1
|
Priyadarshi R, El-Araby A, Rhim JW. Chitosan-based sustainable packaging and coating technologies for strawberry preservation: A review. Int J Biol Macromol 2024; 278:134859. [PMID: 39163966 DOI: 10.1016/j.ijbiomac.2024.134859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Strawberry fruits are popular all over the world due to their rich organoleptic properties and enormous health benefits. However, it is highly susceptible to postharvest spoilage due to various factors, including moisture loss, nutrient oxidation, and microbial spoilage. Recently, various researchers have studied the effect of chitosan-based flexible films and surface coatings on the shelf life of strawberries. Despite various reviews providing general information on the effects of chitosan-based films and coatings on various food products, no review has focused solely on their effects on postharvest preservation and the shelf life of strawberries. The purpose of this review is to summarize the current research on chitosan-based formulations for extending the shelf life of strawberries. Chitosan, a cationic carbohydrate polymer, possesses excellent properties such as film formation, mechanical strength, non-toxicity, biodegradability, edibility, UV-blocking ability, antioxidant activity, and antibacterial functionality, justifying its potential as packaging/coating material for fresh agricultural products, including strawberries. This review covers the various factors responsible for strawberry spoilage and the properties of chitosan that help counteract these factors. Additionally, the advantages of chitosan-based preservation technology compared to existing strawberry preservation methods were explained, efficiency was evaluated, and future research directions were suggested.
Collapse
Affiliation(s)
- Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, South Korea
| | - Abir El-Araby
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez 30050, Morocco
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
2
|
Barthwal R, Negi A, Kathuria D, Singh N. Ozonation: Post-harvest processing of different fruits and vegetables enhancing and preserving the quality. Food Chem 2024; 463:141489. [PMID: 39413726 DOI: 10.1016/j.foodchem.2024.141489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/18/2024]
Abstract
Daily ingestion of fresh produce has increased tremendously due to a rise in awareness of its nutritional benefits that contribute to reducing health risks and disease. However, these commodities are highly perishable and prone to significant post-harvest losses. Conventional methods have been scrutinized in the production of undesirable by-products. Ozone technology has emerged as an efficient sterilization technique. Additionally, it stimulated the synthesis of bioactive and antioxidant compounds by activating secondary metabolic pathways. However, there are conflicting findings in the literature related to their impact on the quality and physiological processes of fruits and vegetables (F&V). This scientific literature review focuses on key studies examining the effects of ozonation on the growth of microorganisms and the quality preservation of different F&V. This review also enlarges our understanding of eco-friendly technologies which not only extend the shelf life of F&V but also uphold their quality without introducing harmful chemicals.
Collapse
Affiliation(s)
- Riya Barthwal
- Department of Food Science and Technology, Graphic Era deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Akanksha Negi
- Department of Food Science and Technology, Graphic Era deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Deepika Kathuria
- Department of Food Science and Technology, Graphic Era deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era deemed to be University, Dehradun, Uttarakhand 248002, India.
| |
Collapse
|
3
|
Yao J, Zhang L, Fan K. Effect of chitosan coating, carbon dots and ultrasound treatment on microorganisms and physicochemical quality of fresh-cut lettuce. FOOD SCI TECHNOL INT 2024; 30:574-582. [PMID: 37661649 DOI: 10.1177/10820132231199508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The effect of chitosan (CH) coating, carbon dots (CDs) and ultrasound (US) treatment on microorganisms and the physicochemical quality of fresh-cut (FC) lettuce was investigated. FC lettuces were treated by US and dipped into CD/CH coating, then packed and stored for 15 d at 4 °C. Results presented that CD/CH coating exhibited a superior effect on the depressing growth of aerobic plate count, mould and yeast, the decrease of respiratory rate, the inhibition of peroxidase and polyphenol oxidase activities, the maintenance of ascorbic acid and chlorophyll contents, the reduction of mass loss, the restriction of water distribution in US-treated FC lettuce. This exhibited that CD/CH coating effectively kept the microbial and physicochemical quality of FC lettuce.
Collapse
Affiliation(s)
- Jianhua Yao
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Liang Zhang
- Yichang Anji Agriculture Co., Ltd, Zhijiang, Hubei, China
| | - Kai Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
4
|
Priyadarshi R, Jayakumar A, de Souza CK, Rhim JW, Kim JT. Advances in strawberry postharvest preservation and packaging: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13417. [PMID: 39072989 DOI: 10.1111/1541-4337.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Strawberries spoil rapidly after harvest due to factors such as the ripening process, weight loss, and, most importantly, microbial contamination. Traditionally, several methods are used to preserve strawberries after harvest and extend their shelf life, including thermal, plasma, radiation, chemical, and biological treatments. Although these methods are effective, they are a concern from the perspective of safety and consumer acceptance of the treated food. To address these issues, more advanced environment-friendly technologies have been developed over the past decades, including modified and controlled atmosphere packaging, active biopolymer-based packaging, or edible coating formulations. This method can not only significantly extend the shelf life of fruit but also solve safety concerns. Some studies have shown that combining two or more of these technologies can significantly extend the shelf life of strawberries, which could significantly contribute to expanding the global supply chain for delicious fruit. Despite the large number of studies underway in this field of research, no systematic review has been published discussing these advances. This review aims to cover important information about postharvest physiology, decay factors, and preservation methods of strawberry fruits. It is a pioneering work that integrates, relates, and discusses all information on the postharvest fate and handling of strawberries in one place. Additionally, commercially used techniques were discussed to provide insight into current developments in strawberry preservation and suggest future research directions in this field of study. This review aims to enrich the knowledge of academic and industrial researchers, scientists, and students on trends and developments in postharvest preservation and packaging of strawberry fruits.
Collapse
Affiliation(s)
- Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | | | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
5
|
Chen N, Wei W, Yang Y, Chen L, Shan W, Chen J, Lu W, Kuang J, Wu C. Postharvest Physiology and Handling of Guava Fruit. Foods 2024; 13:805. [PMID: 38472918 DOI: 10.3390/foods13050805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Guavas are typical tropical fruit with high nutritional and commercial value. Because of their thin skin and high metabolic rate, guavas are highly susceptible to water loss, physical damage, and spoilage, severely limiting their shelf-life. Guavas can typically only be stored for approximately one week at room temperature, making transportation, storage, and handling difficult, resulting in low profit margins in the industry. This review focuses on the physiological and biochemical changes and their molecular mechanisms which occur in postharvest guavas, and summarizes the various management strategies for extending the shelf-life of these sensitive fruits by means of physical and chemical preservation and their combinations. This review also suggests future directions and reference ideas for the development of safe and efficient shelf-life extension techniques.
Collapse
Affiliation(s)
- Nanhui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Lin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Caner C, Tiryaki K, Pala ÇU, Yüceer M. Combined effect of electrolyzed water (EW) and sonication with equilibrium modified atmosphere packaging for prolonging storage stability of fresh strawberry. FOOD SCI TECHNOL INT 2024:10820132241227009. [PMID: 38280215 DOI: 10.1177/10820132241227009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
This research focuses on the effectiveness of electrolyzed water (50 and 100 ppm for 3 min), ultrasonication (80 W for 3 min), and their combinations on fresh strawberries, which are then packaged using microperforated film to enhance their storage stability. The gas composition in the headspace, pH, soluble solids, color (L*, a*, b*, and ΔE* values), anthocyanins, total phenolics, and texture profile was evaluated for the 35 days of storage at +4 °C. The lowest weight loss was measured at about 100 ppm electrolyzed water (EW; 0.47%), and the highest one was in the control group (0.57%) after storage. At the end of the storage, O2 in the headspace decreased from 20.90% to 10.50-8.10% and CO2 was accumulated from 0.03% to 16.4-14.34%. The results showed that soluble solids decreased (9.95 to 8.48-7.85 °Bx) and pH values increased (3.34 to 3.79-3.91) during storage. At the end of the storage, the total phenolics in the control group decreased by the most during storage (from 1209.09 ppm to 808.00 ppm), whereas the 50 ppm EW group had the highest (931.66 ppm). Further, the significantly highest anthocyanin amount was found to be 143.86 ppm in the 100 ppm EW group at the end of 28 days of storage. The EW can significantly delay the degradation of anthocyanin over the storage period. The sonication at 100 ppm EW damages strawberry tissues, reducing their hardness. The lowest decay rate was found in fruits treated with 100 ppm EW (41.67%), followed by 50 ppm EW (58.33%), compared to the control (75.00%). This study reveals that applications of the 50 ppm EW and also 50 pm EW combined with ultrasonication have great potential in the extending storage stability of the fresh strawberries.
