, 3010, Australia
| | - Zhongxiang Fang
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, Univ. of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
35
|
Kaplan M. Assessment of grain minerals of Turkish sorghum ( Sorghum bicolor L.) landraces by GT biplot analysis. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- M. Kaplan
- University of Erciyes, Faculty of Agriculture, Department of Field Crops, Kayseri, 38090 Melikgazi, Turkey
| |
Collapse
|
36
|
Xiong Y, Zhang P, Warner RD, Fang Z. 3-Deoxyanthocyanidin Colorant: Nature, Health, Synthesis, and Food Applications. Compr Rev Food Sci Food Saf 2019; 18:1533-1549. [PMID: 33336915 DOI: 10.1111/1541-4337.12476] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 11/27/2022]
Abstract
3-Deoxyanthocyanidins are a rare type of anthocyanins that are present in mosses, ferns, and some flowering plants. They are water-soluble pigments and impart orange-red and blue-violet color to plants and play a role as phytoalexins against microbial infection and environmental stress. In contrast to anthocyanins, the lack of a hydroxyl group at the C-3 position confers unique chemical and biochemical properties. They are potent natural antioxidants with a number of potential health benefits including cancer prevention. 3-Deoxyanthocyanidin pigments have attracted much attention in the food industry as natural food colorants, mainly due to their higher stability during processing and handling conditions compared with anthocyanins. They are also photochromic compounds capable of causing a change in "perceived" color, when exposed to UV light, which can be used to design novel foods and beverages. Due to their interesting properties and potential industrial applications, great efforts have been made to synthesize these compounds. For biosynthesis, researchers have discovered the 3-deoxyanthocyanidin biosynthetic pathway and their biosynthetic genes. For chemical synthesis, advances have been made to synthesize the compounds in a simpler and more efficient way as well as looking for its novel derivative with enhanced coloration properties. This review summarizes the developments in the research on 3-deoxyanthocyanidin as a colorant, from natural sources to chemical syntheses and from health benefits to applications and future prospects, providing comprehensive insights into this group of interesting compounds.
Collapse
Affiliation(s)
- Yun Xiong
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Univ. of Melbourne, Parkville, VIC, 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Univ. of Melbourne, Parkville, VIC, 3010, Australia
| | - Robyn Dorothy Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Univ. of Melbourne, Parkville, VIC, 3010, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Univ. of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
37
|
Rao S, Chinkwo K, Santhakumar A, Johnson S, Blanchard C. Apoptosis Induction Pathway in Human Colorectal Cancer Cell Line SW480 Exposed to Cereal Phenolic Extracts. Molecules 2019; 24:E2465. [PMID: 31277499 PMCID: PMC6651285 DOI: 10.3390/molecules24132465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 01/29/2023] Open
Abstract
Cereal phenolic extracts have previously been investigated for their potential anticancer properties; however, the exact mechanisms involved in the inhibition of tumour growth are unclear. One possible mechanism is the induction of apoptosis which is characterised by cell shrinkage, protein fragmentation, and DNA degradation followed by rapid engulfment of cell debris by macrophages. This study examines the ability of phenolic extracts from four cereals: rice, barley, oats and sorghum to induce apoptosis on colorectal cancer cells SW480. Wholegrain extracts from pigmented varieties of red rice, purple rice, black sorghum, and brown sorghum showed a significant reduction in cancer cell proliferation. Morphological observation using APOPercentage™ dye indicated positive for apoptosis. Further analyses of Yunlu29 (rice), Shawaya Short Black 1 and IS1136 (sorghum) showed expression of p53 and confirmed activation of multiple caspases, specifically for caspase 3 and 7. Purple rice, on the other hand, did not upregulate caspase 3 and 7, hence, suggestive of cell cycle arrest. Therefore, phenolic compounds present in cereals such as pigmented rice and sorghum may suppress cancer cell proliferation through the activation of the apoptosis.
