1
|
Rajaei Lak H, Bazargani‐Gilani B, Karami M. Different coating application methods: Zein-based edible coating containing Heracleum persicum essential oil for shelf-life enhancement of whey-less cheese. Food Sci Nutr 2024; 12:5990-6010. [PMID: 39139960 PMCID: PMC11317755 DOI: 10.1002/fsn3.4269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 08/15/2024] Open
Abstract
In this research, the efficiency of brushing (Br), dipping (Di), spraying (S), and enrobing (En) methods was compared in three concentrations of 10%, 15%, and 20% of corn zein (Z) edible coating containing 0.5% of Heracleum persicum essential oil (HEO) in the shelf-life improvement of whey-less cheese during 56 days of cold storage. The results of the photography and colorimetric (L*, a*, and b* parameters) of the samples showed that the En method in 20% of Z created a uniform, brilliant, and attractive surface on the cheese pieces compared to the other groups during the storage period, and the S, Br, and Di methods were in the next categories, respectively. The findings of the texture analysis of the samples showed that all of the treatments significantly (p ≤ .05) preserved the hardness of the cheese samples compared to the control group, and the En method containing Z 20% and HEO was the most effective treatment in preventing the hardness loss of the samples during the 56-day storage period. In all treatments, the growth of aerobic mesophilic bacteria, psychrotrophic bacteria, enterobacteriaceae, molds, and yeasts was significantly (p ≤ .05) reduced in comparison with the control sample, and the En method containing HEO and Z 20% was the most efficient in preventing the microbial growth. The rate of moisture loss, fat oxidation, and pH values of the studied samples significantly (p ≤ .05) decreased in the coated treatments containing a higher concentration of Z and HEO compared with other treatments during the storage period. According to the findings of this study, it can be concluded that the En technique containing Z20% and HEO0.5% was the most effective treatment in the shelf-life improvement of whey-less cheese during 56 days of the refrigerated storage period, and the S, Br, and Di methods were in the next ranks, respectively.
Collapse
Affiliation(s)
- Hadis Rajaei Lak
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineBu‐Ali Sina UniversityHamedanIran
| | - Behnaz Bazargani‐Gilani
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineBu‐Ali Sina UniversityHamedanIran
| | - Mostafa Karami
- Department of Food Science and Technology, College of Food IndustryBu‐Ali Sina UniversityHamedanIran
| |
Collapse
|
2
|
Monasterio A, Núñez E, Verdugo V, Osorio FA. Stability and Biaxial Behavior of Fresh Cheese Coated with Nanoliposomes Encapsulating Grape Seed Tannins and Polysaccharides Using Immersion and Spray Methods. Polymers (Basel) 2024; 16:1559. [PMID: 38891503 PMCID: PMC11174876 DOI: 10.3390/polym16111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
In the food industry context, where fresh cheese stands out as a highly perishable product with a short shelf life, this study aimed to extend its preservation through multi-layer edible coatings. The overall objective was to analyze the biaxial behavior and texture of fresh cheese coated with nanoliposomes encapsulating grape seed tannins (NTs) and polysaccharides (hydroxypropyl methylcellulose; HPMC and kappa carrageenan; KC) using immersion and spray methods, establishing comparisons with uncoated cheeses and commercial samples, including an accelerated shelf-life study. NT, HPMC, and KC were employed as primary components in the multi-layer edible coatings, which were applied through immersion and spray. The results revealed significant improvements, such as a 20% reduction in weight loss and increased stability against oxidation, evidenced by a 30% lower peroxide index than the uncoated samples. These findings underscore the effectiveness of edible coatings in enhancing the quality and extending the shelf life of fresh cheese, highlighting the innovative application of nanoliposomes and polysaccharide blends and the relevance of applying this strategy in the food industry. In conclusion, this study provides a promising perspective for developing dairy products with improved properties, opening opportunities to meet market demands and enhance consumer acceptance.
Collapse
Affiliation(s)
- Angela Monasterio
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile (USACH), Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile; (A.M.); (V.V.)
| | - Emerson Núñez
- Department of Fruit Production and Enology, School of Agricultural and Natural Systems, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - Valeria Verdugo
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile (USACH), Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile; (A.M.); (V.V.)
| | - Fernando A. Osorio
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile (USACH), Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile; (A.M.); (V.V.)
| |
Collapse
|
3
|
Casalini R, Ghisoni F, Bonetti L, Fiorati A, De Nardo L. Development of acid-free chitosan films in food coating applications: Provolone cheese as a case study. Carbohydr Polym 2024; 331:121842. [PMID: 38388050 DOI: 10.1016/j.carbpol.2024.121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Chitosan has been extensively explored in food coatings. Still, its practical application is largely hampered by its conventional wet processing in acetic acid, whose residuals negatively impact food quality and safety. Here, we propose a new method to formulate chitosan coatings for food applications by avoiding organic acid processing and validate them on a cheese model. The procedure entails modifying a previously reported process based on HCl chitosan treatment and neutralising the resulting gel. The obtained chitosan is solubilised in water using carbonic acid that forms in situ by dissolving carbon dioxide gas. The reversibility of water carbonation allows for easy removal of carbonic acid residues, resulting in acid-free chitosan films and coatings. The performance of the coating was tested against state-of-the-art chitosan-based and polymeric coatings. We preliminarily characterised the films' properties (water stability, barrier, and optical properties). Then, we assessed the performance of the coating on Provolone cheese as a food model (mass transfer and texture profiles over 14 days). The work demonstrated the advantage of the proposed approach in solving some main issues of food quality and safety, paving the way for an effective application of chitosan in future food contact applications.
Collapse
Affiliation(s)
- Roberto Casalini
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Filippo Ghisoni
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Lorenzo Bonetti
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy; INSTM, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy.
| | - Luigi De Nardo
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy; INSTM, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
4
|
Paula VB, Dias LG, Estevinho LM. Microbiological and Physicochemical Evaluation of Hydroxypropyl Methylcellulose (HPMC) and Propolis Film Coatings for Cheese Preservation. Molecules 2024; 29:1941. [PMID: 38731432 PMCID: PMC11085808 DOI: 10.3390/molecules29091941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Dairy products are highly susceptible to contamination from microorganisms. This study aimed to evaluate the efficacy of hydroxypropyl methylcellulose (HPMC) and propolis film as protective coatings for cheese. For this, microbiological analyses were carried out over the cheese' ripening period, focusing on total mesophilic bacteria, yeasts and moulds, lactic acid bacteria, total coliforms, Escherichia coli, and Enterobacteriaceae. Physicochemical parameters (pH, water activity, colour, phenolic compounds content) were also evaluated. The statistical analysis (conducted using ANOVA and PERMANOVA) showed a significant interaction term between the HPMC film and propolis (factor 1) and storage days (factor 2) with regard to the dependent variables: microbiological and physicochemical parameters. A high level of microbial contamination was identified at the baseline. However, the propolis films were able to reduce the microbial count. Physicochemical parameters also varied with storage time, with no significant differences found for propolis-containing films. Overall, the addition of propolis to the film influenced the cheeses' colour and the quantification of phenolic compounds. Regarding phenolic compounds, their loss was verified during storage, and was more pronounced in films with a higher percentage of propolis. The study also showed that, of the three groups of phenolic compounds (hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids), hydroxycinnamic acids showed the most significant losses. Overall, this study reveals the potential of using HPMC/propolis films as a coating for cheese in terms of microbiological control and the preservation of physicochemical properties.