Collapse
Affiliation(s)
- Cengiz Caner
- Department of Food Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Kübra Tiryaki
- Department of Food Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Çiğdem Uysal Pala
- Department of Food Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Muhammed Yüceer
- Department of Food Processing, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
7
|
Qu Y, Guo L, Hong C, Wan Y, Tuly J, Ma H. Effects of multi-frequency ultrasonic assisted sodium hypochlorite on the cleaning effect and quality of fresh-cut scallion stems. ULTRASONICS SONOCHEMISTRY 2023; 100:106613. [PMID: 37774468 PMCID: PMC10561118 DOI: 10.1016/j.ultsonch.2023.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
This study aimed to evaluate the feasibility of multi-frequency ultrasound-assisted sodium hypochlorite (NaClO) on fresh-cut scallion stem (FCS) cleaning. Ultrasonic cleaning parameters (frequency mode, frequency amplitude, and the sample to water ratios) were optimized against cleanliness and microbial biomass as evaluation indexes. Under the optimum conditions, the free chlorine residues and quality attributes of FCS were also investigated. The results showed that the cleanliness of FCS improved significantly (p < 0.05) and the total number of microorganisms, especially Escherichia coli, decreased dramatically under the optimized cleaning condition with the simultaneous ultrasound (US) at the sweep frequency (SF) combination of 20 + 28 kHz, the ultrasonic density of 60 W/L, pulse time of 10 s, which indicated that the shelf life of FCS would be extended. Compared to FCS after the 250 ppm NaClO cleaning, the retention of ascorbic acid (AA), color, and texture structure of FCS had no significant difference after ultrasound-assisted NaClO treatment. Meanwhile, the content of allicin increased by 52.5% under ultrasound-assisted cleaning. The integration of US into the cleaning process resulted in a notably reduction of 68% in NaClO concentration, as well as the weight loss and respiration rate (RR) of the scallion stems. Therefore, ultrasound-assisted NaClO cleaning was regarded as a promising and effective approach for cleaning fresh-cut vegetables.
Collapse
Affiliation(s)
- Yulan Qu
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Lina Guo
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Chen Hong
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yuming Wan
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Jamila Tuly
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Beitia E, Gkogka E, Chanos P, Hertel C, Heinz V, Valdramidis V, Aganovic K. Microbial decontamination assisted by ultrasound-based processing technologies in food and model systems: A review. Compr Rev Food Sci Food Saf 2023; 22:2802-2849. [PMID: 37184058 DOI: 10.1111/1541-4337.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Ultrasound (US) technology is recognized as one of the emerging technologies that arise from the current trends for improving nutritional and organoleptic properties while providing food safety. However, when applying the US alone, higher power and longer treatment times than conventional thermal treatments are needed to achieve a comparable level of microbial inactivation. This results in risks, damaging food products' composition, structure, or sensory properties, and can lead to higher processing costs. Therefore, the US has often been investigated in combination with other approaches, like heating at mild temperatures and/or treatments at elevated pressure, use of antimicrobial substances, or other emerging technologies (e.g., high-pressure processing, pulsed electric fields, nonthermal plasma, or microwaves). A combination of US with different approaches has been reported to be less energy and time consuming. This manuscript aims to provide a broad review of the microbial inactivation efficacy of US technology in different food matrices and model systems. In particular, emphasis is given to the US in combination with the two most industrially viable physical processes, that is, heating at mild temperatures and/or treatments at elevated pressure, resulting in techniques known as thermosonication, manosonication, and manothermosonication. The available literature is reviewed, and critically discussed, and potential research gaps are identified. Additionally, discussions on the US's inactivation mechanisms and lethal effects are included. Finally, mathematical modeling approaches of microbial inactivation kinetics due to US-based processing technologies are also outlined. Overall, this review focuses only on the uses of the US and its combinations with other processes relevant to microbial food decontamination.
Collapse
Affiliation(s)
- Enrique Beitia
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis Chanos
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Christian Hertel
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Volker Heinz
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Vasilis Valdramidis
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Kemal Aganovic
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| |
Collapse
|
9
|
Piechowiak T, Skóra B. Edible coating enriched with cinnamon oil reduces the oxidative stress and improves the quality of strawberry fruit stored at room temperature. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2389-2400. [PMID: 36683377 DOI: 10.1002/jsfa.12463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/28/2022] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The present study aimed to assess the impact of a starch/gelatine coating containing cinnamon oil on selected quality attributes and redox status in strawberry fruit stored at room temperature (72 h). RESULTS Research showed that the application of cinnamon oil to an edible coating allows an improvement of the quality of strawberry fruit stored at room temperature. The cinnamon oil coating inhibits the development of yeast and mould, and reduces loss of soluble solids and ascorbic acid during 72 h storage at room temperature. Moreover, the coating with cinnamon oil clearly reduced the level of oxidative stress, which was manifested by a lower level of reactive oxygen species, as well as a lower activity of antioxidant enzymes. The elimination of oxidative stress in the cinnamon oil-coated fruit also contributed to lower PARP1 mRNA expression, inhibiting the metabolism of NAD+ and reducing ATP losses. CONCLUSION The coating of strawberry fruit with a starch/gelatine biofilm containing cinnamon oil is an effective method for delaying postharvest senescence of fruit and the storage degradation of tissue. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Rzeszow, Poland
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| |
Collapse
|
10
|
Caner C, Alnıak NY, Yüceer M. Combined effect of sonication and equilibrium‐modified atmosphere packaging to improve storage stability of “Angelino” plums during extended storage. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Cengiz Caner
- Department of Food Engineering, Engineering Faculty Canakkale Onsekiz Mart University Canakkale Turkey
| | - Nesrin Yumak Alnıak
- Department of Food Engineering, Engineering Faculty Canakkale Onsekiz Mart University Canakkale Turkey
| | - Muhammed Yüceer
- Department of Food Processing, Vocational School of Technical Sciences Canakkale Onsekiz Mart University Canakkale Turkey
| |
Collapse
|
11
|
Anjali KU, Reshma C, Sruthi NU, Pandiselvam R, Kothakota A, Kumar M, Siliveru K, Marszałek K, Mousavi Khaneghah A. Influence of ozone treatment on functional and rheological characteristics of food products: an updated review. Crit Rev Food Sci Nutr 2022; 64:3687-3701. [PMID: 36268992 DOI: 10.1080/10408398.2022.2134292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this milieu, ozone technology has emerged as an avant-garde non-thermal mode of disinfection with potential applications in the food industry. This eco-friendly technology has a comprehendible adeptness in replacing alternative chemical sanitizers and is recognized as a generally safe disinfectant for fruits and vegetables. Several researchers have been focusing on the biochemical impacts of ozone on different quantitative and qualitative aspects of fruits and vegetables. A collection of those works is presented in this review highlighting the effect of ozone on the functional, antioxidant, and rheological properties of food. This can be a benevolent tool for discovering the processing states of ozone applications and ensuing influence on safety and quality attributes of previously studied foods and opening further research areas. It extends shelf life and never leaves any harmful residues on the product since it decomposes to form oxygen. It was seen that the impact on a specific property of food was dependent on the ozone concentration and treatment time, and the adverse effects of ozone exposure can be alleviated once the processing conditions are optimized. The present review can be used as a baseline for designing different food processing operations involving ozone.