Collapse
Affiliation(s)
- Shiwangni Rao
- School of Biomedical Sciences, Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Kenneth Chinkwo
- School of Biomedical Sciences, Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Abishek Santhakumar
- School of Biomedical Sciences, Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Stuart Johnson
- Agriculture and Food Discipline, School of Molecular and Life Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia
| | - Christopher Blanchard
- School of Biomedical Sciences, Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
38
|
Irondi EA, Adegoke BM, Effion ES, Oyewo SO, Alamu EO, Boligon AA. Enzymes inhibitory property, antioxidant activity and phenolics profile of raw and roasted red sorghum grains in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Exploring the nutritional and phytochemical potential of sorghum in food processing for food security. ACTA ACUST UNITED AC 2019. [DOI: 10.1108/nfs-05-2018-0149] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeSorghum is quite comparable to wheat, rich source of nutrients with various health benefits, and therefore considered as a grain of future. The purpose of this paper is to review the bioactive active compounds, health benefits and processing of the sorghum. Sorghum is utilized for animal feeding rather than the human food usage. Therefore, this paper focuses on the emerging new health foods with benefits of the sorghum.Design/methodology/approachMajor well-known bibliometric information sources searched were the Web of Science, Google Scholar, Scopus and PubMed. Several keywords like nutritional value of sorghum, bioactive compounds present in sorghum, health benefits of sorghum and processing of sorghum were chosen to obtain a large range of papers to be analyzed. A final inventory of 91 scientific sources was made after sorting and classifying them according to different criteria based on topic, academic field country of origin and year of publication.FindingsFrom the literature reviewed, sorghum processing through various methods, including milling, malting, fermentation and blanching, bioactive compounds, as well as health benefits of sorghum were found and discussed.Originality/valueThrough this paper, possible processing methods and health benefits of sorghum are discussed after detailed studies of literature from journal articles.
Collapse
|
40
|
Abstract
Sorghum contains a wide array of phytochemicals and their levels are affected by the genotype. Phytochemicals identified in sorghum include phenolic acids, flavonoids, condensed tannins, polycosanols, phytosterols, stilbenes, and phenolamides. Most of these phytochemicals are concentrated in the bran fraction and have been shown to have several potential health benefits, which include antidiabetic, cholesterol-lowering, anti-inflammatory, and anticancer properties. This chapter gives an overview of sorghum genetics relevant to phytochemicals, phytochemicals identified in sorghum grain, and their potential health benefits.
Collapse
|
41
|
Rao S, Santhakumar AB, Chinkwo KA, Wu G, Johnson SK, Blanchard CL. Characterization of phenolic compounds and antioxidant activity in sorghum grains. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Girard AL, Awika JM. Sorghum polyphenols and other bioactive components as functional and health promoting food ingredients. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.10.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Rao S, Santhakumar AB, Chinkwo KA, Vanniasinkam T, Luo J, Blanchard CL. Chemopreventive Potential of Cereal Polyphenols. Nutr Cancer 2018; 70:913-927. [PMID: 30273076 DOI: 10.1080/01635581.2018.1491609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been identified that diet is one of the major contributing factors associated with the development of cancer and other chronic pathologies. In the recent years, supplementing regular diet with food and/or its components that contain chemopreventive properties has been considered an effective approach in reducing the incidence of cancer and other lifestyle associated diseases. This systematic review provides an exhaustive summary of the chemopreventive properties exhibited by everyday dietary ingredients such as rice, barley, oats, and sorghum. The studies both in vitro and in vivo reviewed have highlighted the potential role of their polyphenolic content as chemopreventive agents. Polyphenolic compounds including anthocyanins, tricin, protocatechualdehyde, avenanthramide, and 3-deoxyanthocyanins found in rice, barley, oats, and sorghum, respectively, were identified as compounds with potent bioactivity. Studies demonstrated that cereal polyphenols are likely to have chemopreventive activities, particularly those found in pigmented varieties. In conclusion, findings suggest that the consumption of pigmented cereals could potentially have an important role as a natural complementary cancer preventive therapeutic. However, further studies to develop a complete understanding of the mechanisms by which phenolic compounds inhibit cancerous cell proliferation are warranted.