Collapse
Affiliation(s)
- Vanessa B. Paula
- Doctoral School, University of León (ULE), Campus de Vegazana, 24007 León, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (L.G.D.); (L.M.E.)
| | - Luís G. Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (L.G.D.); (L.M.E.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Letícia M. Estevinho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (L.G.D.); (L.M.E.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
5
|
R S, Rasane P, Singh A, Singh J, Kaur S, Nanda V, Kaur J, Gunjal M, Bhadariya V, Ercisli S, Ullah R, Ali EA. Image analysis-based discoloration rate quantification and kinetic modeling for shelf-life prediction in herb-coated pear slices. Sci Rep 2024; 14:1647. [PMID: 38238415 PMCID: PMC10796316 DOI: 10.1038/s41598-024-51840-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
The present research study aimed to examine three different herb extract's effects on the discoloration rate of fresh-cut pear slices using an image analysis technique. Pear slices were sprayed and dip-coated with Ocimum basilicum, Origanum vulgare, and Camellia sinensis (0.1 g/ml) extract solution. During 15 days storage period with three days intervals, all sprayed/dip-coated pear slices were analyzed for the quality attribute (TA) and color parameters notably a*, b*, hue angle (H*), lightness (L*), and total color change (ΔE). Further, order kinetic models were used to observe the color changes and to predict the shelf-life. The results obtained showed that the applicability of image analysis helped to predict the discoloration rate, and it was better fitted to the first-order (FO) kinetic model (R2 ranging from 0.87 to 0.99). Based on the kinetic model, color features ΔE and L* was used to predict the shelf-life as they had high regression coefficient values. Thus, the findings obtained from the kinetic study demonstrated Camellia sinensis (assamica) extract spray-coated pear slices reported approximately 28.63- and 27.95-days shelf-stability without much discoloration compared with all other types of surface coating.
Collapse
Affiliation(s)
- Sathya R
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Aishvina Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vikas Nanda
- Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, 148106, India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Mahendra Gunjal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vishesh Bhadariya
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK-74078, USA
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
- HGF Agro, ATA Teknokent, TR-25240, Erzurum, Turkey
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Zheng H, Deng W, Yu L, Shi Y, Deng Y, Wang D, Zhong Y. Chitosan coatings with different degrees of deacetylation regulate the postharvest quality of sweet cherry through internal metabolism. Int J Biol Macromol 2024; 254:127419. [PMID: 37848115 DOI: 10.1016/j.ijbiomac.2023.127419] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
In this study, chitosan coatings with different degrees of deacetylation (DD, 88.1 % and 95.2 %) were electrostatically sprayed on sweet cherries to evaluate their impacts on postharvest characteristics and internal metabolism. The results showed that chitosan coating could effectively delay the change of weight, color, firmness, and maintain the content of total phenols, flavonoids and titratable acids, and inhibit the activities of β-galactosidase and polyphenol oxidase during cold storage. The storage qualities and physiological activities of sweet cherry were significantly correlated with the contents of sorbitol, 4-hydroxycinnamic acid, hydrogenated hydroxycinnamic acid, tyrosine, proline, glutamine, phenylalanine, and other metabolites. Chitosan coating may modulate fruit quality by inhibiting the energy metabolism, accelerating the accumulation of carbohydrates, and promoting the metabolism of phenylalanine and flavonoid. Especially, chitosan coating with 88.1 % DD had better wettability on sweet cherry's peel and displayed more obvious preservation effect through stronger metabolic regulation ability.
Collapse
Affiliation(s)
- Huiyuan Zheng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanqing Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Li Yu
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuchen Shi
- Shanghai SOLON Information Technology Co., Ltd., 479 Chundong Road, Shanghai, 201108, China
| | - Yun Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Danfeng Wang
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu Zhong
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
7
|
Gao X, Zheng Y, Zhong Y, Zhou R, Li B, Ma M. Preparation and Characterization of Novel Chitosan Coatings to Reduce Changes in Quality Attributes and Physiochemical and Water Characteristics of Mongolian Cheese during Cold Storage. Foods 2023; 12:2731. [PMID: 37509823 PMCID: PMC10379865 DOI: 10.3390/foods12142731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The objective of this study was to evaluate the effect of O-carboxymethyl chitosan coating on microbiological, physiochemical, and water characteristics of Mongolian cheese during refrigerated storage. O-carboxymethyl chitosan coatings, particularly at 1.5%, improved cheese preservation by significantly inhibiting microbial growth, reducing changes in protein and non-protein nitrogen, and preserving pH and titratable acidity. For texture profile analysis (TPA), the hardness, gumminess, and chewiness in O-CMC treatments were significantly more stable than those in the control during storage. In addition, the relaxation component and image of nuclear magnetic resonance (NMR) were used to analyze the internal water mobility of the cheese during storage. Compared with other treatments, the 1.5% O-carboxymethyl chitosan coating had the best overall preserving effect during storage. O-carboxymethyl chitosan coating could be used in cheese preservation applications and could extend the shelf life of Mongolian cheese. The cheese coated with 1.5% O-carboxymethyl chitosan coating ranked the highest in acceptability at the end of the storage period.