Collapse
Affiliation(s)
- K U Anjali
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - C Reshma
- National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - N U Sruthi
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - R Pandiselvam
- Physiology, Biochemistry, and Post-harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Kaliramesh Siliveru
- Department of Grain Science & Industry, Kansas State University, Manhattan, Kansas, USA
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
12
|
Aslam R, Alam MS, Kaur J, Panayampadan AS, Dar OI, Kothakota A, Pandiselvam R. Understanding the effects of ultrasound processng on texture and rheological properties of food. J Texture Stud 2022; 53:775-799. [PMID: 34747028 DOI: 10.1111/jtxs.12644] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022]
Abstract
The demand for the production of high quality and safe food products has been ever increasing. Consequently, the industry is looking for novel technologies in food processing operations that are cost-effective, rapid and have a better efficiency over traditional methods. Ultrasound is well-known technology to enhance the rate of heat and mass transfer providing a high end-product quality, at just a fraction of time and energy normally required for conventional methods. The irradiation of foods with ultrasound creates acoustic cavitation that has been used to cause desirable changes in the treated products. The technology is being successfully used in various unit operations such as sterilization, pasteurization, extraction, drying, emulsification, degassing, enhancing oxidation, thawing, freezing and crystallization, brining, pickling, foaming and rehydration, and so forth. However, the high pressure and temperature associated with the cavitation process is expected to induce some changes in the textural and rheological properties of foods which form an important aspect of product quality in terms of consumer acceptability. The present review is aimed to focus on the effects of ultrasound processing on the textural and rheological properties of food products and how these properties are influenced by the process variables.
Collapse
Affiliation(s)
- Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mohammed Shafiq Alam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jaspreet Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Afthab Saeed Panayampadan
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Owias Iqbal Dar
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anjineyulu Kothakota
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
13
|
Zhou W, Sarpong F, Zhou C. Use of Ultrasonic Cleaning Technology in the Whole Process of Fruit and Vegetable Processing. Foods 2022; 11:foods11182874. [PMID: 36141006 PMCID: PMC9498452 DOI: 10.3390/foods11182874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
In an era of rapid technological development, ultrasound technology is being used in a wide range of industries. The use of ultrasound technology in fruit and vegetable processing to improve production efficiency and product quality has been an important research topic. The cleaning of whole fresh fruits and vegetables is an important part of fruit and vegetable processing. This paper discusses the development process of components of the ultrasonic equipment, the application of ultrasonic technology in fruit and vegetable cleaning, and the research advances in ultrasonic cleaning technology. Moreover, the feasibility of ultrasonication of fruits and vegetables for cleaning from the perspectives of microbial inactivation, commodity storage, and sensory analysis were discussed. Finally, the paper identified the inevitable disadvantages of cavitation noise, erosion, and tissue damage in fruit and vegetable processing and points out the future directions of ultrasonic fruit and vegetable cleaning technology.
Collapse
Affiliation(s)
- Wenhao Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Frederick Sarpong
- Value Addition Division, CSIR-Oil Palm Research Institute, Kade P.O. Box 74, Ghana
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: ; Tel.: +86-511-88780201
| |
Collapse
|
14
|
Nasri E, Khademi O, Saba MK, Ebrahimi R. Extension of button mushroom storability by ultrasound treatment in combination with calcium lactate. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Siddique Z, Malik AU. Fruits and vegetables are the major source of food safety issues need to overcome at household level (traditional vs. green technologies): A comparative review. J Food Saf 2022. [DOI: 10.1111/jfs.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zarghona Siddique
- Postharvest Research and Training Centre, Institute of Horticultural Sciences University of Agriculture Faisalabad Pakistan
| | - Aman Ullah Malik
- Postharvest Research and Training Centre, Institute of Horticultural Sciences University of Agriculture Faisalabad Pakistan
| |
Collapse
|
16
|
Piechowiak T, Skóra B, Balawejder M. Ozonation process causes changes in PARP-1 expression and the metabolism of NADPH in strawberry fruit during storage. J Biotechnol 2022; 357:84-91. [PMID: 35985517 DOI: 10.1016/j.jbiotec.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
In this study, the effect of ozonation process on the poly(ADP-ribose) polymerase 1 gene expression (PARP-1) and related the NADPH metabolism in strawberry fruit during storage was determined. Our results showed that ozonation with gas at both 10 and 100 ppm concentrations increased the expression of PARP-1 in the fruit during storage. Furthermore, the ozonation process initially increased the level of NAD+ and NADH in the fruit, which corresponds to a higher ATP level. The storage of the fruit in an ozone atmosphere also contributed to increased activity of the NAD+ kinase, leading to increased levels of NADP+ . In turn, the higher activity of glucose-6-phosphate dehydrogenase caused the ozonated fruit to show a higher level of NADPH. However, as the storage period extended and thus with increasing expression of PARP-1 in the ozonated fruit, the level of NAD+ decreased. In general, the ozonated fruit, which had a higher level of NADPH, showed a higher content of reduced glutathione, which in turn contributed to an increase in the antioxidant activity of the fruit and, ultimately, to a lower accumulation of reactive oxygen species.
Collapse
Affiliation(s)
- Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Cwiklinskiej 1a, 35-601 Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, St. Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Maciej Balawejder
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Cwiklinskiej 1a, 35-601 Rzeszow, Poland
| |
Collapse
|
17
|
Zhang H, Wang M, Xiao J. Stability of polyphenols in food processing. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:1-45. [PMID: 36064291 DOI: 10.1016/bs.afnr.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, polyphenols have attracted considerable attention due to their diverse potential health-beneficial effects on humans. Polyphenols are widely distributed in natural plants, and therefore play an important role in human food. Thermal processing, irradiation, fermentation, high pressure, microwave, and drying are several popular food processing methods. However, polyphenols are instable in food processing, which easily degrade and react with other components because of their polyhydroxy characteristic. Traditional and advanced technologies have been used to characterize the stability of polyphenols. The main influence factors of stability of polyphenols such as pH, temperature, light, oxygen, enzymes, metal ions, as well as macromolecules, are summarized. Besides, thermal processing greatly promoted the degradation of polyphenols. Thermal degradation mechanisms and products of some polyphenols, such as quercetin and rutin, have been intensively demonstrated. Nevertheless, the structural changes of polyphenols caused by food processing, may lead to different bioactivities from the obtained results based on unprocessed polyphenols. Therefore, to maximize the beneficial effects of polyphenols ingested by human from processed food, the stability of polyphenols in food processing must be thoroughly investigated to assess their real bioactivities. In addition, some available technologies for improving the stability of polyphenols in food processing have been proposed.
Collapse
Affiliation(s)
- Haolin Zhang
- Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Minglong Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain.
| |
Collapse
|
18
|
Microbial Evaluation of Ozone Water Combined with Ultrasound Cleaning on Crayfish ( Procambarus clarkii). Foods 2022; 11:foods11152314. [PMID: 35954082 PMCID: PMC9367870 DOI: 10.3390/foods11152314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
The effects of ozone water (OW) and ultrasound cleaning (UL) on microbial community diversity of crayfish were studied through microbial viable count and 16S rRNA gene sequencing. The results showed that compared with the control (CK), the ozone water combined with ultrasound cleaning (OCU) showed a significant reduction (p < 0.05) in total viable count (TVC), psychrophilic viable count (PVC), mesophilic viable count (MVC), Pseudomonas, hydrogen sulfide-producing bacteria (HSPB), molds and yeasts. Concretely, the TVC of the CK, OW, UL and OCU were 5.09, 4.55, 4.32 and 4.06 log CFU/g, respectively. The dominant bacterium in untreated crayfish was Chryseobacterium, and its relative abundance was reduced by combined treatment. Color measurement and sensory evaluation suggested that a satisfactory sensory experience could be obtained on the crayfish applied with OCU. In brief, OCU could be used as a cleaning strategy to control the microbial quality of crayfish and have no influence on its quality.