Collapse
Affiliation(s)
- Shiwangni Rao
- a School of Biomedical Sciences , Charles Sturt University , Wagga Wagga , New South Wales , Australia.,b Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University , Wagga Wagga , New South Wales , Australia
| | - Abishek B Santhakumar
- a School of Biomedical Sciences , Charles Sturt University , Wagga Wagga , New South Wales , Australia.,b Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University , Wagga Wagga , New South Wales , Australia
| | - Kenneth A Chinkwo
- a School of Biomedical Sciences , Charles Sturt University , Wagga Wagga , New South Wales , Australia.,b Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University , Wagga Wagga , New South Wales , Australia
| | - Thiru Vanniasinkam
- a School of Biomedical Sciences , Charles Sturt University , Wagga Wagga , New South Wales , Australia
| | - Jixun Luo
- c New South Wales Department of Primary Industries , Yanco Agricultural Institute , Yanco , New South Wales , Australia
| | - Christopher L Blanchard
- a School of Biomedical Sciences , Charles Sturt University , Wagga Wagga , New South Wales , Australia.,b Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University , Wagga Wagga , New South Wales , Australia
| |
Collapse
|
44
|
SALAZAR-LÓPEZ NJ, GONZÁLEZ-AGUILAR G, ROUZAUD-SÁNDEZ O, ROBLES-SÁNCHEZ M. Technologies applied to sorghum (Sorghum bicolor L. Moench): changes in phenolic compounds and antioxidant capacity. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/fst.16017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Effects of fermented Sorghum bicolor L. Moench extract on inflammation and thickness in a vascular cell and atherosclerotic mice model. J Nat Med 2018; 73:34-46. [PMID: 30066240 DOI: 10.1007/s11418-018-1231-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Atherosclerosis is a major cause of coronary heart disease. As a result of the development of atherosclerotic lesions, the walls of blood vessels become thicker and inhibit blood circulation. Atherosclerosis is caused by a high-fat diet and vascular injury. Chronic arterial inflammation plays an important role in the pathogenesis of atherosclerosis. In particular, secretion of the pro-atherogenic cytokine tumor necrosis factor-α induces expression of endothelial adhesion molecules including P-selectin, vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1), which mediate attachment of circulating monocytes and lymphocytes. In this study, we examined the anti-atherosclerotic effect of sorghum, which is known to have anti-oxidant and anti-inflammatory activity. A 50% ethanol extract of Sorghum bicolor L. Moench fermented with Aspergillus oryzae NK (fSBE) was used for experiments. In vitro expression of endothelial adhesion molecules VCAM-1 and ICAM-1 and pro-inflammatory factor cyclooxygenase-2 was significantly decreased and that of the anti-atherogenic factor heme oxygenase-1 significantly increased by fSBE (P < 0.05). At the in vivo level, we examined fat droplets of liver tissue, and aortic thickness via histological analysis, and determined the blood lipid profile through chemical analysis. fSBE at a dose of 200 mg/kg significantly improved blood and vascular health (P < 0.05). Taken together, these results demonstrate that fSBE has potential as a therapeutic anti-atherosclerotic agent.