Collapse
Affiliation(s)
- Xin Gao
- College of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai 201415, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Yu Zhong
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ran Zhou
- College of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai 201415, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Quality Supervision, Inspection and Testing Center for Cold Storage and Refrigeration Equipment, Ministry of Agriculture, Shanghai 201306, China
| | - Bo Li
- College of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai 201415, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ming Ma
- College of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai 201415, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
8
|
Dai M, Xiong X, Cheng A, Zhao Z, Xiao Q. Development of pullulan-based nanocomposite films reinforced with starch nanocrystals for the preservation of fresh beef. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1981-1993. [PMID: 36260277 DOI: 10.1002/jsfa.12280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Incorporation of polysaccharide-based nanofillers is an effective strategy to fabricate bio-nanocomposite films with preferable mechanical, barrier, and surface hydrophobicity properties compared to pure biopolymer films. The objective of this research is to investigate the influence of starch nanocrystals obtained from native (NSNC) and waxy rice starch (WSNC) on the physical-chemical properties of pullulan-based nanocomposite films and their preservation performance on fresh beef. RESULTS Continuous SNCs network structure was observed for pullulan-10% SNCs nanocomposite films, whereas the percolation network of SNCs was destroyed and became no longer continuous with increasing SNCs concentration up to 20% in pullulan films. Among the tested films, pullulan-10% SNCs films showed the highest TS values, lowest WVP and OTR values, due to the formation of percolating SNCs network in pullulan matrix. It is noteworthy that the WVP and OTR values of pullulan-10% WSNC films were significantly lower than that of pullulan-10% NSNC films, probably due to higher hydrophobicity and crystallinity of WSNC compared with NSNC. Beef pieces coated with pullulan-SNCs films had higher L* and a* values, lower TVB-N, TBARS, and TVC values during 7 days' storage at 4 °C compared with samples coated with pullulan films. CONCLUSION Pullulan-SNCs nanocomposite films, especially pullulan-WSNC films, could be potentially used as a coating material for fresh beef due to their desirable oxygen and water barrier properties. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miaoqi Dai
- School of Food Science and Technology, Hunan Agricultural University, Hunan, China
| | - Xiong Xiong
- School of Food Science and Technology, Hunan Agricultural University, Hunan, China
| | - Anwei Cheng
- School of Food Science and Technology, Hunan Agricultural University, Hunan, China
| | - Zhengtao Zhao
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Qian Xiao
- School of Food Science and Technology, Hunan Agricultural University, Hunan, China
| |
Collapse
|
9
|
Yang X, Yu Q, Wang X, Gao W, Zhou Y, Yi H, Tang X, Zhao S, Gao F, Tang X. Progress in the application of spray-type antibacterial coatings for disinfection. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
10
|
Layer-by-Layer Coating Approach Based on Sodium Alginate, Sage Seed Gum, and Savory Oil: Shelf-Life Extension of Fresh Cheese. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Fang X, Li Y, Kua YL, Chew ZL, Gan S, Tan KW, Lee TZE, Cheng WK, Lau HLN. Insights on the potential of natural deep eutectic solvents (NADES) to fine-tune durian seed gum for use as edible food coating. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Polat Yemiş G, Sezer E, Sıçramaz H. Inhibitory Effect of Sodium Alginate Nanoemulsion Coating Containing Myrtle Essential Oil ( Myrtus communis L.) on Listeria monocytogenes in Kasar Cheese. Molecules 2022; 27:7298. [PMID: 36364124 PMCID: PMC9658201 DOI: 10.3390/molecules27217298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 03/09/2024] Open
Abstract
The present study aimed to characterize the physical properties of nanoemulsion-based sodium alginate edible coatings containing myrtle (Myrtus communis L.) essential oil and to determine its inhibitory effects on Listeria monocytogenes in fresh Kasar cheese during the 24-day storage at 4 °C. The GC-MS analysis showed that the main components of myrtle essential oil were 1,8-cineol (38.64%), α-pinene (30.19%), d-limonene (7.51%), and α-ocimene (6.57%). Myrtle essential oil showed an inhibitory effect on all tested L. monocytogenes strains and this effect significantly increased after ultrasonication. Minimum inhibitory and minimum bactericidal concentrations of myrtle essential oil nanoemulsion were found to be 4.00-4.67 mg/mL and 5.00-7.33 mg/mL, respectively. The antibacterial activity of myrtle essential oil nanoemulsion against L. monocytogenes was confirmed by the membrane integrity and FESEM analyses. Nanoemulsion coatings containing myrtle essential oil showed antibacterial activity against L. monocytogenes with no adverse effects on the physicochemical properties of cheese samples. Nanoemulsion coatings containing 1.0% and 2.0% myrtle essential oil reduced the L. monocytogenes population in cheese during the storage by 0.42 and 0.88 log cfu/g, respectively. These results revealed that nanoemulsion-based alginate edible coatings containing myrtle essential oil have the potential to be used as a natural food preservative.
Collapse
Affiliation(s)
- Gökçe Polat Yemiş
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan 54187, Turkey
- Sakarya University Research, Development, and Application Center (SARGEM), Serdivan 54187, Turkey
| | - Elif Sezer
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan 54187, Turkey
| | - Hatice Sıçramaz
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan 54187, Turkey
| |
Collapse
|
13
|
Sharafi H, Moradi M, Amiri S. Application of Cheese Whey Containing Postbiotics of Lactobacillus acidophilus LA5 and Bifidobacterium animalis BB12 as a Preserving Liquid in High-Moisture Mozzarella. Foods 2022; 11:3387. [PMID: 36359999 PMCID: PMC9655881 DOI: 10.3390/foods11213387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 09/06/2023] Open
Abstract
High-moisture mozzarella cheese (HMMC) is a highly perishable cheese with a short shelf life. In this study, the effects of UF cheese whey containing postbiotics from Lactobacillus acidophilus LA-5 (P-LA-5), Bifidobacterium animalis BB-12 (P-BB-12), and their combination on the microbial (i.e., psychrophiles, mesophiles, lactic acid bacteria, and mold-yeast population) and sensory properties of HMMC were investigated. Postbiotics were prepared in a cheese whey model medium as a novel growth media and used as a preserving liquid in HMMC. The results demonstrate that postbiotics reduced the growth of all microorganisms (1.5-2 log CFU/g reduction) and P-LA5 and P-BB12 had the highest antibacterial performance on mesophiles and psychrophiles, respectively. Mold and yeast had the highest susceptibility to the postbiotics. Postbiotics showed a significant effect on maintaining the microbial quality of HMMC during storage, proposing postbiotics as a new preserving liquid for HMMC.