Collapse
|
19
|
Ling Y, Zhou M, Qiao Y, Xiong G, Wei L, Wang L, Wu W, Shi L, Ding A, Li X. Effects of Ozone Water Combined With Ultra-High Pressure on Quality and Microorganism of Catfish Fillets ( Lctalurus punctatus) During Refrigeration. Front Nutr 2022; 9:880370. [PMID: 35873429 PMCID: PMC9298495 DOI: 10.3389/fnut.2022.880370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
This study described the quality and microbial influence on ozone water (OW) and ultra-high pressure (UHP) processing alone or in combination with refrigerated catfish fillets. The analysis parameters included total volatile base nitrogen (TVBN), thiobarbituric acid reactive substances (TBARs), chromaticity, microbial enumeration, 16S rRNA gene sequencing, electronic nose (E-nose), and sensory score. The study found that compared with the control (CK), ozone water combined with ultra-high pressure (OCU) delayed the accumulation of TVBN and TBARs. The results of sensory evaluation illustrated that OCU obtained a satisfactory overall sensory acceptability. The counting results suggested that compared to CK, OCU significantly (p < 0.05) delayed the stack of TVC, Enterobacteriaceae, Pseudomonas, lactic acid bacteria (LAB), and hydrogen sulfide-producing bacteria (HSPB) during the storage of catfish fillets. The sequencing results reflected that the dominant were Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria at the phylum level, and the dominant were Acinetobacter, Pseudomonas, Lelliottia, Serratia, Shewanella, Yersinia, and Aeromonas at the genus level. The dominant was Acinetobacter in initial storage, while Pseudomonas and Shewanella were in anaphase storage. Based on the TVC and TVBN, the shelf life of catfish fillets was extended by at least 3 days compared to the control. In short, the combination of ozone water and ultra-high-pressure processing is a favorable strategy to control microbial quality and delay lipid oxidation during catfish storage.
Collapse
Affiliation(s)
- Yuzhao Ling
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Mingzhu Zhou
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- School of Bioengineering and Food, Hubei University of Technology, Wuhan, China
| | - Yu Qiao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guangquan Xiong
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lingyun Wei
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Lan Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenjin Wu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Liu Shi
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Anzi Ding
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xin Li
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
20
|
Zhang DY, Yang JX, Liu EJ, Hu RZ, Yao XH, Chen T, Zhao WG, Liu L, Fu YJ. Soft and elastic silver nanoparticle-cellulose sponge as fresh-keeping packaging to protect strawberries from physical damage and microbial invasion. Int J Biol Macromol 2022; 211:470-480. [PMID: 35577198 DOI: 10.1016/j.ijbiomac.2022.05.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022]
Abstract
Strawberry is a nutritious food that is susceptible to mechanical injury and microbiological infection. Traditional coatings for strawberry packaging provide resistance against microbial infection but not against mechanical damage. In this study, a soft and elastic cellulose sponge modified with silver nanoparticles (AgNPs@CS-1:1) was prepared as strawberry packaging material, and it provided effective protection against mechanical damage. In addition, after 1000 cyclic compression, AgNPs@CS-1:1 presented only 16.80% unrecoverable deformation and still had elasticity, suggesting its fatigue resistance and durable protection for strawberry against damage caused by repeated vibrations during transportation. In addition, AgNPs@CS-1:1 had good antibacterial (E. coli and S. aureus) and antifungal (Rhizopus stolonifer) abilities. The storage time of strawberries packaged by AgNPs@CS-1:1 was extended to 12 days without microbial invasion. Thus, AgNPs@CS-1:1 provided dual protection at the physical and microbial levels. This study proposes a new method for the preservation of strawberries based on the utilization of cellulose.
Collapse
Affiliation(s)
- Dong-Yang Zhang
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China.
| | - Jia-Xin Yang
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - En-Jiang Liu
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - Run-Ze Hu
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - Xiao-Hui Yao
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - Tao Chen
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - Wei-Guo Zhao
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - Li Liu
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - Yu-Jie Fu
- College of Forestry, Beijing Forestry University, No.35, Tsinghua East Road, Haidian District, Beijing, 100083, PR China
| |
Collapse
|
21
|
Piechowiak T, Migut D, Józefczyk R, Balawejder M. Ozone Treatment Improves the Texture of Strawberry Fruit during Storage. Antioxidants (Basel) 2022; 11:821. [PMID: 35624685 PMCID: PMC9137509 DOI: 10.3390/antiox11050821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
The major aim of this study was to check whether a cyclic ozonation process will affect the preservation of the texture of strawberries stored at room temperature. Strawberry fruit was stored for 3 days at room temperature and ozonated with gaseous ozone at a concentration of 10 and 100 ppm for 30 min, every 12 h of storage. Research showed that the ozonation process inhibited the texture deterioration of the fruit during storage. The positive effect of ozone was directly related to the inhibition of the activity of enzymes involved in the degradation of the fruit cell walls, as well as indirectly from the improved energy metabolism of the fruit. The higher level of energy charge corresponded to the higher resistance of ozonated fruit to abiotic stress, leading to the maintenance of the integrity of cell membranes and, consequently, to maintaining good hardness of the fruit throughout the storage period.
Collapse
Affiliation(s)
- Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Cwiklinskiej 1a, 35-601 Rzeszow, Poland; (R.J.); (M.B.)
| | - Dagmara Migut
- Department of Crop Production, Institute of Agricultural Sciences, Land Management and Environmental Protection, University of Rzeszow, St. Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Radosław Józefczyk
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Cwiklinskiej 1a, 35-601 Rzeszow, Poland; (R.J.); (M.B.)
| | - Maciej Balawejder
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Cwiklinskiej 1a, 35-601 Rzeszow, Poland; (R.J.); (M.B.)
| |
Collapse
|
22
|
Mehrabani A, Jebelli Javan A, Hesarinejad MA, Mahdavi A, Parsaeimehr M. The combined effect of ultrasound treatment and leek (Allium ampeloprasum) extract on the quality properties of beef. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Premjit Y, Sruthi NU, Pandiselvam R, Kothakota A. Aqueous ozone: Chemistry, physiochemical properties, microbial inactivation, factors influencing antimicrobial effectiveness, and application in food. Compr Rev Food Sci Food Saf 2022; 21:1054-1085. [DOI: 10.1111/1541-4337.12886] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Yashaswini Premjit
- Agricultural & Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| | - N. U. Sruthi
- Agricultural & Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| | - R. Pandiselvam
- Physiology, Biochemistry and Post Harvest Technology Division ICAR‐Central Plantation Crops Research Institute (CPCRI) Kasaragod Kerala India
| | - Anjineyulu Kothakota
- Agro‐Processing & Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum Kerala India
| |
Collapse
|
24
|
Arruda TR, Vieira P, Silva BM, Freitas TD, Amaral AJB, Vieira ENR, Leite Júnior BRDC. What are the prospects for ultrasound technology in food processing? An update on the main effects on different food matrices, drawbacks, and applications. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Patty Vieira
- Department of Food Technology Federal University of Viçosa Viçosa Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Luan C, Zhang M, Fan K, Devahastin S. Effective pretreatment technologies for fresh foods aimed for use in central kitchen processing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:347-363. [PMID: 32564354 DOI: 10.1002/jsfa.10602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The central kitchen concept is a new trend in the food industry, where centralized preparation and processing of fresh foods and the distribution of finished or semi-finished products to catering chains or related units take place. Fresh foods processed by a central kitchen mainly include fruit and vegetables, meat, aquatic products, and edible fungi; these foods have high water activities and thermal sensitivities and must be processed with care. Appropriate pretreatments are generally required for these food materials; typical pretreatment processes include cleaning, enzyme inactivation, and disinfection, as well as packaging and coating. To improve the working efficiency of a central kitchen, novel efficient pretreatment technologies are needed. This article systematically reviews various high-efficiency pretreatment technologies for fresh foods. These include ultrasonic cleaning technologies, physical-field enzyme inactivation technologies, non-thermal disinfection technologies, and modified-atmosphere packagings and coatings. Mechanisms, applications, influencing factors, and advantages and disadvantages of these technologies, which can be used in a central kitchen, are outlined and discussed. Possible solutions to problems related to central-kitchen food processing are addressed, including low cleaning efficiency and automation feasibility, high nutrition loss, high energy consumption, and short shelf life of products. These should lead us to the next step of fresh food processing for a highly demanding modern society. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunning Luan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, China
| | - Kai Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
26
|
Amiri A, Ramezanian A, Mortazavi SMH, Hosseini SMH. Ultrasonic potential in maintaining the quality and reducing the microbial load of minimally processed pomegranate. ULTRASONICS SONOCHEMISTRY 2021; 70:105302. [PMID: 32801073 PMCID: PMC7786620 DOI: 10.1016/j.ultsonch.2020.105302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/23/2020] [Accepted: 08/01/2020] [Indexed: 05/07/2023]
Abstract
Difficulty of Pomegranate fruit peeling and arils separation are the main motivations of progressive ready-to-eat pomegranate fresh arils industry. Also, extracted pomegranate arils are highly perishable due to water loss and microbial contamination expose. The aim of the current work was then to evaluate the effect of ultrasound for 15 and 30 min on maintenance of bioactive compounds and microbial load reduction of pomegranate arils cv. Rabbab. Treated arils were kept at 5 °C and analyzed during 15 days of storage. The most and least weight loss of arils obtained in control and 30 min treated samples, respectively. After 12 days of storage, all samples were decayed except those treated for 15 and 30 min. The ultrasound treatment significantly prevented degradation of anthocyanin and ascorbic acid compounds. Total phenol and antioxidant activity decreased during storage. At the end of storage, the most total phenol content (3898.6 mg GAE L-1) was found in arils treated for 30 min whereas the most anthocyanin (91.93 mg L-1), total antioxidant activity (82.65%), and ascorbic acid (2.53 mg L-1) were found in arils treated for 15 min. Ultrasound treated arils had lower microbial load (total mesophilic bacteria in control and 30-min treated samples) in each stage during storage. At the end of storage, the microbial load in treated and control arils was 0.7 and 0.2 Log CFU g-1, respectively). Overall, ultrasound treatment effectively reduced weight loss and preserved bioactive compounds during storage.