Collapse
|
46
|
Rao S, Schwarz LJ, Santhakumar AB, Chinkwo KA, Blanchard CL. Cereal phenolic contents as affected by variety and environment. Cereal Chem 2018. [DOI: 10.1002/cche.10085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shiwangni Rao
- School of Biomedical Sciences Charles Sturt University Wagga Wagga New South Wales Australia
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga New South Wales Australia
| | - Lachlan J. Schwarz
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga New South Wales Australia
- School of Agricultural and Wine Sciences Charles Sturt University Wagga Wagga New South Wales Australia
| | - Abishek B. Santhakumar
- School of Biomedical Sciences Charles Sturt University Wagga Wagga New South Wales Australia
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga New South Wales Australia
| | - Kenneth A. Chinkwo
- School of Biomedical Sciences Charles Sturt University Wagga Wagga New South Wales Australia
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga New South Wales Australia
| | - Christopher L. Blanchard
- School of Biomedical Sciences Charles Sturt University Wagga Wagga New South Wales Australia
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga New South Wales Australia
| |
Collapse
|
47
|
Smolensky D, Rhodes D, McVey DS, Fawver Z, Perumal R, Herald T, Noronha L. High-Polyphenol Sorghum Bran Extract Inhibits Cancer Cell Growth Through ROS Induction, Cell Cycle Arrest, and Apoptosis. J Med Food 2018; 21:990-998. [PMID: 29733262 DOI: 10.1089/jmf.2018.0008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As diet is one of the major controllable factors in cancer development, potentially chemopreventive foods are of significant interest to public health. One such food is sorghum (Sorghum bicolor), a cereal grain that contains varying concentrations of polyphenols. In a panel of 15 sorghum germplasm, we identified strains with higher polyphenol content than previously reported for this grain. Bran extracts from the germplasm with the highest and lowest polyphenol content were then tested against HepG2 and Caco2 cancer cells to assess effects on cancer cell viability, reactive oxygen species, apoptosis, DNA damage, cell cycle arrest, and protein expression patterns. High-polyphenol extracts, but not low-polyphenol extracts, reduced cell viability by inducing apoptosis and cell cycle arrest following production of reactive oxygen species and oxidative DNA damage. The results indicate that high-polyphenol sorghum bran extracts have potential anticancer properties and warrant further research, not only to test against specific cancers but also to elucidate underlying mechanisms of action.
Collapse
Affiliation(s)
- Dmitriy Smolensky
- 1 Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service , U.S. Department of Agriculture, Manhattan, Kansas, USA
| | - Davina Rhodes
- 2 Grain Quality and Structure Research Unit, Agricultural Research Service , U.S. Department of Agriculture, Manhattan, Kansas, USA
| | - D Scott McVey
- 1 Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service , U.S. Department of Agriculture, Manhattan, Kansas, USA
| | - Zachary Fawver
- 1 Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service , U.S. Department of Agriculture, Manhattan, Kansas, USA
| | - Ramasamy Perumal
- 3 Department of Agronomy, Kansas State University , Manhattan, Kansas, USA
| | - Thomas Herald
- 2 Grain Quality and Structure Research Unit, Agricultural Research Service , U.S. Department of Agriculture, Manhattan, Kansas, USA
| | - Leela Noronha
- 1 Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service , U.S. Department of Agriculture, Manhattan, Kansas, USA
| |
Collapse
|
48
|
Subcritical water extraction of polyphenolic compounds from sorghum (Sorghum bicolor L.) bran and their biological activities. Food Chem 2018; 262:14-20. [PMID: 29751901 DOI: 10.1016/j.foodchem.2018.04.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022]
Abstract
Subcritical water extraction (SWE), an environment-friendly technique, was applied to extract polyphenolics from sorghum bran. Extraction temperatures (°C), time (min), and solid-liquid ratio (mL/g) were investigated and optimized by Box-Behnken design. The optimized conditions for SWE was 144.5 °C of temperature, 21 min of time, and 35 mL/g of solid-liquid ratio, with a polyphenolics yield of 47.253 ± 0.375 mg GAE/g dw, which was in good agree with the predicted value. Comparing with hot water extraction (HWE), SWE resulted in a higher yield of polyphenolics, higher radical scavenging activities, and more efficient antiproliferative activity. Furthermore, major polyphenolic compositions of the extracts were identified and quantified by HPLC-ESI-MS/MS. Taxifolin, taxifolin hexoside, oligomeric procyanidins, and epicatechin were the most abundant polyphenolic compounds in the extracts. Taken together, SWE can be used as a effective extraction method for polyphenolics from sorghum bran, which could be used as a potential source of natural antioxidants.