Collapse
Affiliation(s)
- Houshmand Sharafi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University,
Urmia 1177, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University,
Urmia 1177, Iran
| | - Saber Amiri
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia 1177, Iran
| |
Collapse
|
14
|
Yin H, Yuanrong Z, Li Y, Zijing X, Yongli J, Yun D, Danfeng W, Yu Z. Optimization of antibacterial and physical properties of chitosan/citronella oil film by electrostatic spraying and evaluation of its preservation effectiveness on salmon fillets. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Glicerina V, Siroli L, Betoret E, Canali G, Dalla Rosa M, Lanciotti R, Romani S. Characterization and evaluation of the influence of an alginate, cocoa and a bilayer alginate-cocoa coating on the quality of fresh-cut oranges during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4454-4461. [PMID: 35092615 DOI: 10.1002/jsfa.11799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fresh-cut products are ready-to-use goods which retain the fresh characteristics of raw produce. However, numerous factors restrict the quality and shelf-life of fresh-cut products. One of the most promising, convenient and safe technologies to preserve the quality and to prolong the shelf-life of fresh fruits and vegetables is the application of edible coatings. RESULTS The aim of this study was to investigate the effects of different coatings (alginate-based, cocoa-based and a combination of them) on physicochemical, microbiological and sensory characteristics of fresh-cut oranges during storage. Preliminary rheological analyses were performed on coatings in order to characterize them. The three different coated orange samples were packaged in polyethylene terephthalate trays under atmospheric conditions and stored for 9 days at 6 °C. During storage, all samples were analysed for water activity, moisture, colour, texture, microbiological analyses and sensory quality. Orange samples coated with sodium alginate maintained the highest quality characteristics in terms of texture and microbiological properties, but not from a sensory point of view. Samples coated only with cocoa presented very high sensory attributes, but the lowest microbiological and textural quality. Samples covered in both alginate and cocoa demonstrated the best quality parameters throughout the whole storage period, including high sensory characteristics and the lowest microbiological cell loads (yeast and mesophilic aerobic bacteria under the threshold limit of 6.0 log cfu g-1 ). CONCLUSION The bilayer coating represented the best solution in order to develop new ready to-eat-fresh oranges with both high textural and sensory attributes and prolonged shelf-life. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Virginia Glicerina
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
| | - Ester Betoret
- Instituto de Agroquimica y Tecnologia de Alimentos (IATA) Calle catedratico Agustìn Escardino, Paterna, Spain
| | - Giada Canali
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
| | - Marco Dalla Rosa
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
| | - Rosalba Lanciotti
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
| | - Santina Romani
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
| |
Collapse
|
16
|
Optimisation and characterisation of prebiotic concentration of edible films containing Bifidobacterium animalis subsp. lactis BB-12® and its application to block type processed cheese. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Azhdari S, Moradi M. Application of antimicrobial coating based on carboxymethyl cellulose and natamycin in active packaging of cheese. Int J Biol Macromol 2022; 209:2042-2049. [PMID: 35504417 DOI: 10.1016/j.ijbiomac.2022.04.185] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
The effects of carboxymethyl cellulose (CMC)-natamycin (N; 0.05 and 0.5%) coating on the quality of high-moisture mozzarella cheese (HMMC) were examined. The cheeses were immersed in the coating solutions and then kept at 7 °C for 8 days and microbial specifications (i.e., total mesophilic count, total psychrophilic count, lactic acid bacteria, and yeast-mold), pH, weight loss, and sensory properties were examined. The results of the agar spot diffusion assay represented inhibitory effects of CMC-N coating solution on Aspergillus flavus, A. fumigatus, A. niger, Penicillium citrinum, and Candida albicans. In HMMC, the natamycin-free CMC coating caused a significant decrease (p < 0.05) in all microbial groups, while the addition of natamycin to the coating only reduced the count of mold and yeast. As a result, the coating with natamycin at 0.05 and 0.5% represented a 0.6 and 0.9 log cycle reduction in yeast-mold populations, respectively. Based on the total mesophilic count, the control samples reached the 7 log CFU/g on day 4, indicating a 4-day shelf life of HMMC, while in HMMC coated with and without natamycin this limit was achieved on the 8th day of storage, which indicates that the coatings have doubled the HMMC shelf life.
Collapse
Affiliation(s)
- Sajad Azhdari
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran.
| |
Collapse
|
18
|
Pomace-Cassava as Antioxidant Bio-Based Coating Polymers for Cheeses. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fruit and vegetable-based materials, rich in phenolic pigments, and especially anthocyanins, have attracted attention as promising sources for bio-based antioxidant coating polymers, being a non-toxic, natural, ecofriendly, and green label solution to lower oxidation degradation in oil-water emulsion food, such as cheeses. However, could their pomaces also be used in such materials? This work has investigated the use of jabuticaba peels and red cabbage stir pomace extracts as antioxidant additives for cheese coating polymers. The antioxidant capacity of the jabuticaba-red cabbage pomace cassava-based polymer was evaluated in vitro (total phenolic, total anthocyanin content and DPPH scavenging %) and in vivo (by coating Minas Frescal cheeses and monitoring their peroxide index increase during a 9-day shelf life, at 10 °C). An in vitro characterization has indicated a high antioxidant capacity for both pomace extracts, with a higher capacity observed for the jabuticaba peels. In vivo investigations indicated that the pomace-starch coatings have protected cheeses up to 8.5 times against oxidation when compared to the control, with a synergistic protector effect among pomaces. Physical–chemical characterizations (pH, acidity, total solids, ash, total protein, fat content and syneresis) have indicated no coating interference on the cheese’s development.
Collapse
|
19
|
Esparvarini Z, Bazargani‐Gilani B, Pajohi‐Alamoti M, Nourian A. Gelatin-starch composite coating containing cucumber peel extract and cumin essential oil: Shelf life improvement of a cheese model. Food Sci Nutr 2022; 10:964-978. [PMID: 35311173 PMCID: PMC8907735 DOI: 10.1002/fsn3.2730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 01/02/2023] Open
Abstract
In this study, the effects of gelatin-starch (GS) composite coating containing cucumber peel extract (CPE) and cumin essential oil (CEO) were evaluated on the shelf life enhancement of ultrafiltered (UF) cheese during 56 days of storage under refrigerated conditions. The obtained hydroethanolic CPE by the microwave method showed the best results in terms of the total phenolic content, reducing power, 2,2'-diphenyl-1-picrylhydrazyl (DPPH) activity, and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity compared to the immersion and ultrasound methods. The studied treatments were as follows: Control (C), GS, CPE, CEO, GS-CPE, GS-CEO, and GS-CPE-CEO. Scanning electron microscopic surface morphology of treated cheese samples showed the formation of a firm, integrated, flawless, and homogenous layer on the cheese slices of the GS-CPE-CEO treatment. All treatments significantly (p ≤ .05) decreased the total viable count, psychotropic bacteria, and yeast-mold population compared to the control group. Adding CEO and/or CPE to GS significantly (p ≤ .05) controlled undesirable changes in physical characteristics, such as weight, color, and hardness of the cheese slices. Throughout storage time, the coated cheese slices showed more stable chemical features in comparison to the uncoated cheese samples in terms of moisture, lipid oxidation, pH, and titratable acidity (TA). Sensory evaluation of the preparations showed that the GS coating containing CPE and CEO significantly (p ≤ .05) had pleasant effects on the sensory features (taste, odor, texture, and overall acceptability) of the cheese samples during storage time. It was concluded that composite coating of GS containing CPE and CEO could improve the microbial, physical, chemical, and sensory features of ultrafiltration (UF) cheese during refrigerated storage.