Collapse
Affiliation(s)
- Azam Amiri
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Asghar Ramezanian
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | | | | |
Collapse
|
27
|
Zhao L, Kristi N, Ye Z. Atomic force microscopy in food preservation research: New insights to overcome spoilage issues. Food Res Int 2020; 140:110043. [PMID: 33648269 DOI: 10.1016/j.foodres.2020.110043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/25/2022]
Abstract
A higher level of food safety is required due to the fast-growing human population along with the increased awareness of healthy lifestyles. Currently, a large percentage of food is spoiled during storage and processing due to enzymes and microbial activity, causing huge economic losses to both producers and consumers. Atomic force microscopy (AFM), as a powerful scanning probe microscopy, has been successfully and widely used in food preservation research. This technique allows a non-invasive examination of food products, providing high-resolution images of surface structure and individual polymers as well as the physical properties and adhesion of single molecules. In this paper, detailed applications of AFM in food preservation are reviewed. AFM has been used to provide comprehensive information in food preservation by evaluating the spoilage with its related structure modification. By utilizing AFM imaging and force measurement function, the main mechanisms involved in the loss of food quality and preservation technologies development can be further elucidated. It is also capable of exploring the activities of enzymes and microbes in influencing the quality of food products during storage. AFM provides comprehensive solutions to overcome spoilage issues with its versatile functions and high-throughput outcomes. Further research and development of this novel technique in order to solve integrated problems in food preservation are necessary.
Collapse
Affiliation(s)
- Leqian Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| | - Natalia Kristi
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China.
| |
Collapse
|
28
|
Combined effects of ultrasound and aqueous chlorine dioxide treatments on nitrate content during storage and postharvest storage quality of spinach (Spinacia oleracea L.). Food Chem 2020; 333:127500. [PMID: 32693317 DOI: 10.1016/j.foodchem.2020.127500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/28/2022]
Abstract
The objectives of this study were to optimize the condition of ultrasonic treatment combined with aqueous chlorine dioxide (ClO2) on nitrate content of spinach by response surface methodology (RSM), and determine the effectiveness of ultrasound (US) and ClO2 alone and in combination, on spinach postharvest quality during 7 days' storage period. The optimal treatment parameters obtained were ultrasonic power (300 W), ClO2 concentration (50 ppm), treatment time (4 min). The combined treatments significantly reduced the nitrate content and maintained better storage quality in terms of total soluble solids (TSS) and ascorbic acid content compared with the individual treatment or untreated. For Chlorophyll content, the combined treatment was significantly higher than the control and ClO2 treatment, but lower than ultrasonic treatment. The results demonstrated that US combined with ClO2 are promising alternatives for the reduction of nitrate content, as well as preserving the quality of stored leafy vegetables.
Collapse
|
29
|
Combined aqueous ozone and ultrasound application inhibits microbial spoilage, reduces pesticide residues and maintains storage quality of strawberry fruits. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00735-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
A Review on Individual and Combination Technologies of UV-C Radiation and Ultrasound in Postharvest Handling of Fruits and Vegetables. Processes (Basel) 2020. [DOI: 10.3390/pr8111433] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet-C radiation and ultrasound technology are widely accepted and continuously being appraised as alternatives to conventional thermal techniques for decontamination of fruits and vegetables. However, studies in these areas have presented challenges related to quality, safety, limited capability, and cost of energy. This review paper presents an up-to-date summary of applications of ultraviolet-C radiation and ultrasound technology for postharvest handling of fruits and vegetables from relevant literature. The limitations associated with applications of ultraviolet-C radiation and ultrasound technology individually has prompted their combination alongside other antimicrobial strategies for enhanced bactericidal effect. The combination of ultraviolet-C radiation and ultrasound technology as a hurdle approach also provides enhanced efficiency, cost effectiveness, and reduced processing time without compromising quality. The review includes further scope of industrial-led collaboration and commercialization of ultraviolet-C radiation and ultrasound technology such as scale-up studies and process optimization.
Collapse
|
31
|
Lv J, Han X, Bai L, Xu D, Ding S, Ge Y, Li C, Li J. Effects of calcium chloride treatment on softening in red raspberry fruit during low-temperature storage. J Food Biochem 2020; 44:e13419. [PMID: 32776337 DOI: 10.1111/jfbc.13419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 02/04/2023]
Abstract
Fruit softening is an inevitable event during ripening of red raspberry fruit even when stored at low temperature. In this research, the effects of CaCl2 treatment on softening of red raspberry during storage at 4°C were studied. The results indicated that CaCl2 treatment effectively delayed the decrease of firmness and reduced the respiration rate of red raspberry fruit during storage. The CaCl2-treated fruit maintained higher protopectin content and lower soluble pectin content compared with controls. The cellulose and starch contents in the fruit treated with CaCl2 kept higher than in the control during storage. Moreover, CaCl2 treatment decreased activities of polygalacturonase (PG), pectin methylesterase (PME), and cellulase (Cx) mainly at the early stage of softening. Application of CaCl2 lead to the decreased activities of amylase (AM) and β-galactosidase (β-gal) compared with controls during the entire storage periods. These results indicated that CaCl2 treatment might delay postharvest softening of red raspberry fruit stored at low-temperature by retarding cell wall degradation and starch hydrolysis. PRACTICAL APPLICATIONS: Red raspberry fruit is very popular with consumers because of its high-nutritional value and anticancer effects. However, it has a very short postharvest life and softens easily even when stored at low temperature, which limits its distribution to distant market. Our data indicated that CaCl2 treatment delayed postharvest softening of red raspberry fruit stored at low temperature. The results could provide preliminary yet essential information to research community to further study the molecular mechanisms of softening in red raspberry fruit, and also provide reference data for maintaining quality of postharvest red raspberry fruit.