Collapse
|
49
|
Salazar-López NJ, González-Aguilar GA, Rouzaud-Sández O, Robles-Sánchez M. Bioaccessibility of hydroxycinnamic acids and antioxidant capacity from sorghum bran thermally processed during simulated in vitro gastrointestinal digestion. Journal of Food Science and Technology 2018; 55:2021-2030. [PMID: 29892102 DOI: 10.1007/s13197-018-3116-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/01/2018] [Accepted: 03/12/2018] [Indexed: 11/26/2022]
Abstract
Sorghum is a source of hydroxycinnamic acids (HCA), which have shown antioxidant, anti-inflammatory and anti-proliferative capacities. However, a high proportion of them have low bioaccessibility due the complex structural disposition of the plant's cell wall. The effects of boiling and extrusion processes on sorghum bran and their effects on the antioxidant capacity and bioaccessibility of HCA during simulated in vitro gastrointestinal digestion were investigated. The bioaccessibility of phenolic compounds was significantly higher in extruded sorghum bran (38.4%) than that obtained by boiling (29.5%). This is consistent with the increase of the antioxidant capacity after in vitro digestion. In contrast, a low bioaccessibility of pure monomeric HCA was observed when they were exposed to in vitro gastrointestinal digestion. There were significant bioaccessibility reductions of 36.8, 19.5, 13.5, 62.1% for caffeic, ρ-coumaric, ferulic and sinapic acids, respectively, when unproccessed sorghum bran was added. Although the bioaccessibility of monomeric HCA was low, the total phenolic compounds and antioxidant capacity increased during the digestion simulation due to the thermal processes of extrusion and boiling. Extrusion and boiling could be utilized to produce food based on sorghum bran with biological potential.
Collapse
Affiliation(s)
- Norma Julieta Salazar-López
- 1Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Colonia Centro, C.P. 83000 Hermosillo, Sonora Mexico
- Programa de Ingeniería en Tecnología de Alimentos, Universidad Estatal de Sonora, Blvd. Rosales No. 189, Colonia Centro, C.P. 83100 Hermosillo, Sonora Mexico
| | - Gustavo A González-Aguilar
- 3Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a La Victoria km 0.6, C.P. 83304 Hermosillo, Sonora Mexico
| | - Ofelia Rouzaud-Sández
- 1Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Colonia Centro, C.P. 83000 Hermosillo, Sonora Mexico
| | - Maribel Robles-Sánchez
- 1Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Colonia Centro, C.P. 83000 Hermosillo, Sonora Mexico
| |
Collapse
|
50
|
Awika JM, Rose DJ, Simsek S. Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health. Food Funct 2018. [PMID: 29532826 DOI: 10.1039/c7fo02011b] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cereal grains and grain pulses are primary staples often consumed together, and contribute a major portion of daily human calorie and protein intake globally. Protective effects of consuming whole grain cereals and grain pulses against various inflammation-related chronic diseases are well documented. However, potential benefits of combined intake of whole cereals and pulses beyond their complementary amino acid nutrition is rarely considered in literature. There is ample evidence that key bioactive components of whole grain cereals and pulses are structurally different and thus may be optimized to provide synergistic/complementary health benefits. Among the most important whole grain bioactive components are polyphenols and dietary fiber, not only because of their demonstrated biological function, but also their major impact on consumer choice of whole grain/pulse products. This review highlights the distinct structural differences between key cereal grain and pulse polyphenols and non-starch polysaccharides (dietary fiber), and the evidence on specific synergistic/complementary benefits of combining the bioactive components from the two commodities. Interactive effects of the polyphenols and fiber on gut microbiota and associated benefits to colon health, and against systemic inflammation, are discussed. Processing technologies that can be used to further enhance the interactive benefits of combined cereal-pulse bioactive compounds are highlighted.
Collapse
Affiliation(s)
- Joseph M Awika
- Cereal Quality Laboratory, Soil & Crop Science Department, Texas A&M University, College Station, Texas, USA. and Nutrition and Food Science Department, Texas A&M University, College Station, Texas, USA
| | - Devin J Rose
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Senay Simsek
- North Dakota State University, Department of Plant Sciences, Fargo, ND 58105, USA
| |
Collapse
|