Collapse
Affiliation(s)
- Zahra Esparvarini
- Department of Food Hygiene and Quality ControlFaculty of Veterinary ScienceBu‐Ali Sina UniversityHamedanIran
| | - Behnaz Bazargani‐Gilani
- Department of Food Hygiene and Quality ControlFaculty of Veterinary ScienceBu‐Ali Sina UniversityHamedanIran
| | - Mohammadreza Pajohi‐Alamoti
- Department of Food Hygiene and Quality ControlFaculty of Veterinary ScienceBu‐Ali Sina UniversityHamedanIran
| | - Alireza Nourian
- Department of PathobiologyFaculty of Veterinary ScienceBu‐Ali Sina UniversityHamedanIran
| |
Collapse
|
20
|
Heat-denatured and alcalase-hydrolyzed protein films/coatings containing marjoram essential oil and thyme extract. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Olawuyi IF, Kim SR, Lee WY. Application of plant mucilage polysaccharides and their techno-functional properties' modification for fresh produce preservation. Carbohydr Polym 2021; 272:118371. [PMID: 34420702 DOI: 10.1016/j.carbpol.2021.118371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023]
Abstract
The use of edible coating/film to improve fresh produce's quality and shelf life is an old but reliable and popular method of preservation. Recently, plant-derived mucilages have been extensively used to prepare edible packages (MEPs). This review focuses on recent studies that characterize mucilages from different plants, and examine their specific applications as edible packages in preserving fruits and vegetables. Structure-function relations and corresponding influence on film-forming properties are discussed. This review also surveys the additive-modifications of MEPs techno-functional properties. MEPs from a range of plant sources are effective in preventing quality loss and improving the storability of various fruits and vegetables. The preservative mechanisms and essential techno-functional properties of MEPs required for fruit and vegetable packaging were summarized. The key findings summarized in this study will help promote the utilization of mucilages and draw attention to other novel applications of this valuable polymer.
Collapse
Affiliation(s)
- Ibukunoluwa Fola Olawuyi
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Young Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
22
|
Bioactive packaging based on delipidated egg yolk protein edible films with lactobionic acid and Lactobacillus plantarum CECT 9567: Characterization and use as coating in a food model. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Jafarzadeh S, Salehabadi A, Mohammadi Nafchi A, Oladzadabbasabadi N, Jafari SM. Cheese packaging by edible coatings and biodegradable nanocomposites; improvement in shelf life, physicochemical and sensory properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Influence of Two Different Coating Application Methods on the Maintenance of the Nutritional Quality of Fresh-Cut Melon during Storage. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study aimed at evaluating the effects of two coating application methods, spraying and dipping, on the quality of fresh-cut melons. An alginate-based coating containing both ascorbic and citric acid was applied at two concentrations (5% and 10%) with both methods on fresh-cut melon. The nutritional quality of the products was investigated during 11 days of storage at 10 °C. The suitability and adaptability of the applied coatings on the fruit were evaluated based on rheological and microstructural properties. Moisture, carotenoids, total polyphenols and ascorbic acid content were analyzed on melon samples during storage. Results showed that the coating solution applied by the dipping method and at the highest concentration (10%), allowed to better maintain some quality characteristics of fresh-cut melon, thanks also to the better coating homogeneity and higher thickness observed through microstructural analysis.
Collapse
|
25
|
Ozturkoglu-Budak S, Akal HC, Bereli N, Cimen D, Akgonullu S. Use of antimicrobial proteins of donkey milk as preservative agents in Kashar cheese production. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Feasibility of Using Carvacrol/Starch Edible Coatings to Improve the Quality of Paipa Cheese. Polymers (Basel) 2021; 13:polym13152516. [PMID: 34372119 PMCID: PMC8347108 DOI: 10.3390/polym13152516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Paipa cheese is the only Colombian semi-ripened cheese with protected geographical indication. In the current work, the effect of applying starch coatings carrying carvacrol on Paipa cheeses was analyzed. Coatings were prepared based on blends of potato starch (2 g/100 g), carvacrol (0.1 g/100 g), polysorbate 80, glycerol, and water and applied to the cheese's surface by brushing. Uncoated cheeses were also analyzed for comparison. Moreover, films were prepared and characterized in terms of their moisture content, water vapor permeability, mechanical properties, transparency, water solubility, swelling (%), and antioxidant activity. Carvacrol/starch films showed a slight decrease in their water solubility and Young's modulus, while not significant changes were observed in water vapor permeability, moisture content, transparency, and swelling behavior, in comparison with the starch films. After application on the Paipa cheeses, the carvacrol/starch coatings enhanced the brightness of the cheeses without causing significant changes in water activity, moisture content, color attributes, and mesophilic aerobic bacteria and molds/yeasts count. Moreover, edible coatings have a significant effect on the hardness, the gumminess, the springiness, and the chewiness of the Paipa cheese. Coated cheeses were better preserved at day 60 of storage because they did not show changes in their lightness, hardness, and springiness.
Collapse
|
27
|
Iqbal MW, Riaz T, Yasmin I, Leghari AA, Amin S, Bilal M, Qi X. Chitosan‐Based Materials as Edible Coating of Cheese: A Review. STARCH-STARKE 2021. [DOI: 10.1002/star.202100088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Muhammad Waheed Iqbal
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
- Riphah College of Rehabilitation and Allied Health Sciences Riphah International University Faisalabad 38000 Pakistan
| | - Tahreem Riaz
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Iqra Yasmin
- Center of Excellence for Olive Research and Training Barani Agricultural Research Institute Chakwal 48800 Pakistan
- Department of Food Science and Technology Government College Women University Faisalabad 38000 Pakistan
| | - Ali Ahmad Leghari
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Sabahat Amin
- National Institute of Food Science & Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering Huaiyin Institute of Technology Huaian 223003 China
| | - Xianghui Qi
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
| |
Collapse
|
28
|
Lastra Ripoll S, Quintana Martínez SE, García
Zapateiro LA. Rheological and Microstructural Properties of Xanthan Gum-Based Coating Solutions Enriched with Phenolic Mango ( Mangifera indica) Peel Extracts. ACS OMEGA 2021; 6:16119-16128. [PMID: 34179657 PMCID: PMC8223432 DOI: 10.1021/acsomega.1c02011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Mango (Mangifera indica) is a tropical fruit highly desired for its vitamin content and flavor, but its peel is considered a byproduct or waste. However, mango peel contains some bioactive compounds that improve food quality matrix for the development of edible coatings or films. The effect of phenolic mango (Mangifera indica) peel extracts on the physicochemical, rheological, and microstructural properties of xanthan gum-based coating solutions was evaluated. The obtained solutions were stable during the study period and presented a non-Newtonian fluid type shear-thinning behavior described by Ostwald-de Waele. Moreover, viscoelastic properties revealed that the elastic modulus was higher than the viscous modulus, showing a characteristic of weak gels. The addition of extracts did not alter the shear rate and viscoelastic character of the solutions, preserving the pseudoplasticity and weak gel behavior of xanthan gum associated with spreadability and adherence of coatings; it modified the gel structure as a function of temperature. Furthermore, the coating solutions of xanthan gum and phenolic mango peel extracts are an alternative to develop complex food systems such as edible coatings, edible films, or delivery systems.