Collapse
Affiliation(s)
- Jingyi Lv
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, PR China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning, PR China
| | - Xuzhou Han
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, PR China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning, PR China
| | - Lin Bai
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, PR China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning, PR China
| | - Dongle Xu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, PR China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning, PR China
| | - Siyang Ding
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, PR China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning, PR China
| | - Yonghong Ge
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, PR China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning, PR China
| | - Canying Li
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, PR China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning, PR China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, PR China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning, PR China
| |
Collapse
|
32
|
Ortiz-Solà J, Abadias M, Colás-Medà P, Sánchez G, Bobo G, Viñas I. Evaluation of a sanitizing washing step with different chemical disinfectants for the strawberry processing industry. Int J Food Microbiol 2020; 334:108810. [PMID: 32805511 DOI: 10.1016/j.ijfoodmicro.2020.108810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022]
Abstract
Strawberries are often consumed fresh or only receive minimal processing, inducing a significant health risk to the consumer if contamination occurs anywhere from farm to fork. Outbreaks of foodborne illness associated with strawberries often involve a broad range of microbiological agents, from viruses (human norovirus) to bacteria (Salmonella spp. and Listeria monocytogenes). The addition of sanitizers to water washes is one of the most commonly studied strategies to remove or inactivate pathogens on berries as well as avoid cross contamination due to reuse of process wash water. The risk posed with the safety issues of by-products from chlorine disinfection in the fruit industry has led to a search for alternative sanitizers. We evaluated the applicability of different chemical sanitizers (peracetic acid (PA), hydrogen peroxide (H2O2), citric acid (CA), lactic acid (LA) and acetic acid (AA)) for the inactivation of S. enterica, L. monocytogenes and murine norovirus (MNV-1) on strawberries. A control treatment with chlorine (NaClO) (100 ppm) was included. For each sanitizer, different doses (40, 80 and 120 ppm for PA and 1, 2.5 and 5% for H2O2, LA, AA and CA) and time (2 and 5 min) were studied in order to optimize the decontamination washing step. The best concentrations were 80 ppm for PA, 5% for H2O2 and 2.5% for organic acids (LA, AA and CA) after 2 min treatment. Results indicate that the sanitizers selected may be a feasible alternative to chlorine (100 ppm) for removing selected pathogenic microorganisms (P > 0.05), with reductions about ≥2 log for bacterial strains and ≥ 1.7 log for MNV-1. As the washing water may also increase the microbial counts by cross-contamination, we observed that no pathogenic bacteria were found in wash water after 5% H2O2 and 80 ppm PA after 2 min treatment. On the other hand, we also reported reductions about total aerobic mesophyll (TAM) (0.0-1.4 log CFU/g) and molds and yeasts (M&Y) (0.3-1.8 log CFU/g) with all alternative sanitizers tested. Strawberries treated did not shown significant differences about physio-chemical parameters compared to the untreated samples (initial). For this study, the optimal sanitizer selected was PA, due to the low concentration and cost needed and its microbiocidal effect in wash water and fruit. Notwithstanding the results obtained, the effect of PA in combination with other non-thermal technologies such as water-assisted ultraviolet (UV-C) light should be studied in future research to improve the disinfection of strawberries.
Collapse
Affiliation(s)
- J Ortiz-Solà
- Universitat de Lleida, Departamento de Ciencia y Tecnología de Alimentos, XaRTA-Postharvest, Centro Agrotecnio, Rovira Roure 191, 25198 Lleida, Spain
| | - M Abadias
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Spain.
| | - P Colás-Medà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Spain
| | - G Sánchez
- Departamento de Tecnologías de Conservación y Seguridad Alimentaria, IATA-CSIC, Avda. Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - G Bobo
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Spain
| | - I Viñas
- Universitat de Lleida, Departamento de Ciencia y Tecnología de Alimentos, XaRTA-Postharvest, Centro Agrotecnio, Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
33
|
Taiye Mustapha A, Zhou C, Wahia H, Amanor-Atiemoh R, Otu P, Qudus A, Abiola Fakayode O, Ma H. Sonozonation: Enhancing the antimicrobial efficiency of aqueous ozone washing techniques on cherry tomato. ULTRASONICS SONOCHEMISTRY 2020; 64:105059. [PMID: 32171683 DOI: 10.1016/j.ultsonch.2020.105059] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Ultrasound requires high power and longer treatment times to inactivate microorganisms when compared to ultrasound combined with other technologies. Also, the antimicrobial efficiency of aqueous ozone increases with an increase in its concentration and exposure time, but with a detrimental effect on the quality of the treated food. In this study, the effect of aqueous ozone at low concentration, multi-mode frequency irradiation and their combination on microbial safety and nutritional quality of cherry tomato was investigated. Individual washing with aqueous ozone and mono-mode frequency irradiation resulted in <1 log CFU/g reduction in the spoilage microorganisms, while dual-mode frequency irradiation (DMFI) resulted in higher microbial reduction (1.3-2.6 1 log CFU/g). The combined system (20/40 kHz + aqueous ozone) on the other hand, resulted in >3 log CFU/g microbial reduction. The application of DMFI enhanced the antimicrobial efficiency of aqueous ozone without any detrimental effect on the physicochemical properties (except the firmness), bioactive compounds, and antioxidants of the cherry tomato during 21 days refrigerated storage. The result obtained indicates the promising substitute to the single washing technique for microbial safety as well as preserving the nutritional quality and enhancing the shelf life of cherry tomato.
Collapse
Affiliation(s)
- Abdullateef Taiye Mustapha
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China; School of Biological and Food Engineering, Chuzhou University, Chuzhou 239000, People's Republic of China.
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Robert Amanor-Atiemoh
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Phyllis Otu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Adiamo Qudus
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4108, Australia
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
34
|
Effect of Ultrasound Treatment Combined with Carbon Dots Coating on the Microbial and Physicochemical Quality of Fresh-Cut Cucumber. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02424-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Pandiselvam R, Kaavya R, Jayanath Y, Veenuttranon K, Lueprasitsakul P, Divya V, Kothakota A, Ramesh S. Ozone as a novel emerging technology for the dissipation of pesticide residues in foods–a review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Almli VL, Asioli D, Rocha C. Organic Consumer Choices for Nutrient Labels on Dried Strawberries among Different Health Attitude Segments in Norway, Romania, and Turkey. Nutrients 2019; 11:nu11122951. [PMID: 31817079 PMCID: PMC6950596 DOI: 10.3390/nu11122951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Consumer interest towards healthy food is driving the growth of the organic food market because consumers perceive organic food products to improve their personal health. Berries have well-known health benefits and show increasing market shares in European markets. This manuscript investigates for the first time how health attitudes relate to organic consumers’ choices for nutrient labels of organic dried strawberry products. We conducted an online survey with 614 consumers from Norway, Romania, and Turkey. All participants consumed and liked strawberries and purchased organic food at least once a month. Participants filled out attitudinal questionnaires and conducted an experimental choice task featuring paired images of packaged organic dried strawberries varying in nutrients content label and other factors. The pooled sample was split into three groups of varying health attitudes for profiling and choice analysis. The results show that broad variations exist in health attitudes among Norwegian, Romanian, and Turkish organic consumers. A non-linear effect of health attitude is revealed, where a moderate health attitude is more strongly associated with the selection of products with increased nutrients content than either a low or a high health attitude. The results highlight the complexity in targeting nutrition labels to organic consumers. Finally, implications and suggestions for organic food operators are discussed along with future research avenues.
Collapse
Affiliation(s)
- Valérie L. Almli
- Department of Innovation, Sensory and Consumer Sciences, Nofima AS, NO-1431 Ås, Norway;
| | - Daniele Asioli
- Department of Applied Economics and Marketing, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, UK
- Correspondence: ; Tel.: +44-0-118-378-5426
| | - Celia Rocha
- GreenUPorto—Sustainable Agrifood Production Research Centre & LAQV-REQUIMTE/DGAOT, Faculty of Sciences, University of Porto, Edifício das Ciências Agrárias (FCV2), 4485-646 Vila do Conde, Portugal;
- Sense Test, Lda., 4400-345 Vila Nova de Gaia, Portugal
| |
Collapse
|
37
|
Alenyorege EA, Ma H, Ayim I, Lu F, Zhou C. Efficacy of sweep ultrasound on natural microbiota reduction and quality preservation of Chinese cabbage during storage. ULTRASONICS SONOCHEMISTRY 2019; 59:104712. [PMID: 31421620 DOI: 10.1016/j.ultsonch.2019.104712] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
In this study, the effect of sweep frequency ultrasound (SFUS), sodium hypochlorite (NaOCl) and their combinations (SFUS + NaOCl) in reducing and inhibiting natural microbiota as well as preserving quality of fresh-cut Chinese cabbage during storage (4 °C and 25 °C) for up to 7 days was investigated. In effect, 40 kHz sweep frequency ultrasound in combination with 100 mg/L sodium hypochlorite resulted in maximum reduction and inhibition of mesophilic counts, yeast and molds and minimum chlorophyll depletion, weight loss and electrolyte leakage. However, colour and textural characteristics deteriorated. The combined treatment suppressed the activities of polyphenol oxidase and peroxidase and manifested its preservative effect after Fourier Transform near-infrared spectroscopy analysis. Synergistic reductions were recorded in most of the combined treatments though largely <1.0 log CFU/g. Specifically, the combined treatment significantly (P < 0.05) reduced mesophilic counts by an added 2.7 log CFU/g, yeasts and molds by an added 2.0 log CFU/g when compared to the individual treatments. During storage at 4 and 25 °C, washing with SFUS + NaOCl produced Chinese cabbage with lower microbial counts, in comparison with the individual treatments. However, post-treatment storage could not entirely inhibit microbial survival as populations increased during storage even at refrigeration temperature of 4 °C. The results demonstrate that ultrasound and sodium hypochlorite are promising hurdle alternatives for the reduction and inhibition of microorganisms, as well as prolonging the shelf life and retaining the quality characteristics of Chinese cabbage.
Collapse
Affiliation(s)
- Evans Adingba Alenyorege
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China; Faculty of Agriculture, University for Development Studies, Tamale, Ghana.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China.
| | - Ishmael Ayim
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China; Faculty of Applied Science, Kumasi Technical University, Kumasi, Ghana
| | - Feng Lu
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
38
|
Wang J, Fan L. Effect of ultrasound treatment on microbial inhibition and quality maintenance of green asparagus during cold storage. ULTRASONICS SONOCHEMISTRY 2019; 58:104631. [PMID: 31450383 DOI: 10.1016/j.ultsonch.2019.104631] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 06/10/2023]
Abstract
The study focused on inhibiting microorganism and improving preservation of green asparagus (Asparagus officinalis L.) during cold storage. Green asparagus is treated with ultrasound (US), acetic acid and gibberellin acid (AG) separately as well as combination (US + AG) and then stored at 4 °C for 20 days. Microorganism, physicochemical qualities and sensory characteristics were monitored at regular intervals. Results showed that the US treatment significantly (p < 0.05) reduced the total number of colonies, mold and yeast merely in the 12th and 16th day of storage, while the US + AG treatment not only achieved an effective decontamination (up to 2 log reduction) of green asparagus throughout the storage, but also retained the physicochemical characteristics to a higher level in comparison to other treatments. The US + AG treatment exhibited lower weight loss, higher levels of total soluble solid (TSS), ascorbic acid, chlorophyll content and total phenolic content (TPC), as well as kept better sensory attributes. Moreover, the US + AG treatment significantly inhibited the activities of phenylalanine ammonia lyase (PAL) and peroxidase (POD) (p < 0.05), suppressing the biosynthesis of lignin. These results suggested that the US + AG treatment could be a potential strategy to preserve quality of green asparagus during cold storage.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
39
|
A combination treatment of ultrasound and ε-polylysine to improve microorganisms and storage quality of fresh-cut lettuce. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108315] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Chen C, Zhang H, Dong C, Ji H, Zhang X, Li L, Ban Z, Zhang N, Xue W. Effect of ozone treatment on the phenylpropanoid biosynthesis of postharvest strawberries. RSC Adv 2019; 9:25429-25438. [PMID: 35530059 PMCID: PMC9070013 DOI: 10.1039/c9ra03988k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022] Open
Abstract
Ozone treatment at a suitable concentration can improve the antioxidant capacity of postharvest fruits. However, few studies have examined the antioxidant bioactive compounds in ozone-treated postharvest strawberries, especially in relation to proteomics. In this study, the total phenol content (TPC), total flavonoid content (TFC), and total anthocyanin content (TAC) were used as the main antioxidant compound indicators and unlabeled proteomics was used to study the metabolism of phenylpropanoids in postharvest strawberries (Jingtaoxiang) treated with different concentrations of ozone (0, 1, 3, and 5 ppm) throughout the duration of storage. The results showed that the postharvest strawberries treated with 5 ppm ozone concentration exhibited improved accumulation of total phenols, flavonoids and anthocyanins in the antioxidant bioactive compounds, which was beneficial to the expression of phenylpropanoid metabolism-related proteins over the whole storage period compared with the other three groups. The results of proteomics were consistent with the changes in the key metabolites of phenylpropanoids, which indicated that ozone treatment at a suitable concentration aids the accumulation of TPC, TAC and TFC by promoting the key proteins associated with phenylpropanoid metabolism.
Collapse
Affiliation(s)
- Cunkun Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University Beijing China
- College of Food Science and Nutritional Engineering, China Agriculture University Beijing China
| | - Huijie Zhang
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology Tianjin China
| | - Chenghu Dong
- National Engineering Technology Research Center for Preservation of Agricultural Products, China, Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture of China, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products Tianjin China
| | - Haipeng Ji
- National Engineering Technology Research Center for Preservation of Agricultural Products, China, Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture of China, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products Tianjin China
| | - Xiaojun Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University Beijing China
- College of Food Science and Nutritional Engineering, China Agriculture University Beijing China
| | - Li Li
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University Hangzhou China
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang University of Science and Technology Hangzhou China
| | - Na Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products, China, Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture of China, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products Tianjin China
| | - Wentong Xue
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University Beijing China
- College of Food Science and Nutritional Engineering, China Agriculture University Beijing China
| |
Collapse
|
41
|
Ultrasound Processing Alone or in Combination with Other Chemical or Physical Treatments as a Safety and Quality Preservation Strategy of Fresh and Processed Fruits and Vegetables: A Review. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02313-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Chiabrando V, Garavaglia L, Giacalone G. The Postharvest Quality of Fresh Sweet Cherries and Strawberries with an Active Packaging System. Foods 2019; 8:foods8080335. [PMID: 31405043 PMCID: PMC6723068 DOI: 10.3390/foods8080335] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/31/2019] [Accepted: 08/08/2019] [Indexed: 12/02/2022] Open
Abstract
This study assessed the effect of the recently-introduced Life+ (ILIP, Valsamoggia, Italy) active packaging system on the postharvest quality of sweet cherries and strawberries. This system uses Equilibrium Modified Atmosphere Packaging (EMAP) to achieve specific intra-package conditions with three synergistic elements: an unvented and anti-mist heat sealable container, an active (naturally-antimicrobial) pad, and a heat-sealed, laser micro-perforated film of a specified gas permeability. Post-packaging quality parameters were monitored for 10 (strawberries) and 15 days (cherries): headspace gas concentration, weight loss, titratable acidity, total soluble solids, pH, disease incidence, and sensory quality. Results showed that use of the Life+ system delayed postharvest senescence by maintaining fruit color, acidity, and vitamin C content, and decreasing fruit weight loss and decay. The use of EMAP in sweet cherry resulted in enhanced sensory qualities compared to traditional perforated containers. The results suggest that the Life+ system leads to better sensory properties and improved shelf-life for strawberries and sweet cherries.
Collapse
Affiliation(s)
- Valentina Chiabrando
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy.
| | - Luigi Garavaglia
- Ilip s.r.l., Via Castelfranco, 52, 40053 Valsamoggia (BO), Italy
| | - Giovanna Giacalone
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
43
|
Bovi GG, Fröhling A, Pathak N, Valdramidis VP, Schlüter O. Safety Control of Whole Berries by Cold Atmospheric Pressure Plasma Processing: A Review. J Food Prot 2019; 82:1233-1243. [PMID: 31233355 DOI: 10.4315/0362-028x.jfp-18-606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HIGHLIGHTS CAPP technology has high application potential for decontamination of berries. Impacts of CAPP in aspects of food safety and security still need to be addressed. Optimized treatment parameters need to be investigated for each berry type.