Collapse
|
29
|
Lisitsyn A, Semenova A, Nasonova V, Polishchuk E, Revutskaya N, Kozyrev I, Kotenkova E. Approaches in Animal Proteins and Natural Polysaccharides Application for Food Packaging: Edible Film Production and Quality Estimation. Polymers (Basel) 2021; 13:1592. [PMID: 34063360 PMCID: PMC8156411 DOI: 10.3390/polym13101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Natural biopolymers are an interesting resource for edible films production, as they are environmentally friendly packaging materials. The possibilities of the application of main animal proteins and natural polysaccharides are considered in the review, including the sources, structure, and limitations of usage. The main ways for overcoming the limitations caused by the physico-chemical properties of biopolymers are also discussed, including composites approaches, plasticizers, and the addition of crosslinking agents. Approaches for the production of biopolymer-based films and coatings are classified according to wet and dried processes and considered depending on biopolymer types. The methods for mechanical, physico-chemical, hydration, and uniformity estimation of edible films are reviewed.
Collapse
Affiliation(s)
- Andrey Lisitsyn
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Anastasia Semenova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Viktoria Nasonova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia;
| | - Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia;
| |
Collapse
|
30
|
Moradi M, Kousheh SA, Razavi R, Rasouli Y, Ghorbani M, Divsalar E, Tajik H, Guimarães JT, Ibrahim SA. Review of microbiological methods for testing protein and carbohydrate-based antimicrobial food packaging. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Some Remarks on Colloid Stability: Selected Examples Taken from the Milk Chain for Food Prepares. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4040058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Different forces play key roles in the stability of food colloid dispersions. The focus here is on those controlling attraction and/or repulsion, which concur to stabilization, phase separation, coagulation and are quite evident in water-based systems. The combination of attractive and repulsive forces favors or hinders the association of colloid entities; such processes are often met in food technology. The above processes depend on the forces at work and colloid concentration in the medium (i.e., on interparticle distance). Worked examples deal with milk manipulation procedures, ending in cheese formation. The whole milk sequence is controlled by the combination of forces leading to aggregation and phase separation of casein and other milk components. Thereafter, one gets either fresh, for prompt consumption, or aged cheeses. The combination of attractive (van der Waals, vdW, and depletion) with repulsive (double layer, DL, but also steric) forces results in the dominance of aggregation versus dispersion modes in the milk transformation chain, which depends on the distance among colloid particles, on the amplitude of the mentioned forces, and on their decay. The combined role of double layer and van der Waals (vdW) forces is at the basis of the DLVO theory on colloid stability, which is properly modified when these forces overlap with steric stabilization and, eventually, with depletion. Steric effects are dispersive, and depletion ones favor colloid nucleation in a single phase. The milk manipulation chain is a worked example of the intriguing association features controlled by the mentioned forces (and of ancillary ones, as well), and indicates which forces favor the formation of products such as parmesan or mozzarella cheese but are not alien to the preparation of many other dairy products.
Collapse
|
32
|
Tavassoli-Kafrani E, Gamage MV, Dumée LF, Kong L, Zhao S. Edible films and coatings for shelf life extension of mango: a review. Crit Rev Food Sci Nutr 2020; 62:2432-2459. [PMID: 33280405 DOI: 10.1080/10408398.2020.1853038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Edible films and coatings are eco-friendly promising materials for preserving the quality and extending the shelf life of fresh and minimally-processed fruits. They can form protective layers around fruits, regulate their respiration rates, and protect them from loss of water, tissue softening, browning, and microbial contamination. Edible films and coatings have many advantages over other post-harvest treatments. They can add commercial value to fruits by enhancing their appearance, and act as carriers of functional ingredients, such as antioxidants, antimicrobial agents and nutraceuticals. Mango, a highly perishable tropical fruit, has a short post-harvest life, which limits transport to distant markets. Application of edible films and coatings on mango fruits is an effective method to preserve their quality and safety. This paper provides an overview of desirable properties for films and coatings, and recent development in different edible coatings for both fresh and minimally-processed mango. The most popular edible coating materials, such as chitosan, waxes, starch, gums, and cellulose used for mango are reviewed. The commercialization of coating formulations and equipment used for application of coatings are discussed. The environmental impacts, safety aspects, and the challenges encountered are outlined. The opportunities to use other coating materials, such as aloe-vera gel, microbial polysaccharides, and photosynthetic microorganisms are also examined.
Collapse
Affiliation(s)
- Elham Tavassoli-Kafrani
- Geelong, Institute for Frontier Materials, Deakin University, Melbourne, Victoria, Australia
| | | | - Ludovic F Dumée
- Geelong, Institute for Frontier Materials, Deakin University, Melbourne, Victoria, Australia
| | - Lingxue Kong
- Geelong, Institute for Frontier Materials, Deakin University, Melbourne, Victoria, Australia
| | - Shuaifei Zhao
- Geelong, Institute for Frontier Materials, Deakin University, Melbourne, Victoria, Australia
| |
Collapse
|
33
|
Bioactive synbiotic coatings with lactobionic acid and Lactobacillus plantarum CECT 9567 in the production and characterization of a new functional dairy product. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Effect of whey protein edible films containing plant essential oils on microbial inactivation of sliced Kasar cheese. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100567] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Suhag R, Kumar N, Petkoska AT, Upadhyay A. Film formation and deposition methods of edible coating on food products: A review. Food Res Int 2020; 136:109582. [PMID: 32846613 DOI: 10.1016/j.foodres.2020.109582] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
The greatest challenge encountered by the food manufacturer is the loss of quality of food products during storage, which eventually adds to the waste. Edible packaging is known as a potential alternative to protecting food quality and improving shelf life by delaying microbial spoilage and providing moisture and gas barrier properties. Developments in edible packaging and technology have shown promising results in enhancing the shelf life of food products. In 2016, the edible packaging market was valued at $697 million and by 2023 is expected to hit $1097 million growing at a compound annual growth rate (CGAR) of 6.81% from 2017 to 2023 at global level. In global edible packaging markets specific industries including MonoSol LLC, Tate & Lyle Plc, WikiCell Designs Inc., JRF Technology LLC, Safetraces, Inc., BluWrap, Skipping Rocks Lab, Tipa Corp., Watson Inc., and Devro plc have played a key role. Edible packaging can be applied in two forms: (i) edible coating applied directly on the food product or (ii) preformed film wrapped around the food product. The aim of this study is to review different methods of film formation and edible coating depositions. Edible films can be produced using two methods, wet (casting) and dry (extrusion) processes; and methods such as dipping, spraying, fluidized-bed, and panning are used for deposition of edible coatings on the surface of food product. Casting and dipping methods for film formation and coating deposition, respectively, are easy to use and are preferred methods on a lab scale; whereas extrusion and spraying are preferred methods for film formation and coating deposition, respectively, on a commercial scale. This work can help researchers and industries to select an efficient and cost-effective method for the development of edible film/coating for specific application. Further study and evaluation of practical applications of methods of edible packaging should be carried out within the main purpose of keeping food safe with acceptable quality for extended period of time.