Collapse
Affiliation(s)
- Graziele G Bovi
- 1 Quality and Safety of Food and Feed, Department of Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany (ORCID: https://orcid.org/0000-0001-8610-6583 [G.G.B.])
| | - Antje Fröhling
- 1 Quality and Safety of Food and Feed, Department of Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany (ORCID: https://orcid.org/0000-0001-8610-6583 [G.G.B.])
| | - Namrata Pathak
- 1 Quality and Safety of Food and Feed, Department of Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany (ORCID: https://orcid.org/0000-0001-8610-6583 [G.G.B.])
| | - Vasilis P Valdramidis
- 2 Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, Msida MSD 2080, Malta.,3 Centre for Molecular Medicine and Biobanking
| | - Oliver Schlüter
- 1 Quality and Safety of Food and Feed, Department of Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany (ORCID: https://orcid.org/0000-0001-8610-6583 [G.G.B.])
| |
Collapse
|
44
|
Bhilwadikar T, Pounraj S, Manivannan S, Rastogi NK, Negi PS. Decontamination of Microorganisms and Pesticides from Fresh Fruits and Vegetables: A Comprehensive Review from Common Household Processes to Modern Techniques. Compr Rev Food Sci Food Saf 2019; 18:1003-1038. [DOI: 10.1111/1541-4337.12453] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/26/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Tanmayee Bhilwadikar
- Dept. of Fruit and Vegetable TechnologyCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| | - Saranya Pounraj
- Dept. of Fruit and Vegetable TechnologyCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| | - S. Manivannan
- Dept. of Food Protectant and Infestation ControlCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| | - N. K. Rastogi
- Dept. of Food EngineeringCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| | - P. S. Negi
- Dept. of Fruit and Vegetable TechnologyCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| |
Collapse
|
45
|
Cakmak H, Kumcuoglu S, Tavman S. Electrospray coating of minimally processed strawberries and evaluation of the shelf‐life quality properties. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hulya Cakmak
- Department of Food EngineeringHitit University Corum Turkey
- Department of Food EngineeringEge University Izmir Turkey
| | | | - Sebnem Tavman
- Department of Food EngineeringEge University Izmir Turkey
| |
Collapse
|
46
|
Reduction of Listeria innocua in fresh-cut Chinese cabbage by a combined washing treatment of sweeping frequency ultrasound and sodium hypochlorite. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Lafarga T, Colás-Medà P, Abadías M, Aguiló-Aguayo I, Bobo G, Viñas I. Strategies to reduce microbial risk and improve quality of fresh and processed strawberries: A review. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Chen C, Zhang X, Zhang H, Ban Z, Li L, Dong C, Ji H, Xue W. Label-free quantitative proteomics to investigate the response of strawberry fruit after controlled ozone treatment. RSC Adv 2019; 9:676-689. [PMID: 35517630 PMCID: PMC9060875 DOI: 10.1039/c8ra08405j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/11/2018] [Indexed: 01/27/2023] Open
Abstract
To elucidate postharvest senescence in strawberry (Fragaria ananassa Duch. var. 'JingTaoXiang') fruit in response to ozone treatment at different concentrations (0, 2.144, 6.432, and 10.72 mg m-3), a label-free quantitative proteomic investigation was performed. Postharvest physiological quality traits including respiration rate, firmness, titratable acid, and anthocyanin content were characterized. The observed protein expression profile after storage was related to delayed senescence in strawberries. A total of 2413 proteins were identified in differentially treated strawberry fruits, and 382 proteins were differentially expressed between the four treatments on day 7 and the initial value (blank 0). Proteins related to carbohydrate and energy metabolism and anthocyanin biosynthesis, cell stress response, and fruit firmness were characterized and quantified. Ozone treatment at the concentration of 10.72 mg m-3 effectively delayed the senescence of the strawberry. The proteomic profiles were linked to physiological traits of strawberry fruit senescence to provide new insights into possible molecular mechanisms.
Collapse
Affiliation(s)
- Cunkun Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University Beijing China
- College of Food Science and Nutritional Engineering, China Agricultural University Beijing China
| | - Xiaojun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture of China, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products Tianjin China
| | - Huijie Zhang
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology Tianjin China
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang University of Science and Technology Hangzhou China
| | - Li Li
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University Hangzhou China
| | - Chenghu Dong
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture of China, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products Tianjin China
| | - Haipeng Ji
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture of China, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products Tianjin China
| | - Wentong Xue
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University Beijing China
- College of Food Science and Nutritional Engineering, China Agricultural University Beijing China
| |
Collapse
|
49
|
Ultrasound Improves Antimicrobial Effect of Sodium Hypochlorite and Instrumental Texture on Fresh-Cut Yellow Melon. J FOOD QUALITY 2018. [DOI: 10.1155/2018/2936589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ultrasound combined with sanitizers is efficient for the reduction of microbiological contaminants in fruits and vegetables. However, the physicochemical changes remain to be elucidated. Therefore, the isolated and combined effect of ultrasound (40 kHz, 500 W) and sodium hypochlorite (NaOCl) (100 mg/L) for 5 min in the bacterial microbiota and physicochemical changes on yellow melon (Cucumis melo L.) were evaluated. Mesophilic aerobic bacteria (MAB), pH, total titratable acidity (TTA), and texture profile were performed. No changes in pH and TTA (p>0.05) were obtained. Firmness, chewiness, cohesiveness, and gumminess increased (p<0.05) after the ultrasound application. A synergistic effect between ultrasound and NaOCl in the MAB reduction was achieved. Therefore, ultrasound improves the antimicrobial effect of NaOCl and texture profile without undesirable chemical changes.
Collapse
|
50
|
Asioli D, Rocha C, Wongprawmas R, Popa M, Gogus F, Almli VL. Microwave-dried or air-dried? Consumers' stated preferences and attitudes for organic dried strawberries. A multi-country investigation in Europe. Food Res Int 2018; 120:763-775. [PMID: 31000296 DOI: 10.1016/j.foodres.2018.11.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
Abstract
Non-thermal food processing technologies are becoming more important in the organic food sector because, beyond preserving the organic feature, they could offer organic products with additional benefits in terms of enhanced nutritional content and healthiness as well as better sensory properties that could satisfy the more complex demands of organic consumers. Berries have a well-known health benefits and show increasing market shares in European markets while dehydration can increase the food convenience in terms of extended shelf-life. This study investigates for the first time organic consumers' stated preferences, attitudes and individual differences for a non-thermal organic processing technology. Specifically, we investigated consumers' preferences for organic dried strawberries varying in drying technology used, such as the most conventional (i.e. thermal) air drying and the most innovative (i.e. non-thermal) microwave drying, origin, price levels, and nutrient contents in three European countries: Norway, Romania and Turkey. Data from a total of 614 consumers were collected through an online choice experiment. Results show that on average consumers prefer organic dried strawberries produced with air drying technology that have national origin, with natural nutrient content and at low price, but country and individual differences are identified. Consumers who showed least rejection for microwave dried products are young, mostly from Norway and have higher positive attitudes towards new food technologies. Consumers who showed most rejection for microwave dried products are older, mostly from Turkey and have higher positive attitudes for organic, natural and ecological products. Organic producers who adopt microwave drying might better inform consumers about the characteristics, the process and highlight the nutritional benefits of such technology. Finally, this research informs policy makers about the need to define and regulate more clearly microwave drying as an organic technology, as well as to regulate labelling to ensure that consumers are not misled and correctly informed about the new technology.
Collapse
Affiliation(s)
- D Asioli
- University of Reading, Reading, United Kingdom; NOFIMA AS, Norway; University of Arkansas, Fayetteville, AR, United States.
| | - C Rocha
- University of Porto, Portugal; SenseTest Lda, Portugal
| | | | - M Popa
- University of Agronomical Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - F Gogus
- Gaziantep University, Gaziantep, Turkey
| | | |
Collapse
|