Collapse
Affiliation(s)
- Rajat Suhag
- National Institute of Food Technology Entrepreneurship and Management Kundli, Sonipat, Haryana 131028, India
| | - Nishant Kumar
- National Institute of Food Technology Entrepreneurship and Management Kundli, Sonipat, Haryana 131028, India.
| | - Anka Trajkovska Petkoska
- St. Kliment Ohridski University - Bitola, Faculty of Technology and Technical Sciences, Dimitar Vlahov, 4000 Veles, The Former Yugolav Republic of Macedonia, Macedonia
| | - Ashutosh Upadhyay
- National Institute of Food Technology Entrepreneurship and Management Kundli, Sonipat, Haryana 131028, India
| |
Collapse
|
36
|
Huang Y, Gu C, He S, Zhu D, Liu X, Chen Z. Development and characterization of an edible chitosan-whey protein nano composite film for chestnut (Castanea mollissima Bl.) preservation. J Food Sci 2020; 85:2114-2123. [PMID: 32519374 DOI: 10.1111/1750-3841.15174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/03/2020] [Accepted: 04/23/2020] [Indexed: 11/27/2022]
Abstract
Chitosan (CHI) and whey protein are usually used to prepare edible films for food preservation. However, the composite film composed of the two components does not yield satisfactory properties for chestnut preservation. In this study, nano-cellulose and cinnamaldehyde (CMA) were added to CHI and whey protein, creating a new composite film with strong water retention, bacteriostatic, and mechanical properties. The water vapor permeability (WVP) of the film decreased by 21.61% with the addition of 0.5% (w/v) nano-cellulose, and 23.02% with the addition of 0.3% (w/v) CMA. Furthermore, water solubility (WS) decreased 22.05%, and the density of the film was significantly improved with the addition of 0.3% (w/v) CMA. The optimized formula of the film was CHI 2.5% (w/v), whey protein 3.0% (w/v), nano-cellulose 0.5% (w/v), CMA 0.3% (w/v), and pH 3.8, as determined by orthogonal testing L9(34 ), with fuzzy comprehensive assessment, of WVP, WS, tensile strength, and elongation at break. The film clearly inhibited the growth of E. coli, S. aureus, and Chinese chestnut fungus, destroying the mycelial structure of the fungus. In addition, coating effectively reduced the weight loss, mildew rate, and calcification index during 16 days of storage of chestnuts at 25 °C.
Collapse
Affiliation(s)
- Yukai Huang
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Caiqin Gu
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Shan He
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China.,Institute for NanoScale Scale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, 5042, Australia
| | - Dongxue Zhu
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xiuchun Liu
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Zeyao Chen
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| |
Collapse
|
37
|
Mohamed SA, El-Sakhawy M, El-Sakhawy MAM. Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydr Polym 2020; 238:116178. [DOI: 10.1016/j.carbpol.2020.116178] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 01/21/2023]
|
38
|
Influence of pitanga (Eugenia uniflora L.) leaf extract and/or natamycin on properties of cassava starch/chitosan active films. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100498] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Olivo PM, Da Silva Scapim MR, Miazaki J, Madrona GS, Maia LF, Rodrigues BM, Dos Santos Pozza MS. Sodium alginate with turmeric coating for ripened cheeses. Journal of Food Science and Technology 2020; 57:2364-2369. [PMID: 32431362 DOI: 10.1007/s13197-020-04438-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/05/2020] [Accepted: 04/08/2020] [Indexed: 11/26/2022]
Abstract
Artisanal cheeses produced with high coliform counts are commonly on the market in several countries. The bioactive edible coating use appears as technological innovation in the dairy derivatives market to improve quality and increasing the products shelf life. The objective of this study was to evaluate the characteristics of cheeses produced with Lactobacillus helveticus containing high coliform counts and coated with tumeric and sodium alginate. The coatings were evaluated for mechanical properties, water steam permeability and sorption isotherm. The experimental design was completely randomized and the treatments consisted of sodium alginate and turmeric 1% (AGAT) edible cover and the other one without edible cover (SEMC), data were analyzed by the Proc GLM SAS 9.3 program.The coated cheeses had higher microbial growth although the total coliform bacteria were reduced according to the storage time. For instrumental color, there was no significant difference between treatments. Coverage significantly altered hardness, gumminess, chewiness and cohesiveness over time, while elasticity was not affected. The coating presence was not significant for water steam permeability and mechanical properties. The tested solution did not effectively improve microbiological quality, however, coated cheese samples showed increased lactic acid bacteria, water activity and improved cheese texture, making them softer, with less elasticity, cohesion and chewing.
Collapse
Affiliation(s)
- Paula Martins Olivo
- 1Animal Science, Maringá State University (UEM), Av Colombo 5790, Jardim Universitário, Maringá, PR CEP 87020-900 Brazil
| | | | | | | | | | | | - Magali Soares Dos Santos Pozza
- 1Animal Science, Maringá State University (UEM), Av Colombo 5790, Jardim Universitário, Maringá, PR CEP 87020-900 Brazil
| |
Collapse
|
40
|
Olawuyi IF, Kim SR, Hahn D, Lee WY. Influences of combined enzyme-ultrasonic extraction on the physicochemical characteristics and properties of okra polysaccharides. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105396] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
The preservation performance of chitosan coating with different molecular weight on strawberry using electrostatic spraying technique. Int J Biol Macromol 2020; 151:278-285. [PMID: 32081757 DOI: 10.1016/j.ijbiomac.2020.02.169] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 01/08/2023]
Abstract
In this study, chitosan (CH) coating with different number-average molecular weight (MW, ca. 5, 19 and 61 kDa) was electrostatic sprayed on strawberry. The effects of MW on strawberry quality changes were evaluated during 15 days of storage at 4 °C. The qualities of strawberry included mold growth, weight loss, firmness, total soluble solids (TSS), pH, flavonoids content, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. Results showed that CH coating could significantly maintain the strawberry qualities during storage compared to uncoated treatment. CH coating with 61 kDa was more effective in retarding the increases of pH and MDA, and could better maintain flavonoids content. However, MW had no significant impact on mold growth, weight loss, firmness, SOD activity of coated strawberry. According to evaluation criteria, CH coating with 61 kDa had better performance on strawberry preservation with the highest synthetic value (6.93), and could be used to maintain quality and prolong the shelf life of strawberry during cold storage.
Collapse
|
42
|
Egg quality and safety with an overview of edible coating application for egg preservation. Food Chem 2019; 296:29-39. [DOI: 10.1016/j.foodchem.2019.05.182] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/22/2019] [Accepted: 05/26/2019] [Indexed: 11/23/2022]
|
43
|
Jiang Y, Yu L, Hu Y, Zhu Z, Zhuang C, Zhao Y, Zhong Y. Electrostatic spraying of chitosan coating with different deacetylation degree for strawberry preservation. Int J Biol Macromol 2019; 139:1232-1238. [DOI: 10.1016/j.ijbiomac.2019.08.113] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022]
|
44
|
Novel Edible Coating with Antioxidant and Antimicrobial Activities Based on Whey Protein Isolate Nanofibrils and Carvacrol and Its Application on Fresh-Cut Cheese. COATINGS 2019. [DOI: 10.3390/coatings9090583] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The composition and properties of edible coatings (ECs) will significantly influence their effects of food preservation. For the first time, whey protein isolates nanofibers (WPNFs), as a novel material with high hydrophobicity and antioxidant activity, combined with carvacrol (CA) as an antimicrobial agent and glycerol (Gly) as a plasticizer, was used to prepare edible coating (WPNFs-CA/Gly) for preserving fresh-cut Cheddar cheese. The prepared WPNFs and ECs emulsions have been investigated with transmission electron microscopy. Furthermore, the antioxidant activity of ECs emulsions, antimicrobial activity of edible films, and the physical properties of edible films, such as micromorphology, thickness, transparency, and moisture content, have also been evaluated. The weight losses and physical characteristics of both coated and uncoated fresh-cut Cheddar cheese samples have been assessed during storage. The DPPH free radical scavenging rate of WPNFs-CA/Gly emulsion was up to 67.89% and the reducing power was 0.821, which was higher than that of WPI-CA/Gly emulsions. The antimicrobial activity of WPNFs-CA/Gly films was nearly 2.0-fold higher than that of WPNFs/Gly films for the presence of CA. The WPNFs-CA/Gly films had smooth and continuous surfaces, and the transparency reached 49.7% and the moisture content was 26.0%, which was better than that of WPI-CA/Gly films. Furthermore, Cheddar cheese with WPNFs-CA/Gly coatings has shown lower weight losses (15.23%) and better textural properties than those uncoated samples. This in-depth study has provided a valuable and noteworthy approach about the novel edible coating material.
Collapse
|
45
|
Chakravartula SSN, Soccio M, Lotti N, Balestra F, Dalla Rosa M, Siracusa V. Characterization of Composite Edible Films Based on Pectin/Alginate/Whey Protein Concentrate. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2454. [PMID: 31374873 PMCID: PMC6696009 DOI: 10.3390/ma12152454] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/05/2022]
Abstract
Edible films and coatings gained renewed interest in the food packaging sector with polysaccharide and protein blending being explored as a promising strategy to improve properties of edible films. The present work studies composite edible films in different proportions of pectin (P), alginate (A) and whey Protein concentrate (WP) formulated with a simplex centroid mixture design and evaluated for physico-chemical characteristics to understand the effects of individual components on the final film performance. The studied matrices exhibited good film forming capacity, except for whey protein at a certain concentration, with thickness, elastic and optical properties correlated to the initial solution viscosity. A whey protein component in general lowered the viscosity of the initial solutions compared to that of alginate or pectin solutions. Subsequently, a whey protein component lowered the mechanical strength, as well as the affinity for water, as evidenced from an increasing contact angle. The effect of pectin was reflected in the yellowness index, whereas alginate and whey protein affected the opacity of film. Whey protein favored higher opacity, lower gas barrier values and dense structures, resulting from the polysaccharide-protein aggregates. All films displayed however good thermal stability, with degradation onset temperatures higher than 170 °C.
Collapse
Affiliation(s)
- Swathi Sirisha Nallan Chakravartula
- Department of Agricultural and Food Sciences- DISTAL, University of Bologna, Campus of Food Science, P.zza Goidanich 60, 47521 Cesena, Italy
| | - Michela Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Federica Balestra
- Department of Agricultural and Food Sciences- DISTAL, University of Bologna, Campus of Food Science, P.zza Goidanich 60, 47521 Cesena, Italy
| | - Marco Dalla Rosa
- Department of Agricultural and Food Sciences- DISTAL, University of Bologna, Campus of Food Science, P.zza Goidanich 60, 47521 Cesena, Italy
| | - Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania (CT), Italy.
| |
Collapse
|
46
|
Effect of molecular weight on the properties of chitosan films prepared using electrostatic spraying technique. Carbohydr Polym 2019; 212:197-205. [DOI: 10.1016/j.carbpol.2019.02.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
|
47
|
Abstract
Consumer awareness about the damages that plastic packaging waste cause to the environment, coupled with bio-economy and circular economy policies, are pushing plastic packaging versus the use of bio-based and biodegradable materials. In this contest, even cosmetic packaging is looking for sustainable solutions, and research is focusing on modifying bio-based and biodegradable polymers to meet the challenging requirements for cosmetic preservation, while maintaining sustainability and biodegradability. Several bio-based and biodegradable polymers such as poly(lactic acid), polyhydroxyalkanoates, polysaccharides, etc., are available, and some first solutions for both rigid and flexible packaging are already present on the market, while many others are under study and optimization. A fruitful cooperation among researchers and industries will drive the cosmetic sector toward being more ecological and contributing to save our environment.
Collapse
|
48
|
Bouarab Chibane L, Degraeve P, Ferhout H, Bouajila J, Oulahal N. Plant antimicrobial polyphenols as potential natural food preservatives. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1457-1474. [PMID: 30206947 DOI: 10.1002/jsfa.9357] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND The growing demand for natural food preservatives in the last decade has promoted investigations on their application for preserving perishable foods. In this context, the present review is focused on discussing the prospective application of plant extracts containing phenolics or isolated plant phenolics as natural antimicrobials in foods. Plant essential oils are outside the scope of this review since utilization of their antimicrobial activity for food preservation has been extensively reviewed. RESULTS Although the exact antimicrobial mechanisms of action of phenolic compounds are not yet fully understood, it is commonly acknowledged that they have diverse sites of action at the cellular level. Antimicrobial phenolics can be added directly to the formulation of perishable food products or incorporated into food-contact materials to release them in the immediate zone of perishable foods. Edible coatings or active food packaging materials can thus be used as carriers of plant bioactive compounds. CONCLUSION These materials could be an interesting delivery system to improve the stability of phenolics in foods and to improve the shelf life of perishable foods. This review will thus provide an overview of current knowledge of the antimicrobial activity of phenolic-rich plant extracts and of the promises and limits of their exploitation for the preservation of perishable foods. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lynda Bouarab Chibane
- BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), EMA 3733, Univ Lyon, Université Claude Bernard Lyon 1, Isara Lyon, Bourg en Bresse, France
| | - Pascal Degraeve
- BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), EMA 3733, Univ Lyon, Université Claude Bernard Lyon 1, Isara Lyon, Bourg en Bresse, France
| | | | - Jalloul Bouajila
- Faculté de Pharmacie de Toulouse, Laboratoire de Génie Chimique, UMR CNRS 5503, Université Paul Sabatier, Toulouse, France
| | - Nadia Oulahal
- BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), EMA 3733, Univ Lyon, Université Claude Bernard Lyon 1, Isara Lyon, Bourg en Bresse, France
| |
Collapse
|
49
|
Effect of deacetylation degree on properties of Chitosan films using electrostatic spraying technique. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Eom H, Chang Y, Lee ES, Choi HD, Han J. Development of a starch/gum-based edible coating for rice cakes to retard retrogradation during storage. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.07.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|